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Abstract. This paper concerns the long-term behavior of population systems, and in particu-
lar of chemical reaction systems, modeled by deterministic mass-action kinetics. We approach two
important open problems in the field of Chemical Reaction Network Theory, the Persistence Con-
jecture and the Global Attractor Conjecture. We study the persistence of a large class of networks
called lower-endotactic and in particular, we show that in weakly reversible mass-action systems with
two-dimensional stoichiometric subspace all bounded trajectories are persistent. Moreover, we use
these ideas to show that the Global Attractor Conjecture is true for systems with three-dimensional
stoichiometric subspace.
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1. Introduction. Mass-action systems are a large class of nonlinear differential
equations, widely used in the modeling of interaction networks in chemistry, biology
and engineering. Due to the high complexity of dynamical systems arising from non-
linear interactions, it is very difficult, if not impossible, to create general mathematical
criteria about qualitative properties of such systems, like existence of positive equi-
libria, stability properties of equilibria or persistence (non-extinction) of variables.
However, a fertile theory that answers this type of questions for mass-action systems
has been developed over the last 40 years in the context of chemical reaction systems.
Generally termed Chemical Reaction Network Theory [11, 12, 13, 14, 17, 18, 19, 20]
this field of research originated with the seminal work of Fritz Horn, Roy Jackson and
Martin Feinberg [11, 18, 20] and describes the surprisingly stable dynamic behavior
of large classes of mass-action systems, independently of the values of the parameters
present in the system. This fact is very relevant, since the exact values of the system
parameters are typically unknown in practical applications. Although the results in
this paper will be applicable to general population systems driven by mass-action ki-
netics, they will be developed within the frame of Chemical Reaction Network Theory.

A large part of this paper is devoted to persistence properties of mass-action
systems. A dynamical system on Rn≥0 is called persistent if forward trajectories that
start in the interior of the positive orthant do not approach the boundary of Rn≥0 (see
section 2.6 for a rigorous definition). Note that, throughout this paper, trajectory
will always mean bounded trajectory. For systems with bounded trajectories, this is
equivalent to saying that no trajectories with positive initial condition have ω-limit
points on the boundary of Rn≥0. Persistence answers important questions regarding
dynamic properties of biochemical systems, ecosystems, or infectious diseases, e.g.
will each chemical species be available at all future times; or will a species become
extinct in an ecosystem; or will an infection die off. One of the major open questions
of Chemical Reaction Network Theory is the following:
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Persistence Conjecture [10]. Any weakly reversible mass-action system is persis-
tent.

A weakly reversible mass-action system is one for which its directed reaction graph
has strongly connected components (Definition 2.3). A version of this conjecture was
first mentioned by Feinberg in [13, Remark 6.1.E]; that version only requires that no
trajectory with positive initial condition converges to a boundary point. A stronger
version of the Persistence Conjecture (called the Extended Persistence Conjecture) was
formulated by Craciun, Nazarov and Pantea in [10] and it was shown to be true for
two-species systems. Moreover, in that case, weakly reversible mass-action systems
are not only persistent, but also permanent (all trajectories originating in the interior
of Rn≥0 eventually enter a fixed compact subset of the interior of Rn≥0).

In recent approaches to the Persistence Conjecture, the behavior of weakly re-
versible mass-action systems near the faces of their stoichiometric compatibility classes
(minimal linear invariant subsets) was considered. It is known that ω-limit points may
only lie on faces of the stoichiometric compatibility class that are associated with a
semilocking set [1] (see also [13, Remark 6.1.E]), or siphon in the Petri net litera-
ture [5, 27]. Anderson [1] and Craciun, Dickenstein, Shiu and Sturmfels [9] showed
that vertices of the stoichiometric compatibility class cannot be ω-limit points. More-
over, Anderson and Shiu [4] proved that for a weakly reversible mass-action system,
the trajectories are, in some sense, repelled away from codimension-one faces of the
stoichiometric compatibility class.

In this paper we prove the following version of the Persistence Conjecture for
systems with two-dimensional stoichiometric compatibility classes (Theorem 5.1):

Theorem 5.1. Any κ-variable mass-action system with bounded trajectories, two-
dimensional stoichiometric compatibility classes and lower-endotactic stoichiometric
subnetworks is persistent.

Here a stoichiometric subnetwork is a union of connected components of the reac-
tion graph (see Definition 2.8) and the requirement of lower-endotactic (Definition
3.4) stoichiometric subnetworks is less restrictive than that of weak reversibility. We
suggest that the hypothesis of “lower-endotactic” arises naturally in the context of
persistence of mass-action systems. Moreover, κ-variable mass-action is a general-
ization of mass-action where each reaction rate parameter is allowed to vary within
a compact subset of (0,∞) (see Definition 2.6). Therefore this theorem implies the
following:

Corollary. Any weakly reversible mass-action system with two-dimensional stoichio-
metric compatibility classes and bounded trajectories is persistent.

Note that our proof of Theorem 5.1. above (and of its corollary) requires the hypoth-
esis of bounded trajectories. However, it has been conjectured that all trajectories
of weakly reversible mass-action systems are bounded [3], and this conjecture has
recently been proved for networks whose reaction graph has a single connected com-
ponent [3]. Also, a stronger statement is known to be true for two-species networks:
any endotactic, κ-variable mass-action system with two species has bounded trajec-
tories [10].

The Persistence Conjecture is strongly related to another conjecture which is of-
ten considered the most important open problem in the field of Chemical Reaction
Network Theory [2, 4, 9, 10], namely the Global Attractor Conjecture. This con-
jecture was first formulated by Horn [19] and concerns the long-term behavior of
complex-balanced systems, i.e., systems that admit a positive complex-balanced equi-
librium (see Definition 2.10). Horn and Jackson showed that if a mass-action system
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is complex-balanced then there exists a unique positive equilibrium in each stoichio-
metric compatibility class and this equilibrium is complex-balanced [20]. Moreover,
each such equilibrium is locally asymptotically stable in its stoichiometric compati-
bility class due to the existence of a strict Lyapunov function [20]. In two subsequent
papers [11, 18] Feinberg and Horn showed that weakly reversible mass-action sys-
tems which are also deficiency zero (Definition 2.11) are complex-balanced. This
fact is remarkable since it reveals a wide class of reaction systems that are complex-
balanced only because of their structure and regardless of parameter values. For a
self-contained treatment of Chemical Reaction Network Theory, including the results
mentioned above, the reader is referred to [12].

The Lyapunov function of Horn and Jackson does not guarantee global stability
for a positive equilibrium relative to the interior of its compatibility class. This fact
is the object of the Global Attractor Conjecture:

Global Attractor Conjecture. In a complex-balanced mass-action system, the
unique positive equilibrium of a stoichiometric compatibility class is a global attractor
of the interior of that class.

It is known [12] that complex-balanced systems are necessarily weakly reversible.
On the other hand, trajectories of complex-balanced systems converge to the set of
equilibria [1, 24, 26], so it follows that the Persistence Conjecture implies the Global
Attractor Conjecture.

A series of partial results towards a proof of the Global Attractor Conjecture
have been obtained in recent years. It is known that the conjecture is true for sys-
tems with two-dimensional stoichiometric compatibility classes ([4]; see also the recent
work of Siegel and Johnston [25]), and for three-species systems [10]. Recently, An-
derson proved that the conjecture holds if the reaction graph has a single connected
component [2].

In this paper we prove the Global Attractor Conjecture for systems with three-
dimensional stoichiometric compatibility classes (Theorem 6.3):

Theorem 6.3. Consider a complex-balanced weakly reversible mass-action system
having stoichiometric compatibility classes of dimension three. Then, for any positive
initial condition c0, the solution c(t) converges to the unique positive equilibrium which
is stoichiometrically compatible with c0.

Aside from being significant in the field of polynomial dynamical systems and
relevant in important biological models [15, 16, 24, 26], Chemical Reaction Network
Theory, and in particular the two conjectures discussed above, have ramifications in
other well-established areas of mathematics. For example, [9] stresses the connec-
tion with toric geometry and computational algebra; in that work complex-balanced
systems are called toric dynamical systems to emphasize their intrinsic algebraic struc-
ture. Also, [23] studies the rich algebraic structure of biochemical reaction systems
with toric steady states. Furthermore, the unique positive equilibrium in a stoichio-
metric compatibility class of a complex-balanced system is sometimes called the Birch
point in relation to Birch’s Theorem from algebraic statistics [9, 21].

This paper is organized as follows. After a preliminary section of terminology
and notation, we introduce the lower-endotactic networks in section 3 and follow
with a discussion of our main technical tool, the 2D-reduced mass-action system in
section 4. The main persistence result of the paper is contained in section 5 (Theorem
5.1) and our result on the Global Attractor Conjecture (Theorem 6.3) is proved in
section 6. A critical part in the proof of the latter theorem resides in the result of
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Theorem 6.2, which analyzes the behavior of weakly reversible mass-action systems
near codimension-two faces of stoichiometric compatibility classes.

2. Preliminaries. A chemical reaction network is usually given by a finite list
of reactions that involve a finite set of chemical species. An example with four species
A,B,C and D and five reactions is given in (2.1).

B +D
A+ C→A+B→C +D 2A→A+D← 2D (2.1)

The interpretation of the reaction A+B → C +D, for instance, is that one molecule
of species A combines with one molecule of species B to produce one molecule of
each of the species C and D. The objects on both sides of a reaction are formal
linear combinations of species and are called complexes. According to the direction
of the reaction arrow, a complex is either source or target. This way, the reaction
A+B → C +D in (2.1) has A+B as source complex and C +D as target complex.
The concentrations cA, cB , cC and cD vary with time by means of a set of ordinary
differential equations, which we will explain shortly. In this preliminary section of
the paper we review the standard concepts of Chemical Reaction Network Theory
(see [12]) and introduce some new terminology that will be useful further on. In
what follows, the set of nonnegative, respectively strictly positive real numbers are
denoted by R≥0 and R>0 . For an integer n ≥ 1 we call Rn>0 the positive orthant.
The boundary of a set K ⊂ Rn will be denoted by ∂K and the convex hull of K will
be denoted by conv(K). Also, we will denote the transpose of a matrix A by At.

2.1. Reaction networks. If I is a finite set then we denote by ZI≥0 and RI≥0

the set of all formal sums α =
∑
i∈I

αii where αi are nonnegative integers, respectively

nonnegative reals.

Definition 2.1. A chemical reaction network is a triple (S, C,R), where S is
the set of species, C ⊆ ZS≥0 is the set of complexes, and R is a relation on C, denoted
P → P ′, representing the set of reactions of the network. The reaction set R cannot
contain elements of the form P → P and each complex in C is required to appear in
at least one reaction.

For simplicity, we will often denote a reaction network by a single letter, for
instance N = (S, C,R). For technical reasons we have chosen to neglect a third
requirement that is usually included in the definition of a reaction network (see [12]):
each species appears in at least one complex. This condition is not essential in the
setting of this paper.

In (2.1) the set of species is S = {A,B,C,D}, and the set of complexes is C =
{B +D,A+ C,A+B,C +D, 2A,A+D, 2D}.

Once we fix an order among the species, any complex may be viewed as a column
vector of dimension equal to the number of elements of S. For example, the complexes
A+ B and 2D in (2.1) may be represented by the vectors (1 1 0 0)t, and (0 0 0 2)t.
With this identification in place, we may now define the reaction vector of a reaction
P → P ′ ∈ R to be P ′ − P.

Definition 2.2. The stoichiometric subspace of the reaction network N =
(S, C,R) is S = span{P ′ − P | P → P ′ ∈ R}.

Example 1. The stoichiometric subspace of the reaction network (2.1) is the
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column space of the stoichiometric matrix

A =


1 -1 0 -1 -1 1

-1 1 1 -1 0 0
1 -1 -1 1 0 0

-1 1 0 1 1 -1

 .

It is easy to see that S = {(a, b, −b, −a)t|(a, b) ∈ R2}.
Any reaction network N can be viewed as a directed graph whose vertices are

the complexes of N and whose edges correspond to reactions of N . Each connected
component of this graph is called a linkage class of N .

Definition 2.3. A reaction network N is called weakly reversible if its associated
directed graph has strongly connected components.

In other words, N is weakly reversible if whenever there exists a directed arrow
pathway (consisting of one or more reaction arrows) from one complex to another,
there also exists a directed arrow pathway from the second complex back to the first.

2.2. Reaction systems. Throughout this paper we let n denote the number of
species of a reaction network N = (S, C,R), we fix an order among the species, and
we denote S = {X1, . . . , Xn}. We also let c(t) ∈ RS ∼= Rn denote the (column) vector
of species concentrations at time t ≥ 0. From here on, “vector” or “point of Rn” will
always mean “column vector”, even if, for simplicity, the notation t may not always
be used. The concentration vector c(t) is governed by a set of ordinary differential
equations that involve a reaction rate function for each reaction in R.

Definition 2.4. A (non-autonomous) reaction system is a quadruple (S, C,R,K)
where N = (S, C,R) is a reaction network with n species and K : R≥0 × Rn≥0 → RR>0

is a piecewise differentiable function called the kinetics of the system. The component
KP→P ′ of K is called the rate function of reaction P → P ′. Letting P = (m1, . . . ,mn)
and x = (x1, . . . , xn), KP→P ′ is assumed to satisfy, for any t ≥ 0, the following: if
xi = 0 and mi 6= 0 then KP→P ′(t,x) = 0. The dynamics of the system is given by the
following system of differential equations for the concentration vector c(t):

ċ(t) =
∑
P→P ′

KP→P ′(t, c(t))(P
′ − P ). (2.2)

Note that we will often use the short notation (N ,K) for a reaction system.
The regularity condition on K may be replaced by any other condition that

guarantees uniqueness of solutions for (2.2). Sometimes, additional properties are
required of K [4, 6, 7]. For example, it is commonly assumed that if the ith species is
not a reactant in P → P ′ (i.e. mi = 0) then KP→P ′ does not depend on xi. Another
widespread assumption is that K is increasing with respect to reactant concentrations,
i.e. ∂

∂xi
KP→P ′ ≥ 0 if mi 6= 0. These conditions are automatically satisfied for the

kinetics treated in this paper.
If c0 ∈ Rn≥0 we let

T (c0) = {c(t) | t ≥ 0, c(0) = c0}

denote the trajectory of (N ,K) with initial condition c0. If K(t,x) = K(x) does not
depend explicitly on time, we say that c∗ ∈ Rn≥0 is an equilibrium of the reaction
system (N ,K) if it is an equilibrium of the corresponding differential equations (2.2).

