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Valuation Equations for Stochastic Volatility Models*

Erhan Bayraktar, Constantinos Kardaras?, and Hao Xing®

Abstract. We analyze the valuation partial differential equation for European contingent claims in a general
framework of stochastic volatility models where the diffusion coefficients may grow faster than
linearly and degenerate on the boundaries of the state space. We allow for various types of model
behavior: the volatility process in our model can potentially reach zero and either stay there or
instantaneously reflect, and the asset-price process may be a strict local martingale. Our main
result is a necessary and sufficient condition on the uniqueness of classical solutions to the valuation
equation: the value function is the unique nonnegative classical solution to the valuation equation
among functions with at most linear growth if and only if the asset price is a martingale.
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1. Introduction. Unlike the Black—Scholes model, stochastic volatility models are incom-
plete. For the purpose of valuing contingent claims written on the underlying asset, one
typically postulates a diffusion model for the asset price and its volatility, formulated under
a risk-neutral measure that is calibrated to market data. Due to the Markovian structure of
stochastic volatility models, valuing a European contingent claim boils down to determining a
value function, which is plainly the expectation (under the chosen risk-neutral measure) of the
terminal payoff evaluated at the market’s current configuration, including the current asset
price, the level of the factor that drives the volatility, and the time to maturity. A way to
determine this value function is by solving a partial differential equation (PDE), which we call
the valuation equation, heuristically derived by formally applying 1t6’s formula and utilizing
a martingale argument.

However, as was pointed out in [23], it is surprisingly tricky to rigorously prove the afore-
mentioned heuristic argument. To begin with, valuation equations in stochastic volatility
models are typically degenerate on the boundaries of state space. Therefore, the assumptions
in standard versions of the Feynman—Kac formula (see, e.g., [22, Chapter 6]) are not satisfied
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for many stochastic volatility models used in practice.

Moreover, the asset-price process in stochastic volatility models can be a strict local mar-
tingale; see [42], [2], [35], [26], [34]. (The loss of the martingale property relates to the notion
of stock price bubbles; see [25], [9], [30], [31]. Similar situations have also been studied in
markets without local martingale measures; see [18], [41], [19].) An important consequence
of losing the martingale property, mentioned in [25], is that the valuation equation may have
multiple solutions. The strict local martingale property of the asset price may induce faster-
than-quadratic growth in coefficients for valuation equations, while the standard theory of
either classical or viscosity solutions usually assumes at most quadratic growth in coefficients
before second derivative terms; see, e.g., [22], [20].

In this paper, we study a general framework of stochastic volatility models, where coeffi-
cients are Holder continuous, degenerate on boundaries of state space, and asset-price volatility
coefficients may grow faster than linearly. In these models, we focus on the following questions:

(Q1) How should one formulate the concept of a solution of the valuation equation (regard-
ing smoothness and boundary conditions) in order to ensure that the value function
is one such solution?

(Q2) Given that (Q1) has been answered, what is the necessary and sufficient condition for
the value function to be the unique solution in a certain class of candidate functions?

Equations with degenerating coefficients have been studied extensively; see, e.g., [33],
[39]. More recently, in order to study the free boundary of the porous medium equation,
[11], [12] investigated a linear degenerate equation, which is exactly the valuation equation in
the Heston model. Existence and uniqueness have been proven in a weighted Holder space,
and regularity of solutions close to the degenerate region has also been established in this
case. In mathematical finance literature, existence and uniqueness questions for degenerate
equations have been tackled for the case of local volatility models in [29], [13], [5] and for
the case of interest rate models in [15]. For stochastic volatility models, these questions have
been discussed in [23], [14], [16]. However, valuation equations in general stochastic volatility
models, whose coefficients may grow faster than linearly, have not yet been well understood.

Another natural analytical tool for analyzing degenerate equations is the theory of vis-
cosity solutions. In this framework, it is usually assumed that model coefficients are globally
Lipschitz in the state space (see, e.g., [20], [4]). Therefore, standard techniques need to be
extended to study equations whose coefficients are locally Lipschitz in the interior of the state
space. See [1], [8] for recent developments in this direction. In these two papers, it is assumed
that boundaries of the state space are not reached by the state process starting from the
interior. To allow for various types of model behaviors, we study the situation where the state
process can potentially reach zero and either stay there or instantaneously reflect. Moreover,
comparing to the sufficient conditions for uniqueness of solutions to valuation equations in [1],
[8], our goal is to identify a necessary and sufficient condition for uniqueness or, equivalently,
for the failure of uniqueness.

Rather than employing the analytical methods described above, some authors chose to
use probabilistic methods to analyze degenerate equations. In Feller’s seminal work [17],
semigroup techniques were employed to study one-dimensional PDEs. According to the type
of boundary points, different boundary conditions were specified to ensure the uniqueness of
solutions. See [6] and the references therein for recent development in this direction. On the
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other hand, [43], [38] used martingale techniques to analyze these types of problems.

In this paper we employ a combination of probabilistic and analytical techniques to give
a necessary and sufficient condition for the uniqueness of solutions to the valuation equation.
To the best of our knowledge, this condition had not been identified in the literature. To
derive this condition, our strategy is the following: First we identify a necessary and sufficient
condition for uniqueness in the class of stochastic solutions (see section 5), a notion introduced
by Stroock and Varadhan in [43]. Then, in the analytical part of the paper, we show that the
value function is a classical solution (in the sense of Definition 2.5) and that classical solutions
are stochastic solutions; see section 6.

Our main contributions can be stated as follows:

e The stochastic volatility models we analyze have degenerate coefficients on boundaries
of the state space. Moreover, the volatility coefficient of the asset price is allowed to
have faster than linear growth.

e The volatility process can potentially reach zero. This extends results in [23], [1], [8].
We classify the local behavior of the volatility process near zero and introduce notions
of classical solutions in each scenario to answer (Q1).

e The asset-price process can be a strict local martingale. We give an analytic condition
which is necessary and sufficient for the martingale property of the asset price. This
condition generalizes results in [35], and it is a stronger version of the condition in [42].
Meanwhile, it is exactly the loss of the martingale property that leads us to an answer
to (Q2): uniqueness holds in the class of at most linear growth functions if and only if
the asset-price process is a martingale. This result complements the uniqueness result
in [14].

Our main result is presented in Theorems 2.8 and 2.9. The former shows that the value
function is the smallest nonnegative classical solution of the valuation equation, whereas the
latter characterizes exactly when the valuation equation has a unique solution in a certain class
of functions. Together with the results in section 3, this gives us an analytic characterization
of the uniqueness of solutions to the valuation equation.

The remainder of the paper is organized as follows. Our main results are presented in
section 2. The analytic necessary and sufficient condition on the martingale property of the
asset-price process is explored in section 3. This provides an analytic characterization of the
uniqueness obtained in Theorem 2.9. Our main findings are proved progressively in sections
4, 5, and 6. In particular, the notion of a stochastic solution is introduced in section 5 to
bridge the analytic and the probabilistic properties of solutions to the valuation equation.

2. Main results.

2.1. The model. All stochastic processes in what follows are defined on a filtered probabil-
ity space (€2, (F¢)ier, , IP), satisfying the usual conditions. All relationships between random
variables are understood in the P-a.s. sense. We denote Ry = [0,00) and R, = (0, 00).

