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Abstract

We propose a proximal point algorithm to solve LAROS problem, that is the problem of finding

a “large approximately rank-one submatrix”. This LAROS problem is used to sequentially extract

features in data. We also develop a new stopping criterion for the proximal point algorithm, which

is based on the duality conditions of ǫ-optimal solutions of the LAROS problem, with a theoretical

guarantee. We test our algorithm with two image databases and show that we can use the LAROS

problem to extract appropriate common features from these images.

1 Introduction

Feature extraction is an important application in information retrieval. For example, let us consider a

matrix A ∈ R
m×n
+ that represents a database of pixelated and registered grayscale images which have

the same size. Each column of A corresponds to one image and each row corresponds to a particular

pixel position in those images. The value Aij is then the intensity of the ith pixel in the jth image. A

common visual feature represented by the pixels in J ⊂ {1, . . . , n}, which occur in a subset of images

in I ⊂ {1, . . . ,m}, can be associated with the approximately rank-one submatrix A(I,J ) of the matrix

A. We assume here the features are non-overlapping. If we want to more than one visual feature,
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we can iteratively find an approximately rank-one submatrix, subtract it from A (perhaps modifying

the result of the subtraction to ensure that A remains nonnegative), and then repeat the procedure.

Doan and Vavasis [3] proposed the LAROS problem which tries to find “large approximately rank-one

submatrix”. The proposed convex parametric formulation for the LAROS problem is written as follows:

min ‖X‖θ := ‖X‖∗ + θ‖X‖1
s.t. 〈A,X〉 = 1,

(1)

where θ > 0. Here ‖X‖∗ denotes the nuclear norm of X, which is defined to be the sum of the

singular values of X, and ‖X‖1 denotes the sum the absolute values of all the entries of X. Theoretical

properties of LAROS problem have been developed in [3]. In this paper, we investigate algorithms to

solve the problem and apply it to find features in data. We will focus on proximal point algorithmic

framework, which have recently been studied for nuclear norm minimization (see Liu et al. [4] and

references therein).

Throughout the paper, we use ‖ ·‖ to denote either the Frobenius norm of a matrix or the Euclidean

norm of a vector. The spectral norm of a matrix X is denoted by ‖X‖2.

Proximal Point Algorithm

The proximal point algorithm is based on the Moreau-Yoshida regularization of the (non-differentiable)

convex optimization problem

min
x∈X

φ(x), (2)

where X is a finite-dimensional real Hilbert space and φ : X → (−∞,∞] is a proper, lower semicontin-

uous, convex function. For an arbitrary λ > 0, the regularization is defined as

Φλ(x) = min
z∈X

(

φ(z) +
1

2λ
‖x− z‖2

)

, ∀x ∈ X .

The above optimization problem has a unique optimal solution pλ(x) for all x ∈ X , and pλ is called

the proximal point mapping associated with φ. One of the most important properties of Φλ and pλ is

that the set of optimal solutions of (2) is exactly the set of optimal solutions of the following optimization

problem:

min
x∈X

Φλ(x), (3)

where Φλ is now a continuously differentiable convex function defined on X with a globally Lipschitz

continuous gradient ∇Φλ (with modulus 1/λ). The necessary and sufficient optimality condition of (3)
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can then be expressed as follows:

∇Φλ(x) = 0 ⇔ pλ(x) = x, (4)

where pλ is a global Lipschitz continuous function with modulus 1.

The proximal point algorithm is an iterative method to solve the problem (2) that uses the optimality

condition written in (4). In each iteration, xk+1 ≈ pλk
(xk) according to a sequence {λk} of regularization

parameters. The convergence of the algorithm has been studied by Rockafellar [6] in a more general

setting of inclusion problems with maximal monotone operators. Note that the problem (2) is equivalent

to the inclusion problem 0 ∈ ∂φ(x), where ∂φ is a maximal monotone operator if φ is a proper, lower

semicontinuous, and convex function. We now ready to study the proximal point mapping for our

particular problem. In order to apply the framework, we reformulate Problem (1) with a redundant

variable as follows:

min ‖X1‖∗ + θ‖X2‖1
s.t. 〈A,X1〉 = 1,

X1 = X2.

(5)

In addition, to introduce more flexibility into our model, we study Problem (5) under the following

more general setting:

min ‖X1‖∗ + θ‖X2‖1
s.t. A(X)− b ∈ Q, X = (X1,X2) ∈ R

m×n × R
m×n

(6)

where b ∈ H, A : Rm×n ×R
m×n → H is a given linear map, and Q is a pointed close convex cone in H.

HereH is a finite-dimensional Hilbert space. For the problem (5), we haveH = R×R
m×n, Q = {0}×{0},

b = (1,0), and A(X) = (〈A,X1〉,X1 −X2). Note that the adjoint A∗ : H → R
m×n × R

m×n is given

by A∗z = (z1A+Z2,−Z2) for any z = (z1,Z2) ∈ H.

2 Primal Proximal Point Algorithm

We define the function φ as follows:

φ(X) =







‖X1‖∗ + θ‖X2‖1, X = (X1,X2) ∈ F ,

+∞, otherwise,
(7)

where F is the feasible set of the problem (6). The problem (6) is then equivalent to the optimization

problem

min
X∈X

φ(X),
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where X = R
m×n × R

m×n.