Note that the condition on KP→P ′ imposed in Definition 2.4 makes the nonneg-
ative orthant Rn≥0 forward invariant for (2.2). Under mild additional assumptions on
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K, the positive orthant Rn>0 is also forward-invariant for (2.2) (see [26]). For exam-
ple, this will be the case for κ-variable mass-action kinetics, the main type of kinetics
considered in this paper (Definition 2.6).

Integrating (2.2) yields

c(t) = c(0) +
∑
P→P ′

(∫ t

0

KP→P ′(s, c(s))ds

)
(P ′ − P )

and it follows that c(t) is contained in the affine subspace c(0) + S for all t ≥ 0.
Combining this with the preceding observation we see that (c(0)+S)∩Rn≥0 is forward
invariant for (2.2).

Definition 2.5. Let c0 ∈ Rn. The polyhedron (c0 + S) ∩ Rn≥0 is called the
stoichiometric compatibility class of c0.

Note that, throughout this paper, “polyhedron” will always mean “convex poly-
hedron”, i.e., an intersection of finitely many half-spaces. To prepare for the next
definition we introduce the following notation: given two vectors u, v ∈ Rn≥0, we

denote uv =

n∏
i=1

uvii , with the convention 00 = 1.

Definition 2.6 ([10]). A κ-variable mass-action system is a reaction system
(N ,K) where N = (S, C,R) and the rate function of P → P ′ ∈ R is given by

KP→P ′(t,x) = κP→P ′(t)x
P . (2.3)

Here κ : R≥0 → (η, 1/η)R for some η < 1 is a piecewise differentiable function called
the rate-constant function.

To emphasize the rate-constant function, we denote a κ-variable mass-action sys-
tem by (S, C,R, κ), or by (N , κ). Note that if the rate-constant function is fixed in
time, κ-variable mass-action becomes the usual mass-action. A few biological ex-
amples of κ-variable mass-action models that are not mass-action are presented in
[10].

Therefore, a κ-variable mass-action system gives rise to the following non-autonomous,
and usually nonlinear, system of coupled differential equations:

ċ(t) =
∑
P→P ′

κP→P ′(t)c(t)
P (P ′ − P ). (2.4)

Example 2. We endow the reaction network (2.1) with κ-variable mass-action
kinetics of rate-constant function specified on the reaction arrows in (2.5).

B +D
κ1(t)


κ2(t)

A+ C
κ3(t)→ A+B

κ4(t)→ C +D 2A
κ5(t)→ A+D

κ6(t)← 2D (2.5)

We have c(t) = (cA(t), cB(t), cC(t), cD(t)) and note that, for example, c(t)A+B =
c(t)(1 1 0 0) = cA(t)cB(t). From (2.4) we have

ċ = κ1(t)cBcDA1+κ2(t)cAcCA2+κ3(t)cAcCA3+κ4(t)cAcBA4+κ5(t)c2AA5+κ6(t)c2DA6

for all t ≥ 0, where Ai is column i of the stoichiometric matrix A given in (1), i.e.,
the reaction vector of reaction i. Therefore the differential equations corresponding to
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(2.5) are

ċA = κ1(t)cBcD − κ2(t)cAcC − κ4(t)cAcB − κ5(t)c2A + κ6(t)c2D (2.6)

ċB = −κ1(t)cBcD + κ2(t)cAcC + κ3(t)cAcC − κ4(t)cAcB

ċC = κ1(t)cBcD − κ2(t)cAcC − κ3(t)cAcC + κ4(t)cAcB

ċD = −κ1(t)cBcD + κ2(t)cAcC + κ4(t)cAcB + κ5(t)c2A − κ6(t)c2D,

2.3. Sums of reaction systems. A reaction network (S, C,R) is called a sub-
network of (S,′ C′,R′) if S ⊆ S ′, C ⊆ C′ and R ⊆ R′. If R′ has an associated kinetics
K then restricting K to reactions of R defines a kinetics for R. On the other hand,
if Ns = (Ss, Cs,Rs), s ∈ {1, . . . , p} are reaction networks, their union, denoted by⋃p
s=1(Ss, Cs,Rs) or simply by

⋃p
s=1Ns, and defined as the triple (

⋃p
s=1 Ss,

⋃p
s=1 Cs,

⋃p
s=1Rs)

is also a reaction network. If each Ns has an associated kinetics Ks, we can define a
kinetics for

⋃p
s=1Ns by simply adding all Ks.

Definition 2.7. The sum of the reaction systems (Ss, Cs,Rs,Ks) is the reaction
system (S, C,R,K) where (S, C,R) =

⋃p
s=1(Ss, Cs,Rs) and

KP→P ′(t,x) =
∑

{s:P→P ′∈Rs}

Ks,P→P ′(t,x)

for and all (t,x) ∈ R≥0×Rn≥0. We will denote this (S, C,R,K) by
⋃p
s=1(Ss, Cs,Rs,Ks)

or simply by
⋃p
s=1(Ns,Ks), where Ns = (Ss, Cs,Rs).

For example, any reaction system is the sum of the reaction systems corresponding
to its linkage classes. Similarly, any reaction system is the sum of the reaction systems
corresponding to its stoichiometric subnetworks, which we define next.

Definition 2.8. A reaction network (S, C,R) with stoichiometric subspace S
can be written uniquely as a union of subnetworks

(S, C,R) =

p⋃
s=1

(Ss, Cs,Rs)

where {Cs}s∈{1,...,p} is a partition of C such that two complexes in C are in the same
block of the partition if and only if their difference is in S. We call each (Ss, Cs,Rs)
a stoichiometric subnetwork of (S, C,R).

Example 3. The diagram in Figure 2.1 represents the reaction network

C → B → A, 2B 
 A+B, B + C → 2A→ 2C.

This reaction network has three linkage classes, and two stoichiometric subnetworks

{C → B → A} and {2B 
 A+B, B + C → 2A→ 2C}.

Note that there exist vectors a1, . . . , ap ∈ Rn such that for all s ∈ {1, . . . , p}, we
have Cs ⊂ as +S and the affine subspaces as +S, s ∈ {1, . . . , p} are pairwise disjoint.
Also note that each stoichiometric subnetwork is a union of linkage classes.

Example 4. The reaction network (2.1) has two linkage classes which belong to
two different stoichiometric subnetworks since (A+B)−2A = (−1, 1, 0, 0) /∈ S (recall
S from Example 1). Therefore the reaction network has exactly two stoichiometric
subnetworks which coincide with its linkage classes.
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A

B

C

Fig. 2.1. Stoichiometric subnetworks for Example 3.

2.4. Projected reaction systems. For W ⊂ {1, . . . , n} we define

πW : Rn → RW

to be the projection onto W, i.e. the orthogonal projection onto RW .
Definition 2.9 ([22]; see also [2]). Let N = (S, C,R) be a reaction network with

S = {X1, . . . , Xn} and let W ⊂ {1, . . . , n}. Let SW = {Xi | i ∈W},

RW = {πW (P )→ πW (P ′) | P → P ′ ∈ R, such that πW (P ) 6= πW (P ′)}

and CW ⊂ πW (C) be the set of complexes in RW . The reaction network (SW , CW ,RW ),
is called N projected onto W and denoted πW (N ).

In other words, the projection of (S, C,R) onto W is obtained by deleting the
species Xi, i ∈ {W from all reactions inR and further removing the resulting reactions
for which the source and the target complexes are the same. Here and from now on
{W denotes the complement of W in {1, . . . , n}.

If (N ,K) = (S, C,R,K) is a reaction system and c(t) = (c1(t), . . . , cn(t)) is a so-
lution of the corresponding system of differential equations (2.2) with initial condition
c0 ∈ Rn≥0, then πW (c)(t) is a solution of the following system of differential equations:

d

dt
πW (c) =

∑
Q→Q′∈RW

( ∑
{P→P ′∈R:

πW (P )=Q,πW (P ′)=Q′}

KP→P ′(t, πW (c))

)
(Q′ −Q) (2.7)

with initial condition πW (c0). Equation (2.7) is obtained from (2.2) by (i) keeping
only the equations for ċi with i ∈W ; (ii) writing KP→P ′(t, c) = KP→P ′(t, πW (c)) to
illustrate that ci, i ∈ {W, are written either in terms of ci, i ∈ W, or as functions of
t; and (iii) lumping together the rates of reactions P → P ′ that project to the same
reaction in RW . The system of differential equations (2.7) defines a kinetics KW

for πW (N ), where, for any reaction Q → Q′ ∈ RW , KW,Q→Q′ is given by the sum
from the parentheses in (2.7). We call the resulting reaction system (πW (N ),KW )
a projection of N onto W . Note that K is not unique. Which variables ci, i ∈ {W
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are written in terms of t and which are written in terms of ci, i ∈ W is a matter of
context. For instance, Example 5 below describes two different functions K associated
with system (2.5) projected onto {1, 2}.

A natural way of defining K for κ-variable mass-action systems is to include
ci, i ∈ {W in the rate-constant function: K(t, c) = κ(t)πW (c)πW (P ), where κ(t) =
κ(t)π{W (c(t))π{W (P ). The differential equations (2.7) in this case are

d

dt
πW (c) =

∑
Q→Q′∈RW

( ∑
{P→P ′∈R:

πW (P )=Q,πW (P ′)=Q′}

κP→P ′(t)π{W (c)π{W (P )

)
πW (c)Q(Q′−Q).

(2.8)
Note that this projection has the form of κ-variable mass-action, with rate-constant
function for the reaction Q → Q′ ∈ RW given by the second sum in (2.8). However,
this rate-constant is not necessarily bounded in a compact interval of (0,∞).

Example 5. Following (2.8), the projection of reaction system (2.5) onto W =
{1, 2} i.e., onto species A and B, can be written in the κ-variable mass-action form
(without necessarily being κ-variable mass-action):

B
κ1(t)


κ2(t)

A
κ3(t)→ A+B

κ4(t)→ 0 2A
κ5(t)→ A

κ6(t)← 0

with differential equations

ċA = κ1(t)cB − κ2(t)cA − κ4(t)cAcB − κ5(t)c2A + κ6(t)

ċB = −κ1(t)cB + κ2(t)cA + κ3(t)cA − κ4(t)cAcB

where (recall equation (2.6)) κ1(t) = κ1(t)cD(t), κ2(t) = κ2(t)cC(t), κ3(t) = κ3(t)cC(t),
and κ6(t) = κ6(t)cD(t)2.

On the other hand, let T = {c(t) | t ≥ 0} be a trajectory of (2.5) with initial
condition (α, β, γ, η) ∈ R4

>0. Then cA + cD = α+ η, cB + cC = β + γ and therefore
π{1,2}(T ) is a trajectory of the following projection of (2.5):

B
K1



K2

A
K3→A+B

K4→ 0 2A
K5→A

K6← 0,

where, denoting π{1,2}(c) = (x, y), the rate function K(t, (x, y)) is given by K1(t, (x, y)) =

κ1(t)y(α+ η−x), K2(t, (x, y)) = κ2(t)x(β+ γ− y), K3(t, (x, y)) = κ3(t)x(β+ γ− y),
K4(t, (x, y)) = κ4(t)xy, K5(t, (x, y)) = κ5(t)x2 and K6(t, (x, y)) = κ6(t)(α+ η−x)2.

Remark 2.1. Let W ⊂ {1, . . . , n} and P, P ′ ∈ C. If πW (P ) 6= πW (P ′), then any
directed path in R from P to P ′ projects onto a directed path from πW (P ) to πW (P ′)
in RW . If, on the other hand, πW (P ) = πW (P ′), then a directed path from P to P ′

either projects onto a cycle in RW or is eliminated by the projection.
Therefore projection preserves weak reversibility: if N is weakly reversible, then

so is π(N ). This result appears in [22] and is also the object of Lemma 3.4. in [2].

2.5. Complex-balanced systems and deficiency of a network. Complex-
balanced systems are defined in the context of mass-action kinetics, i.e., the rate-
constants are fixed positive numbers.

Definition 2.10. An equilibrium c∗ ∈ Rn≥0 of a mass-action system (R,S, C, κ)
is called complex-balanced equilibrium if, at c∗, for any complex P0 ∈ C, the flow into
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P0 is equal to the flow out of P0. More precisely, for each P0 ∈ C we have∑
P→P0

κP→P0
c∗
P =

∑
P0→P

κP0→P c∗
P0 .

A complex-balanced system is a mass-action system that admits a strictly positive
complex-balanced equilibrium.

Definition 2.11. Let (S, C,R) be a reaction network with m complexes, l linkage
classes and whose stoichiometric subspace has dimension s. The deficiency of the
reaction network R is m− l − s.

The deficiency of a reaction network is always non-negative [12]. It has been
shown that weakly reversible systems whose deficiency is equal to zero are complex-
balanced [12]. This remarkable fact reveals a large class of mass-action systems which
are complex-balanced regardless of the choice of their rate constants.

2.6. Persistence and the sub-tangentiality condition.
Definition 2.12. A trajectory T (c0) = {(x1(t), . . . , xn(t)) | t ≥ 0} with positive

initial condition c0 ∈ Rn>0 of an n-dimensional dynamical system is called persistent
if

lim inf
t→∞

xi(t) > 0 for all i ∈ {1, . . . , n}.

Some authors call a trajectory that satisfies the condition in Definition 2.12
strongly persistent [29]. In their work, persistence requires only that lim supt→∞ xi(t) >
0 for all i ∈ {1, . . . , n}. We say that a dynamical system (or a reaction system) is per-
sistent if all its trajectories with strictly positive initial condition are persistent.

Definition 2.13. Let T (c0) = {x(t) | t ≥ 0} denote a forward trajectory of a
dynamical system with initial condition c0 ∈ Rn>0. The ω-limit set of T (c0) is

limω T (c0) = {l ∈ Rn | limn→∞ c(tn) = l for some sequence tn →∞}.

