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DISTRIBUTIONS OF DEMMEL AND RELATED CONDITION

NUMBERS∗

PRATHAPASINGHE DHARMAWANSA† , MATTHEW R. MCKAY‡, AND YANG CHEN§

Abstract. Consider a random matrix A ∈ Cm×n (m ≥ n) containing independent complex
Gaussian entries with zero mean and unit variance, and let 0 < λ1 ≤ λ2 ≤ . . . ≤ λn < ∞ denote
the eigenvalues of A∗A where (·)∗ represents conjugate-transpose. This paper investigates the dis-

tribution of the random variables
∑n

j=1 λj

λk
, for k = 1 and k = 2. These two variables are related

to certain condition number metrics, including the so-called Demmel condition number, which have
been shown to arise in a variety of applications. For both cases, we derive new exact expressions
for the probability densities, and establish the asymptotic behavior as the matrix dimensions grow
large. In particular, it is shown that as n and m tend to infinity with their difference fixed, both
densities scale on the order of n3. After suitable transformations, we establish exact expressions
for the asymptotic densities, obtaining simple closed-form expressions in some cases. Our results
generalize the work of Edelman on the Demmel condition number for the case m = n.
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1. Introduction. Understanding the sensitivity of outcomes to initial condi-
tions in certain iterative algorithms is important for the design and analysis of many
physical systems. Example algorithms include iterative methods used in linear alge-
bra, interior-point methods of convex optimization, and polynomial zero finding [6].
Various condition numbers have been defined as a measure of the sensitivity of the
solutions with respect to small perturbations of the input. One of the earliest studies
by Turin [45] on iterative algorithms related to matrix inversion and the solution of
large systems of linear equations defined two such condition numbers as a measure of
the degree of ill-conditioning in a matrix. In particular, for a matrix A ∈ Rn×n, the
first was referred to as the N -condition number, defined as N(A)N(A−1)/n with N(·)
representing the Frobenius norm, whilst the second was referred to as the M -condition
number, defined as M(A)M(A−1)/n with M(·) denoting the operator returning the
largest absolute entry of the matrix. However, probably the best known condition
number, introduced in [46], takes the form κ(A) = ||A||2||A−1||2, where A ∈ Cn×n

and || · ||2 denotes the 2-norm. This condition number, similar to the N -condition
number andM -condition number, is important in problems involving matrix inversion
and solutions of linear equations.

As conjectured in [38], the calculation of a condition number pertaining to a
problem with a certain deterministic data set is as hard as solving the problem itself
with the data set. Whilst very difficult to prove in general, a proof of this conjecture
has been established for conic condition numbers in [12]. To gain further insights
into the behavior of the condition number, probabilistic analysis based on certain
probability measures on the data has been employed; see [5, 13, 14, 20, 22, 39, 40, 47]
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for a partial list. In general, most existing literature dealing with the probabilistic
analysis of condition numbers has focused on one of two main perspectives. The first is
to establish bounds on the tail of the distribution of κ(A), which is important for the
geometrical characterization of the condition number [17]. Central to the geometric
characterization is the fact that κ(A) is proportional to the reciprocal of the distance
to the set of ill-conditioned matrices [17]. The second has been to establish bounds
on the expectation of ln(κ(A)), which is important for characterizing the average
loss of numerical precision and average running time [6, 22] of iterative algorithms.
In general, the “randomness” of the condition number is introduced by selecting the
elements of A to be standard independent normal real/complex random variables
[20, 22, 40].

Whilst in this paper we focus primarily on a probabilistic analysis, it is worth
noting that a deterministic version of the problems considered above, related to the
inversion of positive-definite Hankel (or moment) matrices appearing naturally in
randommatrix theory, involves the determination of the smallest eigenvalues of Hankel
matrices of order n. See [3] and [4, 7, 9, 43, 50] for contributions dealing with this
problem.

Demmel, in his seminal paper [17], introduced a new condition number of conic
type, defined for square n× n matrix A as

κD(A) = ||A||F ||A−1||2 , (1.1)

where || · ||F is the Frobenius norm. This, along with a theorem due to Eckart and
Young [19], permits a geometrical characterization [6, 17], which has enabled the
calculation of bounds on the tail distribution of κD(A) with the help of integral
geometry. A random variable similar to κD(A) also arises in problems dealing with
the entanglement of a bi-partite quantum system [2, 8]. As demonstrated in [16,
17], the condition numbers arising in various contexts, including matrix inversion,
eigenvalue calculation, polynomial zero finding, as well as pole assignment in linear
control systems, can be bounded by κD(A). The definition (1.1) extends naturally to
rectangular matrices by replacing A−1 in (1.1) with A† (also known as the Moore-
Penrose inverse or the pseudo-inverse) to yield

κD(A) = ||A||F ||A†||2. (1.2)

For A ∈ Cm×n with rank(A) = r (≤ min(m,n)), (1.2) simplifies to

κD(A) =

√

∑r
j=1 λj

λ1
, (1.3)

where λ1 ≤ λ2 ≤ . . . ≤ λr are the non-zero eigenvalues of A∗A (or AA∗) with
(·)∗ denoting conjugate-transpose. In this paper, we deal exclusively with Gaussian
random matrices A ∈ Cm×n (m ≥ n) having independent complex standard normal
entries1. Therefore, (1.3) can be written as

κD(A) =

√

∑n
j=1 λj

λ1
, (1.4)

1Henceforth, when referring to “Gaussian matrices”, we will implicitly assume that the matrices
have independent standard complex normal entries; i.e., this will not be explicitly stated.
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which follows from the fact that the matrix A∗A is positive-definite with probability
one [18, 30]. This form of the Demmel condition number was used by Krishnaiah et. al.
in a sequence of papers [27, 28, 29] to derive the inferences on certain sub-hypotheses
when the total hypothesis, which is composed of various component sub-hypotheses,
is rejected. Recently, it was shown in [6] that the condition number of the form (1.2)
is useful in analyzing the loss of precision in the computation of the solution to the
classical linear least squares problem. Also, the statistical properties of the Dem-
mel condition number κD(A) (for arbitrary m and n) have recently found important
applications in the design and analysis of contemporary wireless communication sys-
tems. Specific examples include the design of adaptive multi-antenna transmission
techniques [24], and the modeling of physical multi-antenna transmission channels
[33].

From the discussion given above, there is clear motivation for studying the statis-
tical properties of the Demmel condition number of random matrices. Here we review
some of the key existing contributions dealing with this problem. These contributions
include [6, 17, 20, 21, 22], which investigated the exact distributions as well as bounds
on the tail probabilities over various regimes depending on the size of the random
matrix. For instance, Demmel showed that for Gaussian matrices A ∈ Cn×n [17],

(1− 1/x)2n
2−2

2n4x2
< Pr (κD(A) > x) <

e2n5(1 + n2/x)2n
2−2

x2
,

while Edelman concluded that as n → ∞ [21],

Pr

(

2κD(A)

n
3
2

< x

)

→ exp

(

− 4

x2

)

.