We now introduce dual decision variables z ∈ R
p and define the Lagrangian function L(X, z),

L(X, z) =











‖X1‖∗ + θ‖X2‖1 + 〈z, b−A(X)〉 if z ∈ Q∗

−∞ otherwise

(8)

where Q∗ is the dual cone of Q defined by Q∗ = {y ∈ H : 〈y, z〉 ≥ 0, ∀ z ∈ Q}. For our problem, Q∗

is simply the whole space, Q∗ = H = R× R
m×n. Clearly, φ(X) = sup

z∈Rp

L(X , z). We now calculate the

Moreau-Yoshida regularization of φ:

Φλ(X) = min
V ∈X

(

φ(V ) +
1

2λ
‖X − V ‖2

)

. (9)

Applying the strong duality (or minimax theory) result in Rockafellar [5], we have:

Φλ(X) = min
V ∈X

sup
z∈H

(

L(V , z) +
1

2λ
‖X − V ‖2

)

= sup
z∈H

min
V ∈X

(

L(V , z) +
1

2λ
‖X − V ‖2

)

= sup
z∈Q∗

min
V ∈X

(

‖V 1‖∗ + θ‖V 2‖1 + 〈z, b −A(V )〉+ 1

2λ
‖X − V ‖2

)

= sup
z∈Q∗

〈z, b〉+ 1

2λ
‖X‖2 − 1

2λ
‖X + λA∗z‖2 + min

V ∈X

(

‖V 1‖∗ + θ‖V 2‖1 +
1

2λ
‖V − (X + λA∗z)‖2

)

Now, consider the first inner minimization problem, we have:

min
V ∈X

(

‖V 1‖∗ + θ‖V 2‖1 +
1

2λ
‖V − (X + λA∗z)‖2

)

(10)

= min
V 1

(

‖V 1‖∗ +
1

2λ
‖V 1 − (X1 + λB1z)‖2

)

+ θmin
V 2

(

‖V 2‖1 +
1

2λθ
‖V 2 − (X2 + λB2z)‖2

)

where we have written A∗z = (B1z,B2z) ∈ X . The first optimization problem on the right-hand side is

the Moreau-Yoshida regularization of the nuclear norm function at X1+λB1z, and the problem has an

analytical solution given by

p
(1)
λ (X1 + λB1z) = UDiag(max{σi − λ, 0})V T , (11)

which is computable from the singular value decomposition, X1 + λB1z = UΣV T . In addition, the

minimal objective value is given by

1

2λ
‖X1 + λB1z‖2 −

1

2λ
‖p(1)λ (X1 + λB1z)‖2.

Next, we consider the second inner minimization problem on the right-hand side of (10). This opti-

mization problem is the Moreau-Yoshida regularization of the l1-norm function (with parameter λθ) at
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X2 + λB2z, and it has the following analytical solution:

p
(2)
λθ (X2 + λB2z) = sgn(X2 + λB2z) ◦max{|X2 + λB2z| − θλ, 0}, (12)

where ◦ is the Hadamard product (or entrywise product) and sgn is the (entrywise) sign function. The

corresponding minimal objective value is given by

1

2λθ
‖X2 + λB2z‖2 −

1

2λθ
‖p(2)λθ (X2 + λB2z)‖2.

Combining these two results, we can compute Φλ(X) as follows:

Φλ(X) =
1

2λ
‖X‖2 + sup

z∈Q∗

(

〈z, b〉 − 1

2λ
‖p(1)λ (X1 + λB1z)‖2 −

1

2λ
‖p(2)λθ (X2 + λB2z)‖2

)

, (13)

where p
(1)
λ and p

(2)
λθ are defined in (11) and (12) respectively. Now define

Θλ(X , z) = 〈z, b〉 − 1

2λ
‖p(1)λ (X1 + λB1z)‖2 −

1

2λ
‖p(2)λθ (X2 + λB2z)‖2 (14)

and consider

zλ(X) ∈ arg sup
z∈Q∗

Θλ(X, z).

Applying the saddle point theorem in Rockafellar [5], we obtain the proximal point mapping associated

with φ as follows:

pλ(X) =
(

p
(1)
λ (X1 + λB1zλ(X)), p

(2)
λθ (X2 + λB2zλ(X))

)

. (15)

The primal proximal point algorithm (primal PPA) has the following template.

The Primal PPA. Given X0 ∈ X , λ0 > 0 and ε > 0, perform the following loop:

Step 1. Find an (approximate) optimal solution

zk ∈ arg sup
z∈Q∗

Θλk
(Xk, z), (16)

where Θλk
is defined in (14).

Step 2. Update

Xk+1
1 = p

(1)
λk

(Xk
1 + λB1z

k), Xk+1
2 = p

(2)
λkθ

(Xk
2 + λB2z

k) (17)

according to the proximal point mapping in (15).

Step 3. If ‖Xk+1 −Xk‖/λk < ε, stop; else, update λk, end
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3 Dual Proximal Point Algorithm

The dual problem associated with (6) is given as follows:

max
y∈H

g(y) (18)

where g is the concave function defined by

g(y) =











inf{‖X1‖∗ + θ‖X2‖1 + 〈y, b−A(X)〉 : X = (X1,X2) ∈ X} if y ∈ Q∗

−∞ otherwise

(19)

The Moreau-Yoshida regularization of g is given by

Gλ(y) := max
z∈H

{g(z) − 1

2λ
‖z − y‖2}

= max
z∈Q∗

inf
X∈X

{‖X1‖∗ + θ‖X2‖1 + 〈z, b−A(X)〉 − 1

2λ
‖z − y‖2}

= inf
X∈X

max
z∈Q∗

{‖X1‖∗ + θ‖X2‖1 + 〈z, b−A(X)〉 − 1

2λ
‖z − y‖2}

= − 1

2λ
‖y‖2 + inf

X∈X

{

‖X1‖∗ + θ‖X2‖1 +Ψλ(X ; y)
}

(20)

where

Ψλ(X ; y) =
1

2λ
‖ΠQ∗(y + λ(b−A(X)))‖2. (21)

Note that ∇XΨλ(X; y) = −A∗ΠQ∗(y + λ(b − A(X))). The dual algorithm can then be written as

follows.

The Dual PPA. Given a tolerance ε > 0. Input y0 ∈ Q∗ and λ0 > 0. Set k := 0. Iterate:

Step 1. Find an approximate minimizer

Xk ≈ arg inf
X∈X

{

‖X1‖∗ + θ‖X2‖1 +Ψλk
(X ; yk)

}

, (22)

where Ψλk
(X; yk) is defined as in (21).