The elements of limω T (c0) are called ω-limit points of T (c0).
Note that a bounded trajectory of a dynamical system with positive initial con-

dition is persistent iff it has no ω-limit points on ∂Rn≥0.
In this paper we will prove persistence of trajectories T (c0) for reaction systems

with special properties. Our approach will consist of showing that a certain convex
polyhedron included in Rn>0 contains T (c0). To this end we will use the following
version of a result of Nagumo [8]. Recall that for a closed, convex set K ⊂ Rn and
for x ∈ K the normal cone of K at x is defined as follows:

NK(x) = {n ∈ Rn | n · (y − x) ≤ 0 for all y ∈ K}.

Theorem 2.1 (Nagumo, [8]). Let K ⊂ Rn be a closed, convex set. Assume
that the system ẋ(t) = f(t,x(t)) has unique solution for any initial value, and let
T (c0) = {x(t) | t ≥ 0, x(0) = c0} be a forward trajectory of this system with c0 ∈ K.
If for any t0 ≥ 0 such that x(t0) ∈ ∂K we have the sub-tangentiality condition

n · f(t0, x(t0)) ≤ 0 for all n ∈ NK(x(t0))

then T (c0) ⊂ K.
10
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Fig. 3.1. (a) Essential supports corresponding to v1 and v2; (b) Example of a set of inward
vectors; (c) Illustration for the proof of Lemma 3.6.

3. Lower-endotactic networks. Let N = (S, C,R) be a reaction network with
species X1, . . . , Xn and let S ⊆ Rn denote its stoichiometric subspace. By a useful
abuse of notation, we view the source complexes of N as lattice points in Zn :

SC(N ) = {(m1, . . . ,mn) ∈ Zn≥0 | m1X1 + . . .+mnXn ∈ C is a source complex}.

In this section we revisit the notion of lower-endotactic network, first introduced
in [10] for the case of two-species networks, and we extend it to planar reaction
networks, defined below. We let aff(N ) denote the affine hull of C, i.e. the minimal
affine subspace of Rn that contains C.

Definition 3.1. The reaction network N is called planar if dim(aff(N )) ≤ 2.
Let aff+(N ) = aff(N )∩Rn≥0. The following definition is similar to the one in [10,

section 4].
Definition 3.2. Let N = (S, C,R) be a reaction network such that aff(N ) has

dimension two and let v be a vector in S.
(i) The v-essential subnetwork Nv = (S, Cv,Rv) of (S, C,R) is defined by the

reactions of R whose reaction vectors are not orthogonal to v:

Rv = {P → P ′ ∈ R | (P ′ − P ) · v 6= 0};

Cv is defined as the set of complexes appearing in reactions of Rv.
(ii) The v-essential support of N is the supporting line L of conv(SC(N v)) that

is orthogonal to v and such that the positive direction of v lies on the same side of
L as SC(N v); (in other words, for any P ∈ aff(N ), the intersection of the half-line
{P+tv|, t ≥ 0} with the half-plane bounded by L that contains SC(N v) is unbounded.)
The line L is denoted by esuppv(N ).

Figure 3.1(a) illustrates the notion of v-essential support for a planar reaction
network with six complexes and four reactions. This reaction network has two source
complexes and note that Nv1 is equal to N , whereas Nv2 is strictly smaller than N
and contains only one source complex.

We denote by esuppv(N )<0 the intersection of aff+(N ) with the open half-plane
in aff(N ) bounded by esuppv(N ) that does not contain the positive direction of v :

esuppv(N )<0 = {P ∈ aff+(N ) | (P −Q) · v < 0 for all Q ∈ esuppv(N )}

and we define esuppv(N )>0 similarly.
Definition 3.3. Let C ⊂ Rn be a closed and convex set, and let S be the linear

subspace of Rn such that the affine hull of C is a translation of S. Then

iv(C) = −
⋃

x∈∂C

(NC(x) ∩ S)

11



is called the set of inward vectors of C. Here ∂C denotes the relative boundary of C.

An example of a set of inward vectors for a two-dimensional set C is depicted in
Figure 3.1(b).

Remark 3.1. (i) iv(C) is a convex cone and if C is bounded then iv(C) = S.

(ii) If C is a half-line then iv(C) consists of all vectors parallel with C pointing
in the unbounded direction of C. If C is a bounded line segment, then iv(C) consists
of all vectors parallel with C.

(iii) If aff(C) has dimension two, then the set of inward vectors iv(C) is two-
dimensional and consists of the normal vectors v ∈ S of all supporting lines L of C
such that the positive direction of v is on the same side of L as C (see Figure 3.1(b)
for an example).

Definition 3.4. Let N be a planar reaction network with stoichiometric subspace
S. Then N is called lower-endotactic if the set

{P → P ′ | P ∈ esuppv(N ) and P ′ ∈ esuppv(N )<0} (3.1)

is empty for all nonzero vectors v ∈ iv(aff+(N )).

Definition 3.4(ii) is easily explained by the “parallel sweep test” [10]. A reaction
network N = (S, C,R) is lower-endotactic if and only if it passes the following test
for any nonzero inward vector v of aff+(N ): sweep the plane aff(N ) with a line L
orthogonal to v, coming from infinity and going in the direction of v, and stop when
L encounters a source complex corresponding to a reaction which is not parallel to
L. Now check that no reaction with source on L points towards the swept region. If
Rv = Ø, then all reaction vectors of R are perpendicular to v and L never stops in
the parallel sweep test. In this case we still say that the network has passed the test
for v.

A reaction network is lower-endotactic if its reactions with sources that are “clos-
est” to the boundary of aff+(N ) point “inside” aff+(N ). Note that this special
property of lower-endotactic networks in the lattice space Zn≥0 is analogous with the
behavior of persistent trajectories in the phase space Rn≥0 : once a persistent trajec-
tory gets “close enough” to the relative boundary of its stoichiometric compatibility
class S(c0), it is pushed back “inside”. In this sense, the requirement that a reaction
network be lower-endotactic appears very naturally in the context of persistence of a
corresponding reaction system.

Remark 3.2. Following [10], a planar reaction network N is called endotactic
if the parallel sweep test holds for all nonzero vectors v ∈ S. An endotactic network
is also lower-endotactic; the two notions coincide if aff+(N ) is bounded.

Remark 3.3. The definition of endotactic networks has been extended in [10] for
networks that are not necesarilly planar, using the parallel sweep test with hyperplanes
instead of lines ([10, Remark 4.1]). Definition 3.4 is in fact a special case of the
following more general definition of lower-endotactic networks:

Definition 3.5. A reaction network (not necessarily planar) with n species is
called lower-endotactic if it passes the parallel sweep test for any inward vector of the
non-negative orthant Rn≥0.

Whereas the definition above is easier to state, the more technical Definition 3.4
is better suited for planar networks in the context of this paper.

Remark 3.4. A weakly reversible reaction network N is always endotactic, and
in particular, lower-endotactic. Indeed, if P ∈ esuppv(N ) for some vector v ∈ S and
P → P ′ is a reaction of N then P ′ ∈ esuppv(N )≥0, for otherwise the fact that P ′ is
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also a source complex would contradict P ∈ esuppv(N ).

Remark 3.5. If aff(N ) is one-dimensional we let P be a two-dimensional affine
subspace of Rn such that aff(N ) ⊂ P. The parallel sweep test for N with vectors of
iv(P ∩Rn≥0) provides the same result as the “true” parallel sweep test with vectors of
iv(aff+(N )). We may pretend that aff+(N ) coincides with the two-dimensional set P
and therefore, from this point of view, lower-endotactic planar reaction networks with
one-dimensional stoichiometric subspace do not need a special discussion. In what
follows, unless stated otherwise, we will assume that dim(aff(N )) = 2.

Note that, if aff(N ) has dimension one, then aff+(N ) contains vectors with at
most two possible positive directions (see Remark 3.1). The following lemma shows
that, even if aff(N ) has dimension two, the parallel sweep test only needs to be
performed for a finite set of directions v (see also [10, Proposition 4.1]):

Lemma 3.6. Let N be a planar reaction network with dim(aff(N )) = 2.

(i) If aff+(N ) is bounded, then N is lower-endotactic if and only if it passes
the parallel sweep test for vectors v that are orthogonal to a side of the polygon
conv(SC(N )).

(ii) If aff+(N ) is unbounded, then N is lower-endotactic if and only if it passes
the parallel sweep test for vectors v that are either orthogonal to a side of the polygon
conv(SC(N )), or are generators of the cone iv(aff+(N )).

Proof. The sides of conv(SC(N )) whose inward normal vectors are in iv(aff+(N ))
form a polygonal line L. As in Figure 3.1(c), if aff+(N ) is unbounded, we augment
L with half-lines of directions given by the generators of iv(aff+(N )). If a vector
v ∈ iv(aff+(N )) does not correspond to (i) or (ii) in the statement of the lemma,
then esuppv(N ) contains exactly one vertex P of L. Let P → P ′ ∈ R. Since the
inward normal vectors of the two sides of L adjacent to P belong to cases (i) or (ii)
from the statement of the lemma, it follows that P ′ lies in the interior or on the sides
of the angle ∠P of L, and therefore in P ∈ esuppv(N )>0. In conclusion, the parallel
sweep test holds for all v ∈ iv(aff+(N )) and N is lower-endotactic.

Example 6. A few examples are illustrated in Figure 3.2. The source complexes
are depicted using solid dots and the various lines represent the final positions of the
sweeping lines from Lemma 3.6. Note that the reaction networks in (a) and (b) look
the same, but, since aff+(N ) is unbounded in (a) and bounded in (b), the reaction
network in (a) is lower-endotactic, whereas the reaction network in (b) is not. The
same thing happens for (e) and (d).

Affine transformations of reaction networks. An important observation that is
used often throughout this paper is that projections of lower-endotatic networks are
also lower-endotactic. We prove this fact in the larger context of affine transformations
of reaction networks. Let N = (S, C,R) be a planar reaction network and consider
an affine transformation U : aff(N )→ Rd such that U(aff+(N )) ⊂ Rd≥0. Similarly to
the definition of a projected network, we consider the “generalized” reaction network
U(N ), with reactions U(R) = {U(P ) → U(P ′) | P → P ′ ∈ R} and complexes
in the set U(C) which are allowed to have nonnegative real coordinates. We have
aff+(U(N )) = aff(U(N )) ∩ Rd≥0 and we may ask whether U(N ) is lower-endotactic.

Proposition 3.1. Let N be a planar reaction network and let U : aff(N ) →
Rd be an affine transformation such that U(aff+(N )) ⊂ Rd≥0. Then, if N is lower-
endotactic, the planar reaction network U(N ) is also lower-endotactic. Moreover, if
N is endotactic, then U(N ) is also endotactic.

Proof. We show the lower-endotactic case; the proof for the endotactic case is
similar. Also, we assume that U has rank two; a simpler version of the argument below
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Fig. 3.2. Examples of lower-endotactic networks - (a), (c), (e) and non lower-endotactic
networks - (b), (d), (f).

works if U has rank one. Let w ∈ iv(aff+(U(N ))), and let L = esuppw(U(N )). Since
U takes parallel lines to parallel lines, there exists a vector v such that U−1(L) =
esuppv(N ) and

esuppw(U(N ))<0 = U(esuppv(N ))<0).

Because U(aff+(N )) ⊆ aff+(U(N )), we have iv(aff+(U(N ))) ⊆ iv(U(aff+(N ))) and
therefore w ∈ iv(U(aff+(N )). It follows that v ∈ iv(aff+(N )). Then, if U(P ) →
U(P ′) ∈ U(R) such that U(P ) ∈ esuppw(U(N )) and U(P ′) ∈ esuppw(U(N ))<0 then
P → P ′ ∈ R, P ∈ esuppv(N ) and P ′ ∈ esuppv(R)<0, contradicting the fact that N
is lower-endotactic.

4. 2D-reduced mass-action systems. A key ingredient in the proof of our
main persistence result consists of studying projections of trajectories of κ-variable
mass-action systems onto well-chosen two-dimensional subspaces of Rn. These spe-
cial projected trajectories obey a specific type of dynamics which we call 2D-reduced
mass-action. In this section we show that bounded forward trajectories of such dy-
namical systems are persistent. To this end we will extend significantly the ideas from
[10], where they were introduced in the context of two-species κ-variable mass-action
systems.

4.1. Definition and comparison of reaction rates. Fix an integer n ≥ 2 and
let l, k be two fixed elements of {1, . . . , n} such that l < k. Let pi, qi be nonnegative
rational numbers for i ∈ {1, . . . , n} such that, for any i, not both pi and qi are zero,
and such that pl = qk = 1 and pk = ql = 0. Denote

Ψ =

(
p1 . . . pl−1 1 pl+1 . . . pk−1 0 pk+1 . . . pn
q1 . . . ql−1 0 ql+1 . . . qk−1 1 qk+1 . . . qn

)t
. (4.1)

Definition 4.1. Let Ψ be a matrix of the form (4.1).
(i) Let N = (S, C,R) be a reaction network with two species, let κ : R≥0 → RR>0

be a piecewise differentiable function and let a ∈ Rn. For all reactions P → P ′ ∈ R,
14



we define KP→P ′ : R≥0 × R2
≥0 → R≥0,

KP→P ′(t,x) = κP→P ′(t)(Ψx)ΨP+a. (4.2)

The reaction system (N ,K) is called a 2D-reduced planar mass-action system and is
denoted by (N ,Ψ, κ, a).

(ii) For each s ∈ {1, . . . , p}, let Ns = (S, Cs,Rs) be a two-species reaction net-
work and let (Ns,Ψ, κs, as) be a 2D-reduced mass-action system. The sum (N ,K) =⋃p
s=1(Ns,Ψ, κs, as) (recall Definition 2.7) is called a 2D-reduced mass-action system.

Therefore the concentration vector c(t) = (x(t), y(t)) of a 2D-reduced mass-action
system

⋃p
s=1(Ns,Ψ, κs, as) satisfies the following differential equation:

ċ(t) =

p∑
s=1

∑
P→P ′∈Rs

κs,P→P ′(t)(Ψc(t))
ΨP+as(P ′ − P ). (4.3)

Note that, by definition, κ needs not be bounded away from zero and infinity, as is
the case for κ-variable mass-action systems. However, we will require this condition
to prove persistence of 2D-reduced mass-action systems in Corollary 4.1.