The following stochastic volatility model will be considered, written for the time being
formally in differential form:

(STOCK) dS; = Sy b(YVt) AW, So=ux¢€ R+,
(VOL) dYy = p(Yy) dt + o (Yy) dBy, Yo =y €Ry.
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Above, W and B are two standard Wiener processes with constant instantaneous correlation
p € (—1,1). In this model, the asset price is modeled by the dynamics of S, whose volatility
is driven by an auxiliary process Y. To simplify notation, we assume the instantaneous short
rate to be zero; we note, however, that all our results carry for the case of nonzero constant
short rate, with obvious modifications. The dynamics in (STOCK) imply that P is a local
martingale measure for the asset-price process (S;);cr,. As mentioned in the introduction,
we allow for the possibility that the latter process is a strict local martingale.
Standing Assumption 2.1. It will be tacitly assumed throughout the paper that the coeffi-
cients of (STOCK) and (VOL) satisfy the following:
(i) The function p : Ry — R satisfies u(0) > 0. The functions o,b : Ry — R are
strictly positive on Ryy and satisfy o(0) = b(0) = 0. Also, i and o have at most
linear growth; i.e., there exists a positive constant C' such that

(2.1) @) +o(y) <CA+y) foryeRy.

(ii) p, 02, b2, and bo are continuously differentiable on R with locally a-Hélder contin-
uous derivatives for some o € (0,1]. Moreover, (b*)' has at most polynomial growth;
i.e., there exist positive constants C' and m such that

(2:2) (B*) ()| < C(1+y™)  foryeRy.

Assumption 2.1 implies that p is locally Lipschitz and o is locally 1/2-Hélder continuous
on R;. This combined with (2.1) ensures that (VOL) admits a unique nonexplosive and
nonnegative strong solution Y¥. Also note that b could grow faster than linearly under the
previous assumption.

Remark 2.2. The standing assumptions above are satisfied by most diffusion stochastic
volatility models that are used in practice. For example,

e in the Hull-White model [28], u(y) = ay with a < 0, o(y) = oy with o > 0;
e in the Heston model [24], u(y) = po — ay with pg > 0 and a > 0, o(y) = o,/y with
o> 0;
e in the GARCH(1,1) model, u(y) = po — ay with gg > 0 and a > 0, o(y) = oy with
o > 0.
In all of the above models, b(y) = |/y for y € R.. When b(y) = y for y € Ry, we have the
model proposed in [44].

For given (z,y) € R2, the solution of (STOCK) is given by the process S*¥ := xHY,

where

(2.3) Y = eXp{/O. b(YY) AW, — % /0 b2(Y;f)dt}.

As b is locally bounded on R, and Y is nonexplosive, fg b*(Y,) du < oo, and hence H/ > 0,
for any t € Ry. Define 7§ := inf {t € Ry; |Y,Y = 0}. It is possible that P[r{ < co] > 0. In
this case,
e when p(0) =0, Y/ =0 for 7§ <t < oo, and thus the point 0 is absorbing;
e when p(0) > 0, YV is led back into R4 after 7§, and the point 0 is instantaneously
reflecting (see [40, Chapter VII, Definition 3.11]).
Lemma 6.6 below shows that the local time of Y¥ at point 0 is actually zero in the latter case.
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2.2. The valuation equation. We consider a European option with a payoff function g
which satisfies the following assumption.

Standing Assumption 2.3. The function g : Ry — Ry is nonnegative and continuous and
has at most linear growth; i.e., there exists a positive constant M such that g(x) < M (1 + x)
forx € Ry.

Recall that g is of linear growth if n := limsup,_,., g(z)/z > 0; otherwise g is of strictly
sublinear growth. Let us consider the smallest concave, nonnegative, and nondecreasing func-
tion h that dominates g. It has been shown in [10] that A is the superreplication price for the
payoff g. It is clear that h(x) < M(1 + x) for x € R;. Moreover, Lemma 5.3 below shows
that h has linear or strictly sublinear growth whenever g does.

The value function w : ]R:j’r — R4 of a European option with the payoff ¢ is defined via

u(z,y,T) :=E[g(SF¥)] for (z,y,T) € Rz’r.
It is dominated by h. Indeed,
(24)  ulz,y,t) =E[g(S7")] SER(S)] < h(E[S;Y]) < h(z), (2,y.t) € RY.

For (z,y,T) € R3, define a process U»¥ 1 = (Uf’y’T)te[()’T} via USYT .= u(SPY, VY, T —t) for
t € [0,T]. The Markov property of (S™¥,YY) gives

(2.5) UrvT =B [g (S3Y) | F], telo,T].

As E [g (S;iy)] < 00, U¥T is clearly a martingale on [0, T].

If w is sufficiently smooth (at the moment, we are being intentionally vague on this point;
we shall have more to say in Theorem 2.8), a formal application of 1t6’s formula implies that
the value function u is expected to solve the valuation equation

orv(z,y,T) = Lo(z,y,T), (z,y,T) €R},,

(BS-PDE) vz, y,0) = g(2), (z,y) € R2,

in which

L= ()0 + P )R, + 50700, + pbly)o ()i,
is the infinitesimal generator of (S,Y"). Since b can grow faster than linearly, the coefficients
before second order derivatives above can grow faster than quadratically.

Further conditions are usually supplied to (BS-PDE) to guarantee that u is the unique
solution in a certain class of functions. To motivate these conditions, consider a solution v to
(BS-PDE). If it is to be identified with w, it is clearly necessary that the process V*¥7T =
(Vtm’y’T)te[O,T], defined via Vf’y’T = (S YY, T —t) for t € [0,T) and (z,y,T) € R% ., is at
least a local martingale on [0,7]. Given v € C**!(R3 ), It6’s lemma implies that V=% is
a local martingale up to 7y A T. When P[r§ < T] > 0, it is reasonable to expect that some
boundary condition at y = 0 is needed to ensure that V%% is still a local martingale after
78 and up to T. When p(0) = 0, the point 0 is absorbing for Y. Since b(0) = 0, we have
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(S7Y. YY) = (8%7,0) for 7§ <t < oco. Therefore, we enforce the following Dirichlet boundary

Ty
L. 0
condition:

(2.6) v(2,0,T) = g(z), (z,T)€RL .

When £(0) > 0, the boundary condition restricts the classical solution to the pointwise closure
of the following class €.

Definition 2.4. A function v : Ri — Ry is an element of € if

(i) ve CRI)NCHAIRI ) NCOLVH Ry x Ry x Ryy),

(i) limsup,ob?(y) |02,0(x,y,T)| < 0o for (x,T) € R3

(iii) 0 < wv(z,y,T) < h(z) for (z,y,T) € R3, and

(iv) orv(z,y,T) = Lo(z,y,T) for (z,y,T) € R3 .

We say a sequence (vy,)n>p converges to v pointwise if lim, o0 vy (2,9, T) = v(z,y,T)
for any (z,y,T) € ]R:j’r. We denote by € the smallest set containing ¢ and closed under the
pointwise convergence. Note that an element of € may not satisfy the initial condition in
(BS-PDE). In Theorem 2.8 below, when Y instantaneously reflects at zero, we will use a
sequence of functions in € with bounded initial conditions to approximate the value function.

Now let us define what we mean by classical solutions to (BS-PDE). The definition
depends on whether Y¥ hits zero in finite time, which is characterized by Feller’s test (see,
e.g., Theorem 5.5.29 in [32]). Since the value function v is nonnegative and dominated by h,
in order to identify u as a solution to (BS-PDE), it suffices to consider nonnegative solutions
which are dominated by h.

Definition 2.5. A function v : ]R:j’r — Ry is called a classical solution (with growth domina-
tion h) if it satisfies conditions specified in each of the following cases (below, y is arbitrary
m R++).’

(A) When Pl =oc]=1: v € C(R3)NC?2L(R3,), 0 <v < h, and v solves (BS-PDE).