Step 2. Compute

yk+1 = ΠQ∗

[

yk + λk(b−A(Xk))
]

. (23)

Step 3. If ‖(yk − yk+1)/λk‖ ≤ ε; stop; else; update λk ; end.
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4 Implementation Issues

4.1 Primal proximal point algorithm

For the primal PPA, the most important issue we have to address first is how to solve the inner

problem sup
z∈Q∗

Θλ(X, z). We have that Θλ is a concave function in z due to the linearity in z of the

Lagrangian function L. From the general gradient formulation ∇Φλ(x) =
1

λ
(x− pλ(x)), we have that

∇‖p(i)λ (X i)‖2 = p
(i)
λ (X i), i = 1, 2. Thus Θλ is continuously differentiable with

∇zΘλ(X , z) = b−B∗
1p

(1)
λ (X1 + λB1z)−B∗

2p
(2)
λθ (X2 + λB2z). (24)

Note that for the problem (5), we have B1z = Az1 + Z2, B2z = −Z2 for z = (z1,Z2) ∈ R × R
m×n.

Correspondingly, we have B∗
1(X1) = (〈A,X1〉,X1) and B∗

2(X2) = (0,−X2) for any X1,X2 ∈ R
m×n

and

∇zΘλ(X , z) =
(

1− 〈A, p
(1)
λ (X1 + λ(Az1 +Z2))〉, p(2)λθ (X2 − λZ2)− p

(1)
λ (X1 + λ(Az1 +Z2))

)

. (25)

In addition, using the global Lipschitz continuity (with modulus 1) of two proximal point mappings, p
(1)
λ

and p
(2)
λθ , we can show that the gradient ∇zΘλ is globally Lipschitz continuous with modulus λ(‖A‖22+2).

With all these properties of Θγ , we can solve the inner problem using first-order gradient-based

methods such as steepest descent method.

The second issue is that these inner problems are typically only solved approximately which results

in inexact proximal point mappings. For inexact proximal point method, Rockafellar [6] provides two

convergence criteria for global and local convergence. Based on the aforementioned convergence criteria,

Liu et al. [4] have proposed some checkable stopping criteria for the inner problems to maintain global

(and local) convergence of the proposed (inexact) proximal point method (for nuclear norm minimization

problems). We can extend these stopping criteria for our problem.

The third issues is to calculate a partial singular value decomposition in order to compute the

proximal point mapping of the nuclear norm function (the computation of the proximal point mapping

of the l1-norm function is straightforward). As in Liu et al. [4], we use a Lanczos bidiagonalization

algorithm with partial reorthogonalization to compute a partial singular value decomposition. We also

need heuristics to set the number of singular values required to be computed with this algorithm.
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4.2 Dual proximal point algorithm

For the dual PPA, we need to look for a method to solve the inner problem inf
X∈X

{

‖X1‖∗ + θ‖X2‖1 +

Ψλk
(X ; yk)

}

. Similar to the approach proposed in Liu et al. [4], we will apply the accelerated prox-

imal gradient algorithm [1] for this problem. According to Toh and Yun [8], we solve the problem

min
X

P (X) + f(X), where P (X) = ‖X1‖∗ + θ‖X2‖1 and f(X) = Ψλ(X; y). We have that the

gradient ∇XΨλ(X; y) = −A∗ΠQ∗(y + λ(b − A(X))) is globally Lipschitz continuous with modulus

L = λ(‖A‖22 + 2). The proximal gradient algorithm in each iteration needs to solve the following

quadratic approximation of the sum P (X) + f(X) at the current solution Y :

Qt(X;Y ) = P (X) + f(Y ) + 〈∇f(Y ,X − Y 〉+ t

2
‖X − Y ‖2F

= P (X) +
t

2
‖X −Gt(Y )‖2F + f(Y )− 1

2t
‖∇f(Y )‖2F ,

where Gt(Y ) = Y − 1

t
∇f(Y ). This function is a strongly convex function in X and hence it has a

unique minimizer St(Y ). We have that

P (X) +
t

2
‖X −Gt(Y )‖2F = ‖X1‖∗ + θ‖X2‖1 +

t

2

(

‖X1 −G1
t (Y )‖2F + ‖X2 −G2

t (Y )‖2F
)

=

(

‖X1‖∗ +
t

2
‖X1 −G1

t (Y )‖2F
)

+

(

θ‖X2‖1 +
t

2
‖X2 −G2

t (Y )‖2F
)

,

where Gt(Y ) = (G1
t (Y ), G2

t (Y )). Thus the minimizer St(Y ) = (S1
t (Y ), S2

t (Y )), where S1
t (Y ) is the

minimizer of the problem min
X1

(

‖X1‖∗ +
t

2
‖X1 −G1

t (Y )‖2F
)

and S2
t (Y ) is the minimizer of the op-

timization problem min
X2

θ‖X2‖1 +
t

2
‖X2 − G2

t (Y )‖2F . Similar to the previous section, the analytical

solutions for these two optimization problems can be calculated and they are:

S1
t (Y ) = p

(1)
t−1(G

1
t (Y )), S2

t (Y ) = p
(2)
t−1θ

(G2
t (Y )). (26)

Finally, the proximal gradient algorithm for our problem can be described as follows. Given τ0 = τ−1 = 1

and X0 = X−1, each iteration includes the following steps

1. Calculate Y k = Xk +
τk−1 − 1

τk

(

Xk −Xk−1
)

2. Update Xk+1 = Stk(Y
k) according the formulas in (26).

3. Update τk+1 =
1

2

(

√

1 + 4τ2k + 1

)

The update of τk in the third step is to make sure that τ2k+1−τk+1 ≤ τ2k and τk+1 ≥ 1, a convergence

condition of the proximal gradient algorithm. We also need to have the update rule for the remaining
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parameter tk, which affects the quadratic approximation of the function f at Y . Since the gradient

∇f(Y ) is Lipschitz continuous with modulus L, for all t ≥ L, we have:

P (St(Y )) + f(St(Y )) ≤ Qt(St(Y );Y ).