The goal of this section is to study the persistence of 2D-reduced mass-action
systems. One important component of our analysis is highlighting the reaction whose
rate at time t ≥ 0 “dominates” the other reaction rates. In view of (4.2) we then
consider, for A > 0 and for any s ∈ {1, . . . , p}, the sign of the difference

(Ψx)ΨP+as −A(Ψx)ΨP ′+as , (4.4)

for all pairs of distinct source complexes P, P ′ of Ns. For simplicity, and without loss
of generality, we assume that k = 2 and l = 1. Then (4.4) has the same sign as the
following expression, which we denote by ΛAα,β(x, y) :

ΛAα,β(x, y) = xαy−β(p3x+ q3y)p3α−q3β . . . (pnx+ qny)pnα−qnβ −AD. (4.5)

Here (α,−β) = D(P − P ′) and D denotes the least common denominator of all
nonzero pi and qi, i ∈ {3, . . . , n}. Note that all the exponents in (4.5) are integers.

The geometry of the curves ΛAα,β(x, y) = 0 within R2
>0 is very relevant to our

discussion. An immediate goal, which we pursue next, is to find simple approximations
for these curves. We will see that within appropriate subsets of R2

>0, ΛAα,β(x, y) = 0
may be approximated by power curves y = Cxτ that are ordered in a useful way, as
we will explain later in the paper. Let

∆ =

(
1 +

n∑
i=3

pi

)
α, ∆ =

(
1 +

n∑
i=3

qi

)
β and ∆ = ∆−∆. (4.6)

Lemma 4.2. Suppose ∆ 6= 0.
(i) If αβ < 0 then for all x > 0 there exists a unique y > 0 such that ΛAα,β(x, y) =

0.
(ii) If αβ > 0 then for all small enough x > 0 there exists a unique y > 0 such

that ΛAα,β(x, y) = 0.
Proof. (i) If αβ < 0, without loss of generality we may take α > 0 and β < 0.

For any fixed x > 0, ΛAα,β(x, y) is a polynomial in y whose coefficients are all positive,

except for its free term −AD. The Descartes rule of signs implies that this polynomial
has a unique positive root.
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(ii) If αβ > 0, we may assume that α > 0 and β > 0. ΛAα,β(x, y) = 0 implies

ADyβ(p3x+ q3y)q3β . . . (pnx+ qny)qnβ = xα(p3x+ q3y)p3α . . . (pnx+ qny)pnα. (4.7)

We rewrite this equality by excluding the factors of zero power and merging the powers
of x in the left hand side and the powers of y in right hand side. We denote

λx = 1 +
∑

i∈{3,...,n|
qi=0}

pi and λy = 1 +
∑

i∈{3,...,n|
pi=0}

qi, (4.8)

and we let il, l ∈ {1, . . . , I} be the indices for which both pil and qil are strictly
positive. Then we have

A′yλyβ(pi1x+qi1y)qi1β . . . (piIx+qiIy)qiI β−xλxα(pi1x+qi1y)pi1α . . . (piIx+qiIy)piIα = 0
(4.9)

where A′ = AD
∏
i∈{1,...,n}\{i1,...,iI} q

qiβ
i p−piαi . We denote the polynomial in (4.9) by

F (x, y).
If λyβ > ∆− λxα then equation (4.9) yields

F (x, y) = C0y
∆ + (C1 x)y∆−1 + . . .+ (C

∆−λyβ
x∆−λyβ)yλyβ

− (Cλxαx
λxα)y∆−λxα − (Cλxα+1 x

λxα+1)y∆−λxα−1 − (C∆−1 x
∆−1)y − C∆ x∆ = 0,

where the coefficients Ck and Ck are positive and are obtained from expanding the
first, respectively second term of the difference (4.9), and if λyβ ≤ ∆− λxα we have

F (x, y) = C0y
∆ + (C1 x)y∆−1 + . . .+ (C

∆−(∆−λxα+1)
x∆−(∆−λxα+1))y∆−λxα+1 +

+ (C
∆−(∆−λxα)

x∆−(∆−λxα) − Cλxαx
λxα)y∆−λxα + . . .

+ (C
∆−λyβ

x∆−λyβ − C∆−λyβ
x∆−λyβ)yλyβ

− (C∆−(λyβ−1) x
∆−(λyβ−1))yλyβ−1 − . . .− (C∆−1 x

∆−1)y − C∆ x∆ = 0.

In the first case, for any fixed x > 0, the coefficients of Fx(y) = F (x, y) viewed as
a polynomial in y change sign exactly once. It follows from the Descartes rule of signs
that Fx(y) = 0 has a unique positive solution. In the second case, the coefficients

of Fx(y) that are binomials in x are of the form Cx∆−k − Cx∆−k and for small x

are all either positive if ∆ < ∆ or negative if ∆ > ∆. Therefore for small enough x

the polynomial Fx(y) changes the sign of its coefficients only once either at y∆−λxα if
∆ < 0 or at yλyβ−1 if ∆ > 0. It follows that the equation Fy(x) = 0 a unique positive
solution.

Remark 4.1. Lemma 4.2 implies that for αβ < 0, the curve {(x, y) ∈ R2
>0 |

ΛAα,β(x, y) = 0} is the graph of a function yAα,β : R>0 → R>0. It is easy to see

that limx→0 y
A
α,β(x) = ∞ and limx→∞ yAα,β(x) = 0. On the other hand, if αβ > 0,

the function yAα,β is defined only for small x > 0: there exists MA
α,β > 0 such that

{(x, y) ∈ (0,MA
α,β) × R>0 | ΛAα,β(x, y) = 0} is the graph of yAα,β : (0,MA

α,β) → R>0.

We claim that in this case we have limx→0 y
A
α,β = 0. Indeed, suppose ∆ < 0. If for

some 0 ≤ l < ∞, (0, l) is a limit point of the curve {(x, y) ∈ R2
>0 | ΛAα,β(x, y) = 0},
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then plugging (0, l) into (4.9) yields l = 0. It remains to check that (0,∞) is not a
limit point of the curve above. If {(xn, yn)}n>0 is a sequence of points with positive
coordinates such that limn→∞(xn, yn) = (0,∞) and ΛAα,β(xn, yn) = 0, from (4.9) we

get O(xλxα
n ) = O(y−∆+λxα

n ) as n → ∞, which contradicts ∆ < 0. The case ∆ > 0
follows from symmetry.

Lemma 4.3. Suppose αβ > 0.

(i) If ∆ = 0 there exist positive constants γAα,1, . . . , γ
A
α,N for some integer N > 1

such that

ΛAα,β(x, y) = 0 for some (x, y) ∈ R2
>0 if and only if y = γAα,ix for some i ∈ {1, . . . , N}.

(ii) If ∆ 6= 0 there exists a strictly increasing function τ : R>0 → R>0 such that,
for function yAα,β introduced in Remark 4.1, the limit

lim
x→0

yAα,β(x)

xτ(α/β)

exists, is positive and finite. We denote this limit by CAα,β .

Proof. (i). Dividing (4.9) by x∆ = x∆ and letting γ = y/x yields

A′γλyβ(pi1 + qi1γ)qi1β . . . (piI + qiIγ)qiI β − (pi1 + qi1γ)pi1α . . . (piI + qiIγ)piIα = 0.

We denote by F (γ) the polynomial above. The positive term in the expression of F
has degree ∆, and the negative term has degree ∆−λxα, therefore limγ→∞ F (γ) =∞.
Since F (0) < 0, there exists at least one positive root of F . Denoting the positive roots
of F by γAα,1, . . . , γ

A
α,N completes the proof.

(ii) We know from see Remark 4.1 that (0, 0) is a limit point of {(x, y) ∈ R2
>0 |

ΛAα,β(x, y) = 0}. Lemma 4.2 implies that this curve has a unique Puiseux expansion
in a neighborhood of (0, 0) (see [28] for a discussion of Puiseux expansions). By
making MA

α,β from Remark 4.1 as small as necessary for the Puiseux expansion to

hold in x ∈ (0,MA
α,β), we have, for all x ∈ (0,MA

α,β):

yAα,β(x) = CAα,βx
T + higher order terms in x (4.10)

where CAα,β ∈ R and T > 0 is a rational number. The exponent T in (4.10) is equal
to the negative of one of the slopes in the lower boundary of the Newton polygon of
the polynomial F (x; y) defined in (4.9); (see [28] for more details). Since F is the

difference of two homogeneous polynomials of degrees ∆ and ∆, its Newton polygon
can be easily illustrated (see Figure 4.1) and the slopes of its lower boundary are{

−1,−∆− (∆− λyβ)

λyβ

}
or

{
−1,− λxα

∆− (∆− λxα)

}
(4.11)

if ∆ > 0 or ∆ < 0, respectively. Note that T cannot be equal to one, for otherwise

from (4.9) it would follow that O(x∆) = O(x∆), contradicting ∆ 6= ∆; therefore −T
is given by the fractions in (4.11). Then, if we define the function τ : R>0 → R>0 as
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(0,∆)

(∆− λxα, λxα)

(∆, 0)

(λyβ,∆− λyβ)

. . .

. . .

(0,∆)

(∆− λxα, λxα)

(∆, 0)

(λyβ,∆− λyβ)

. . .

. . .

Fig. 4.1. Monomials of F (x; y) (see 4.9). The lattice point (a, b) represents the monomial xbya

and the lower boundary of negative slope of the associated Newton polygon is the thick polygonal
line. The picture on the left corresponds to ∆ > 0 and the one on the right corresponds to ∆ < 0.

follows:

τ(σ) =



λx

(
1

σ

n∑
i=1

qi −
n∑
i=1

pi

)−1

, if σ <

n∑
i=1

qi/

n∑
i=1

pi,

1, if σ =

n∑
i=1

qi/

n∑
i=1

pi,

1

λy

(
σ

n∑
i=1

pi −
n∑
i=1

qi

)
, if σ >

n∑
i=1

qi/

n∑
i=1

pi,

we can easily see that T = τ(α/β). Note that τ is continuous and strictly increasing.
Moreover, the value of σ for which τ(σ) = 1 corresponds to ∆ = 0, and thus the
statement in part (i) of the lemma is incorporated in part (ii).

4.2. The domination lemma. The following key result reinforces our motiva-
tion for considering differences (4.4) of reaction rates. Roughly speaking, it shows
that if, at time t, the rate of a reaction P ′0 → P0 dominates all the other reaction
rates, then the reaction vector P ′0 − P0 “dictates” the direction of the flow ċ(t).

Lemma 4.4. Let (N ,K) = (S, C,R,K) be a reaction system, let P0 → P ′0 ∈
R and let v be a vector such that (P ′0 − P0) · v > 0. Also let U ⊆ SC(N )\{P0}.
There exists a positive constant µ such that if for some (t,x) ∈ R≥0 × Rn≥0 we have
KP0→P ′0(t,x) > 0 and

KP0→P ′0(t,x) > µKP→P ′(t,x) for all P → P ′ ∈ R with P ∈ U

then (
KP0→P ′0(t,x)(P ′0 − P0) +

∑
P→P ′,P∈U

KP→P ′(t,x)(P ′ − P )

)
· v > 0.
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Proof. We take

µ =

‖v‖
∑

P→P ′∈R
‖P − P ′‖

(P ′0 − P0) · v

and we have(
KP ′0→P0

(t,x)(P ′0 − P0) +
∑

P→P ′,P∈U
KP→P ′(t,x)(P ′ − P )

)
· v

> KP0→P ′0(t,x)(P ′0 − P0) · v −
∑

P→P ′,P∈U

(
(1/µ)KP0→P ′0(t,x) ‖v‖‖P − P ′‖

)

≥

(
(P ′0 − P0) · v − (1/µ) ‖v‖

∑
P→P ′∈R

‖P ′ − P‖

)
KP0→P ′0(t,x) = 0,

where the first inequality was obtained using the Cauchy-Schwarz inequality.
Remark 4.2. If (S, C,R,Ψ, κ, a) is a 2D-reduced planar mass-action system

and if κ(t) ∈ (η, 1/η)R for some t ≥ 0 then KP→P ′(t,x) = κP→P ′(t)(Ψx)ΨP+a,
and therefore (Ψx)ΨP0+a > (µ/η2)(Ψx)ΨP+a implies KP0→P ′0(t,x) > µKP→P ′(t,x),
which is exactly the condition needed in Lemma 4.4. Or, using the notation in (4.5)
and letting (α,−β) = D(P0 − P ) :

Λ
µ/η2

α,β (x) > 0 implies KP0→P ′0(t,x) > µKP→P ′(t,x). (4.12)

4.3. Geometric constructions in the phase plane. Our strategy for proving
that a trajectory T (c0) of a certain reaction system is persistent relies on building a
convex set L+ ⊂ R2

>0 that contains T (c0) and stays away from ∂R2
≥0. As in [10],

we partition the phase plane into subsets where one reaction rate dominates all the
others, and therefore, by Lemma 4.4, its corresponding reaction vector dictates the
direction of the vector field. The set L+ is constructed such that, on each subset
of the partition, the dominating reaction vector (and therefore, by Lemma 4.4, the
vector field), points towards the interior of L+. This is the rather simple idea behind
the proof of Theorem 4.1, but the technical details involved are quite delicate. We
start with the construction of the set L+, which is discussed next.

For any s ∈ {1, . . . , p}, let Ns = (S, Cs,Rs) be a lower-endotactic two-species
reaction network and let (N ,K) =

⋃p
s=1(Ns, κs,Ψ, as) be a 2D-reduced mass-action

system. We also let η < 1 be a positive constant. Let D denote the least common
denominator of all nonzero elements of Ψ. For each s ∈ {1, . . . , p} let

{rs1, . . . , rse(s)} =
{
α/β | (α,−β) ∈ {D(P − P ′) | P, P ′ ∈ SC(Ns), αβ > 0}

}
;

we assume that rs1 < . . . < rse(s) and define the set

V = {(1, r̃1), . . . , (1, r̃e)} =

p⋃
s=1

{(1, rsi ) | i ∈ {1, . . . , e(s)}} (4.13)

where we take r̃1 < . . . < r̃e. Let {i, j} be the standard basis of the cartesian plane.
Since Ns is endotactic, for each s ∈ {1, . . . , p} and for all vectors n ∈ V∪{i, j}, there
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exists a reaction

Ps,n → P ′s,n ∈ Rs such that Ps,n ∈ esuppn(Ns) and P ′s,n ∈ esuppn(Ns)>0. (4.14)

Note that there might exist multiple reactions as in (4.14), out of which Ps,n →
P ′s,n is chosen and fixed for the remaining of this paper.