(B) When P[r§ < o] > 0 and u(0) = 0: v satisfies all conditions in case (A) and the

boundary condition (2.6).
(C) When P[r¥ < oc] > 0 and p(0) > 0: v € €NC(R3) and satisfies the initial condition
v(z,y,0) = g(z) on R%.

A function v is a super-(sub-)solution to (BS-PDE) if it satisfies properties in the previous
definition where both equations in (BS-PDE) and in item (iv) in Definition 2.4 are replaced
by drv > Lv (Opv < Lv), respectively.

Remark 2.6. In case (C) of the above definition, any v € € satisfies 0 < v < h on R3.
Moreover, it is, in fact, an element of 0272’1(Ri +) and solves drv = Lv on Ri o This is why
we call v a classical solution to (BS-PDE) in this case. Indeed, since v € €, there exists a
sequence {vy},~(, with each v, € €, such that they converge to v pointwise. Fix any compact
domain D C R% . Since {v,},~, is uniformly bounded from above by h and the differential
operator L is uniformly elliptic on D, it then follows from the interior Schauder estimate (see,
e.g., in [21, Theorem 15, p. 80]) that v € C*21(D’) for any compact subdomain D’ C D and
v solves Orv = Lv on D'. Then the claim follows since the choice of D is arbitrary in Ri ey

Remark 2.7. Boundary conditions are specified in Definition 2.5 to identify the value
function u as the unique solution with growth domination h (see Theorem 2.9). Therefore,
even if the value function has certain regularity at boundaries, if these properties are not

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



VALUATION EQUATIONS FOR STOCHASTIC VOLATILITY MODELS 357

necessary for the proof of uniqueness, it is not included in Definition 2.5. This is different
from the point of view in [14], where the value function is shown to satisfy a first order equation
(see (6.1) below), under additional assumptions on payoffs, regardless of whether or not the
process Y visits the boundary.

2.3. Existence and uniqueness results. The following are the main results of this paper.
Their proofs are given in section 6.

Theorem 2.8 (existence). The value function u is a classical solution to (BS-PDE). More-
over, it is the smallest classical solution.

Theorem 2.9 (uniqueness). The following two statements hold:

(i) When g is of strictly sublinear growth, w is the unique classical solution with growth

domination h.
(ii) When g is of linear growth, u is the unique classical solution with growth domination
h if and only if the asset-price process S is a martingale.
Uniqueness holds if and only if the following comparison result holds. Let v and w be classical
super-/subsolutions with growth domination h. If v(z,y,0) > g(z) > w(z,y,0) for (z,y) € R%,
then v > w on R‘i.

Remark 2.10. Lemma 5.3 below shows that h has linear or strictly sublinear growth when-
ever g does. Then the uniqueness is considered in the class of functions which have the same
growth with g.

Remark 2.11. Our main contribution is the uniqueness theorem. In the classical theory of
parabolic PDEs, a sufficient condition to ensure the uniqueness of classical solutions among
the class of functions with at most polynomial growth is that coefficients before the second
and first order spatial derivatives have at most quadratic and linear growth, respectively;
see, e.g., Corollary 6.4.4 in [22]. In stochastic volatility models considered in this paper,
Theorem 2.9 shows that uniqueness may fail among functions with at most linear growth if
the aforementioned growth conditions on coefficients are not satisfied. Multiple solutions are
constructed via strict local martingales. Therefore, the martingale property of the asset price,
which is characterized analytically in the next section, provides a necessary and sufficient
condition for the uniqueness of classical solutions. This main result extends results in [5]
for local volatility models. As we shall see in section 6, the proof of Theorem 2.9 relies on
probabilistic arguments. This is in contrast with the analytic approach used in [14].

3. Characterizing the Martingale property of the asset-price process. In this section,
we shall present a necessary and sufficient analytic condition for the martingale property of
the asset-price process, which is essentially HY (up to normalization with respect to the initial
asset price). Combined with Theorem 2.9(ii), this provides a necessary and sufficient analytic
condition for the uniqueness of classical solutions for (BS-PDE) among functions with growth
domination h.

Let us consider an auxiliary diffusion Y governed by the following formal dynamics:

(3.1) dY, = i(Yy) dt + o(Y,) dB,, Yy =,

where fi := p1 + pbo. By Assumption 2.1, pi is locally Lipschitz and o is locally (1/2)-Holder
continuous. Therefore (3.1) has a unique nonnegative strong solution Y for all y € R,.

However, due to the fact that p is only locally Lipschitz, the solution Y'Y is defined up to
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an explosion time (Y, and it might be the case that P[(¥ < oo] > 0. This has important
consequences on the stochastic behavior of the asset-price process, as the following result
demonstrates.

Proposition 3.1.

(3.2) E[S7Y] =2E [HY] =2P[¢Y >T]  for all (z,y,T) € R3.

Moreover, P[¢¥* < (¥2] =1 holds whenever y; € Ry and yo € [0, y1].

Remark 3.2. The assumption that Y is nonexploding is essential. Without it, the repre-
sentation (3.2) may not hold. See [37], [36].

Proof. Since Y is nonexploding, (3.2) follows from an argument similar to that used in
the proof of Lemma 4.2 in [42]. Also, see Lemma 2.3 in [2]. The fact that P[¢¥* < (¥2] =1
holds follows from standard comparison theorems for SDEs; see, e.g., Proposition 5.2.18 in
[32]. [ |

Whether or not an explosion of Y happens is fully characterized by Feller’s test, which we
now revisit. With a fixed ¢ € R4, the scale function s for the diffusion described in (3.1) is

defined as ‘
y ~
s(y) ::/ exp {—2/ ,uz(z) dz} d¢ forye Ry,
¢ e 0%(2)

We set

Y5(y) — s(6)
v(y ::2/ ————=d¢ forye R ..
V=2 ) e o
Note that v is increasing on (c,00). Therefore, v(co) := limyoo 0(y) is well defined. Feller’s
test (see, e.g., Theorem 5.5.29 in [32]) states that P [(¥ < co] > 0 for y € Ry if and only if

(3.3) v(00) < 0.

As was pointed out in [7, section 4.1], it is sometimes easier to check the following equivalent
condition:

s(o0) — s

! 52

(3.4) s(0c0) < oo and pp

€ Llloc(oo_)v
where Llloc(oo—) denotes the class of functions f : Ry — R that are Lebesgue integrable on
(y,0) for some y > 0.

Combining (3.2) and the above discussion, one obtains the following corollary of Proposi-
tion 3.1, which is due to [42]: HY is a martingale for all y € Ry if and only if (3.3) fails to
hold (or, equivalently, if and only if (3.4) fails to hold). The previous statement implies that
HY is a strict local martingale for some, and then all, y € Ry if and only if (3.3) (or (3.4)) is
satisfied. However, given that HY is a strict local martingale, it is not clear whether HY, . is
still a strict local martingale for any 7" > 0. The next result is a stronger statement than the
one previously made. Its proof requires some later results of this paper; therefore, we defer it
to section 4.

Proposition 3.3. The following statements are equivalent:

(1) HY is a strict local martingale for some, and then all, (y,T) € R% .
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(2) Inequality (3.3) (or, equivalently, (3.4)) is satisfied.

Note that when HY is a martingale for all y € R, H? is a martingale as well because
of the monotonicity of Ry 3 y +— P[¢Y > T] in y for fixed T' € R, ; see Proposition 3.1. In
view of Proposition 3.3, when we are referring to the martingale property of the asset-price
process, we mean that HY is a martingale for all y € R,..