In order to have a better approximation, we would like to have smaller t and in the accelerated proximal

gradient algorithm, we will use line search to find tk < L such that the above condition is still satisfied,

starting with t1 = L. More details can be found in Toh and Yun [8].

5 Sparse Structure of Rank-One Optimal Solutions

The proposed proximal point algorithm is a first-order iterative method, which normally does not have

fast convergence. Applying duality results obtained by Doan and Vavasis [3] for Problem (1), we would

like to study better stopping criteria for the proposed proximal point algorithms. We focus on the case

when Problem (1) has a rank-one optimal solution X = σuvT since rank-one optimal solutions are what

we are looking for in general. The purpose of the termination test is to obtain the correct supports of

u and v, that is, the positions of their nonzero entries with a guarantee certificate when we only have

approximate values for u and v from the proposed first-order algorithm. Although the technique in this

section is developed for Problem (1), similar ideas can be applied to other proposed formulations with

the nuclear norm such as the matrix completion problem. In particular, a test like this for the matrix

completion problem can be used to rigorously establish the correct rank of the optimal solution from

approximate solutions obtained from a first-order method.

Now let us consider the rank-one optimal solution X of the following form

X =





σ1u1v
T
1 0

0 0



 ,

where u1 ≥ 0 is a unit vector in R
M , M ≤ m, and v1 ≥ 0 is a unit vector in R

N , N ≤ n. If u1

and v1 are determined, σ1 can be easily calculated to satisfy the optimality condition ‖X‖θ = 1 (we

assume here A 6= 0). Note that in general, the rank-one optimal solution X could have a different

block structure. However, without loss of generality, we can assume that u1v
T
1 forms an upper left

principal submatrix of X for ease of exposition. Under this assumption, we can set u = [u1;0] ∈ R
m

and v = [v1;0] ∈ R
n with σ = σ1. Similar to Theorem 5 in Doan and Vavasis [3], we can then write

the optimality conditions as follows:

9



There exists W ∈ R
m×n and V ∈ R

m×n such that

A = ‖A‖∗θ(uvT +W ) + θ‖A‖∗θV (27)

‖W ‖2 ≤ 1, W Tu = 0, Wv = 0, V 11 = EM×N , ‖V ‖∞ ≤ 1,

where EM×N is the M ×N matrix of all ones.

Letting λ = 1/‖A‖∗θ and splitting all matrices into four subblocks according to the sparse structure

of X, we obtain the following detailed optimality conditions:

(1,u1,v1) is a singular triple of λA11 − θV 11, and W 11 = (λA11 − θV 11)− u1v
T
1 (28)

W 12 = λA12 − θV 12, W
T
12u1 = 0, and ‖V 12‖∞ ≤ 1 (29)

W 21 = λA21 − θV 21, W 21v1 = 0, and ‖V 21‖∞ ≤ 1 (30)

W 22 = λA22 − θV 22, and ‖V 22‖∞ ≤ 1 (31)

‖W ‖2 ≤ 1. (32)

The following lemma shows how to find u1, v1 and λ (or ‖A‖∗θ) from the first optimality condition.

Lemma 1. If (λ,u1,v1) satisfies (28), then x = (λ,u1,v1) is a solution of the following system of

nonlinear equations

P (x) =











(λA11 − θV 11)v1 − u1

(λA11 − θV 11)
Tu1 − v1

uT
1 u1 − 1











= 0. (33)

Proof. It is easily to see that vT
1 v1 = vT

1 (λA11 − θV 11)
Tu1 = uT

1 u1 = 1 and the first two equations

indicate that (1,u1,v1) is a singular triple of λA11 − θV 11. �

The system of equations in (33) has M +N + 1 variables and M +N + 1 equations, which can be

solved using Newton method. One of the convergence results of the Newton’s method is the Kantorovich

theorem, which is given as follows (see Tapia [7]).

Theorem 1 (Kantorovich). Assume that P is defined and is Fréchet differentiable at each point in a

given open convex set D0 and for some x0 ∈ D0 that [P ′(x0)]
−1 exists and that

(i) ‖[P ′(x0)]
−1‖ ≤ B,

(ii) ‖[P ′(x0)]
−1P (x0)‖ ≤ η, and
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(iii) ‖P ′(x)− P ′(y)‖ ≤ K‖x− y‖, for all x and y in D0,

with h = BKη ≤ 1

2
.

Let Ω∗ = {x | ‖x− x0‖ ≤ t∗}, where t∗ =

(

1−
√
1− 2h

h

)

η. Now if Ω∗ ⊂ D0, then the Newton

iterates, xk+1 = xk − [P ′(xk)]
−1P (xk), are well defined, remain in Ω∗, and converge to x∗ ∈ Ω∗ such

that P (x∗) = 0. In addition,

‖x∗ − xk‖ ≤ η

h





(

1−
√
1− 2h

)2k

2k



 , k = 0, 1, 2, . . . .

According to Theorem 1, if we can find x0 with the corresponding parameter h ≤ 1/2, then for an

arbitrary ǫ > 0, an ǫ-solution x such that ‖x−x∗‖ ≤ ǫ, can be achieved after a finite number of Newton

iterations. Now assuming that we have obtained an ǫ-solution (λ,u1,v1) of the system of equations

in (33), we would like to characterize the sufficient conditions which guarantee that the corresponding

solution (λ∗,u∗
1,v

∗
1) defines the optimal solution X of (1) as described above. The following proposition

shows these sufficient conditions.