If µn,s denotes the constant from Lemma 4.4 that corresponds to reaction Ps,n →
P ′s,n v = n and U = SC(N s) ∩ esuppn(Ns)>0 we define

µ = max
{
µn,s | n ∈ V ∪ {i, j}, s ∈ {1, . . . , p}

}
. (4.15)

We also let

D =

p⋃
s=1

{D(P − P ′) | P, P ′ ∈ SC(N s)},

and finally, inspired by Remark 4.2, we denote A = µ/η2.
Let M > 1 be a fixed number. We choose 0 < δ < 1 and 0 < ξ < 1 to satisfy the

following properties:

(P1) δ <
1

2
min{CAα,β , γAα,i | (α,−β) ∈ D, αβ > 0},

1

δ
>

3

2
max{CAα,β , γAα,i | (α,−β) ∈ D, αβ > 0}

where CAα,β and γAα,i are defined in Lemma 4.3;
(P2) all pairwise intersections from the strictly positive quadrant of the 2e curves
y = δxτ(r̃i), y = (1/δ)xτ(r̃i), i ∈ {1, . . . , e}, lie in (ξ,∞)2;
(P3) the square [0, ξ]2 lies below the curves ΛAα,β(x, y) = 0 for all (α,−β) ∈
D with αβ ≤ 0;
(P4) for all (α,−β) ∈ D such that αβ > 0 we have ξ < MA

α,β (recall that MA
α,β

is such that yAα,β : (0,MA
α,β) admits a Puiseux series representation), and for all

x ∈ (0, ξ] we have

1

2
CAα,βx

τ(α/β) < yAα,β(x) <
3

2
CAα,βx

τ(α/β).

Clearly, ξ can be chosen small enough so that (P2) and (P3) are satisfied (see
Figure 4.2). The existence of ξ that also satisfies (P4) is a consequence of Lemma 4.3.
Since τ is a strictly increasing function, condition (P2) implies that for x ∈ (0, ξ] we
have

(1/δ)xτ(r̃i+1) < δxτ(r̃i) for all i ∈ {1, . . . , e− 1}.

Moreover, for x < ξ, (P1) and (P4) imply that for αβ > 0 the curve {(x, y) ∈ R2
>0 |

ΛAα,β(x, y) = 0} lies between the curves δxτ(α/β) and (1/δ)xτ(α/β) (see Figure 4.2).

Now, for the actual construction of L+, first assume that V 6= Ø and start with
a point A0 ∈ {0} × (0, ξ] on the y axis. We choose a point A2 between the curves
y = (1/δ)xτ(r̃2) and y = δxτ(r̃1) such that the slope of the line A0A2 is −1/r̃1.
Inductively, choose points Ai+1, i ∈ {2, . . . , e− 1} such that

(i) the point Ai+1 lies between the curves y = (1/δ)xτ(r̃i+1) and y = δxτ(r̃i)

(ii) the line AiAi+1 has slope − 1/r̃i.
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(ξ, 0)

(0, ξ)

A1

Ae+1

A0

Ae+2

y
=

(1
/δ

)x
τ
(r̃

1
)

y
=
δx

τ
(r̃

1
)

y =
(1/
δ)x

τ(
r̃e

)

y = δx
τ(r̃1)

y =
δx
τ(
r̃2

)

α/
β

=
r̃ 2

y
=

(1
/δ

)x
τ
(r̃

2
)

α
/β

=
r̃ 1

α/β
= r̃e

β
=

0

αβ < 0

α = 0

A2

A3

Ae

(d,M)

(M,d)

≈

L+

Fig. 4.2. Construction of L+. Each dashed line represents a curve ΛAα,β = 0 in the positive

quadrant and is labeled with a relation that the corresponding α and β satisfy. The curves y = δxτ(r̃i)

and y = (1/δ)xτ(r̃i) are depicted using solid lines. The highlighted area represents the set L+.

Finally, Ae+2 is defined on the x axis such that AeAe+2 has slope −1/r̃e.

The polygonal line [A0A2A3 . . . Ae−1AeAe+2] is convex. We move A0 closer to the
origin if necessary, such that all the points Ai defined above lie in the square (0, ξ]2.

If V = Ø we let A0 and A3 be two points on the y and x axes, respectively, such
that A0, A3 ∈ [0, ξ]2 and the slope of the line A0A3 is -1.

The last step of the construction consists of defining d small enough such that
(P5) and (P6) below are satisfied:

(P5) If V 6= Ø then the vertical half-line {d}×[0,∞) intersects the segment A0A2 at
a point A1 above the curve y = (1/δ)xτ(r̃1); also, the horizontal half-line [0,∞)×{d}
intersects the segment AeAe+2 at a point Ae+1 below the curve y = δxτ(r̃e). If
V = Ø then d is chosen such that d < ξ/2, and the intersection of the vertical half-
line {d}× [0,∞) with the segment A0A3 is denoted A1, whereas the intersection of
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the horizontal half-line [0,∞)× {d} with the segment A0A3 is denoted A2;
(P6) ΛAα,β(d,M) > 0 for (α,−β) ∈ D, α < 0, β ≥ 0,

ΛAα,β(M,d) > 0 for (α,−β) ∈ D, α ≥ 0, β < 0;

Recall that M > 1 was fixed at the beginning of the construction. It is easy to
see that (4.5) implies that (P6) holds for d small enough.

Let

L = {A1 + (0, t) | t ≥ 0} ∪ [A1 . . . Ae+1] ∪ {Ae+1 + (t, 0) | t ≥ 0}

be made out of the polygonal line [A1 . . . Ae], (called, for future reference, the finite
part of L) completed with a vertical and a horizontal half-lines (the union of which
we call the infinite part of L). Finally, we define L+ = conv(L).

To indicate the quantities that L+ depends on, we write L+ = L+({Ns}1≤s≤p,Ψ, η,M).
The polygonal line [A0, . . . , Ae+2] will also be useful later in this paper. We denote it

by L = L({Ns}1≤s≤p,Ψ, η) (note that M is not required for L) and we let L+
be the

unbounded part of R2
≥0 that is delimited by L.

4.4. Persistence of 2D-reduced mass-action systems. The following theo-
rem is the main result of this section.

Theorem 4.1. Let (N ,K) =
⋃p
s=1(Ns, κs,Ψ, as) be a 2D-reduced mass-action

system where Ns = (S, Cs,Rs) is lower-endotactic for all s ∈ {1, . . . , p} and denote

f(t,x) =

p∑
s=1

∑
P→P ′∈Rs

κs,P→P ′(t)(Ψx)ΨP+as(P ′ − P ).

Let η ∈ (0, 1) and M > 1 be real numbers. Then for any t ≥ 0 such that κs(t) ∈
(η, 1/η)Rs for all s ∈ {1, . . . , p}, and for any x ∈ L({Ns}1≤s≤p,Ψ, η,M)∩ [0,M ]2 we
have

n · f(t,x) ≥ 0 for all n ∈ −NL+(x). (4.16)

Proof. The cone −NL+(x) is degenerate unless x is a vertex of L and its generators
belong to V ∪ {i, j}, where V is the set of vectors defined in (4.13). It then suffices
to show that for any s ∈ {1, . . . , p} and for any n ∈ −NL+(x) ∩ (V ∪ {i, j}) we have

( ∑
P→P ′∈Rs,n

Ks,P→P ′(t,x)(P ′ − P )

)
· n ≥ 0 (4.17)

for all s ∈ {1, . . . , p}, where Ks,P→P ′(t,x) = κs,P→P ′(t)(Ψx)ΨP+as is the rate of the
reaction P → P ′ ∈ Rs at time t. We fix s ∈ {1, . . . , p} and recall that Rs,n = {P →
P ′ ∈ Rs | (P ′ − P ) · n 6= 0} denotes the n-essential subnetwork of Rs. The inequality
(4.17) is trivially true if Rs,n = Ø. Otherwise, recall the reaction Ps,n → P ′s,n ∈ Rs,n
from (4.14). We rewrite the left hand side of (4.17) by separating the reactions with
source on esuppn(Ns) and emphasizing the reaction Ps,n → P ′s,n :
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( ∑
P→P ′∈Rs,n

Ks,P→P ′(t,x)(P ′ − P )

)
· n =

( ∑
{P→P ′∈Rs,n|
P∈esuppn(Ns)

P→P ′ 6=Ps,n→P ′s,n}

Ks,P→P ′(t,x)(P ′ − P ) +

+Ks,Ps,n→P ′s,n(t,x)(P ′s,n − Ps,n) +
∑

{P→P ′∈Ns,n|
P /∈esuppn(Ns)}

Ks,P→P ′(t,x)(P ′ − P )

)
· n.

Since all source complexes of Rs,n lie in esuppn(Ns)≥0, the reaction vector P ′ − P
with source P ∈ esuppn(Ns) satisfies (P ′ − P ) · n ≥ 0. It is therefore enough to show
that(
Ks,Ps,n→P ′s,n(t,x)(P ′s,n−Pn)+

∑
{P→P ′∈Rs,n|
P /∈esuppn(Ns)}

Ks,P→P ′(t,x)(P ′−P )

)
·n ≥ 0 (4.18)

in order to verify (4.17). In turn, (4.18) will follow from Lemma 4.4 with U =
SC(N s) ∩ esuppn(Rs)>0 and the fact that

KPs,n→P ′s,n(t,x) > µKP→P ′(t,x) (4.19)

for all P → P ′ ∈ Rs with P ∈ U (recall µ from (4.15)). Therefore showing inequality
(4.19) will complete the proof of the theorem.

As noted in Remark 4.2, (4.19) is implied by

ΛAα,β(x) > 0, (4.20)

where (α,−β) = D(Ps,n − P ) and A = µ/η2. To verify (4.20), we consider different
cases, according on the location of x = (x, y) on L. First suppose that x lies on the
line segment [AiAi+1] for some i ∈ {1, . . . , e}. Then (see Figure 4.2), if r̃i′ < r̃i < r̃i′′ ,
or equivalently, if i′ < i < i′′, we have

(1/δ)xτ(r̃i′′ ) < y < δxτ(r̃i′ ). (4.21)

Depending on the sign combination of α and β, the source complex P may belong to
one of the three shaded regions in Figure 4.3(a).
Region I. Here α < 0 and β < 0; (4.20) is equivalent to y > yAα,β(x). The set

{rsj | j ∈ {1, . . . , e(s)} with rsj > r̃i}

is nonempty, since α/β is one of its elements. If rsj0 denotes the minimum of this set,
then rsj0 ≤ α/β and it follows that

y > (1/δ)xτ(rsj0
) > (3/2)CAα,βx

τ(α/β) > yAα,β(x).

The first inequality is implied by (4.21), since rsj0 > r̃i. The second inequality holds
because of (P1), because x < ξ < 1 and because τ is increasing. The last inequality
is a consequence of (P4). Note that the calculation above corresponds to ∆ 6= 0, but
the same argument works if ∆ = 0 with CAα,β replaced by γAα = max

i
γAα,i.
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Fig. 4.3. Positions of a source complex P relative to Ps,n

Region II. We have α ≤ 0 and β ≥ 0. From (P3) we know that x ∈ [0, ξ]2 is below the
curve ΛAα,β = 0, and so ΛAα,β(x) > 0.

Region III. This case is similar to Region I.

Finally, suppose that x lies on one of the two unbounded sides of L, for instance,
on the vertical side. Then α < 0 and there are two regions for P , according to the
sign of β (see Figure 4.3(b)). For region I (β < 0), the proof is the same as in the
case of region I from Figure 4.3(a). For region II we have β ≥ 0 and α < 0 and, since
y ≤M, we have

ΛAα,β(x) = ΛAα,β(d, y) ≥ ΛAα,β(d,M) > 0

from (P6).

The following corollary follows from Theorem 4.1 using Nagumo’s Theorem 2.1
and implies that bounded trajectories of 2D-reduced mass-action systems are persis-
tent.

Corollary 4.1. Let
⋃p
s=1(Ns, κs,Ψ, as) be a 2D-reduced mass-action system

where Ns = (S, Cs,Rs) are lower-endotactic networks for all s ∈ {1, . . . , p}, and
suppose that κs(t) ∈ (η, 1/η)Rs for all s ∈ {1, . . . , p} and all t ≥ 0. Let T (c0)
be a trajectory of (N , κ) and let M > 1 be such that T (c0) ⊂ [0,M ]2. If L+ =
L+({Ns}1≤s≤p,Ψ, η,M) is constructed such that c0 ∈ L+, then T (c0) ⊂ L+.

Remark 4.3. Corollary 4.1 remains valid if instead of c0 ∈ L+ we have c0 ∈
L+

= L+
({Ns}1≤s≤p,Ψ, η). In that case we conclude that T (c0) ⊂ L+

.

We conclude this section with the following result, which will be useful in section
6.

Corollary 4.2. Let
⋃p
s=1(Ns, κs,Ψ, as) be a 2D-reduced mass-action system

where Ns = (S, Cs,Rs) are lower-endotactic networks for all s ∈ {1, . . . , p} and sup-
pose that κs(t) ∈ (η, 1/η)Rs for all s ∈ {1, . . . , p} and all t ≥ 0. Then there exist
ε > 0 and τ > 0 such that if c0 = (x0, y0) ∈ [0, ε]2 then x + y ≥ τ(x0 + y0) for all
(x, y) ∈ T (c0).

Proof. Let L = L({Ns}1≤s≤p,Ψ, η) and let ε > 0 be such that [0, ε]2∩L({Ns}1≤s≤p,Ψ, η) =
Ø. Once L is constructed, we can shift it as close to the origin as desired. In partic-
ular, if c0 ∈ [0, ε]2, we may construct L0 = L0({Ns}1≤s≤p,Ψ, η) such that c0 ∈ L0.
Corollary 4.1 and Remark 4.3 imply that T (c0) lies in the unbounded part of R2

≥0

delimited by L0. We draw lines through c0 that are parallel to the extreme line seg-
ments of L0 and denote their intersection with the coordinate axes by (0, ỹ) and (x̃, 0)
(see Figure 4.4). Then T (c0) lies above the line x+y = min{x̃, ỹ}. Using the notation
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c0

(x̃, 0)

(0, ỹ)

L0

ε

ε

Fig. 4.4. Illustration for Corollary 4.2

from (4.13) we have x̃ = x0 + r1y0 and ỹ = x0/re + y0 and the conclusion follows by
choosing τ = min{1, r1, 1/re}.