Remark 3.4. Proposition 3.3 implies that if HY is going to lose its martingale property
eventually, it must lose its martingale property immediately. This result generalizes Theo-
rem 2.4 in [35], where a sufficient condition and a different necessary condition are given such
that H .y/\T is a strict local martingale for any fixed T € R, . Proposition 3.3 closes the gap
between these two conditions in [35]. When the boundary point 0 is absorbing, Proposition 3.3
is contained in the main result of [36]. However, Proposition 3.3 also treats the case when the
boundary point is instantaneously reflecting.

One should note, however, that when the dynamics in the stochastic volatility model are
not time homogeneous, the asset price may lose its martingale property only at a later time,
as can be seen from an example in section 2.2.1 in [9].

4. Smoothness of the value function. In this section we shall prove u € C(R3) N
C’2’271(R§’r +), as well as Proposition 3.3, an important corollary of this result. Let us start
with a technical result on the stability of solutions of (STOCK) and (VOL) with respect to
their initial values.

Lemma 4.1. Pick any (z,y,T) € R3, and pick any sequence {(@n, yn Th) } e which con-
verges to (x,y,T). Then,

(4.1) P-lim,, oo Y7 =Yy and  P-lim, oS5 = SpY,

where P-1im denotes limit in P-measure.

Proof. The stability properties of solutions for (VOL) have been well studied under the
linear growth assumption (2.1) (see, e.g., [3]). In fact, (4.1) follows from Theorem 2.4 in [3],
which shows that

(4.2) lim E

n—oo

sup |V — Y|
0<u<t+o

=0 for any § > 0,

and the fact that E [|YY —Y}Y|?] < C(1+ y?)|t — t,] for some C; see Problem 5.3.15 in [32].
For the stability of S, it suffices to show that P-lim, .. log H{" =log H/. In the next
paragraph, we will prove that
2
] o

The fact that lim, . E|| f(f b2 (YY) du — g" b2 (YY") du|] = 0 can be shown in a similar
fashion. Then, P-lim,,_, log H{" = log H follows from these two identities.

(4.3) lim E

n—oo

t tn
/ b (YY) dW, — / b(YI) dW,
0 0
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To estimate the left-hand side of (4.3), we use Itd’s isometry to get

2]
tn

<2E [/ (b(YY) — b(YPm))? du] +2E[ ]
0

Let n be large enough (greater than or equal to, say, some N(d)) so that ¢, < ¢+ J and
Yn < y + 6 for some § > 0. Since drift and volatility of Y¥ have at most linear growth, it
follows that

t tn
E / YY) AW — [ b(YI) AW,
0

0

/ t b2 (YY) du

tn

(4.4) E [ sup [V < Cpur(1+y™)  for any m > 0.

te[0,7

On the other hand, (2.2) implies that b(y) < C(1+y*) for some constants k and C. Combining
the previous two inequalities with (4.4), we have E [sup,<; 5 b*(Yd)] < Cs,, for some constant
Csy. As a result, lim,, o E[| fttn V(YY) dul] < limy,—, Cs4|t — t,| = 0. On the other hand,
since b is locally Holder continuous on R, then for any M > 0, there exist constants «a € (0, 1]
and C)y such that [b(z) — b(y)|> < Carlx — y|?® for any x,y < M. As a result, for any u < t,,

(4.5)
E [ (b(v) — b(vy))’]
= B (b(Y) = bV’ Liypns i <ar) +E | 0(F2) =Y Ly ag or vgnsary
< CuE [’Yq? - Yf”\m} +CE {(2 + (Y9 + (Yz?”)%) Leyysnr or Y£">M}] -

Since E[|Yy — Yi/"[>*] < E[|Yy — Yi/" 2] holds by Jensen’s inequality, it follows from (4.2)
that the first term on the right-hand side of (4.5) converges to zero as n — oco. For the second
term, observe that sup,,cy E[(Yf”)‘lk] < oo implies that {(Yﬁ")%}neN is a uniformly integrable
family; therefore,

limsup E [(2 + (YY) 4 (Yuy")%) H{Y5>M or Y5n>M}:| <E [(2 +2 (Yf)%) H{ygzM}}

n—oo
and the last expression is further dominated by E[(2+2sup,,e[o +14) (Vi )*™ 1 (suPucio.r V> M}]
It then follows that 7
tn
lim sup / E [(b(yuy) - b(an)ﬂ du < C(t+0)E
0

n—o0

y\2k
(1 + 2 ues[(l)l}g_é} (Yu ) > H{SuPue[O,t+5] YfZM}]

for some constant C'. Sending M — oo, we have that the right-hand side of the last inequality
converges 0 thanks to (4.4) and the dominated convergence theorem. This concludes the proof
of (4.3). [ |

Now comes the first step towards proving Theorem 2.8.

Lemma 4.2. u € C(RY) N C*%Y(R3 ) and it satisfies (BS-PDE).

Proof. We decompose the proof into three steps. First, we apply regularity results for
nondegenerate parabolic PDEs to show that u is continuous in the interior of }R‘i. Then
assuming that g(z) = z, we use probabilistic arguments to prove that u extends continuously
to the boundaries of }Ri. Finally, we generalize the result to general payoff functions.
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Step 1. Consider a sequence of payoff functions ¢™ := g A m, for m € N, and define
u™(z,y,T) := E[g™(S;Y)] for (z,y,T) € R3. The monotone convergence theorem implies
that lim,, oo u™(z,y,T) = u(z,y,T) for every (z,y,T) € R‘:’_. For each u™, since g™
bounded and continuous, the continuity of u™ follows from (4.1) and the bounded convergence
theorem.

Now let us consider a cylindrical domain D = A x (t1,t3) such that its closure D is a
bounded subset of Ri 4. Since D avoids the boundaries z = 0 and y = 0, it follows from a
verification argument (see, e.g., Theorem 2.7 in [29]) that «" satisfies a uniformly parabolic
differential equation wy' = Lu™ in D. Note that the coefficients of these equations are the
same for all m and that 4™ are uniformly bounded above by u, which is bounded on D. It
then follows from the interior Schauder estimate (see, e.g., [21, Theorem 15, p. 80]) that for
any subsequence {u } of {u™}, there exists a further subsequence {u™"} such that {u™"}
uniformly converges to v in any compact subdomain in D. It then follows from the continuity
of u™" and the uniform convergence that u € C(D). Therefore, u € C(R3,) since D is

arbitrarily chosen. On the other hand, the Schauder interior estimate also yields that u
satisfies (BS-PDE) and u € C*>!(R3,).

Step 2. Consider the special case of g satisfying g(z) = x; in this case, u satisfies
u(z,y,T) = zE [H%] for (x,y,T) € Ri. We are going to show that u extends continu-
ously to the boundaries z =0, y = 0, and T'= 0. (If HY is a martingale for y € R, this step
is entirely trivial. Indeed zE [Héi] = z clearly indicates that u is continuous on R‘:’_)

Take an R, -valued sequence (x)gen such that | limg oz = 0. It follows from the
supermartingale property of HY that |u(zy,y,T)—u(0,y,T)| = 2, E [HY] < x4 for all (y,T) €
R2. Therefore, u(xy,y,T) converges uniformly in (y,T) to u(0,y,T). This ensures that u
extends continuously to the boundary z = 0.

Let us prove the continuity at T = 0. Given any sequence Ri > (g, Yk, Tx) — (z, y, )
follows from Fatou’s lemma and (4.1) that lim infy_,o u(xg, yg, Tx) > x Elliminfy_,o H ] =
On the other hand, note that since E[H%’Z] <1 holds for all k, lim sup,_, . u (xk,yk,Tk) <z
We then conclude that u extends continuously to 1" = 0.