For Gaussian matrices A ∈ C
m×n with m ≥ n, one could also exploit the bound

κD(A) ≤ √
nκ(A) (following from the fact that ||A||F ≤ √

n||A||2) along with the
upper bound on the distribution tail of κ(A) given in [11, Theorem 4.6] to derive an
upper bound on the distribution tail of κD(A). This, in turn, reveals that the n3/2

asymptotic scaling order observed in [21] for square Gaussian matrices also serves as an
upper bound on the scaling order for rectangular Gaussian matrices. The exact scaling
order, however, has yet to be determined. In addition to these results, more recently,
various exact closed-form expressions for the distribution of the Demmel condition
number for Gaussian matrices A ∈ C

m×n have been reported in [31, 52, 49]. These
results, however, are rather complicated and they become unwieldy computationally
when the matrix dimensions are not small. Moreover, the expressions in [31, 52, 49] are
not suitable for understanding the behavior of the scaled Demmel condition number
as the matrix dimensions grow large. In this respect, only for the case m = n given in
[31, 52, 49], the asymptotic behavior of the exact probability density function (p.d.f.)
of the Demmel condition number is known. Establishing the asymptotic properties
for more general m×n (m ≤ n) matrices is one of the key objectives to be addressed
in this paper.

In addition to κD(A), other related metrics of the form λk/
∑n

j=1 λj , k = 1, 2, . . . , n
have been considered by Krishnaiah et. al. [27, 28, 29] in certain hypothesis testing
problems. Therein, they employed a result due to Davis [15], which gives an expression
for the p.d.f. of λk/

∑n
j=1 λj by establishing a Laplace transform relationship with

respect to the p.d.f. of λk. However, the expressions obtained are very complicated,
both analytically and numerically. This complexity, in turn, does not easily facilitate
the understanding of the asymptotic behavior of the p.d.f. as the matrix dimensions
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become large. In this paper, we tackle this problem by adopting a different approach,
making use of techniques developed in [32]. We focus our analysis on the quantities,
κ2
D(A) and

κ2
E(A) =

∑n
j=1 λj

λ2
,

whilst noting that our approach may also pave the way for studying more generalized

metrics of the form
∑

n
j=1 λj

λk
, k = 1, 2, . . . , n. We derive new expressions for the exact

and asymptotic distributions of κ2
D(A) and κ2

E(A) for Gaussian matrices A ∈ C
m×n

(m ≥ n) by adopting a moment generating function (m.g.f.) based approach. We
show the interesting result that both κ2

D(A) and κ2
E(A) scale on the order of n3 when

m and n tend to infinity in such a way that m − n remains a fixed integer. These
results agree with and generalize the scaling behavior obtained previously by Edelman
in [21] for n× n Gaussian matrices. The scaled asymptotic p.d.f. which we derive for
κ2
D(A) is expressed in closed form for arbitrary m ≥ n, whilst for κ2

E(A) it involves
a single finite-range integral for the general case and a closed-form solution for the
scenario m = n.

2. Preliminaries. To facilitate our main derivations, we will require the follow-
ing preliminary results and definitions.

Definition 2.1. Let the elements of A ∈ Cm×n (m ≥ n) be independent and
identically distributed complex standard normal variables. Then the matrix W = A∗A
is said to follow a complex Wishart distribution, i.e., W ∼ Wn(m, In).

Theorem 2.2. The joint density of the ordered eigenvalues 0 < λ1 ≤ λ2 ≤ . . . ≤
λn < ∞ of W is given by [25]

f (λ1, λ2, . . . , λn) = Kn,α ∆2
n(λ)

n
∏

j=1

λα
j e

−λj (2.1)

where, for λ = {λ1, λ2, . . . , λn}, ∆n(λ) :=
∏

1≤j<k≤n(λk − λj), α = m − n, and

Kn,α = n!
(

∏n−1
j=0 (j + 1)!(j + α)!

)−1

.

Lemma 2.3. For ρ > −1, the generalized Laguerre polynomial of degree N ,

L
(ρ)
N (z), is defined by [44]:

L
(ρ)
N (z) =

(ρ+ 1)N
N !

1F1(−N, ρ+ 1, z) =
(ρ+ 1)N

N !

N
∑

j=0

(−N)j
(ρ+ 1)j

zj

j!
, (2.2)

with kth derivative

dk

dzk
L
(ρ)
N (z) = (−1)kL

(ρ+k)
N−k (z) , (2.3)

where (a)j = a(a + 1) . . . (a + j − 1) with (a)0 = 1 is the Pochhammer symbol and

1F1(a; c; z) is the confluent hypergeometric function of the first kind.
Lemma 2.4. The monomial zn can be expanded in terms of the Stirling number

of the second kind, S
(m)
n , as follows [1]:

zn =

n
∑

j=0

S
(j)
n z(z − 1)(z − 2) · · · (z − j + 1), (2.4)
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where

S
(m)
n =

1

m!

m
∑

j=0

(−1)m−j

(

m

j

)

jn, S
(0)
0 = S

(n)
n = S

(1)
n = 1,

and
(

m
j

)

= m!
j!(m−j)! .

Finally, we use the following notation to compactly represent the determinant of
an N ×N block matrix:

det [ai,j bi,k−2]i=1,2,...,N
j=1,2

k=3,4,...,N

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1,1 a1,2 b1,1 b1,2 . . . b1,N−2

a2,1 a2,2 b2,1 b2,2 . . . b2,N−2

...
...

...
...

. . .
...

aN,1 aN,2 bN,1 bN,2 . . . bN,N−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (2.5)

3. M.g.f. and p.d.f. of κ2
D(A). In this section we derive new expressions for

the m.g.f. and the p.d.f. of κ2
D(A). Our approach follows along similar lines to [32,

Chap. 22].
The m.g.f. of κ2

D(A) is given by

Mκ2
D
(A)(s) = E

[

e−sκ2
D(A)

]

=

∫ ∞

0

∫

R1

e
−s

∑n
j=1 λj

λ1 f(λ1, λ2, ..., λn)dλ2...dλndλ1,

where R1 = {λ1 ≤ λ2 ≤ . . . ≤ λn < ∞}. Let λ1 = x. An easy manipulation gives

Mκ2
D
(A)(s) = e−s

∫ ∞

0

∫

R1

e−s

∑n
j=2 λj

x f (x, λ2, . . . , λn) dλ2 . . . dλn dx. (3.1)

The theorem below gives a closed-form representation for the m.g.f.
Theorem 3.1. The m.g.f. of κ2

D(A) is given by

Mκ2
D
(A)(s) =

n! e−ns

(m− 1)!

∫ ∞

0

xmn−1e−nx

(s+ x)mn−α−1
det
[

L
(l+1)
n+k−l−1(−s− x)

]

k,l=1,2,...,α
dx.

(3.2)

Proof. Substituting (2.1) into (3.1) we find, keeping the x integration last,

Mκ2
D
(A)(s) = Kn,α e−s

∫ ∞

0

xαe−x







∫

R1

n
∏

j=2

(λj − x)2λα
j e

−λj(1+ s
x )

×
∏

2≤i<j≤n

(λj − λi)
2 dλ2 . . . dλn







dx.

Relabeling variables as λj = xj−1, j = 2, 3, . . . , n, and exploiting symmetry to remove
the ordered region of integration (i.e., achieved by dividing through by (n− 1)!) gives

Mκ2
D
(A)(s) =

Kn,α e−s

(n− 1)!