5. Persistence of κ-variable mass-action systems with two-dimensional
stoichiometric subspace. The main persistence result of this paper is the following.

Theorem 5.1. In any κ-variable mass-action system with two-dimensional sto-
ichiometric subspace and lower-endotactic stoichiometric subnetworks, all bounded
trajectories are persistent.

A little additional terminology and a couple of lemmas are needed to arrive at
a proof of Theorem 5.1. For the remainder of this section, we fix a κ-variable mass-
action system (N , κ) = (S, C,R, κ) having n species, stoichiometric subspace S of
dimension two, and lower-endotactic stoichiometric subnetworksNs = (S, Cs,Rs), s ∈
{1, . . . , p}.We assume that κ(t) ∈ (η, 1/η)R.We also let T (c0) = {c(t) = (x1(t), . . . , xn(t)) |
t ≥ 0, c(0) = c0} be a bounded trajectory of (N , κ) such that c0 ∈ Rn>0 and
T (c0) ⊂ [0,M ]n for some M > 1.

5.1. Preliminary setup. For W ⊆ {1, . . . , n} we let

ZW = {(x1, . . . , xn) ∈ Rn|xi = 0 for all i ∈W}.

The relative boundary of the polyhedron S(c0) is included in ∂Rn≥0 and we may
identify a face of S(c0) by the minimal face of Rn≥0 that contains it. More precisely, if
a face of S(c0) is included in ZW and W ⊂ {1, . . . , n} is maximal with this property,
then we denote that face by FW . Note that if W 1 ⊂ W, then FW ⊂ FW 1 , and
FW = FW 1 if and only if W = W 1.

Decreasing n if necessary, we can assume that S intersects the open positive or-
thant, S ∩ Rn>0 6= Ø. Indeed, if this is not true, then some coordinates xi, i ∈ {V ⊂
{1, . . . , n} of c(t) are constant and may be disregarded, by replacing (N , κ) with its
projection (NV ,KV ) onto V. Note that the properties of N are inherited by NV : the
stoichiometric subspace of NV has the same dimension as S; the projected kinet-
ics is κ-variable mass-action (see (2.8)) and NV has lower-endotactic stoichiometric
subnetworks from Proposition 3.1; finally, πV (T (c0)) ∈ [0,M ]V .

Each vertex FW of S(c0) has two adjacent edges, which we will henceforth denote
FW 1 and FW 2 . We have W 1 ∪W 2 ⊆ W and also W 1 ∩W 2 = Ø, for otherwise S
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would not intersect the interior of the positive orthant. Let v1(W ) = (p1, . . . , pn) and
v2(W ) = (q1, . . . , qn) be vectors (unique up to positive scalar multiplication) along
FW 1 and FW 2 respectively, such that the cone with vertex at FW generated by FW 1

and FW 2 contains S(c0). Then, for any i ∈ {1, . . . , n}, not both pi and qi can be zero,
for otherwise, again, S ⊂ ∂Rn≥0.

Remark 5.1. We have

pi = 0 for i ∈W 1, pi 6= 0 for i ∈ {W 1 and pi > 0 for i ∈W\W 1, (5.1)

qi = 0 for i ∈W 2, qi 6= 0 for i ∈ {W 2 and qi > 0 for i ∈W\W 2.

Indeed, if pi = 0 for some i ∈ {W 1, then FW 1 = FW 1∪{i}, contradiction. On the
other hand, for any x = (x1, . . . , xn) ∈ FW 1\FW , we have x = FW + ax(p1, . . . , pn)
for some ax > 0, and therefore xi = axpi for all i ∈ W. Since xi ∈ FW 1 it follows
that pi = 0 for i ∈ W 1. Moreover, since xi > 0 for i ∈ W\W 1, we have pi > 0 for
i ∈W\W 1. The explanation for qi, i ∈ {1, . . . , n} is similar.

Remark 5.2. If (k, l) ∈W 1 ×W 2, then we may rescale v1(W ) and v2(W ) such
that pl = qk = 1. Moreover, by swapping v1(W ) with v2(W ) if necessary, we may
also assume that l < k. Let

Θ = (v1(W ) v2(W )) (5.2)

be the matrix with columns v1(W ) and v2(W ). Since v1(W ) and v2(W ) generate S,
we have

x = Θπk,l(x) for any x ∈ S (5.3)

(here, if x = (x1, . . . , xn), then πk,l(x) = (xl, xk)). In particular, it follows that

x− FW = Θπk,l(x) for all x ∈ S(c0). (5.4)

Remark 5.3. Let (k, l) ∈ W 1 ×W 2 and let Ns = (S, Cs,Rs), s ∈ {1, . . . , p}
denote the stoichiometric subnetworks of N . Then, for each s ∈ {1, . . . , p}, we may
choose as ∈ Rn such that Cs ⊂ S+as and πk,l(as) = (0, 0) (recall that πk,l denotes the
projection onto {k, l}). Indeed, suppose Cs ⊂ S + (γ1, . . . , γn) for some (γ1, . . . , γn) ∈
Rn. Then we look for as such that

as − (γ1, . . . , γn) ∈ S = span{v1(W ),v2(W )}

and πk,l(as) = (0, 0). Assuming pl = qk = 1 as in Remark 5.2, we define

as = (γ1, . . . , γn)− γlv1(W )− γkv2(W ).

Example 7. It might be helpful at this point to illustrate the notations in-
troduced thus far in this section by revisiting the network in Example 2.1. If we
let c0 = (1, 1, 1, 1), it is not hard to see that S(c0) is a square with vertices at
(0, 0, 2, 2), (0, 2, 0, 2) (2, 0, 2, 0) and (0, 0, 2, 2). Let W = {3, 4} and consider the
vertex FW = (2, 2, 0, 0) of S(c0). For any (x1, x2, x3, x4) ∈ S(c0) we may write

(x1, x2, x3, x4)− (2, 2, 0, 0) = x3(0,−1, 1, 0) + x4(−1, 0, 0, 1)
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and therefore v1(W ) = (0,−1, 1, 0), v2(W ) = (−1, 0, 0, 1) and W 1 = {4}, W 2 =
{3}. The face FW 1 of S(c0) is {(2, 2 − x, x, 0) ∈ R4|x ∈ [0, 2]} and is parallel to
v1(W ). As for the vectors as from Remark 5.3 corresponding to our two stoichiometric
subnetworks, we have a1 = (2, 2, 0, 0) and a2 = (2, 0, 0, 0).

Remark 5.4. Since v1(W ) and v2(W ) generate S, it follows that

x = Θπk,l(x) for any x ∈ S. (5.5)

In particular, we have kerπk,l ∩ S = 0 and therefore πk,l is injective on S. It follows
that πk,l is also injective on as + S.

If Q is a column vector in R{k,l} ' R2 then ΘQ ∈ S and we have

πk,l(as + ΘQ) = πk,l(as) + πk,l(ΘQ) = Q.

Since, as explained above, πk,l is injective on as + S, we conclude that

π−1
k,l (Q) ∩ (as + S) = {as + ΘQ}. (5.6)

5.2. A glimpse into the rest of section 5. Before we dive into the technical
arguments that lead to a proof of Theorem 5.1, it is worth considering a couple of
examples. The aim is to illustrate how the machinery of projections and 2D-reduced
mass-action systems comes into place and to hint at the idea behind the proof of
Theorem 5.1.

Let us first consider the following κ-variable mass-action system:

A+B
κ1



κ2

2C A+ C
κ3



κ4

A. (5.7)

We denote x = (cA, cB , cC) the concentration vector and we write the correspond-
ing differential equations in the form

ċAċB
ċC

 = κ1(t)xA+B

−1
−1
2

+ κ2(t)x2C

 1
1
−2

+ κ3(t)xA+C

 0
0
−1

+ κ4(t)xA

0
0
1

 .

(5.8)
Note that the stoichiometric subspace of (5.7) is S = {(x1, x2, x3) ∈ R3 |x1 = x2}

and it intersects the positive orthant R3
>0. Let then c0 ∈ S ∩R3

>0 be a positive initial
condition for (5.8) such that T (c0) is bounded. If we let

Ψ =

1 0
1 0
0 −1


then for x = (cA, cB , cC) ∈ T (c0) and denoting y = (cA, cC) we have

x = Ψy. (5.9)

Moreover, note that

A+B =

1
1
0

 = Ψ

(
1
0

)
= Ψ(A),
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where, by a useful abuse of notation, the argument A of Ψ is viewed as the vector of
two coordinates (1, 0) in the plane AC. One can write similar equalities to obtain

A+B = Ψ(A), 2C = Ψ(2C), A = Ψ(A)+(0,−1, 0)t, A+C = Ψ(A+C)+(0,−1, 0)t;
(5.10)

denote a1 = (0, 0, 0) and a2 = (0,−1, 0).
Projecting (5.7) onto {A,C} yields the reaction network

A
 2C A+ C 
 A

whose dynamics is obtained by substituting (5.9) and (5.10) into (5.8):

ẏ = κ1(t)(Ψy)Ψ(A)+a1

(
−1
2

)
+ κ2(t)(Ψy)Ψ(2C)+a1

(
1
−2

)
(5.11)

+κ3(t)(Ψy)Ψ(A+C)+a2

(
0
−1

)
+ κ4(t)(Ψy)Ψ(A)+a2

(
0
1

)
. (5.12)

This kinetics corresponds to the 2D-reduced mass-action system (N1,Ψ, κ
′, a1) ∪

(N2,Ψ, κ
′′, a2), where

N1 = {A
 2C}, N2 = {A+ C 
 A},

and

κ′A→2C(t) = κ1(t), κ′2C→A(t) = κ2(t), κ′′A+C→A(t) = κ3(t), κ′′A→A+C(t) = κ4(t).

Corollary 4.1 implies that the trajectory of y is persistent; from (5.10) it follows that
T (c0) is persistent as well.

The argument above can be written in the general case without much additional
effort; this is done in Proposition 5.1. Note that, although it illustrates very well the
use of projections and 2D-reduced mass-action, the example discussed above is rather
special by insisting that S(c0) contain the origin. To see what issues might arise if this
is not the case, let us next revisit the system (2.5), which we assume to be κ-variable
mass-action. Choose c0 in the same stoichiometric compatibility class as (1, 1, 1, 1).
Since S(c0) is bounded, so is T (c0). Note that for any x = (cA, cB , cC , cD) ∈ T (c0) we
have cA + cD = cB + cC = 2.

We will now give an heuristic explanation of the fact that cA cannot become too
small (the same reasoning may be applied to the rest of the concentrations). We
aim, as in the previous example, to project our system onto a 2D face of R4

≥0 and
realize the projected dynamics as 2D-reduced mass-action, in order to conclude that
cA(t) stays bounded away from zero. Let us consider the projection onto {A,B}. As
illustrated in Example 5, the projected network

B
κ1



κ2

A
κ3→A+B

κ4→ 0 2A
κ5→A

κ6← 0 (5.13)

is lower-endotactic and the projected dynamics can be written in the form(
ċA
ċB

)
= κ1(t)cB

(
1
−1

)
+ κ2(t)cA

(
−1
1

)
+ κ3(t)cA

(
0
1

)
(5.14)

+ κ4(t)cAcB

(
−1
−1

)
+ κ5(t)c2A

(
−1
0

)
+ κ6(t)

(
1
0

)
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where

κ1(t) = κ1(t)(2− cA(t)), κ2(t) = κ2(t)(2− cB(t)), κ3(t) = κ3(t)(2− cB(t)),

κ4(t) = κ4(t), κ5(t) = κ5(t), κ6(t) = κ6(t)(2− cA(t))2. (5.15)

This is a 2D-reduced mass-action system (in fact, this would be κ-variable mass-
action system, provided we knew that κi are bounded away from zero). Since T (c0) is

bounded, Theorem 4.1 implies that there exists a set L+
A,B ⊂ R{A,B}>0 as in section 4.3

such that the projection of c0 onto {A,B} lies in L+
A,B and whenever the phase point

(cA(t0), cB(t0)) of (5.14) is on the boundary of L+
A,B , the vector field points inside

L+
A,B ; this, provided κi(t0) belongs to a certain interval away from zero and infinity.

By inspecting the rates κi in (5.15), we see that this condition is equivalent to saying
that cA(t0) and cB(t0) are not too close to 2 (recall that κi are bounded away from
zero and infinity, since (2.5) is κ-variable mass-action system). The case when cA(t0)
is very close to 2 is not of interest to us as we want to show that cA cannot become
too small, and therefore we look what happens when cA(t) is close to zero.

Now we refer back to Figure 4.2. The set L+
A,B is a positive translation of the

positive quadrant located at a small distance d from each of the axes, and with
a cut at the corner near the origin. To illustrate the point, let us make a gross
oversimplification and assume that L+

A,B is a square. (Note, however, that it is not,
and, although the cut near the origin can be made arbitrarily small, it still requires a
delicate analysis). With this simplification in place, we argue that cA cannot become
smaller than d. Indeed, if at time t = t0, the trajectory (cA, cB) reaches the boundary
of L+

A,B and cA = d, then, as explained above, if cB(t0) is not too close to 2, the

trajectory is pushed inside L+
A,B and cA increases.

On the other hand, Theorem 4.1 does not apply for the projected system (5.13)
if cB(t0) is close to 2. However, in this case cC(t0) = 2− cB(t0) is small and we may
project onto {A,C} instead. The projected reaction system

0
κ1



κ2

A+ C
κ3→A

κ4→C 2A
κ5→A

κ6← 0,

has rate constant functions

κ1(t) = κ1(t)(2− cA(t)(2− cC(t)), κ2(t) = κ2(t), κ3(t) = κ3(t),

κ4(t) = κ4(t)(2− cC(t)), κ5(t) = κ5(t), κ6(t) = κ6(t)(2− cA(t))2

which are all bounded away from zero at t = t0. If L+
A,C ⊂ R{A,C} is constructed in

the same way as L+
A,B and at the same distance d from the coordinate axes, then,

since cA(t0) = d, we have (cA(t0), cC(t0)) ∈ ∂L+
A,C and Theorem 4.1 implies that the

vector field at t = t0 points inside L+
A,C . Once again, cA must increase.