Since limg_, o u(zg,y, T) = u(x,y,T) uniformly in (y,T), in order to show that u extends
continuously to y = 0, it suffices to show that for any R, -valued sequence {y,} | 0, E [H%‘]
converges to [H%] uniformly, and that R, 5T +— E [H%] is continuous.

Let us prove the continuity of Ry 5 T +— E [H%] first. Recall that E [H%] =P [CO > T]
from (3.2). It is clear that Ry 37 — P [CO > T] is right continuous. In order to show the
left continuity of this map, it suffices to show that P [{0 =T ] = (0 for any T € Ry. To this
end, set 7 = inf {t >0]Y? = 1}. It follows from the strong Markov property that

T
(4.6) IP[CO:T]:/O P[¢t=T—s|P[r €ds].

We have shown that 7'~ E[HZ}] is continuous at T' = 0; moreover, we also conclude from
Step 1 that the last map is continuous at 7' > 0. Therefore, Ry 5T — E [H}] is continuous,
which implies that P [¢' =¢] = 0 for any ¢ € R;. Combining the last fact with (4.6), we
obtain that P [CO = T] = 0, which confirms the left continuity of Ry 57T +— E [H%]
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Now we prove limy_,o, E[HY] = E[HY] for fixed T". On one hand, it follows from Fatou’s
lemma that E [H%] <liminf, . E [H%‘] On the other hand, it follows from Proposition 3.1
that {E [H¥]} ¢en 18 a nondecreasing sequence. This implies that lim sup,_, E[HY] < E[HY].
Therefore we have shown that 1 lim,_,o E[HY] = E[HY).

To show that the convergence 1 limy_,o, E[H¥] = E[HY] is uniform, recall that Ry > T ~
E [H%] is continuous. On the other hand, Ry > T — E[HY] is continuous for y > 0. It then
follows from Dini’s theorem that the convergence of {E[HY]} ¢en 1S uniform in 7',

Step 3. The results of the previous two steps imply that R3S > (x,y,7) — E[S7Y] is
continuous on R3. Hence, for any sequence {(Z,Yn,Tn)}nen converging to (z,y,T) with
(Zn, Yn, T,) inside a bounded neighborhood of (z,y,T) for n € N, {S::ﬁ:’y"}neN is a uniformly
integrable family. Therefore, for a nonnegative payoff g which is at most linear growth,
{g(Sé?:’y")}neN is bounded from above by a uniform integrable family {M (1 + Sé?:y”)}

which along with (4.1) implies that u € C(RY). [ ]

neN’

4.1. Proof of Proposition 3.3. Let y € R. ;. When (3.3) is violated, it follows from
Feller’s test that P [(Y = oo] = 1. Then, (3.2) implies that HY,, is a martingale for any 7" > 0.
This confirms the implication (1) = (2).

The proof of the implication (2) = (1) is motivated by the proof of Proposition 3 in
[18]. Let us define I(y,T) := E[HY] = P[¢¥ > T for (y,T) € R%. Since E[S7Y] = zI(y,T),
it follows from Lemma 4.2 (choosing g such that g(z) = z) that I € C(R2) N C*(R?% ) and
that I satisfies

1
Orl = 50°(y) 9,1 — (uly) + pbly)o () 9,1 =0, (y.T) € R,
I(y,O)zl, y€R+

(4.7)

When (3.3) is satisfied, it follows from Feller’s test for explosions that limp_o [(y,7) < 1
for all y € Ry . Pick sufficiently large 7™ such that I(1,7%) < 1. We claim that

(4.8) I(y, T*) <1 foralyeR ..

We shall prove this by contradiction. Suppose that there exists y* € Ry such that I(y*, T%) =
1. For any y > 0, consider an open domain A which contains both 1 and y* and whose
closure A is a compact subset of R, ;. Then I attains its maximum at (y*,T*) over the
cylindrical domain A x [0,7* + 1]. Note that I satisfies the uniformly parabolic equation
(4.7) in A x (0,7* 4+ 1). Then the maximum principle (see, e.g., [21, Chapter 2]) implies that
I(y,T)=1for any 0 <T < T* and y € A. Therefore I(1,7%) = 1, which clearly contradicts
the choice of T™.
Now define S(T') = {y € Ry4 : I(y,T) = 1} and

(4.9) T, :=sup{T >0:8(T) # 0},

with the convention that T, = oo when the above set is empty. In fact, (4.8) implies that
T, < oo. We shall show that T, = 0 in what follows.
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Suppose that T, > 0. Then for any 6 € (0,7,/2), there exists a y € Ry, such that
I(y, T, — 6) = 1. Using the maximum principle as we did above, we obtain that

(4.10) Iy, T)=1 forany0<T <T,—¢andyecR,.

(Note that I(0,7') = 1 follows because I(-,T") is nonincreasing for fixed T € R ; see Proposi-
tion 3.1.) Now, from the definition of I and the Markov property, we have that E [H:Z; ].7-}] =
IV, T —t) for all (y,T) € R?2,. When 0 <t < T, —§and 0 < T —t < T, — 6, applying
(4.10) to the previous identity, we obtain that I(y,T) = 1 for every T € [0,2(T, — §)] and
y € Ry . Note that 2(T, — §) > T,; this contradicts the definition of Ti. Therefore, T, = 0,
which implies that I(y,T) < 1 for any (y,T) € R? .

5. The notion of stochastic solutions. A notion of stochastic solutions to (BS-PDE)
is introduced in this section. Its definition is motivated by the definition on p. 672 in [43],
Definition 3.1 in [27], and Definition 2.2 in [29].

Definition 5.1. Consider a continuous function v : ]R:j’r — Ry. For (z,y,T) € R‘Lr, define
vyt = (Vf’y’T)te[QT} via Vf’y’T =v(SPY Y)Y, T —t) fort € [0,T]. Then, v is a stochastic
solution of (BS-PDE) if, for each (z,y,T) € R3 ,,

(i) V*¥T s a local martingale on [0,T], and

Proposition 5.2. The value function u, defined in (2.2), is a stochastic solution dominated
by h. In fact, u is the smallest stochastic solution.

Proof. We have already shown in Lemma 4.2 that v € C(R3) and u < h in (2.4). Recall
that U%T = (UPY7)1ciom with UPYT = u(SPY, Y2, T —t) for t € [0,7]. In (2.5) we
established that U%%T is a martingale on [0, T]. Therefore, u is a stochastic solution.

To show the second statement, we take another stochastic solution v and let V%7 be as
in Definition 5.1. Since V*¥7 is a nonnegative local martingale, and hence a supermartingale,
we have that

v(x,y,T) = Vox’%T >E [fo’%T] =E [v (S%y, Y;f,())] =F [g (S;y)] = u(z,y,T).

Therefore, v > u on Ri +. Thanks to the continuity of v and u on ]R:j’r, the last inequality then
holds on Ri. [ |

The uniqueness of stochastic solutions for (BS-PDE) ties naturally to the martingale
property of the asset-price process. This result is the main accomplishment of this section,
which will be presented in two propositions. But first we will need to state the following
technical lemma.

Before we proceed, let us prepare the following result.

Lemma 5.3. n = limsup,_, ., g(z)/x = limsup,_, h(z)/x =] limy_o I/ ().

Proof. Since h dominates g,
(5.1) lim sup hiz) > lim sup 9(z) =1

T—00 x T—00 x

If | lim, o A/ (x) < 7, there exist xg and € > 0 such that h'(x) < n — € for z > x9. Hence
h(z) < (n —€)(x — o) + h(zo) for & > xy, which contradicts (5.1). On the other hand, if
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Llimy, oo B/ (z) = € > 1, there exists g such that h(xg) > £+T":Eo and g(x) < %m for z > xg.
Since W' (x) > & on Ry, h(z) > h(zo) — EJFT"a;‘o + £JrT”a: for x > x¢. Let us consider

~ h(z), T < To;
h(z) =
(@) { h(zo) — Hxo + 2, x> .