Proposition 1. Consider an ǫ-solution (λ,u1,v1) of the system of equations in (33), 0 < ǫ < 1/2. The

corresponding solution (λ∗,u∗
1,v

∗
1) defines the rank-one optimal solution X∗,

X∗ =





σ∗
1u

∗
1(v

∗
1)

T 0

0 0



 ,

of (1) if there exist W and V that satisfy the following conditions:

(i) W 11 = (λA11 − θV 11)− u1v
T
1 and V 11 = EM×N ,

(ii) W 12 = λA12 − θV 12, W
T
12u1 = 0, and ‖V 12‖∞ ≤ 1− θ−1(‖A12‖∞ + 5)ǫ,

(iii) W 21 = λA21 − θV 21, W 21v1 = 0, and ‖V 21‖∞ ≤ 1− θ−1(‖A21‖∞ + 5)ǫ,

(iv) W 22 = λA22 − θV 22, and ‖V 22‖∞ ≤ 1, and

(v) ‖W ‖2 ≤ 1− (‖A‖2 + 7.5)ǫ.

Remark 1. In order to test stopping conditions specified in Proposition 1, we need to start with an ǫ-

approximate of the optimal solution (λ∗,u∗
1,v

∗
1), where u∗

1 and v∗
1 are unit vectors. It is therefore better

to solve the problem where λ∗ = 1/‖A‖∗θ has the same magnitude as entries of u∗
1 and v∗

1. Heuristically,

we could scale A so that ‖A‖2 = 1 to (partially) control the magnitude of λ∗.
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Proof. Suppose we are given W and V which satisfy the conditions (i)–(v). We will construct

W ∗ and V ∗ from W and V and prove that they satisfy all optimality conditions in (28)–(32) when

combining with the solution (λ∗,u∗
1,v

∗
1) of (33). We start with the (1, 1) subblock . Clearly, we need

V ∗
11 = V 11 = EM×N and W ∗

11 = (λ∗A11 − θV ∗
11)− u∗

1(v
∗
1)

T . We have:

W ∗
11 −W 11 = (λ∗ − λ)A11 − (u∗

1(v
∗
1)

T − u1v
T
1 ).

Since (λ,u1,v1) is an ǫ-solution, we have that max {|∆λ|, ‖∆u1‖, ‖∆v1‖} ≤ ǫ, where ∆λ = λ − λ∗,

∆u1 = u1 − u∗
1, and ∆v1 = v1 − v∗

1. Hence

‖u∗
1(v

∗
1)

T − u1v
T
1 ‖ = ‖u∗

1(v
∗
1)

T − (u∗
1 +∆u1)(v

∗
1 +∆v1)

T ‖
= ‖∆u1(v

∗
1)

T + u∗
1∆vT

1 +∆u1∆vT
1 ‖ ≤ 2ǫ+ ǫ2,

since ‖u∗
1‖ = ‖v∗

1‖ = 1.

We continue with the (2, 2) subblock. Let V ∗
22 = V 22 and W ∗

22 = λ∗A22 − θV ∗
22, we have:

W ∗
22 −W 22 = (λ∗ − λ)A22.

Now consider the (1, 2) subblock, we would like to construct W ∗
12 that is close to W 12 and satisfies

the condition that (W ∗
12)

Tu∗
1 = 0. We will use appropriate Householder matrices to construct W ∗

12

as follows. For two different unit vectors x and y, the Householder matrix Q = I − 2zzT with

z = ± x− y

‖x− y‖ transforms x to y and vice versa. In other words, Qx = y and Qy = x. The

Householder matrix Q is symmetric and orthonormal. Now consider ū1 = u1/‖u1‖. Note that since

‖u∗
1‖ = 1 and ‖∆u1‖ ≤ ǫ, we have that |‖u1‖−1| ≤ ǫ, which implies ‖∆ū1‖ ≤ 2ǫ, where ∆ū1 = ū1−u∗

1.

We define x = − u∗
1 + ū1

‖u∗
1 + ū1‖

and consider two Householder matrices, Q1 and Q2, which transform ū1

to x and x to u∗
1, respectively. Let us define

w1 = ū1 +
u∗
1 + ū1

‖u∗
1 + ū1‖

, w2 = u∗
1 +

u∗
1 + ū1

‖u∗
1 + ū1‖

,

then Q1 and Q2 can be constructed with z1 = w1/‖w1‖ and z2 = w2/‖w2‖, respectively. We have

wT
1 w1 =

(

ū1 +
u∗
1 + ū1

‖u∗
1 + ū1‖

)T (

ū1 +
u∗
1 + ū1

‖u∗
1 + ū1‖

)

= 2 + ‖u∗
1 + ū1‖,

or ‖w1‖ =
√

2 + ‖u∗
1 + ū1‖. Similarly, we can also show that ‖w2‖ = ‖w1‖ =

√

2 + ‖u∗
1 + ū1‖. Thus

we have

∆z1 = z1 − z2 =
1

√

2 + ‖u∗
1 + ū1‖

∆ū1.

12



Hence ‖∆z1‖ ≤ 1
√

4− ‖∆ū1‖
‖∆ū1‖ ≤ 2√

3
ǫ.

Now consider Q12 = Q2Q1, we have: Qū1 = u∗
1 and Q is also an orthonormal matrix. Define

W ∗
12 = Q12W 12, we have: W ∗

12 satisfies the condition (W ∗
12)

Tu∗
1 = 0 since W T

12ū1 = 0. We can then

select V ∗
12 = (λ∗A12 −W ∗

12)/θ. Thus

W ∗
12 −W 12 = (Q12 − I)W 12, V ∗

12 − V 12 =
1

θ
[(λ∗ − λ)A12 − (Q12 − I)W 12] .

We have

Q12 − I =
(

I − 2z2z
T
2

) (

I − 2z1z
T
1

)

− I = 2z2∆zT
1 − 2∆z1z

T
1 + 4(zT

2 ∆z1)z2z
T
1 .

Thus
1

4
‖Q12 − I‖2 = 2‖∆z1‖2 + 2(zT

2 ∆z1)(z
T
1 ∆z1).

Since z1 and z2 are unit vectors, we have:

‖Q12 − I‖ ≤ 4‖∆z1‖.