One may recast the discussion above by using a symmetric construction of an
invariant set T +. Namely, one considers the cylinder L+

A,B × R{C,D} and the similar

cylinders coming from all possible projections to pairs of variables. Defining T + to
be their intersection, the reasoning above translates into T + being an invariant set
for T (c0). This is precisely what we do in the proof of Theorem 5.1.

Note, however, that while the previous exposition sheds some light on the basic
idea of the proof, (presented in section 5.4), the technical details involved are subtle
and require an extensive preparation, which is the object of section 5.3. In particular,
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the parameters required in the construction of the sets L+ need to take into account
the geometry of S(c0) and must be chosen carefully. Lemmas 5.1 and 5.2 are part of
this process.

5.3. Further preparation. As anticipated in the discussion above, a special
case of Theorem 5.1 follows in a more or less straightforward way from Corollary 4.1:

Proposition 5.1. Let (N , κ) = (S, C,R, κ) be a κ-variable mass-action sys-
tem with two-dimensional stoichiometric subspace and lower-endotactic stoichiomet-
ric subnetworks. If the stoichiometric compatibility class S(c0) contains the origin,
then T (c0) is a persistent trajectory.

Proof. We denote W = {1, . . . , n}, so that the origin is the vertex FW of S(c0).
Let (k, l) be a fixed pair in W 1 ×W 2, and let v1(W ) = (p1, . . . , pn) and v2(W ) =
(q1, . . . , qn). Note that all pi and qi may be chosen to be rational because S is generated
by vectors of integer coordinates. As explained in Remark 5.2, we may assume that
k < l and pl = qk = 1; note that we also have pi ≥ 0, qi ≥ 0 for all i ∈ {1, . . . , n}
from (5.1).

Let Ns = (S, Cs,Rs), s ∈ {1, . . . , p} denote the stoichiometric subnetworks of N .
If Ψ denotes the matrix with columns v1(W ) and v2(W ), then Ψ has the form (4.1).
As explained in Remark 5.3, for each s ∈ {1, . . . , p} we may choose as ∈ Rn such that
Cs ⊂ S + as and πk,l(as) = (0, 0). Since c(t) ∈ S for all t ≥ 0 we have

c(t) = Ψπk,l(c(t)) (5.16)

by (5.3) Remark 5.2. We have

d

dt
c(t) =

p∑
s=1

∑
P→P ′∈Rs

κP→P ′c(t)
P (P ′ − P )

and since, as implied by (5.6) Remark 5.4, the only reaction in Rs that projects onto
Q→ Q′ via πk,l is ΨQ+ as → ΨQ′ + as, it follows that

d

dt
πk,l(c(t)) =

p∑
s=1

∑
Q→Q′∈πk,l(Rs)

κs,Q→Q′(t)(Ψπk,lc(t))
ΨQ+as(Q′ −Q),

where we denoted

κs,Q→Q′(t) = κΨQ+as→ΨQ′+as(t)

for all Q → Q′ ∈ πk,l(Rs). Therefore πk,l(T (c0)) is the trajectory of the 2D-reduced
mass-action system

⋃p
s=1(πk,l(Ns),Ψ, κs, as) with initial condition πk,l(c0).

Since all πk,l(Ns) are lower-endotactic by Proposition 3.1, Corollary 4.1 implies
that coordinates xl(t) and xk(t) of c(t) stay larger than some d > 0 for all t ≥ 0.
Finally, (5.16) implies that all the coordinates of c(t) remain bounded away from
zero.

The special case of Theorem 5.1 contained in Proposition 5.1 illustrates well how
projected systems, 2D-reduced mass-action systems and Theorem 4.1 come into play.
As anticipated in section 5.2, the general case requires yet a little more preparation,
which we discuss next.

Fix a bounded trajectory T (c0) of (N , κ) and let M > 1 be such that T (c0) ⊂
[0,M ]n. As hinted in section 5.2, we construct a polyhedron T + ⊂ Rn>0 that stays
away from ∂Rn≥0 and such that T (c0) ⊂ T +; in the process we use the tools we have
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developed thus far. Namely, we project (N , κ) onto well-chosen sets of two variables,
we cast the projected system as a 2D-reduced mass-action system and we construct a
corresponding L+ set in each such two-dimensional face of Rn≥0. Finally, we construct

certain cylinders out of the L+ sets and define T + as the intersection of these cylinders.
The projections to consider are of the form πk,l = π{k,l} with (k, l) ∈ W 1 ×W 2

for all vertices FW of S(c0).
We fix a vertex FW and a pair (k, l) ∈ W 1 × W 2. Based on Remark 5.2, if

v1(W ) = (p1, . . . , pn) and v2(W ) = (q1, . . . , qn) then we may assume that l < k
and that pl = qk = 1. Note that if (k, l) ∈ W 1 ×W 2 then there is no other vertex
FV of S(c0) such that (k, l) ∈ V 1 × V 2. Indeed, if FV = (f1, . . . , fn) then we have
FV − FW = flv

1(W ) + fkv
2(W ). Since k, l ∈ V1 ∪ V2 ⊆ V, we have fl = fk = 0 and

so FV = FW .
Recall that Ns = (S, Cs,Rs) denote the stoichiometric subnetworks of N and S

denotes the stoichiometric subspace of N . As in Remark 5.3, for each s ∈ {1, . . . , p},
let as ∈ Rn such that Cs ⊂ as + S. Let

Θ = (v1(W ) v1(W ))

be the matrix with columns v1(W ) and v2(W ) and define

Ψk,l = πWΘ = (πW (v2(W )) πW (v2(W ))) (5.17)

to be the matrix with columns πW (v1(W )) and πW (v2(W )). Note that pi and qi are
non-negative for all i ∈ W and moreover, they are rational numbers since the stoi-
chiometric subspace S of N is generated by vectors of integer coordinates. Therefore
Ψk,l is of the form (4.1).

Since, by Proposition 3.1, πk,l(Ns) is lower-endotactic for all s ∈ {1, . . . , p}, we
may construct the set

L+
k,l = L+

k,l({πk,l(Ns)}1≤s≤p,Ψk,l, η
′,M) ⊂ Z{{k,l} (5.18)

as in section 4.3 such that πk,l(c0) ∈ L+
k,l. We will choose η′ in what follows; also, we

will take advantage of the flexibility in the construction of L+
k,l to equip this set with

a few useful technical properties.
We start with two lemmas which show the intuitively clear facts that if a point

of S(c0) is close to ZW then it is also close to FW , and that if some components of a
point in S(c0) are small, then the point is close to a face where all those components
are zero.

Lemma 5.1. Let FW be a face of S(c0). Then there exists δ > 0 such that
dist(x, FW ) ≤ δdist(x, ZW ) for all x ∈ S(c0).

Proof. If S(c0) has dimension one, we denote by α the angle between S(c0)
and ZW . Since S(c0) intersects the positive orthant we have α > 0 and therefore
0 < secα <∞. Then dist(x, FW ) = δdist(x, ZW ) for all x ∈ S(c0), where δ = secα. If
S(c0) has dimension two, for x ∈ S(c0) we let pF and pZ denote the projections of x on
FW and ZW . Let α = infx∈S(c0) ](xpFpZ). If α = 0, then, since S(c0) is closed, there
exists x0 ∈ S(c0)\FW such that ](x0pFpZ) = 0. In turn, this implies that pF = pZ
and therefore S(c0) contains the line segment x0pF which is perpendicular to ZW . It
follows that dist(x, FW ) = dist(x, ZW ) for all x ∈ S(c0). If α > 0 then we let δ = secα.
For x ∈ S(c0) we have dist(x, FW ) = sec](xpFpZ)dist(x, ZW ) ≤ δdist(x, ZW ) for
all x ∈ S(c0).

Lemma 5.2. There exists λ > 0 such that if I ⊂ {1, . . . , n} and d = (d1, . . . , dn) ∈
S(c0) is such that di < λ for i ∈ I, then for some face FW of S(c0) we have I ⊂W.
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Proof. If the origin is a face of S(c0) the claim in the lemma is clearly true
(any positive value for λ will do). Otherwise, for J ⊆ {1, . . . , n} we define m(J) =
infx∈S(c0) dist(x, ZJ) and we let λ = min{m(J) | J ⊆ {1, . . . , n},m(J) > 0}/

√
n. We

have λ > 0 and

m(I)2 ≤ dist(d, ZI)
2 =

∑
i∈I

d2
i < nλ2,

which shows that m(I) = 0 and the conclusion follows.
In view of Proposition 5.1 we may assume that the origin is not a vertex of S(c0).

Let vmin denote the smallest nonzero coordinate of a vertex of S(c0) and, fixing a λ
given by Lemma 5.2, let

ζ = min{λ, vmin/2, 1}. (5.19)

Moreover, let 1 = (1, . . . , 1) ∈ Rn, E = max
P∈SC(N )

(P · 1) and define

η′ = min
{
ηζE ,

η

ME

}
. (5.20)

Recall from section 4.3 that the construction of a set L+ depends on the numbers ξ
and d. Also recall that ξ may be chosen arbitrarily small; once ξ is fixed, d may also
be made small independently of the value of ξ. Since there are finitely many pairs
(k, l) ∈ W 1 ×W 2 (counting all vertices FW of S(c0)) we can choose the same values
of ξ and d in the construction of all sets L+

k,l. We fix ξ small enough such that

max

{ ⋃
{FW vertex of S(c0)

v1(W )=(p1,...,pn)

v2(W )=(q1,...,qn)}

{|pi/pj | | i, j ∈ {W 1} ∪ {|qi/qj | | i, j ∈ {W 2}

}
ξ <

vmin

4
.

(5.21)
As can be seen from Figure 4.2, the shape of Lk,l near (0, 0) enables us to choose
ε > 0 such that

[0, ε]2 ∩ L+
k,l = Ø for all vertices FW of S(c0) and all (k, l) ∈W 1 ×W 2. (5.22)

We now choose d such that

d < min

{
λ, ζ, ε

⋃
{FW vertex of S(c0)

v1(W )=(p1,...,pn)

v2(W )=(q1,...,qn)}

({pi/pj | i, j ∈W\W 1} ∪ {qi/qj | i, j ∈W\W 2})

}
,

(5.23)
where we recall that λ is given by Lemma 5.2, ζ is defined in (5.19) and ε was chosen
to satisfy (5.22).

We shift Lk,l (and L+
k,l) along R{{k,l} and define

Hk,l = {x ∈ Rn | (xk, xl) ∈ Lk,l} and H+
k,l = {x ∈ Rn | (xk, xl) ∈ L+

k,l}.

Note that H+
k,l = conv(Hk,l). Finally, let

T + = (d1 + Rn≥0) ∩
⋂

FW vertex of S(c0)

⋂
(k,l)∈W 1×W 2

H+
k,l. (5.24)
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By definition, the convex polyhedron T + lies in a positive translation of the nonneg-
ative orthant. In view of Theorem 2.1, we shall be concerned with the behavior of
the flow ċ(t) on the boundary of T +; we conclude the preparatory discussion with
the following lemma, which shows that the part of ∂T + that is of interest to us
does not include the boundary of (d1 + Rn≥0), but only the boundaries of H+

k,l, for

(k, l) ∈W 1 ×W 2.

Lemma 5.3.

∂T + ∩ S(c0) ⊂
⋃

FW vertex of S(c0)

⋃
(k,l)∈W 1×W 2

(Hk,l ∩ S(c0)).

Proof. We have

∂T + ⊂
n⋃
i=1

(d1 + Z{i}) ∪
⋃

FW vertex of S(c0)

⋃
(k,l)∈W 1×W 2

Hk,l.

Suppose x ∈ ∂T + ∩ S(c0) and x ∈ d1 + Z{i}. Since d < λ (see (5.23)), Lemma 5.2
implies that there exists a face FW such that i ∈ W. Possibly making W larger, we
can assume that FW is a vertex of S(c0). Now we show that i ∈ W 1 ∪W 2; suppose
this was false and let (k, l) ∈W 1 ×W 2. Assume that l < k (otherwise swap W 1 with
W 2) and let v1(W ) = (p1, . . . , pn) and v2(W ) = (q1, . . . , qn) where pl = qk = 1. Since
i ∈ W\(W 1 ∪W 2), both pi and qi are strictly positive, as explained in Remark 5.1.
Using (5.23) we obtain

max{xlpi, xkqi} < xlpi + xkqi = xi = d ≤ min{(qi/qk)ε, (pi/pl)ε} = min{qiε, piε}

and so (xl, xk) ∈ [0, ε]2. This, together with (5.22) implies that x /∈ H+
k,l and therefore

x /∈ T +, contradiction. We conclude that i ∈ W 1 ∪W 2. Suppose i ∈ W 1, and let
j ∈W 2. We have

x ∈ H+
i,j ∩ (d1 + Z{i}) ⊂ Hi,j .

5.4. Putting things together. We are ready to prove our main persistence
result, Theorem 5.1. We keep using the notations introduced thus far in this section;
in particular, if FW is a vertex of S(c0) and (k, l) ∈W 1 ×W 2 we assume that l < k,
we denote v1(W ) = (p1, . . . , pn),v2(W ) = (q1, . . . , qn) and we set pl = qk = 1.

Proof of Theorem 5.1. For any vertex FW of S(c0) and for any pair (k, l) ∈
W 1 ×W 2 we have by construction c0 ∈ H+

k,l, and therefore c0 ∈ T +. We will use

Theorem 2.1 to show that T (c0) ⊂ T +. Suppose t ≥ 0 is such that x = c(t) ∈ ∂T +;
it is enough to show that

n · ċ(t) ≥ 0 (5.25)

for all n ∈ −NT +(x). Lemma 5.3 implies the existence of a vertex FW = (f1, . . . , fn)
of S(c0) and the existence of a pair (k, l) ∈ W 1 × W 2 such that x ∈ Hk,l. The
generators of the convex cone −NT +(x) lie in the union of −NH+

k,l
(x) for all pairs

(k, l) such that x ∈ Hk,l, thus (5.25) needs only be verified for vectors n belonging to
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this union. Therefore we fix such a pair (k, l) and we let n ∈ −NH+
k,l

(x). Since only

the coordinates k and l of n are nonzero, inequality (5.25) is equivalent to

πk,l(n) · πk,l(ċ(t)) ≥ 0. (5.26)

According to Remark 5.3, for each s ∈ {1, . . . , p} we may choose as ∈ Rn such that
Cs ⊂ S + as and πk,l(as) = (0, 0).