∫ ∞

0

xαe−x







∫

[x,∞)n−1

n−1
∏

j=1

(xj − x)2xα
j e

−xj(1+ s
x )

×∆2
n−1(x) dx1dx2 . . . dxn−1

}

dx. (3.3)
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Now we apply the change of variables yj = (x+s)
x (xj − x) , j = 1, 2, . . . , n− 1 to the

inner (n− 1)-fold integral in (3.3) with some algebraic manipulation to obtain

Mκ2
D
(A)(s) =

Kn,α e−ns

(n− 1)!

∫ ∞

0

xmn−1e−nx

(x+ s)mn−α−1
(−1)α(n−1)Q(n− 1, α,−x− s) dx,

(3.4)

where we have defined

Q(n, α, z) :=

∫

[0,∞)n
∆2

n(y)

n
∏

j=1

y2j e
−yj(z − yj)

α dy1dy2 . . . dyn . (3.5)

The remaining task is to obtain a closed-form solution to Q(n, α, z). We point
out that a solution to a generalization of this integral, not restricting α to an integer,
has been derived in [10, 35] as a solution to a Painlevé V equation. Here, for α an
integer, we establish a much simpler closed-form algebraic solution. For this purpose,
we employ a result from random matrix theory [32, Section 22.2.2], which gives

Q(n, α, z) = b̃ Q(n, 0, z) det

[

dl

dzl
Cn+k(z)

]

k,l=0,1,...,α−1

,

where b̃ =
(

∏α−1
j=0 j!

)−1

. For our problem Cj(x) are monic polynomials orthogo-

nal with respect to the weight x2e−x, over 0 ≤ x < ∞. We see that Cj(x) =

(−1)j j! L
(2)
j (x). Hence (3.5) becomes

Q(n, α, z) = b̃ Q(n, 0, z) det

[

(−1)n+k(n+ k)!
dl

dzl
L
(2)
n+k(z)

]

k,l=0,1,...,α−1

= b̃ Q(n, 0, z)(−1)nα
α−1
∏

j=0

(n+ j)! det
[

L
(2+l)
n+k−l(z)

]

k,l=0,1,...,α−1
. (3.6)

Moreover, we have Q(n, 0, z) =
∏n−1

j=0 (1 + j)!(2 + j)!, which when used with (3.6) in
(3.4), followed by translating the indices from k, l = 0, 1, . . . , α− 1 to k, l = 1, 2, . . . , α
gives (3.2).

Now we take the inverse Laplace transform of (3.2) to arrive at the p.d.f. of
κ2
D(A), which is given below.

Corollary 3.2. The p.d.f. of κ2
D(A) is given by

f
(α)

κ2
D
(A)

(y) =
n!

(n+ α− 1)!

Γ(mn)

ymn
L−1

{

e−ns

smn−α−1
det
[

L
(l+1)
n+k−l−1(−s)

]

k,l=1,2,...,α

}

(3.7)

where L−1(·) denotes the inverse Laplace transform.
Interestingly, by noting that the p.d.f. of the minimum eigenvalue λ1 takes the

form

fmin(x) =
Kn,α

(n− 1)!

∫

[x,∞)n−1

f (x, λ2, . . . , λn) dλ2 . . . dλn

=
Kn,α

(n− 1)!
xαe−nx(−1)α(n−1)Q(n− 1, α,−x)

=
n!

(n+ α− 1)!
xαe−nxdet

[

L
(l+1)
n+k−l−1(−x)

]

k,l=1,2,...,α
, (3.8)
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we can obtain the following alternative representation for the p.d.f. of κ2
D(A):

f
(α)

κ2
D
(A)

(y) =
Γ(mn)

ymn
L−1

{

fmin(s)

smn−1

}

.

This turns out to be a simpler representation of an equivalent relation given previously
in [29] (obtaining one relation from the other, however, appears to be non-trivial).
This simplified form results as a consequence of the m.g.f. derivation approach, in
contrast to the p.d.f.-based approach in [15]. We also mention that the minimum
eigenvalue p.d.f. (3.8) fixes a sign problem with a result given in [23, Eq. 3.12].

The new expression (3.7) facilitates the exact evaluation of the p.d.f. of κ2
D(A) in

closed-form, for any value of α. This is given in the following key theorem:
Theorem 3.3. The exact p.d.f. of κ2

D(A) is given by

f
(α)

κ2
D
(A)

(y) = Γ(mn)

(

α
∏

k=0

n+ k

(k + 1)!

)

(y − n)mn−α−2y−mn

×
n+α−2
∑

j1=0

. . .

n−1
∑

jα=0

(

α
∏

k=1

(−1)jk
(−n− α+ k + 1)jk

(k + 2)jk jk!
(y − n)−jk

)

(3.9)

× ∆α(c)

Γ (mn− α− 1−∑α
k=1 jk)

H(y − n) ,

where c = {c1(j1), c2(j2), . . . , cα(jα)} with cl(jl) = l + jl, and H(z) denote the Heav-
iside unit step function, i.e., H(z) = 1, z ≥ 0, and H(z) = 0, z < 0.

Proof. We use (2.2) to write the determinant term in (3.7) as

det
[

L
(l+1)
n+k−l−1(−s)

]

k,l=1,2,...,α

=

α
∏

k=1

(n+ k)!

(k + 1)!
det





1

(n+ k − l − 1)!

n+k−l−1
∑

jl=0

(−n− k + l+ 1)jl
(l + 2)jl

(−s)jl

jl!





k,l=1,2,...,α

.

(3.10)

Further manipulation in this form is difficult due to the dependence of the summation
upper limits on k and l. To circumvent this problem, we use the factorization

(−n− k + l + 1)jl
(l + 2)jl

=
(−n− k + l + 1)jl
(−n− α+ l + 1)jl

(−n− α+ l+ 1)jl
(l + 2)jl

=
(n+ k − l − 1)!

(n+ α− l− 1)!

(−n− α+ l + 1)jl
(l + 2)jl

α−k−1
∏

i=0

(c̃l − i)

where c̃l = n+ α− 1− jl − l, in (3.10) with some algebraic manipulation to obtain

det
[

L
(l+1)
n+k−l−1(−s)

]

k,l=1,2,...,α
=

(n+ α)!(n+ α− 1)!

n! (n− 1)!
∏α

k=1(k + 1)!

×
n+α−2
∑

j1=0

. . .
n−1
∑

jα=0

(

α
∏

k=1

(−n− α+ k + 1)jk
(k + 2)jk jk!

(−s)jk

)

det

[

α−k−1
∏

i=0

(c̃l − i)

]

k,l=1,2,...,α

.

(3.11)
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Now, invoking Lemma A.1 in the Appendix, then substituting (3.11) into (3.7) yields

f
(α)

κ2
D
(A)

(y) = Γ(mn)

(

α
∏

k=0

n+ k

(k + 1)!

)

y−mn
n+α−2
∑

j1=0

. . .

n−1
∑

jα=0

(

α
∏

k=1

(−1)jk
(−n− α+ k + 1)jk

(k + 2)jk jk!

)

×∆α(c)L−1

{

e−ns

smn−1−α−∑

α
k=1 jk

}

.

Finally, the result (3.9) follows upon carrying out the remaining Laplace inversion
using [37, Eq. 1.1.2.1].

For some small values of α, (3.9) admits the following simple forms.