It is easy to check that P is another nonnegative, nondecreasing, and concave function that
dominates g. But h < h, which contradicts the definition of h. Therefore, | lim,_,, h'(z) = 7.
To show lim sup,_, ., h(z)/x = n, observe that
h(z)

lim sup —= = lim sup hiz) = 10) > lim h'(z) =17

T—00 € T—00 € =00

since h is concave. On the other hand, for any e > 0, there exists zg such that h'(z) <
n + e for x > x9. Therefore, h(z) < (n + €)(z — xg) + h(zg) for x > x(, which implies
that limsup,_,.  h(z)/x < n + e. Hence limsup,_,. h(z)/x < n since the choice of € is
arbitrary. |

Proposition 5.4. Suppose that g is of linear growth, i.e., n = limsup,_,., g(x)/x > 0. Then,
there exists a unique stochastic solution in the class of functions which are dominated by h if
and only if the asset-price process is a martingale. In that case, u is this unique stochastic
solution.

Proof. Let us define a function ¢ : R3 +— R via 0(z,y,T) :==x — E [S}Y] = 2z — 2 E [HY
for (x,y,T) € Ri. Since HY is a nonnegative local martingale for y € R, § is nonnegative.
Also,

§(SPYYY T —t)=87Y —E [S;,y |]-'t]

holds for all (z,y,T) € R‘i and t € [0,7], in view of the Markov property. It follows that
(6 (S{, Y, T —1))ieo1) is a local martingale for all (z,y,T) € R3.

Now, Lemma 5.3 implies that f(x) := h(x) — nz is a nondecreasing concave function.
Hence

(u+n6)(z,y,T) =E [g(S7Y) = nSEY] +ne <E [f(S7Y)] +nz

(5:2) < f(E[S?Y]) +nz < f(2) + nz = h(z) for any (z,y,T) € RY.

Therefore, both © and u 4+ nd are stochastic solutions dominated by h. Suppose that the
stochastic solution is unique. Then the asset-price process must be a martingale. Otherwise,
Proposition 3.3 implies that S:BA% is a strict local martingale for any (z,y,T) € R‘:’_ +; hence,
0> 0on ]R:j’r 4 and w and u + 70 are two different stochastic solutions dominated by h.

Assume that the asset-price process is a martingale, and take a stochastic solution v which
is dominated by h on Ri’_. The uniqueness follows once we show that v = u. We shall establish
below that v = u on R‘:’_ 4. The last identity can be extended to R‘:’_ thanks to the continuity
of v and u.

Fix (z,y,T) € Ri +, and take a localizing sequence {0y, },, o of the local martingale V*

Then,

T

v(z,y,T) = Vi*" =R [anig] for all n € N.
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On the other hand, the linear growth constraint h(z) < M(1 + z) on Ry implies that
k) 7T
Volip <M (1+aH] 7).

Since HY is a martingale, { o /\T} N is a uniformly integrable family. Therefore, {V A T}neN
is a uniformly integrable family, Wthh along with the continuity of v implies that

v@,y,T) = lim B |Vi4T] =B | lim ViUl =B (V7| =Eg (57%)] = u(e,y,7).

When the payoff g is of strictly sublinear growth, the uniqueness of stochastic solutions
always holds, regardless of whether or not the asset-price process is a martingale.

Proposition 5.5. When g is of strictly sublinear growth, i.e., limsup,_, . g(x)/xz = 0, then
u 18 the unique stochastic solution dominated by h.

Proof. Fix T € Ry. It follows from Lemma 5.3 that lim, ,o h(z)/z = 0. Then, there
exists a nondecreasing function ¢ : Ry — Ry U {oo} with lim, o ¢(z)/z = oo such that
¢(h(x)) < z holds for all z € Ry. Therefore, for any localizing sequence {0y}, of the local
martingale V*¥7T we have

E [(b (h (Szf AT))] <E [So AT] <z forallnéeN.

:Biy

From the de la Vallée-Poussin criterion, {h (S . /\T) }nEN is a uniformly integrable family. The

rest follows from arguments similar to those used in the proof of Proposition 5.4. [ |

6. Proof of main results. The proof consists of three steps. First, the value function is
shown to be a classical solution to (BS-PDE) in section 6.1. Second, any classical solution is
proved to be a stochastic solution in section 6.2. Finally, in section 6.3, Theorems 2.8 and 2.9
are proved utilizing the results of section 5

6.1. The value function is a classical solution. Let us first focus on case (C) in Defini-
tion 2.5.

Lemma 6.1. In case (C) of Definition 2.5, u € €.

Proof. Since g satisfies Assumption 2.3, there exists a sequence {g°} ., such that, for each
€,

(i) ¢¢ is bounded,

(i) ¢° EICOO(R++)
(iii) (¢°) and (¢¢) have compact support in Ry,
(iv) ¢°(x) < h(x) for z € R4, and

(v) limeyo g°(x) = g(x) for x € Ry.
Indeed, for € € (0, 1), consider

— | 9(0), —2e <z < 2¢, . e 1, <1
g (z) = { o)), T > 2 where ¢ € C(R4) and ¢(x) = 0. =>2e
Then define g¢ := n® % g¢, where n° is the standard mollifier and * denotes the convolution

operator. It is clear that ¢g¢(x) = ¢(0) for = € [0,¢]. Therefore, items (i)—(iii) and (v) are
clearly satisfied. In order to check item (iv), we notice that ¢g(z) = g(0) < h(0) < h(z) for
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z € [0,¢]. On the other hand, we claim that [ _n(y)h(z —y)dy < h(x) for > e. This claim
follows from n(y) = n“(—y), [ n°(y)dy = 1, and h(z +y) — h(z) < h(z) — h(z —y) for y > 0
thanks to the concavity of h. Hence item (iv) holds because ¢“(z) = [ _n(y)g (z — y)dy <
[ 0 (w)h(z — y)dy < h(z) for z > €.

Define uf(z,y,T) := E[g*(S7¥)] for (z,y,T) € R3. An estimate similar to (2.4) shows that
u® < h on R3. Moreover, item (iv) above and the dominated convergence theorem combined
implies that

u(z,y,T) = leiﬁ)l u(z,y,T) for (z,y,T) € Rz’r.
Then the statement follows if u¢ € € for each € € (0,1). This property of u¢ will be confirmed
in the rest of the proof using an argument from [14].