Case (i). Suppose πk,l(x) lies on the finite part of Lk,l. For c ∈ T (c0) we have
c− FW ∈ S and we may write, using Remark 5.2 and the definition (5.17) of Ψk,l :

πW (c) = πW (c− FW ) = πW (Θπk,l(c− FW )) = Ψk,lπk,l(c− FW ) = Ψk,lπk,l(c).

Therefore πW (c) = Ψk,lπk,l(c) for any c ∈ T (c0). On the other hand, according
to Remark 5.4, the only reaction in Rs mapped by πk,l to Q → Q′ ∈ πk,l(Rs) is
ΘQ + as → ΘQ′ + as. It follows that the dynamics of (N , κ) projected onto {k, l}
may be written

d

dt
πk,l(c) =

p∑
s=1

∑
P→P ′∈Rs

κP→P ′(t)π{W (c)π{W (P )πW (c)πW (P )(πk,l(P
′)− πk,l(P ))

=

p∑
s=1

∑
Q→Q′∈πk,l(Rs)

κΘQ+as→ΘQ′+as(t)π{W (c)π{W (ΘQ+as)πW (c)πW (ΘQ+as)(Q′ −Q)

=

p∑
s=1

∑
Q→Q′∈πk,l(Rs)

κs,Q→Q′(t)(Ψk,lπk,l(c))
Ψk,lQ+as(Q′ −Q) (5.27)

where

κs,Q→Q′(t) = κΘQ+as→ΘQ′+as(t)π{W (c(t))π{W (ΘQ+as) for all Q→ Q′ ∈ πk,l(Rs).
(5.28)

Therefore the system of differential equations (5.27) is the 2D-reduced mass-action
system

⋃p
s=1(πk,l(Ns),Ψk,l, κs, as).

For all i ∈ {W we have (recall (5.4)):

xi = fi + xlpi + xkqi ≥ fi − |pi|xl − |qi|xk = fi − |pi/pl|xl − |qi/qk|xk.

Moreover, since πk,l(x) lies on the finite part of Lk,l we have xk, xl < ξ. This, together
with (5.21) implies, for any i ∈ {W :

fi − |pi/pl|xl − |qi/qk|xk ≥ fi − (|pi/pl|+ |qi/qk|)ξ ≥ fi − vmin/2 ≥ vmin/2.

Therefore, for all i ∈ {W we have

xi ≥ fi − vmin/2 ≥ vmin/2

(recall that vmin denotes the minimum of nonzero coordinates of FW ). It then follows
from (5.19) that xi ≥ ζ for any i ∈ {W. This yields

M (ΘQ+as)·1 ≥ π{W (x)π{W (ΘQ+as) ≥ ζ(ΘQ+as)·1 for any Q→ Q′ ∈ πk,l(Rs);

recalling (5.28) and using (5.20), we then have κs,Q→Q′(t) ∈ (η′, 1/η′). Since πk,l(n) ∈
−NL+

k,l
(πk,l(x)) and L+

k,l = L+
k,l({πk,l(Ns)}1≤s≤p,Ψk,l, η

′,M), Theorem 4.1 implies

(5.26).
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Case (ii). Now suppose that πk,l(x) lies on the infinite part of L{k,l}, for instance
xk = d. Let I = {i ∈ {1, . . . , n} | xi < ζ} and note that, by (5.23) we have k ∈ I.
Since, by (5.19) we have ζ < λ, Lemma 5.3 implies that there exists a face FW of

S(c0) with I ⊆W. We may assume that FW is a vertex. We claim that k ∈W 1∪W 2
;

indeed, otherwise, let (k̄, l̄) ∈W 1 ×W 2
and v1(W ) = (p1 . . . pn), v2(W ) = (q1 . . . qn)

such that pl̄ = qk̄ = 1. Since, by (5.22), at least one of xl̄ and xk̄ is larger than ε, in
view of (5.23) we have the following contradiction:

d = xk = xl̄pk + xk̄qk > εmin{pk, qk} > d.

Therefore k ∈ W 1 ∪W 2
; suppose k ∈ W 1

and let l ∈ W 2
. Since for each i ∈ {W

we have xi ≥ ζ (this from our definition of I), the same argument as in case (i) shows
that πk,l(n) · πk,l(ċ(t)) ≥ 0. On the other hand, since only the k-th coordinate of n is
nonzero, we have

πk,l(n) · πk,l(ċ(t)) = πk,l(n) · πk,l(ċ(t))

and (5.26) is shown.
Recall that weakly reversible reaction networks are endotactic and in particular

lower-endotactic. The following corollary states that the version of the Persistence
Conjecture proposed in [2] holds for systems with two-dimensional stoichiometric sub-
space.

Corollary 5.1. Any bounded trajectory of a weakly reversible κ-variable mass-
action system with two-dimensional stoichiometric subspace is persistent.

Example 8. To conclude this section let us revisit the κ-variable mass-action
system (2.5). We know that its stoichiometric subspace is two-dimensional (Example
1) and that its stoichiometric subnetworks coincide with its linkage classes (Example
4). If L1 denotes the first linkage class then the projection π1,2 : aff(L1) → Z{3,4}
is invertible. Since π1,2(L1) = {B
A→A+B→ 0} is easily seen to be endotactic,
according to Proposition 3.1, the same is true for L1 = π−1

1,2(π1,2(L1)). Similarly,
the second linkage class is endotactic. Since cA + cD and cB + cC remain constant
along trajectories, any trajectory is bounded. Therefore, Theorem 5.1 implies that the
dynamical system (2.6) is persistent.

6. The Global Attractor Conjecture for systems with three-dimensional
stoichiometric subspace. Recall from Introduction that in order to show the Global
Attractor Conjecture it is enough to prove that all trajectories of complex-balanced
mass-action systems are persistent. Theorem 5.1 may be used to analyze the behavior
of trajectories of weakly reversible mass-action systems near faces of S(c0) of codi-
mension two. As we shall see below, trajectories can approach such a face only if they
approach its boundary. This is made precise in Theorem 6.2. On the other hand, as
discussed in Introduction, vertices of S(c0) cannot be ω-limit points for trajectories
of complex-balanced systems [1, 9]. Moreover, codimension-one faces of S(c0) are
repelling [4] and we have the following result:

Theorem 6.1 ([4] Corollary 3.3). Let c0 ∈ Rn>0 and let T (c0) denote a bounded
trajectory of a weakly reversible complex-balanced mass-action system. Also let FW be
a codimension-one face of S(c0). If T (c0) does not have ω-limit points on the (relative)
boundary of FW , then it does not have ω-limit points on FW .

For weakly reversible, complex-balanced systems with three-dimensional stoichio-
metric compatibility classes, the results mentioned above cover all faces of S(c0) and
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can be combined into a proof of the Global Attractor Conjecture for this case. We
start with the following lemma.

Lemma 6.1. Let (S, C,R, κ) be a weakly-reversible κ-variable mass-action system,
let c0 ∈ Rn>0 and let FW be a face of S(c0) of codimension two. Then for any compact
K ⊂ int(FW ) there exist τ > 0 and ε > 0 such that if for some t′, t′′ ∈ R>0 we have
c(t) = (x1(t), . . . , xn(t)) ∈ π{W (K) × [0, ε]W for all t ∈ [t′, t′′], then

∑
i∈W xi(t

′′) ≥
τ
∑
i∈W xi(t

′).
Proof. We denote N = (S, C,R). Let S denote the stoichiometric subspace of

N , let d = dimS, and let πW |S : S → Z{W denote the restriction of πW to S.
Since FW is of codimension two, we have dim(S ∩ ZW ) = d − 2. But S ∩ ZW =
ker(πW |S) and therefore πW (S) = Im(πW |S) has dimension two. Note that πW (S)
is the stoichiometric subspace of Ñ = πW (N ). Since N is weakly reversible, so is Ñ ;
in particular, Ñ has two-dimensional stoichiometric subspace and lower-endotactic
subnetworks, which we denote by Ñs = (S, C̃s, R̃s) for s ∈ {1, . . . , p}.

We may now apply the results of the preceding sections. The face F̃W of the
stoichiometric compatibility class S̃(πW (c0)) of Ñ is the origin of RW . We let F̃W 1

and F̃W 2 denote the two edges of S̃(πW (c0)) that are adjacent to F̃W (recall that
W 1,W 2 are subsets of {1, . . . , n} which are contained in W ). Let (k, l) ∈ W 1 ×W 2.
We may assume l < k and we scale the direction vectors ṽ1(W ) and ṽ2(W ) of F̃W 1

and F̃W 2 such that the lth coordinate of ṽ1(W ) and the kth coordinate of ṽ2(W ) are
equal to 1. Also, for each s ∈ {1, . . . , p}, we choose as ∈ RW such that C̃s ⊂ as + S̃
and πk,l(as) = (0, 0) (this is possible as explained in Remark 5.3).

Suppose that κ(t) ∈ (η, 1/η)R for all t ≥ 0 and let Ψk,l be the matrix with
columns ṽ1(W ) and ṽ2(W ). We have

d

dt
πk,l(c) =

∑
Q→Q′∈πk,l(R)

∑
{P→P ′∈R|

πk,l(P→P ′)=Q→Q′}

κP→P ′(t)c
P (Q′ −Q)

=

p∑
s=1

∑
Q→Q′∈πk,l(Rs)

∑
{P→P ′∈R|

πW (P→P ′)=Ψk,lQ+as→Ψk,lQ
′+as}

κP→P ′(t)c
P (Q′ −Q),

since, as explained in Remark 5.4, the only reaction of Rs that is mapped to Q→ Q′

by πk,l is Ψk,lQ + as → Ψ′k,lQ + as. Further, note that πW (c) = Ψk,lπk,l(c) for any

c ∈ T (c0); therefore, writing cP = πW (c)πW (P )π{W (c)π{W (P ) we have

d

dt
πk,l(c) =

p∑
s=1

∑
Q→Q′∈πk,l(Rs)

κs,Q→Q′(t)(Ψk,lπk,l(c))
Ψk,lQ+as(Q′ −Q),

where

κs,Q→Q′(t) =
∑

{P→P ′∈R|
πW (P→P ′)=Ψk,lQ+as→Ψk,lQ

′+as}

κP→P ′(t)π{W c(t)
π{W (P )

for all t ≥ 0. Since K ⊂ int(FW ) there exists 0 < ζ < 1 such that π{W (K) ⊂
(ζ, 1/ζ){W . It follows that there exists η′ < 1 such that κ̄s,Q→Q′(t) ∈ (η′, 1/η′) for all
t ∈ [t′, t′′]. The projection of (N , κ) onto {k, l} is a 2D-reduced mass-action system⋃p
s=1(πk,l(Ñs),Ψk,l, κs, as). Since k, l ∈ W, Corollary 4.2 implies that there exists

36



ε > 0 and τ ′ > 0 such that if c(t) ∈ π{W (K) × [0, ε]W for t ∈ [t′, t′′], then xk(t′′) +
xl(t

′′) ≥ τ ′(xk(t′) + xl(t
′)). Since πW (c(t)) = Ψk,lπk,l(c(t)) we have

∑
i∈W xi(t) =

Axk(t) +Bxl(t) for some positive numbers A and B and for all t ≥ 0. Therefore∑
i∈W

xi(t
′′) ≥ min{A,B}(xk(t′′)+xl(t

′′)) ≥ τ ′min{A,B}(xk(t′)+xl(t
′)) ≥ τ ′min{A,B}

max{A,B}
∑
i∈W

xi(t
′)

and the conclusion follows by setting τ = τ ′min{A,B}
max{A,B} .

We may now extend the result of Corollary 3.3 in [4] (Theorem 6.1) to faces of
codimension two.

Theorem 6.2. Let (S, C,R, κ) be a weakly-reversible κ-variable mass-action sys-
tem, let c0 ∈ Rn>0 such that the forward trajectory T (c0) is bounded, and let FW be a
face of S(c0) of codimension two. Then, if T (c0) has ω-limit points on FW , it must
also have ω-limit points on the relative boundary of FW .

Proof. Suppose the claim of the theorem was false. Then limω T (c0) ∩ FW ⊂
int(FW ) is compact (it is an intersection of closed sets and is bounded since T (c0)
is bounded). It follows that there exists a compact set K ⊂ int(FW ) such that
limω T (c0) ∩ FW ⊂ int(K). From Lemma 6.1, there exist τ > 0 and ε > 0 such that
if c(t) = (x1(t), . . . , xn(t)) ∈ π{W (K) × [0, ε]W for all t ∈ [t′, t′′] then

∑
i∈W xi(t

′′) ≥
τ
∑
i∈W xi(t

′). It follows that, in order to approach an ω-limit point in K, T (c0)
must exit and reenter Kε = π{W (K) × [0, ε]W infinitely often. More precisely, there
exist t1 < t2 < . . . with tm → ∞ as m → ∞ such that c(tm) ∈ ∂Kε for all
m ≥ 1 and

∑
i∈W xi(tm) → 0 as m → ∞. Note that K = π{W (K) × {0}W

and therefore we must have c(tm) ∈ ∂(π{W (K)) × [0, ε]W for m large enough. If
X = {c(t1), c(t2), . . .} then, since the closure X of X in Rn is compact, there must
exist y ∈ X ⊂ ∂(π{W (K)) × [0, ε]W such that

∑
i∈W yi = 0, which implies y ∈

∂(π{W (K)) × {0}W = ∂K (the relative boundary of K). But X ∩ FW = Ø since
T (c0) does not intersect the boundary of Rn, and it follows that y is an accumu-
lation point of X , and therefore y ∈ limω T (c0). But this is a contradiction since
limω T (c0) ∩ ∂K = Ø.

A proof of the Global Attractor Conjecture may now be obtained for systems
with three-dimensional stoichiometric subspace.

Theorem 6.3. Consider a complex-balanced system with three-dimensional stoi-
chiometric subspace. Then, the unique positive equilibrium contained in a stoichiomet-
ric compatibility class is a global attractor of the relative interior of that stoichiometric
compatibility class.

Proof. It is known that any trajectory of a complex-balanced system is bounded
[12]. Since a stoichiometric compatibility class has only faces of codimension two,
codimension one and vertices, Theorems 6.1 and 6.2, applied in this order, show that
if a trajectory T (c0) has ω-limit points, then a vertex of S(c0) is an ω-limit point.
But this is known to be false [1, 9].
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