Corollary 3.4. The exact p.d.f.s of κ2
D(A) corresponding to α = 0 and α = 1

are given, respectively, by

f
(0)

κ2
D
(A)

(y) = n(n2 − 1)(y − n)n
2−2y−n2

H(y − n) ,

f
(1)

κ2
D
(A)

(y) =
Γ(n(n+ 1))

2!
n(n+ 1)(y − n)n(n+1)−3y−n(n+1)

×
n−1
∑

i=0

(−1)i
(−n+ 1)i
(3)i i!

(y − n)−i

Γ(n(n+ 1)− i− 2)
H(y − n).

The expression for α = 0 agrees with a previous result given in [21].

Remark 1. Whilst previous equivalent expressions have been derived in [31,
52, 49], the exact p.d.f. of κ2

D(A) given in (3.9) is a generalized and/or simpler
representation. Indeed, noting that the number of nested summations depends only on
α, this formula provides an efficient way of evaluating the p.d.f. of κ2

D(A), particularly
for small values of α. Moreover, since the algebraic complexity depends only on n and
the difference of m and n, this in turn makes our result (3.9) very useful for conducting
an asymptotic analysis of κ2

D(A) as m and n grow large, but their difference does not
(something which appears infeasible with previous expressions in [31, 52, 49]). This
is the objective of the next section.

4. Asymptotic Characterization of κ2
D(A). In this section, we employ the

exact p.d.f. representation (3.9) to investigate the distribution of κ2
D(A), suitably

scaled, for fixed α when m,n → ∞. We have the following key result:

Theorem 4.1. As m and n tend to ∞ such that α = m−n is fixed, κ2
D(A) scales

on the order of n3. More specifically, the scaled random variable V = κ2
D(A)/

(

µn3
)

,
with µ ∈ R+ an arbitrary constant, has the following asymptotic p.d.f. as m and n
tend to ∞ with α = m− n fixed:

f
(α)
V (v) =

e−
1
µv

µv2
det





k−1
∑

i=0

i
∑

j=0

S
(j)
i

(

k − 1

i

)

lk−1−i
Il+j+1

(

2√
µv

)

(µv)
j+1−l

2





k,l=1,2,...,α

H(v) , (4.1)

where

In(z) =

∞
∑

k=0

1

k!(n+ k)!

(z

2

)n+2k

is the modified Bessel function of the first kind of order n.



ON DEMMEL AND RELATED CONDITION NUMBERS 9

Proof. We arrange the terms in (3.9), noting that m = n+ α, to obtain

f
(α)

κ2
D
(A)

(y) = Γ(n(n+ α))

(

α
∏

k=0

n+ k

(k + 1)!

)

(

1− n

y

)n(n+α)−α−2

y−α−2

×
n+α−2
∑

j1=0

. . .

n−1
∑

jα=0

(

α
∏

k=1

(−1)jk
(−n− α+ k + 1)jk

(k + 2)jk jk!

(

1− n

y

)−jk

y−jk

)

× ∆α(c)

Γ (n(n+ α)− α− 1−
∑α

k=1 jk)
H(y − n). (4.2)

Now we have to choose a suitable scaling for the variable κ2
D(A) in terms of n so

that the above p.d.f. converges as n → ∞. Careful thought reveals that the term
(

1− n
y

)n(n+α)

converges to a finite non-zero limit as n → ∞ if we scale κ2
D(A)

proportional to n3. For this reason, we introduce the scaled random variable V =

κ2
D(A)/(µn3), and focus on the function µn3f

(3)
µn3V (µn

3v) as n → ∞. To this end,

with y = µn3v, by using elementary limiting arguments it can be shown that

lim
n→∞

µn3f
(α)
µn3V (µn

3v)

=

(

α
∏

k=1

1

(k + 1)!

)

e−
1
µv

µα+1vα+2

∞
∑

j1=0

. . .

∞
∑

jα=0

(

α
∏

k=1

1

(k + 2)jk jk!

1

(µv)jk

)

∆α(c)H(v)

=

(

α
∏

k=1

1

(k + 1)!

)

e−
1
µv

µα+1vα+2
det





∞
∑

jl=0

(l + jl)
k−1

(l + 2)jl jl!

1

(µv)jl





k,l=1,2,...,α

H(v).

(4.3)

We now focus on simplifying the determinant. To this end, we use the binomial
theorem and the definition of the Stirling number (2.4) to arrive at

det





∞
∑

jl=0

(l + jl)
k−1

(l + 2)jl jl!

1

(µv)jl





k,l=1,2,...,α

= det





k−1
∑

i=0

i
∑

j=0

(

k − 1

i

)

lk−1−i
S
(j)
i

∞
∑

jl=j

1

(jl − j)!(l + 2)jl

1

(µv)jl





k,l=1,2,...,α

,

which can be simplified upon noting the relations [48]

∞
∑

jl=j

1

(jl − j)!(l + 2)jl

1

(µv)jl
=

(

1

µv

)j
(l + 1)!

(l + j + 1)!
0F1

(

−; l+ j + 2;
1

µv

)

,

0F1

(

−; l + j + 2;
1

µv

)

= (l + j + 1)!(µv)
l+j+1

2 Il+j+1

(

2√
µv

)

,
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with 0F1 (−; ρ; z) =
∑∞

k=0 z
k/(ρ)kk! denoting the generalized hypergeometric func-

tion, to obtain

det





∞
∑

jl=0

(l + jl)
k−1

(l + 2)jl jl!

1

(µv)jl





k,l=1,2,...,α

=
α
∏

k=1

(k + 1)! det





k−1
∑

i=0

i
∑

j=0

(

k − 1

i

)

lk−1−i
S
(j)
i (µv)

l−j+1
2 Il+j+1

(

2√
µv

)

]

k,l=1,2,...,α

.

Finally, using this result in (4.3) with some algebraic manipulation, and noting that

µn3f
(α)
µn3V (µn

3v) denotes the p.d.f. of the new variable V , concludes the proof.

Remark 2. Clearly, the above approach of deriving the p.d.f. of the asymptotic
scaled version of κ2

D(A) explicitly depends on the availability of a closed-form expres-
sion for the p.d.f. of κ2

D(A). Interestingly, one can directly manipulate the m.g.f. of
κ2
D(A) instead of the p.d.f. to yield the same asymptotic density. Although we do not

demonstrate it here, we exploit this technique in deriving the scaled asymptotic p.d.f.
of κ2

E(A) in section 6.

The exact asymptotic p.d.f. of the scaled κ2
D(A)/(µn3) takes the following simple

forms for small values of α.

Corollary 4.2.

For α = 0, 1, 2, the result (4.1) becomes:

f
(0)
V (v) =

1

µv2
e−

1
µv H(v), f

(1)
V (v) =

1

µv2
e−

1
µv I2

(

2√
µv

)

H(v)

f
(2)
V (v) =

1

µv2
e−

1
µv

{

I2

(

2√
µv

)

I4

(

2√
µv

)

−
[

I3

(

2√
µv

)]2

+
√
µvI2

(

2√
µv

)

I3

(

2√
µv

)

}

H(v).