First, boundedness of ¢¢ and (4.1) combined implies that u¢ € C(R3). Then an argument
similar to that in Lemma 4.2 shows that dru¢ = Lu® on Ri 4. Moreover, the dominated
convergence theorem implies that

1"

o® Ou(z,y,T) = E |(S37)* (9°) (S77)] -

Since (¢¢)” has compact support and it is finite at = = 0, 22 |82,u¢| is bounded on R3, then
hmyio b2(y)|a%mue(x’ y,T)| =0 for (z,T) € IR?|-+‘

The proof that Oruf, dyu® € C(Riq x Ry x Ry, ) follows along the line of arguments
presented in [14]. The assumptions on the payoff and coefficients in [14] are satisfied in
our case (see properties of ¢¢ in items (i)—(iii)). Even though b(y) is chosen as \/y in [14],
their arguments go through if b2 € C1(R,), (b2)" being Hélder continuous, and has at most
polynomial growth. In particular, equation (22) in [14] is replaced by 1 < bz(%)xg%z < 2. For
a sequence {my}, .y T 00, a sequence {ky},y can still be chosen appropriately so that the
above inequalities are satisfied. Moreover, Proposition 4.1 of [14] still holds. Indeed, for any
(z,y) € R% and a sequence {(Zy,yn)},cy int a bounded neighborhood of (z,y), there exists a
constant C7 . such that

exp ([0 (o ) (P (2000 2 (550, Y, T )
0

< OT,e

GRE

for any n € N and v € [0,7]. Thanks to the growth assumption on (b?)" and the moment

estimate (4.4), {|(b? (Y,,y”))/]}neN is a uniformly integrable family. Therefore, the function v°
defined as

T v ,
o (,9,T) = E [ | ew ( / M(Y;f)da) (V) (S2)? o (SEY, Y2, T — v) du}
0 0

is still a continuous function on ]R:j’r. [ |
Remark 6.2. Tt is also proved in [14] that u€ satisfies

(6.1) Oru‘u(z,0,T) = u(0)d,u(z,0,T), (z,T)€R2,.
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This first order equation will not be used to prove the uniqueness of classical solutions in
Theorem 2.9. Therefore, according to the consideration in Remark 2.7, (6.1) is not included
in the definition of the classical solution as a boundary condition at y = 0.

Proposition 6.3. The value function u is a classical solution to (BS-PDE).

Proof. When P = oo] =1 or P[r§ < oo] > 0 with x(0) = 0, the statement follows from
Lemma 4.2 and the fact that u satisfies (2.6) when the boundary point 0 is absorbing. When
Py < oc] > 0 and p(0) > 0, the statement follows from Lemmas 6.1 and 4.2. [ |

Recall that 6(z,y,T) = = — E[S7Y]. The following result follows from Proposition 6.3
when g(z) = =.

Corollary 6.4. § is a classical solution to (BS-PDE) with zero initial condition.

6.2. Any classical solution is a stochastic solution. In order to connect results in the
last section to the main results, classical solutions are shown to be stochastic solutions in this
section. To facilitate our analysis on case (C), let us first study the probabilistic property of
functions in the class €.

Lemma 6.5. For anyv € € andn € N, V”;C\ff =0 (S5 Y4, ., T — Aoy) is a martingale
on [0,T]. Here, o :=inf{t € Ry |Yy=n, or Sy =n"", or Sy =n} AN(T —T/n) forn € N.

Before proving this result, we will analyze the properties of the local time for Y. Let Lq(e)
denote the local time Y accumulates at level € up to time ¢ € Ry. Recall that we choose
L to be P-a.s. jointly continuous in the time variable and cadlag in the spatial variable; see
Theorem 3.7.1 in [32]. The following two results will be useful in the proof of Lemma 6.5.

Lemma 6.6. Fizy € Ry. If 4(0) > 0, then Ly(0) =0 for allt > 0. Hence fR+ H{YtyZO}dt =
0.

Remark 6.7. As the proof below suggests, for the validity of Lemma 6.6 we use only that
o is locally (1/2)-Hélder continuous on R, it is strictly positive on Ry, and it satisfies
o(0) =0.

Proof. We fix y € Ry and drop superscripts y from YY for ease of notation. Since
(Y,Y) = [, 0%(Y;) dt, it follows from the occupation time formula (see, e.g., Theorem 3.7.1(iii)
in [32]) that

(62) t> /0 H(O,oo) (Yu) du = /0 H(O,oo) (Yu) 0'_2(Yu) d<Y, Y>u =2 /(0700) 0'—2((1) Lt(a) da,

in which the first equality follows since o(y) > 0 for y > 0. Since ¢(0) = 0 and o is (1/2)-
Holder continuous in a neighborhood of 0, we have that o(a) < Cal'/? for a € [0, ag], where
C and ag are R, -valued constants. Hence, 0~2 is not integrable in this neighborhood of
0. Combining the last fact with the cadlagproperty of L in the spatial variable, it can be

seen that if L;(0) were not zero, the right-hand side of (6.2) would be equal to infinity. This,

however, contradicts the bound on the leftmost side of (6.2). It then follows from Problem
3.7.6 in [32] and L(0) = 0 = L;(0—) that

0= Ly(0) — Ly(0-) = (0) /0 Ly, —oy d.

Since p(0) > 0, the result follows. [ |
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Lemma 6.8.
sup E [(Lan(e))Z] < 0.
€€(0,1)
Proof. Let C := supyepon] (|u(y)| + o (y)) < 00. From the It6-Tanaka—Meyer formula,
we obtain that

Lq, () <max {Y} —¢,0} —/ ' [ 00) (V) (YY) dt —/ ' [(e,00) (V) (V') dBy
0 0
<n+OT - / oo (V)0 (V) d B
0

Furthermore, we have from It6 isometry that

d

Combining the last two bounds, we conclude that sup.¢ (g 1) E[(Lo, (6))?] < . [ ]

Proof of Lemma 6.5. In what follows, we fix (z,y,7) € Ry and drop all superscripts
involving x, y, and T in order to ease notation. Since v € C’272’1(R§’r 4) but Y hits zero with
positive probability in this case, one cannot directly apply It0’s lemma to V; for ¢t > 7.
Instead, we apply It6’s formula to a sequence of processes that approximate V.

For € € (0,1], define Y := max{Y,e}. It follows from the It6—Tanaka—Meyer formula
that

2 T
<B| [ T 0020700t <
0

| Koo (02)0tv)d8,
0

dfyz = ]I(E,OO) (Y;f) (M(Y}/)dt + O-(Y;f)dBt) + st(E)

Let V be defined via V; := v(S;, Y}, T — t) for t € [0,T]. Since v € C**1(R3,) and (S,%Y)
takes values in [n=!,n] x [e,n] for ¢t € [0,0,], we can apply It6’s formula on ¢ € [0,0,] and
obtain that

(6.3)
Non, Non
Voo, = vy, T) — / Orvo(Su, Vi T — w)du + / 0,0(Su, Vo, T — 1) Sub(Y,) AW,
0 0
Ao Non
+ / L(e.00) (Yu) Oy (Su, Yo, T — w) pu(Yy,) du + / L(e,00) (Yu)Oyv(Su, Yu, T — u)o (Yy,) dBy
0 0
Ao, 1 Ao 9 9
+ /0 O (Su ¥ T — ) dLu(0) + /0 L) (Va2 0(Sus Vi T — ) (V) d
Nop,
+ / Lie 00) (Ya) 02y 0(Su, Yu, T — ) por (Yo )b(Ye) Sy du
0
1

Non,
+3 / 02, 0(Su, Yo, T — u)S2b*(Y,) du.
0

Since {Y > ¢} C{Y =Y}, it follows from (BS-PDE) that

(6.4 [ B (1) (01 = £)0(5.. YT — )] du =0,
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On the other hand, [;"7" 9,0(Sy, Yy, T —u) dLy(€) = ["7" 0yv(Su, ¢, T —u) dLy(e), following
from the fact that fO'M” iy, £eydLy(€) = 0. Moreover, the two stochastic integrals in (6.3) are
martingales thanks to the choice of o,,. As a result, combining (6.3) and (6.4), and setting

A =V + / ljo,q(Yu)Orv(Sy, €, T — u)du — / Oyv(Su, €, T —u) dLy(€)
0 0

1

-3 / Ljo.q(Ya)02,0(Su. €, T — u)S2b*(Yy,) du,
0

we have that M.,,, is a martingale for each € € (0,1).
Next we shall study the limit of W as € | 0 and establish

