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ADJOINT-BASED PREDICTOR-CORRECTOR SEQUENTIAL
CONVEX PROGRAMMING FOR PARAMETRIC NONLINEAR

OPTIMIZATION

TRAN D. QUOC∗, CARLO SAVORGNAN∗ AND MORITZ DIEHL∗

Abstract. This paper proposes an algorithmic framework for solving parametric optimization
problems which we call adjoint-based predictor-corrector sequential convex programming. After
presenting the algorithm, we prove a contraction estimate that guarantees the tracking performance
of the algorithm. Two variants of this algorithm are investigated. The first one can be used to
solve nonlinear programming problems while the second variant is aimed to treat online parametric
nonlinear programming problems. The local convergence of these variants is proved. An application
to a large-scale benchmark problem that originates from nonlinear model predictive control of a
hydro power plant is implemented to examine the performance of the algorithms.
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1. Introduction. In this paper, we consider a parametric nonconvex optimiza-
tion problem of the form:

P(ξ)







min
x∈Rn

f(x)

s.t. g(x) +Mξ = 0,
x ∈ Ω,

where f : Rn → R is convex, g : Rn → R
m is nonlinear, Ω ⊆ R

n is a nonempty,
closed convex set, and the parameter ξ belongs to a given subset P ⊆ R

p. Matrix
M ∈ R

m×p plays the role of embedding the parameter ξ into the equality constraints in
a linear way. Throughout this paper, f and g are assumed to be differentiable on their
domain. Problem P(ξ) includes many (parametric) nonlinear programming problems
such as standard nonlinear programs, nonlinear second order cone programs, nonlinear
semidefinite programs [30, 36, 43]. The theory of parametric optimization has been
extensively studied in many research papers and monographs, see, e.g. [7, 23, 38].

This paper deals with the efficient calculation of approximate solutions to a se-
quence of problems of the form P(ξ), where the parameter ξ is slowly varying. In
other words, for a sequence {ξk}k≥0 such that ‖ξk+1 − ξk‖ is small, we want to solve
the problems P(ξk) in an efficient way without requiring more accuracy than needed
in the result.

In practice, sequences of problems of the form P(ξ) arise in the framework of real-
time optimization, moving horizon estimation, online data assimilation as well as in
nonlinear model predictive control (NMPC). A practical obstacle in these applications
is the time limitation imposed on solving the underlying optimization problem for each
value of the parameter. Instead of solving completely a nonlinear program at each
sample time [3, 4, 5, 27], several online algorithms approximately solve the underlining
nonlinear optimization problem by performing the first iteration of exact Newton,
sequential quadratic programming (SQP), Gauss-Newton or interior point methods
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[16, 37, 47]. In [16, 37] the authors only consider the algorithms in the framework
of SQP method. This approach has been proved to be efficient in practice and is
widely used in many applications [13]. Recently, Zavala and Anitescu [47] proposed
an inexact Newton-type method for solving online optimization problems based on
the framework of generalized equations [7, 38].

Other related work considers practical problems which possess more general con-
vexity structure such as second order cone and semidefinite cone constraints, nons-
mooth convexity [20, 43]. In these applications, standard optimization methods may
not perform satisfactorily. Many algorithms for nonlinear second order cone and
nonlinear semidefinite programming have recently been proposed and found many
applications in robust optimal control, experimental design, and topology optimiza-
tion, see, e.g. [2, 20, 21, 31, 43]. These approaches can be considered as generalization
of the SQP method.

1.1. Contribution. The contribution of this paper is twofold. We start our
paper by proposing a generic framework for the adjoint-based predictor-corrector se-
quential convex programming (APCSCP) for parametric optimization and prove a
main result of the stability of tracking error for this algorithm (Theorem 3.4). In
the second part the theory is specialized to the non-parametric case where a single
optimization problem is solved. The local convergence of these variants is also proved.
Finally, we present a numerical application to large scale nonlinear model predictive
control of a hydro power plant with 259 state variables and 10 controls. The perfor-
mance of our algorithms is compared with a standard real-time Gauss-Newton method
and a conventional model predictive control (MPC) approach.

APCSCP is based on three main ideas: sequential convex programming, predictor-
corrector path-following and adjoint-based optimization. We briefly explain these
methods in the following.

1.2. Sequential convex programming. The sequential convex programming
(SCP) method is a local nonconvex optimization technique. SCP solves a sequence
of convex approximations of the original problem by convexifying only the noncon-
vex parts and preserving the structures that can efficiently be exploited by convex
optimization techniques [9, 34, 35]. Note that this method is different from SQP
methods where quadratic programs are used as approximations of the problem. This
approach is useful when the problem possesses general convex structures such as
conic constraints, a cost function depending on matrix variables or convex constraints
resulting from a low level problem in multi-level settings [2, 14, 43]. Due to the com-
plexity of these structures, standard optimization techniques such as SQP and Gauss-
Newton-type methods may not be convenient to apply. In the context of nonlinear
conic programming, SCP approaches have been proposed under the names sequential
semidefinite programming (SSDP) or SQP-type methods [11, 20, 21, 30, 31, 43]. It
has been shown in [17] that the superlinear convergence is lost if the linear semidef-
inite programming subproblems in the SSDP algorithm are convexified. In [33] the
authors considered a nonlinear program in the framework of a composite minimization
problem, where the inner function is linearized to obtain a convex subproblem which
is made strongly convex by adding a quadratic proximal term.