The asymptotic p.d.f. corresponding to the case α = 0 and µ = 1/4 is given in [21]

The advantage of the asymptotic formula given in Theorem 4.1 is that it provides
an easy to use expression which compares favorably with finite n results. To further
highlight this fact, in Fig. 4.1, we compare the analytical asymptotic p.d.f. derived
in Theorem 4.1 with simulated data points corresponding to α = 1, n = 50, µ = 4 and
α = 2, n = 50, µ = 4.

Having characterized κ2
D(A), we now focus on κ2

E(A).

5. M.g.f. and p.d.f. of κ2
E(A). Here we give new expressions for the m.g.f

and the p.d.f. of κ2
E(A). We point out that the key derivation steps developed in

this section may also be useful for characterizing the distributional properties of more
general condition number metrics, given in [27, 28, 29].

Let λ2 = x. By definition, the m.g.f. of κ2
E(A) for n ≥ 3, is

Mκ2
E
(A)(s) = e−s

∫ ∞

0

{

∫

R2

{

∫ x

0

e−
λ1
x

s−
∑n

j=3 λj

x
sf (λ1, x, . . . , λn) dλ1

}

dλ3dλ4 . . . dλn

}

dx,

(5.1)

where R2 = {x ≤ λ3 ≤ λ4 ≤ . . . ≤ λn}. Analogous to the result given in (3.2), the
following theorem provides an exact simple solution for this m.g.f.:
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(b) α = 2

Fig. 4.1. Comparison of simulated data points and the analytical p.d.f. f
(α)
V

(v) for n = 50 with

µ = 4.

Theorem 5.1. The m.g.f. of κ2
E(A), for n ≥ 3, is given by

Mκ2
E
(A)(s) = e−s(n−1)

∫ ∞

0

e−(n−1)xxmn−1

(x+ s)mn−4

{

∫ 1

0

z2e−(1−z)(s+x)

(1 − z)α
(5.2)

× det
[

L
(j+1)
n+i−j−2(−z(x+ s)) L

(k−1)
n+i−k(−(x+ s))

]

i=1,2,...,α+2
j=1,2

k=3,4,...,α+2

dz

}

dx.
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Proof. We use (2.1) in (5.1) with some manipulation to obtain

Mκ2
E
(A)(s) = Kn,α e−s

∫ ∞

0

e−xxα

{

∫

R2

e−
∑n

j=3 λj

x
s

×
n
∏

j=3

λα
j e

−λj

n
∏

j=3

(λj − x)2
∏

3≤k<j≤n

(λj − λk)
2

×





∫ x

0

(x− λ1)
2

n
∏

j=3

(λj − λ1)
2λα

1 e
−λ1(1+ s

x )dλ1



 dλ3 . . . dλn

}

dx ,

where we have used ∆2
n(λ) = (x−λ1)

2
∏n

j=3(λj −λ1)
2
∏n

j=3(λj −x)2
∏

3≤k<j≤n(λj −
λk)

2, which is valid for n ≥ 3. Applying the variable transformation λ1 = xz to the
innermost integral yields

Mκ2
E
(A)(s) = Kn,αe

−s

∫ ∞

0

e−xx2m−1

{

∫

R2

e−
∑n

j=3 λj

x
s

n
∏

j=3

λα
j e

−λj

n
∏

j=3

(λj − x)2

×
∏

3≤k<j≤n

(λj − λk)
2ϕ

(

λ3

x
,
λ4

x
, . . . ,

λn

x
, x

)

dλ3 . . . dλn

}

dx,

where we have defined:

ϕ

(

λ3

x
,
λ4

x
, . . . ,

λn

x
, x

)

:=

∫ 1

0

zα(1− z)2
n
∏

j=3

(

λj

x
− z

)2

e−z(s+x)dz .

By symmetry, we convert the ordered region of integration to an unordered region,

and subsequently introduce the variable transformations yj = (x+s)
x (λj − x) , j =

3, 4, . . . , n, to obtain

Mκ2
E
(A)(s) =

Kn,α

(n− 2)!
e−s(n−1)

∫ ∞

0

e−(n−1)xxmn−1

(x+ s)mn−2m

×
{

∫

[0,∞)n−2

n
∏

j=3

y2j (yj + x+ s)αe−yj

∏

3≤k<j≤n

(yj − yk)
2

×





∫ 1

0

zα(1− z)2
n
∏

j=3

(

yj
x+ s

+ 1− z

)2

e−z(s+x)dz



 dy3 . . . dyn

}

dx.

Now, changing the order of the innermost integrals and then relabeling the variables
according to yj = xj−2, j = 3, 4, . . . , n, yields

Mκ2
E
(A)(s) =

Kn,α

(n− 2)!
e−s(n−1)

∫ ∞

0

e−(n−1)xxmn−1

(x+ s)mn−2α−4

[

∫ 1

0

zα(1− z)2e−z(s+x)

× (−1)nαR(n− 2,−(1− z)(x+ s),−(x+ s), α)dz

]

dx, (5.3)

where we have defined

R(n, a, b, α) :=

∫

[0,∞)n

n
∏

j=1

x2
je

−xj (a− xj)
2 (b − xj)

α∆2
n(x) dx1 . . . dxn .
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The remainder of the proof is focused on evaluating R(n, a, b, α). Following [32,
Eqs. 22.4.2, 22.4.11], we start with the related integral

∫

[0,∞)n

n
∏

j=1

x2
je

−xj

α+2
∏

i=1

(ri − xj)∆
2
n(x) dx1dx2 . . . dxn

=
n!

Kn,2
∆−1

α+2(r) det [Cn+i−1(rj)]i,j=1,2,...,α+2 , (5.4)

where Ck(x) are monic polynomials orthogonal with respect to x2e−x, over 0 ≤ x <

∞. As such, Ck(x) = (−1)kk!L
(2)
k (x), which upon substituting into (5.4) gives

∫

[0,∞)n

n
∏

j=1

x2
je

−xj

α+2
∏

i=1

(ri − xj)∆
2
n(x) dx1dx2 . . . dxn

=
n!

Kn,2
(−1)(n−1)α

α+1
∏

j=0

(−1)j+1(n+ j)!
det
[

L
(2)
n+i−1(rj)

]

i,j=1,2,...,α+2

∆α+2(r)
. (5.5)

In the above formula, the ris are, in general, distinct parameters. However, if we can
choose ri such that

ri =

{

a if i = 1, 2
b if i = 3, 4, . . . , α+ 2,

then the left side of (5.5) becomes precisely R(n, a, b, α). Under direct substitution,
however, it turns out that the right-hand side of (5.5) then gives a 0

0 indeterminate
form. Therefore, the task is to evaluate the following limits:

R(n, a, b, α) =
n!

Kn,2
(−1)(n−1)α

α+1
∏

j=0

(−1)j+1(n+ j)!