The final (2, 1) subblock can be analyzed similarly. We would like to find W ∗
21 close to W 21 such that

W ∗
21v

∗
1 = 0. We can define v̄1, y1, and y2, and Q21 in a similar way to ū1, z1, and z2, and Q12. We

then have W ∗
21 = W 21Q21 and V ∗

21 = (λ∗A21 −W ∗
21)/θ. We also obtain

∆y1 =
1

√

2 + ‖v∗
1 + v̄1‖

∆v̄1,

and

‖Q21 − I‖ ≤ 4‖∆y1‖.

Finally, we need to prove ‖V ∗‖∞ ≤ 1 and ‖W ‖2 ≤ 1. By noting that ‖(Q12 − I)W 12‖∞ ≤ ‖(Q12 −
I)W 12‖2 ≤ ‖Q12 − I‖2‖W 12‖2 ≤ ‖Q12 − I‖ and ‖∆z1‖ ≤ 2/

√
3ǫ, we have

‖V ∗
12‖∞ − ‖V 12‖∞ ≤ ‖V ∗

12 − V 12‖∞
≤ θ−1 [|∆λ|‖A12‖∞ + ‖(Q12 − I)W 12‖∞]

≤ θ−1 [|∆λ|‖A12‖∞ + ‖Q12 − I‖]
≤ θ−1 [|∆λ|‖A12‖∞ + 4‖∆z1‖]
≤ θ−1 [‖A12‖∞ + 5] ǫ.

Thus

‖V ∗
12‖∞ ≤ ‖V 12‖∞ + θ−1 [‖A12‖∞ + 5] ǫ ≤ 1.
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Similarly, we also have

‖V ∗
21‖∞ ≤ ‖V 21‖∞ + θ−1 [‖A21‖∞ + 5] ǫ ≤ 1.

Now consider W ∗
2. Clearly ‖W ∗‖2 ≤ ‖W ‖2 + ‖W ∗ −W ‖2. We have

W ∗ −W = (λ∗ − λ)





A11 0

0 A22



+





0 (Q12 − I)W 12

W 21(Q21 − I) 0



−





u∗
1(v

∗
1)

T − u1v
T
1 0

0 0



 .

Thus we have:

‖W ∗ −W ‖2 ≤ |∆λ|max{‖A11‖2, ‖A22‖2}+max{‖(Q12 − I)W 12‖2, ‖W 21(Q21 − I)‖2}
+‖u∗

1(v
∗
1)

T − u1v
T
1 ‖2

≤ max{‖A11‖2, ‖A22‖2}ǫ+ 5ǫ+ 2ǫ+ ǫ2

≤ [‖A‖2 + 7.5] ǫ,

since max{‖A11‖2, ‖A22‖2} ≤ ‖A‖2 and 0 < ǫ < 1/2. Thus

‖W ∗‖2 ≤ ‖W ‖2 + [‖A‖2 + 7.5] ǫ ≤ 1.

We have constructed W ∗ and V ∗ that satisfy the optimality condition for X∗, which implies that X∗

is indeed an optimal solution of Problem (1). �

Proposition 1 show that given an ǫ-solution (λ,u1,v1) of (33), which for example, can be obtained

from the current solution (Xk,Y k) of the proximal point algorithm, if we could find W and V that

satisfy the ǫ-optimality conditions given in Proposition 1, then we can stop the algorithm with an

accurate rank-one solution for Problem (1). Given (λ,u1,v1). Let us consider the following optimization

problem:

min ‖W ‖2
s.t. W 11 = (λA11 − θEM×N )− u1v

T
1 ,

W T
12u1 = 0,

W 21v1 = 0,

‖W 12 − λA12‖∞ ≤ θ − (‖A12‖∞ + 5)ǫ,

‖W 21 − λA21‖∞ ≤ θ − (‖A21‖∞ + 5)ǫ,

‖W 22 − λA22‖∞ ≤ θ.

(34)

Clearly, if we could find a feasible solution of Problem (34) with the objective ‖W ‖2 ≤ 1− (‖A‖2 +
7.5)ǫ, then the ǫ-optimality conditions for (λ,u1,v1) are satisfied. This problem is a non-smooth convex

constrained optimization problem and our main purpose is to find a feasible solution with the objective
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value that is small enough. Therefore, we can simply apply the projected subgradient method to solve

it. The projected subgradient method uses the iteration

W k+1 = ΠW [W k − αkGk] ,

where Gk ∈ ∂‖W k‖2 is a subgradient of ‖.‖2 at W k and W is the feasible set of Problem (34). The

step size αk can be chosen as one of the standard step sizes of the general subgradient method. For

this problem, we choose αk = O
(

1/
√
k
)

. According to Ziȩtak [9], we can always select Gk = ukv
T
k ∈

∂‖W k‖2, where (uk,vk) is the singular vectors corresponding to the largest singular value of W k. We

now consider the projection problem ΠW(W̄ ):

ΠW(W̄ ) ∈ argmin ‖W − W̄ ‖2F
s.t. W 11 = (λA11 − θEM×N )− u1v

T
1 ,

W T
12u1 = 0,

W 21v1 = 0,

‖W 12 − λA12‖∞ ≤ θ − (‖A12‖∞ + 5)ǫ,

‖W 21 − λA21‖∞ ≤ θ − (‖A21‖∞ + 5)ǫ,

‖W 22 − λA22‖∞ ≤ θ.

(35)

The objective function ‖W − W̄ ‖2F is element-wise separable; therefore, Problem (35) is block-wise

separable. For the (1, 1) subblock, we have the fixed solution W 11 = (λA11 − θEM×N ) − u1v
T
1 . For

the (2, 2) subblock, it is a simple element-wise separable optimization problem:

min ‖W 22 − W̄ 22‖2F
s.t. ‖W 22 − λA22‖∞ ≤ θ,

whose optimal solution can be computed as follows:

W 22 = max
{

min
{

W̄ 22, λA22 + θ
}

, λA22 − θ
}

.