(6.5) P-limeyg sup |Ming, — Vine,| = 0.
te[0,7

First, observe that

sup ’Mtl\an - ‘/t/\an‘
t€[0,7]

tAon
< sup [Ving, — Viros| + sup / To.q (V) |0r0(Sus . T — )| du
te[0,T te[0,7] /0

(66) tA\on
+ sup / 10,0(Sus €T — 1) dLu(e)
tef0,1]Jo
1 e 2 2,2
+ - sup Ljo,q (Yu) |02,0(Su, €, T — w)| S5b%(Y.,) du.
2 4e10,11 o

We will show that each term on the right-hand side of the previous inequality converges to zero
in probability as € | 0. Let us denote D,, = [n~1,n] x [0,n] x [T'/n,T]. First, the convergence
of the first term follows from the continuity of v. Second, since drv € C(Ryy x Ry x Ryy),
we have from Lemma 6.6 that

tAon
P- hmsLO sSup / H[O,e](Yu) |07v(Sy, €, T — u)| du
tef0,77Jo

TNon
< swp foroeps)| [ Ly du =0
(Z‘,y78)E'Dn 0

Since limsup,o b2 (y)x202 v(z,y,t) < oo for (z,t) € [n~!,n] and §?,v is continuous in the

interior of D,,, then an argument similar to the previous estimate shows that the fourth term
in (6.6) also converges to zero. Finally, using Lemma 6.6 again, we have the following estimate
for the third term:

tAon
P-lim¢jp sup / |0yv(Sy, €, T —u)| dL,(e) < sup |dyv(x,y,s)|-P-limejoLrag, (€) =0,
te[0,7] J0 (z,y,5)€Dn

where the last identity follows from the right continuity of € — L.(e) and L(0) = u(0) [, L1y, —oydu;
see Theorem 3.7.1(iv) and Problem 3.7.6 in [32]. As a result, (6.5) follows combining all the
previous estimates.
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To finish the proof, we shall show that V..., is a martingale. Using again the fact that
v € € and (S,%) takes values in [n=! n] x [e,n], we obtain the existence of C € Ry
(depending on v as well as n but independent of €) such that

sup |Mipne, — Vire,| < C(1+ Ly, (¢)) for e € (0,1].
te[0,T

An application of Lemma 6.8 ensures the uniform integrability of {sup;c(o 71 [Mirc, — Vinon|teeo,1-
As a result, we obtain

ImE | sup |Miro, — Vire,|| = 0.

0 |tefo,1)
Combining it with the martingale property of M for each e € (0,1), we conclude that V.,
is a martingale. |

Now we are ready to present the relationship between classical solutions and stochastic
solutions.

Proposition 6.9. Any classical solution to (BS-PDE) is a stochastic solution.

The following result will be useful in proving the above proposition.

Lemma 6.10. Let o be a stopping time and Z be a nonnegative continuous-path process
with Z = Zgp.. If there exists a nondecreasing sequence of stopping times {o,},cn with
P lim;, o0 0y = 0] = 1 such that Zy a. is a martingale for all n € N, then Z is a local
martingale.

Proof. As Z,,n. is a nonnegative martingale, we have that Plsupcjo o, Zt > ¢ < 1/¢
for all n € N and ¢ € Ry. Since Z = Z,5. and P[lim, o 0, = 0] = 1, we obtain that
P [supyeg, Z; < co] = 1. Therefore, defining o, := inf {t € Ry | Z; > k} for k € N, we have
that P [limg_o 0x = 00| = 1. Furthermore, {Zgn /\Ek}n oy IS a uniformly integrable family
for each k; indeed, this follows because P[supicjoz,) Z: < k] = 1. We infer that Zz . is a
martingale for each k € N, which concludes the proof. [ ]

Proof of Proposition 6.9. For fixed (z,y,T) € R3 ., recall that Vf’”y’T =o(S7Y, Y, T —t)
for t € [0,T]. We define vt on R, via et = fo\’z?i’T. Thanks to the previous lemma, to

show that V"% is a local martingale on [0, 77, it suffices to find a sequence of stopping times

{0n},en such that Pllim, o 0, = T] = 1 and Vﬁff is a martingale for each n. We shall use

this observation to prove the statement in each case of Definition 2.5.
Case (A). Consider o, := inf {t € Ry | (S{Y, YY) ¢ [n™',n]*} A(T —T/n) for each n € N.

Given a classical solution v, it follows from It6’s formula that Vﬁ’gf is a martingale. As

Py = oo] = 1, P [limp_ye0 0 = T] = 1; therefore, V¥ is a local martingale on [0, T thanks
to Lemma 6.10.

Case (B). Given such a classical solution v, the same argument as in case (A) implies that

.iﬁ’f is a martingale on [0, T for any n € N. Since P [7§ < oo] > 0 in this case, we have that

7y7T — vava

P [lim;,— o0 0y = 7] = 1. However, the boundary condition (2.6) implies that V. oo
7o

Invoking Lemma 6.10, we conclude that V%7 is a local martingale.

Case (C). Since v € €, there exists a sequence {v™}, _ such that each v™ € € and
{v"},,en converges to v pointwise. It then follows from Lemma 6.5 that V.Am;:’y’T = o™

(S8 Y4, ., T —-Noy) is a martingale on [0,7], where o, is defined in Lemma 6.5. On
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the other hand, since each v™ is dominated by h, VJLJZZ’T = 0" (S Y, T —tAoy,) <

h (Sf A{’,n) for any ¢t € [0,7] and m € N. Combining the previous inequality with E [h (Sf Ai’,”)] _S
h (E[S7Y]) < h(z) < oo, we obtain that {%T’;i’y’T}meN is a uniformly integrable family.

Therefore, for any s € [0, t],

’ 7T M 3Ly 7T M 3Ty 7T El 7T
E Vil | 7] = 1im E V! | 7| = lim vt = vieT,
which confirms that V”;C\’i’LT is a martingale on [0,7]. It is clear that P[lim,, . 0" = T] = 1;
then V®¥%T is a local martingale thanks to Lemma 6.10. |

6.3. Proofs of Theorems 2.8 and 2.9.

Proof of Theorem 2.8. Proposition 6.3 has already established that u is a classical solution.
The minimality property follows from Propositions 6.3, 6.9, and 5.2. |

Proof of Theorem 2.9. We will prove only the statement when g is of linear growth, i.e.,
n = limsup,_,. g(x)/z > 0, the proof for the strictly sublinear growth g can be performed
similarly.

Given a classical solution v dominated by h, v is also a stochastic solution thanks to
Proposition 6.9. Proposition 5.4 implies that when S is a martingale, v = u on Ri. If Sisa
strict local martingale, Proposition 6.3 and Corollary 6.4 combined implies that both » and
u + nd are both classical solutions dominated by h (see (5.2)). However, they are different
solutions since § > 0. Then the statement in item (ii) is confirmed.

Let us consider the last statement of the theorem. It is clear that the comparison result
implies the uniqueness of classical solutions. Conversely, when ¢ is of linear growth, we
shall show that the martingale property of S implies the comparison result. To this end, an
argument similar to Proposition 6.9 gives that v (S™Y, V¥ T —t) is a local supermartingale
and w (S™Y, Y'Y, T —t) is a local submartingale for any (z,y,T) € R3 . Since they are both
dominated by the martingale M (1+ S"Y), in fact, v (S*Y,YY, T — t) is a supermartingale and
w (SPY Y'Y, T —t) is a submartingale. As a result,

v(z,y, T) > E [v (S;’y, YTQ,O)] >E [g (S;y)] >E [w (S;’y,Y%,O)] > w(z,y,T) on R‘?’H.
Finally, the inequality v > w can be extended to Ri thanks to the continuity of v and w. |
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