× lim
r1,r2→a

r3,r4,...,rα+2→b

det
[

L
(2)
n+i−1(rj)

]

i,j=1,2,...,α+2

∆α+2(r)
. (5.6)

This can be solved by capitalizing on an approach outlined in [41] which gives

lim
r1,r2→a

r3,r4,...,rα+2→b

det
[

L
(2)
n+i−1(rj)

]

i,j=1,2,...,α+2

∆α+2(r)

=

det

[

dj−1

daj−1
L
(2)
n+i−1(a)

dk−3

dbk−3
L
(2)
n+i−1(b)

]

i=1,2,...,α+2
j=1,2

k=3,4,...,α+2

det

[

dj−1

daj−1
ai−1 dk−3

dbk−3
bi−1

]

i=1,2,...,α+2
j=1,2

k=3,4,...,α+2

. (5.7)

The determinant in the denominator of (5.7) can be written as

det

[

dj−1

daj−1
ai−1 dk−3

dbk−3
bi−1

]

i=1,2,...,α+2
j=1,2

k=3,4,...,α+2

=
α−1
∏

j=0

j!(a− b)2α.
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The numerator can also be simplified using (2.3) to yield

det

[

dj−1

daj−1
L
(2)
n+i−1(a)

dk−3

dbk−3
L
(2)
n+i−1(b)

]

i=1,2,...,α+2
j=1,2

k=3,4,...,α+2

= (−1)−α
α+1
∏

j=0

(−1)j+1 det
[

L
(j+1)
n+i−j(a) L

(k−1)
n+i−k+2(b)

]

i=1,2,...,α+2
j=1,2

k=3,4,...,α+2

.

Substituting these expressions into (5.7) and then the result into (5.6) gives

R(n, a, b, α) =
(−1)−nα

(a− b)2α
n!

Kn,2

∏α+1
j=0 (n+ j)!
∏α−1

j=0 j!
det
[

L
(j+1)
n+i−j(a) L

(k−1)
n+i−k+2(b)

]

i=1,2,...,α+2
j=1,2

k=3,4,...,α+2

.

(5.8)

Now we use this result in (5.3), apply the relation
∫ a

0 f(x)dx =
∫ a

0 f(a− x)dx in the
inner integral (i.e., with respect to z), along with some basic manipulations which
concludes the proof.

A straightforward Laplace inversion of the m.g.f. of κ2
E(A) now gives the p.d.f.

of κ2
E(A), which is presented in the following corollary:
Corollary 5.2. The p.d.f. of κ2

E(A), for n ≥ 3, is given by

f
(α)

κ2
E
(A)

(y) =
Γ(mn)

ymn
L−1

{

e−s(n−1)

smn−4

∫ 1

0

z2(1 − z)−αe−(1−z)s

× det
[

L
(j+1)
n+i−j−2(−sz) L

(k−1)
n+i−k(−s)

]

i=1,2,...,α+2
j=1,2

k=3,4,...,α+2

dz

}

. (5.9)

Although further simplification of (5.9) seems intractable for general matrix di-
mensions m and n, we can obtain a closed-form solution in the important case of
square Gaussian matrices (i.e., m = n). This is given as follows:

Corollary 5.3. For α = 0, (5.9) becomes

f
(0)

κ2
E
(A)

(y) =
Γ(n2)

12
n2(n2 − 1)

n−1
∑

i=0

n−2
∑

j=0

(−n+ 1)i(−n+ 2)j
(3)i(4)j i!j!

(j + 1− i)(i+ j + 2)!

×
(

i+j+2
∑

k=0

(−1)i+j+k

(i+ j + 2− k)!

y−n2

(y − n+ 1)n
2+k−i−j−4

Γ (n2 + k − i− j − 3)
H(y − n+ 1)

− y−n2

(y − n)n
2−2

Γ(n2 − 1)
H(y − n)

)

. (5.10)

It turns out that there is also an interesting connection between the density of
κ2
E(A) and the density of the second smallest eigenvalue, λ2. To see this, we start by

writing the p.d.f. of λ2 as

fλ2(x) =

∫

R2

∫ x

0

f (λ1, x, . . . , λn) dλ1dλ3dλ4 . . . dλn,
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by definition. This can be further simplified by using very similar techniques to those
used in the above m.g.f. derivation (we omit the specific details) to yield

fλ2(x) =
Kn,α

(n− 2)!
x2α+3e−(n−1)x

∫ 1

0

zα(1− z)2e−zx(−1)nαR(n− 2,−(1− z)x,−x, α)dz.

Now, applying (5.8), we obtain the following expression for the p.d.f. of λ2:

fλ2(x) = x3e−(n−1)x

∫ 1

0

z2(1− z)−αe−(1−z)x

× det
[

L
(j+1)
n+i−j−2(−xz) L

(k−1)
n+i−k(−x)

]

i=1,2,...,α+2
j=1,2

k=3,4,...,α+2

dz. (5.11)

An equivalent expression can also be obtained by starting with the joint density of λ1

and λ2 given in [23].
Remark 3. We remark that the integrands corresponding to variable z in (5.2),

(5.9) and (5.11) are well defined in the vicinity of z = 1.
Combining (5.9) and (5.11), we obtain the following interesting connection be-

tween the densities of κ2
E(A) and λ2:

f
(α)

κ2
E
(A)

(y) =
Γ(mn)

ymn
L−1

{

fλ2(s)

smn−1

}

. (5.12)

A previous connection between these two densities was also established in [29], but
the result obtained was more complicated. Moreover, it appears difficult to establish
our simplified connection (5.12) as a consequence of the representation in [29]. Our
simplified representation here was made possible by adopting an alternative derivation
approach based on the m.g.f., in contrast to the p.d.f.-based approach used in [29].

It is also worth contrasting the expression (5.11) with prior equivalent results in
the literature, particularly those presented in [34, 51]. First, the result (5.11) is more
compact, and in contrast to prior results in [34, 51] it does not involve summations
of functions over combinatorial partitions of integers. Moreover, whilst both (5.11)
and the previous expressions in [34, 51] involve determinants, the representations are
markedly different—in (5.11), the size of the determinant depends on the difference
betweenm and n (i.e., α), whilst in [34, 51] it depends onm explicitly. (Determinantal
expressions having a similar m-dependence have also been derived for various more
complicated random matrix ensembles; for example, complex non-central Wishart ma-
trices [26] and generalized-F matrices [42].) This, in turn, gives remarkably simplified
expressions in our case when m and n are of roughly the same order. For example,
when α = 0 (i.e., m = n), we have the following simple closed-form expression:

Corollary 5.4. For α = 0, (5.11) evaluates to

fλ2(x) =
1

12
n2(n2 − 1)e−(n−1)x

n−1
∑

i=0

n−2
∑

j=0

(−n+ 1)i(−n+ 2)j
(3)i(4)j i!j!

(j + 1− i)(i+ j + 2)!

×
(

i+j+2
∑

k=0

(−1)i+j+k

(i + j + 2− k)!
xi+j+2−k − e−x

)

. (5.13)

Having analyzed κ2
E(A) for finite values of m and n, we now focus our attention

on the asymptotic behavior of the scaled version of κ2
E(A).
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6. Asymptotic characterization of κ2
E(A). Here we investigate how κ2

E(A)
scales as m and n tend to ∞ with m − n = α being fixed. Unlike in the previous
asymptotic analysis, in this case it is most convenient to manipulate the m.g.f. of
κ2
E(A), rather than the p.d.f. We have the following key result:

Theorem 6.1. As m and n tend to ∞ such that α = m−n is fixed, κ2
E(A) scales

on the order of n3. More specifically, the scaled random variable V = κ2
E(A)/(µn3),

with µ ∈ R+ being an arbitrary constant, has the following asymptotic p.d.f. as m
and n tend to ∞ with α = m− n fixed:

f
(α)
V (v) =

e−
1
µv

µ4v5

∫ 1

0

z2

(1 − z)α
det [gi,j(z, v) gi,k−2(1, v)]i=1,2,...,α+2

j=1,2
k=3,4,...,α+2

dz, (6.1)

where, for i, j = 1, 2, . . . , α+ 2,

gi,j(z, v) =

i−1
∑

p=0

p
∑

q=0

S
(q)
p

(

i− 1

p

)

ji−1−p

(

z

µv

)

q−j−1
2

Iq+j+1

(

2

√

z

µv

)

.