For the (1, 2) subblock, the corresponding optimization problem is column-wise separable:

min ‖W 12 − W̄ 12‖2F
s.t. W T

12u1 = 0,

‖W 12 − λA12‖∞ ≤ θ − (‖A12‖∞ + 5)ǫ.

Each subproblem is a quadratic knapsack problem which can be written as follows:

min ‖w − w̄‖2

s.t. uT
1 w = 0,

s.t. l ≤ w ≤ u.
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According to Brucker [2], there is an O(n) algorithm for these quadratic knapsack problems. Thus we

can find W 12 efficiently. Similarly, the (2, 1) subblock can be found by solving a number of quadratic

knapsack problems since the corresponding optimization problem for it is row-wise separable.

6 Numerical Examples

6.1 Sailboat Bitmap Image Example

In this example, we use a 80-by-50 black-and-white bitmap image of a sailboat. There are 5 distinct

components or non-overlapping features in this image: left sail (Feature 1), sail mast (Feature 2), right

sail (Feature 3), hull (Feature 4), and rudder (Feature 5). The bitmap image of the sailboat is shown

in Figure 1. A matrix A is created with 30 columns, each of which represents a bitmap image of the

sailboat with just 3 out of 5 features. The matrix A therefore has 5 rank-one submatrices composed of

all ones since the bitmap image is black-and-white. The structure of matrix A and all the features (in

terms of non-zero elements) are shown in Figure 2. We would like to use our proposed formulation to

extract these rank-one submatrices.

Figure 1: Bitmap image of the complete sailboat

Our main task in this example is to use our proposed formulation to extract the features from the

matrix A. We have developed two algorithms to solve Problem (1), the primal and dual. For these

numerical examples, we will use the dual algorithm mainly due to its accuracy with respect to optimal

solutions. This superior accuracy could be explained by the fact that the subproblem we solved in

each iteration of the dual algorithm is similar to the original problem. The stopping criterion stated
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Figure 2: Collection of 30 incomplete images of the sailboat and its 5 components

in Proposition 1 is implemented. We test the conditions of Kantorovich’s theorem, solve the system

of equations in (33) to obtain an ǫ-solution, and then use the projected subgradient method to find a

feasible solution W of Problem (34). Since the projection problem with W̄ = 0 can be considered as

a relaxation of Problem (34) in which the spectral norm is replaced by the Frobenius norm, we will

start the projected subgradient method with W 0 = 0. The stopping criteria for this method are the

condition ‖W ‖2 ≤ 1− (‖A‖2 + 7.5)ǫ, the maximum number of iterations, and the change in objective

values. As the testing process is computationally quite expensive, therefore we only use it once per a

fixed number (say, 10) of outer iterations.

For each value of the parameter θ, we will obtain the optimal solution X∗
1 and X∗

2. The decision

variable X2 corresponds to the l1-norm part of the objective function; therefore, we use the sparsity

structure of X∗
2 to construct the final solution X∗

F with the elements of X∗
2. According to Theorem 5 in

[3], the optimal solution of Problem (1) indicates the exact sparsity structure of the rank-one submatrix

(even under small random noise) with appropriate θ. Therefore, in this experiment, we extract the

rank-one approximation of X∗
F and use its sparsity structure as the sparsity structure of the extracted

feature. Next, we need to select an appropriate value for θ. For θ ≈ 0, the algorithm returns the rank-

one approximation of matrix A, which is an average of all features and for the purpose of extracting

single features, this averaging effect is not desirable. On the other hand, we prefer large submatrices
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(large features) over small ones. Similar to the L-curve method used to select a regularization parameter,

we construct the curve L := {‖X(Mθ, Nθ)‖F , ‖A(Mθ, Nθ) − X(Mθ, Nθ)‖F , θ ≥ 0}, where (Mθ, Nθ) is

the sparsity structure obtained from the algorithm and X(Mθ, Nθ) is the rank-one approximation of

A(Mθ, Nθ). We then pick θ that balances the feature largeness, ‖X(Mθ, Nθ)‖F , and feature averaging

measure ‖A(Mθ, Nθ)−X(Mθ, Nθ)‖F . After selecting θ, we obtain X(Mθ, Nθ) = u(Mθ)v(Nθ)
T , where

max(v(Nθ)) = 1. The vector u(Mθ) represents the extracted feature and v(Nθ) indicates how significant

the feature is in each boat image. After extracting a feature, we remove the feature from the image by

setting A(Mθ, Nθ) = 0 and continue to find new (non-overlapping) features. This method for choosing

θ is clearly just a heuristic and a more concrete approach for θ selection is still an important issue for

future research.

We are now ready to run our algorithm on this sailboat example. We set the main tolerance to

be ǫ = 10−6, the maximum number of iterations to be 1000, and for each subproblem, the maximum

number of iterations is set to be 30. There is also the parameter λ of the proximal point framework

that we need to select. This parameter controls the convergence of the algorithm and for this example,

λ = O(1/θ) works well most of the time. We can always adjust λ (and number of iterations) to get

better convergence if the initial setting does not achieve the tolerance required. We set ǫs = 10−10 as

the tolerance used in Newton’s method to test the additional stopping criterion. Finally, the values of

θ are selected uniformly from three different ranges, small range [0.01, 0.1], medium range [0.1, 1], and

large range [1, 10], 10 values in each range.

We start with the matrix A. Except for the first value of θ (θ = 0.01), all other values result in

the same rank-one submatrix of A, which means ‖A(Mθ, Nθ)−X(Mθ, Nθ)‖ = 0. Thus we do not need

to use the curve L and just need to pick any value of θ > 0.01. The vector v(Nθ) is a zero-one vector

indicating that either the feature u(Mθ) appears completely in an image or it does not appear at all.

The feature u(Mθ) represents the exact combination of Feature 1 and 4, which is the left sail and the

hull.