Proof. Our strategy is to derive the m.g.f. of V using the m.g.f. of κ2
E(A) given

in (5.2). Subsequent application of the limits on m and n followed by the Laplace
inversion will then yield the desired asymptotic p.d.f. As such, we can write

M κ2
E

(A)

µn3

(s) = Mκ2
E
(A)

(

s

µn3

)

. (6.2)

We first employ (2.2), and use similar arguments as in the derivation of (3.11), to
write the determinant in (5.2) as

det
[

L
(j+1)
n+i−j−2(−z(x+ s)) L

(k−1)
n+i−k(−(x+ s))

]

i=1,2,...,α+2
j=1,2

k=3,4,...,α+2

=

∏α+2
j=1 (n+ j − 1)!

(

∏α+2
j=3 (j − 1)!

)−1

2!3!(n+ α− 1)!(n+ α− 2)!
∏α+2

j=3 (n+ α+ 2− j)!

×
n+α−1
∑

l1=0

n+α−2
∑

l2=0

n+α−1
∑

l3=0

n+α−2
∑

l4=0

n+α−3
∑

l5=0

. . .
n
∑

lα+2=0

(−n− α+ 1)l1(−n− α+ 2)l2
(3)l1(4)l2 l1!l2!

× zl1+l2(−(x+ s))l1+l2

(

α
∏

k=1

(−n− α+ k)lk+2

(k + 2)lk+2
lk+2!

(−(x+ s))lk+2

)

× det

[

α+1−i
∏

l=0

(z̃j − l)

α+1−i
∏

l=0

(w̃k − l)

]

i=1,2,...,α+2
j=1,2

k=3,4,...,α+2

(6.3)

where z̃j = n+α− j − lj and w̃k = n+ α+2− k− lk. Now, invoking Lemma A.2 to
compute the remaining determinant, we use the resulting expression along with (5.2)
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in (6.2) to obtain the m.g.f. of
κ2
E(A)
µn3 as

M κ2
E

(A)

µn3

(s) =
(n+ α)2(n+ α+ 1)(n+ α− 1)

2!3!
∏α+2

j=3 (j − 1)!
e
− s

µn3 (n−1)

×
∫ ∞

0

e−(n−1)xxn(n+α)−1

(

x+ s
µn3

)n(n+α)−4

{

∫ 1

0

(1− z)−αz2e
−(1−z)

(

s

µn3 +x
)

×
n+α−1
∑

l1=0

n+α−2
∑

l2=0

n+α−1
∑

l3=0

n+α−2
∑

l4=0

n+α−3
∑

l5=0

. . .

n
∑

lα+2=0

(−n− α+ 1)l1(−n− α+ 2)l2
(3)l1(4)l2 l1!l2!

zl1+l2

×
(

α
∏

k=1

(−n− α+ k)lk+2

(k + 2)lk+2
lk+2!

(

−
(

x+
s

µn3

))lk+2
)

(

−
(

x+
s

µn3

))l1+l2

∆α+2(w) dz

}

dx.

Then, we use the variable transformation t = xn, change the order of integration, and
apply elementary limiting arguments as n → ∞ to obtain

lim
n→∞

M κ2
E

(A)

µn3

(s) =
1

2!3!
∏α+2

j=3 (j − 1)!

∫ 1

0

(1− z)−αz2
∞
∑

l1=0

∞
∑

l2=0

. . .

∞
∑

lα+2=0

zl1+l2∆α+2(w)

(3)l1(4)l2 l1!l2!

×
(

α
∏

k=1

1

(k + 2)lk+2
lk+2!

)

{
∫ ∞

0

e−t− s
µt t3+

∑α+2
j=1 lj dt

}

dz.

Using the variable transformation x = 1
µt we compute the inner integral, and subse-

quently perform a Laplace inversion to yield the limiting p.d.f. of V =
κ2
E(A)
µn3 :

f
(α)
V (v) =

1

2!3!
∏α+2

j=3 (j − 1)!

e−
1
µv

µ4v5

∫ 1

0

(1− z)−αz2
∞
∑

l1=0

∞
∑

l2=0

. . .

∞
∑

lα+2=0

zl1+l2∆α+2(w)

(3)l1(4)l2 l1!l2! (µv)
l1+l2

×
(

α
∏

k=1

1

(k + 2)lk+2
lk+2! (µv)lk+2

)

dz

=
1

2!3!
∏α+2

j=3 (j − 1)!

e−
1
µv

µ4v5

∫ 1

0

(1− z)−αz2

× det





∞
∑

lj=0

zi−1
j

(j + 2)lj lj !

zlj

(µv)lj

∞
∑

lk=0

wi−1
k

(k)lk lk!

1

(µv)lk





i=1,2,...,α+2
j=1,2

k=3,4,...,α+2

dz.

Recalling the relations

zj = j + lj, j = 1, 2 ,

wj = j + lj − 2, j = 3, 4, . . . , α+ 2 ,

with some manipulation then gives

f
(α)
V (v) =

1

2!3!
∏α+2

j=3 (j − 1)!

e−
1
µv

µ4v5

∫ 1

0

(1− z)−αz2 det [g̃i,j(z, v) g̃i,k−2(1, v)]i=1,2,...,α+2
j=1,2

k=3,4,...,α+2

dz,

(6.4)
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where

g̃i,j(z, v) =

i−1
∑

p=0

(

i− 1

p

)

ji−1−p
∞
∑

lj=0

lpj
(j + 2)lj lj !

(

z

µv

)lj

.

Noting the fact that lpj =
∑p

q=0 S
(q)
p lj(lj−1) · · · (lj−q+1) and making the identification

∞
∑

k=0

xk

(a)k(k −N)!
= (a− 1)! x

N+1−a
2 Ia+N−1(2

√
x)

we arrive at

g̃i,j(z, v) = (j + 1)!
i−1
∑

p=0

p
∑

q=0

(

i− 1

p

)

ji−1−p
S
(q)
p

(

z

µv

)

q−j−1
2

Iq+j+1

(

2

√

z

µv

)

. (6.5)

Finally, noting the fact that g̃i,j(z, v) = (j + 1)! gi,j(z, v), i, j = 1, 2, . . . , α + 2, and
using (6.5) in (6.4) with some algebraic manipulation concludes the proof.

For α = 0, we have the following remarkably simple closed-form solution:

Corollary 6.2. For α = 0, (6.1) becomes

f
(0)
V (v) =

1

576

e−
1
µv

µ4v5

(

16 2F3

(

3,
7

2
; 4, 4, 6;

4

µv

)

− 4

µv
1F2

(

7

2
; 5, 7;

4

µv

)

+
3

µv
3F4

(

7

2
, 4, 4; 3, 5, 5, 7;

4

µv

))

,

where pFq (a1, a2, . . . , ap; b1, b2 . . . , bq; z) is the generalized hypergeometric function.
This is easily obtained by setting α = 0 and integrating using [36, Eq. 2.15.19.1] with
some basic algebraic manipulations.

In Fig. 6.1, we illustrate the applicability of the analytical asymptotic results in
the finite context. Specifically, we compare the analytical asymptotic p.d.f. given in
Theorem 6.1 with that of simulated points corresponding to α = 0, n = 10, µ = 4 and
α = 1, n = 50, µ = 4. The close agreement is clearly apparent.

Appendix A. Some Useful Determinant Results.

The following results are useful for the proofs of Theorems 3.3 and 6.1. For nota-
tional convenience we denote ∆N (x) =

∏

1≤l<k≤N (xk − xl) where x = {x1, x2, . . . , xN}
with ∆1(x) = 1.

Lemma A.1. Let n, α ∈ Z+ with n, α ≥ 1. Then

det

[

α−k−1
∏

i=0

(c̃l − i)

]

k,l=1,2,...,α

= ∆α(c)

where c̃l = n+ α− 1− jl − l, c = {c1(j1), c2(j2), . . . , cα(jα)} and cl(jl) = l + jl with
jl = 0, 1, . . . , n+ α− 1− l.
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(b) α = 1 and n = 50

Fig. 6.1. Comparison of simulated data points and the analytical p.d.f. f
(α)
V

(v) for two different

n,α settings with µ = 4.

Proof. Let us rewrite the determinant as

det

[

α−k−1
∏

i=0

(c̃l − i)

]

k,l=1,2,...,α

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α−2
∏

i=0

(c̃1 − i)

α−2
∏

i=0

(c̃2 − i) . . .

α−2
∏

i=0

(c̃α − i)

α−3
∏

i=0

(c̃1 − i)

α−3
∏

i=0

(c̃2 − i) . . .

α−3
∏

i=0

(c̃α − i)

...
...

. . .
...

c̃1 c̃2 . . . c̃α
1 1 . . . 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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Now the repeated application of the following row operations

kth row → kth row+ S
(α−k−i)
α−k × (k + i)th row , i = 1, 2, . . . , α− 1− k

on each row, from k = 1 to k = α− 2, of the above determinant gives

det

[

α−k−1
∏

i=0

(c̃l − i)

]

k,l=1,2,...,α

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α−1
∑

j=0

S
(j)
α−1

j−1
∏

i=0

(c̃1 − i)

α−1
∑

j=0

S
(j)
α−1

j−1
∏

i=0

(c̃2 − i) . . .

α−1
∑

j=0

S
(j)
α−1

j−1
∏

i=0

(c̃α − i)

α−2
∑

j=0

S
(j)
α−2

j−1
∏

i=0

(c̃1 − i)

α−2
∑

j=0

S
(j)
α−2

j−1
∏

i=0

(c̃2 − i) . . .

α−2
∑

j=0

S
(j)
α−2

j−1
∏

i=0

(c̃α − i)

...
...

. . .
...

c̃1 c̃2 . . . c̃α
1 1 . . . 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

We may use Lemma 2.4 to simplify each entry of the above determinant to obtain

det

[

α−k−1
∏

i=0

(c̃l − i)

]

k,l=1,2,...,α

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c̃α−1
1 c̃α−1

2 . . . c̃α−1
α

c̃α−2
1 c̃α−2

2 . . . c̃α−2
α

...
...

. . .
...

c̃1 c̃2 . . . c̃α
1 1 . . . 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)⌊
α
2 ⌋det

[

c̃k−1
l

]

k,l=1,2,...,α
,

where ⌊·⌋ is the floor function. Noting the relation

c̃k = n+ α− 1− ck(jk) , k = 1, 2, . . . , α ,

we obtain

det

[

α−k−1
∏

i=0

(c̃l − i)

]

k,l=1,2,...,α

= (−1)⌊
α
2 ⌋det

[

c̃k−1
l

]

k,l=1,2,...,α

= (−1)⌊
α
2 ⌋

∏

1≤l<k≤α

(c̃k − c̃l)

= (−1)⌊
α2

2 ⌋
∏

1≤l<k≤α

(ck(jk)− cl(jl))

= ∆α(c),

where we have used the fact that ⌊α2

2 ⌋ is an even number for α = 1, 2, . . ..
Lemma A.2. Let n ∈ Z+ and α ∈ Z+ ∪ {0} with n ≥ 2. Then

det

[

α+1−i
∏

l=0

(z̃j − l)

α+1−i
∏

l=0

(w̃k − l)

]

i=1,2,...,α+2
j=1,2

k=3,4,...,α+2

= ∆α+2(w)
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where w = (z1, z2, w3, . . . , wα+2) and

zj = j + lj , z̃j = n+ α− zj, j = 1, 2 ,

wk = k + lk − 2, w̃k = n+ α− wk, k = 3, 4, . . . , α+ 2 ,

with

lj = 0, 1, . . . , n+ α− j, j = 1, 2 ,

lk = 0, 1, . . . , n+ α+ 2− k, k = 3, 4, . . . , α+ 2 .

Proof.

det

[

α+1−i
∏

l=0

(z̃j − l)

α+1−i
∏

l=0

(w̃k − l)

]

i=1,2,...,α+2
j=1,2

k=3,4,...,α+2

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α
∏

i=0

(z̃1 − i)

α
∏

i=0

(z̃2 − i)

α
∏

i=0

(w̃3 − i) . . .

α
∏

i=0

(w̃α+2 − i)

α−1
∏

i=0

(z̃1 − i)

α−1
∏

i=0

(z̃2 − i)

α−1
∏

i=0

(w̃3 − i) . . .

α−1
∏

i=0

(w̃α+2 − i)

...
...

...
. . .

...
z̃1 z̃2 w̃3 . . . w̃α+2

1 1 1 . . . 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Now, repeatedly applying the following row operations

kth row → kth row+ S
(α+2−k−i)
α+2−k (k + i)th row, i = 1, 2, . . . , α+ 1− k

on each row (i.e., k = 1, 2, . . . , α) and using Lemma 2.4 gives

det

[

α+1−i
∏

l=0

(z̃j − l)

α+1−i
∏

l=0

(w̃k − l)

]

i=1,2,...,α+2
j=1,2

k=3,4,...,α+2

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

z̃α+1
1 z̃α+1

2 w̃α+1
3 . . . w̃α+1

α+2

z̃α1 z̃α2 w̃α
3 . . . w̃α

α+2
...

...
...

. . .
...

z̃1 z̃2 w̃3 . . . w̃α+2

1 1 1 . . . 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)⌊
α+2
2 ⌋ det

[

z̃i−1
j w̃i−1

k

]

i=1,2,...,α+2
j=1,2

k=3,4,...,α+2

.

Interestingly, the resultant simplified determinant is of Vandermonde type. This in
turn gives

(−1)⌊
α+2
2 ⌋ det

[

z̃i−1
j w̃i−1

k

]

i=1,2,...,α+2
j=1,2

k=3,4,...,α+2

= det
[

zi−1
j wi−1

k

]

i=1,2,...,α+2
j=1,2

k=3,4,...,α+2

= ∆α+2(w).
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