We now exclude the first extracted feature from all the images and continue to find new (non-

overlapping) features. Table 1 shows all the features that we obtain with the size of the features (si),

number of images that share each feature (ni), and their description.

The results show that our algorithm can pick out the large common features that are inherent in

the structure of the image set. For example, a combination of our defined features is indeed a large

common feature if there are enough images that share that combination of features.

To end this section, we would like to comment on the efficiency of the additional stopping criterion
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Figure 3: First extracted feature: the combination of left sail and hull

i si ni Description

1 710 15 Left sail and hull

2 694 6 Right sail and hull

3 252 10 Right sail

4 156 5 Sail mast and rudder

5 268 7 Left sail

6 119 9 Sail mast

7 439 1 Hull

8 34 11 Rudder

Table 1: All extracted features obtained from the algorithm
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based on Proposition 1. When the test indicates the convergence is achieved, it is guaranteed that

the supports of u and v have been correctly identified for the rank-one optimal solution X. On

the other hand, because the test uses heuristics to find multipliers, it may occur that the optimal

supports are attained and yet the test fails to indicate that. In this sailboat example, we ran the

algorithm with 8 different matrices, A0 = A, A1, . . . ,A7 with subsequent extraction of features one

by one. The additional stopping criterion works for 4 out of 8 matrices and we obtain a significant

reduction in both computational time and number of iterations while maintaining highly accurate

solutions (ǫs = 10−10). Table 2 shows these improvements with θ = 0.2, where (DDPA)/(ADDPA) is

the algorithm without/with the additional stopping criteria. The number of iterations with (ADDPA)

is either 10 or 20 since in this example, we only test the additional stopping criterion once per 10 (outer)

iterations. We can see that there are cases when the additional stopping criterion can be used very

early to stop the algorithm with a guaranteed highly accurate solution.

Matrix (DPPA) (ADPPA)

A4 (59, 325, 9.36s, 0.00s) (20, 123, 6.36s, 2.32s)

A5 (52, 267, 7.28s, 0.00s) (10, 60, 4.23s, 2.39s)

A6 (62, 499, 12.4s, 0.00s) (20, 187, 6.96s, 1.84s)

A7 (29, 148, 3.59s, 0.00s) (10, 57, 4.00s, 2.48s)

Table 2: Outer iteration number, inner iteration number, total computational time, and convergence

testing time for (DDPA)/(ADDPA)

6.2 Image Database Test Case

We conduct the experiment on the Frey face dataset, which consists of 1965 registered face images of

size 28×20. The matrix A has the size of 1965×560, where each column represents a single face image.

We again use the dual algorithm with the additional stopping criterion and maintain all parameters

the same as in the previous example. The additional stopping criterion is less effective in this test case.

However, when it works, we again have a significant improvement in computational time and number

of iterations. For example, with A0 = A and θ = 0.2, we have the following results for (DDPA) and

(ADDPA) respectively: (245, 6466, 1.21×103s, 0.00s) and (100, 2140, 4.25×102s, 23.7s), where the tuple

is explained in the caption of Figure 2.

We apply the algorithm to the matrix A and Figure 4 shows the curve L obtained with different
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Figure 4: Feature largeness vs. feature averaging measure for different θ

values of θ. We select θ = 0.2 at the curviest point on L, which indicates the balance between feature

largeness and feature averaging measure. We obtain the feature u1 and the significance vector v1

indicating how strong the appearance of that feature is in each image. The feature is composed of 38

pixels and there are 1557 images that are considered to have this feature with the significance factor

of at least 95.14%, where the significance factor of the feature in image j is defined as v1(j)/‖v1‖∞.

Figure 5 presents the first feature and the face image that has the significance factor of 100% for this

feature. Basically, the first feature shows the right forehead, a part of right cheekbone, and the tip of

the nose. This feature is common among the images (1557 of them), there are images that do not share

the feature. Figure 6 shows one of such images.

We remove the first feature from all images that share that feature and continue to find new features.

Table 3 shows the size of the feature i (si), number of images that share the feature i (ni), and the

minimum significance factor for each feature i (fmin
i ), i = 1, . . . , 10.

Figure 7 and 8 presents each feature and the ten face images that have the highest significance

factors for that feature.

The features are not easy to observe or distinguish. However, with images that have high significance

factors, we can see that some features could be associated with a certain orientation of the face or lighting
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Figure 5: First feature and the image that has the highest significance factor

Figure 6: An image without the first feature
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i si ni fmin
i i si ni fmin

i

1 38 1557 95.14% 6 28 673 83.27%

2 27 896 92.19% 7 21 578 80.38%

3 29 1096 87.61% 8 20 555 87.59%

4 24 847 83.12% 9 35 291 80.73%

5 25 791 83.67% 10 13 598 71.31%

Table 3: Information of the first ten extracted features

Figure 7: First five features and images with highest significance factors
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Figure 8: Feature 6 to Feature 10 and images with highest significant factors

of images. For example, Feature 4 and Feature 9 clearly show the right (or left) cheek when Frey faces

left (or right). Certain lighting of the background can also define features, which is the case of Feature

3 and Feature 7. Another observation is that since this approach favors large submatrices, which means

other features defined by small entries (dark pixels), for examples, eyes or mouth, will not be picked up

as major features. In this particular application of visual features, we can define negative features, which

correspond to the features of the negative images. In order to find these negative features, we construct

the negative images and apply the algorithm to this set of images. In this example, the algorithm is

applied to B = 255E −A, where E is the matrix of all ones. The coefficient 255 appears due to the

range of pixel intensities in these images. For each feature u extracted from B, we define un = 255e−u,

where e is the vector of all ones, as the negative feature of the original set of images. The first three

extracted features are presented in Figure 9. The first negative feature has both straight dark eyes with

two dark background columns at both sides on top. The second one focuses on the darker right eye,

the left nostril, and also the chin. And the third one is a long dark background column on the top left.
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Figure 9: First three negative features and images with highest significance factors
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