In this paper, following the work in [20, 22, 44, 46], we apply the SCP approach
to solve problem P(ξ). The nonconvex constraint g(x) +Mξ = 0 is linearized at each
iteration to obtain a convex approximation. The resulting subproblems can be solved
by exploiting convex optimization techniques.
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1.3. Predictor-corrector path-following methods. In order to illustrate the
idea of the predictor-corrector path-following method [12, 47], we consider the case
Ω ≡ R

n. The KKT system of problem P(ξ) can be written as F (z; ξ) = 0, where
z = (x, y) is its primal-dual variable. The solution z∗(ξ) that satisfies the KKT
condition for a given ξ is in general a smooth map. By applying the implicit function
theorem, the derivative of z∗(·) is expressed as

∂z∗

∂ξ
(ξ) = −

[
∂F

∂z
(z∗(ξ); ξ)

]−1
∂F

∂ξ
(z∗(ξ); ξ).

In the parametric optimization context, we might have solved a problem with param-
eter ξ̄ with solution z̄ = z∗(ξ̄) and want to solve the next problem for a new parameter

ξ̂. The tangential predictor ẑ for this new solution z∗(ξ̂) is given by

ẑ = z∗(ξ̄) +
∂z∗

∂ξ
(ξ̄)(ξ̂ − ξ̄) = z∗(ξ̄)−

[
∂F

∂z
(z∗(ξ̄); ξ̄)

]−1
∂F

∂ξ̄
(z∗(ξ̄); ξ̄)(ξ̂ − ξ̄).

Note the similarity with one step of a Newton method. In fact, a combination of the
tangential predictor and the corrector due to a Newton method proves to be useful in
the case that z̄ was not the exact solution of F (z; ξ̄) = 0, but only an approximation.
In this case, linearization at (z̄, ξ̄) yields a formula that one step of a predictor-corrector
path-following method needs to satisfy:

(1.1) F (z̄; ξ̄) +
∂F

∂ξ
(z̄; ξ̄)(ξ̂ − ξ̄) +

∂F

∂z
(z̄; ξ̄)(ẑ − z̄) = 0.

Written explicitly, it delivers the solution guess ẑ for the next parameter ξ̂ as

ẑ = z̄−
[
∂F

∂z
(z̄; ξ̄)

]−1
∂F

∂ξ
(z̄; ξ̄)(ξ̂ − ξ̄)

︸ ︷︷ ︸

=∆zpredictor

−
[
∂F

∂z
(z̄; ξ̄)

]−1

F (z̄; ξ̄)

︸ ︷︷ ︸

=∆zcorrector

Note that when the parameter enters linearly into F , we can write

∂F

∂ξ
(z̄; ξ̄)(ξ̂ − ξ̄) = F (z̄; ξ̂)− F (z̄; ξ̄).

Thus, equation (1.1) is reduced to

(1.2) F (z̄; ξ̂) +
∂F

∂z
(z̄)(ẑ − z̄) = 0.

It follows that the predictor-corrector step can be easily obtained by just applying
one standard Newton step to the new problem P(ξ̂) initialized at the past solution
guess z̄, if we employed the parameter embedding in the problem formulation [13].

Based on the above analysis, the predictor-corrector path-following method only
performs the first iteration of the exact Newton method for each new problem. In
this paper, by applying the generalized equation framework [38, 39], we generalize
this idea to the case where more general convex constraints are considered. When the
parameter does not enter linearly into the problem, we can always reformulate this
problem as P(ξ) by using slack variables. In this case, the derivatives with respect to
these slack variables contain the information of the predictor term. Finally, we notice
that the real-time iteration scheme proposed in [16] can be considered as a variant of
the above predictor-corrector method in the SQP context.
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1.4. Adjoint-based method. From a practical point of view, most of the time
spent on solving optimization problems resulting from simulation-based methods is
needed to evaluate the functions and their derivatives [6]. Adjoint-based methods
rely on the observation that it is not necessary to use exact Jacobian matrices of
the constraints. Moreover, in some applications, the time needed to evaluate all the
derivatives of the functions exceeds the time available to compute the solution of the
optimization problem. The adjoint-based Newton-type methods in [18, 26, 41] can
work with an inexact Jacobian matrix and only require an exact evaluation of the
Lagrange gradient using adjoint derivatives to form the approximate optimization
subproblems in the algorithm. This technique still allows to converge to the exact
solutions but can save valuable time in the online performance of the algorithm.

1.5. A tutorial example. The idea of the APCSCP method is illustrated in
the following simple example.
Example.1.0. (Tutorial example) Let us consider a simple nonconvex parametric op-
timization problem:

(1.3) min
{
−x1 | x2

1 + 2x2 + 2− 4ξ = 0, x2
1 − x2

2 + 1 ≤ 0, x ≥ 0, x ∈ R
2
}
,

where ξ ∈ P := {ξ ∈ R : ξ ≥ 1.2} is a parameter. After few calculations, we can

show that x∗
ξ = (2

√

ξ −√
ξ, 2

√
ξ− 1)T is a stationary point of problem (1.3) which is

also the uniquely global optimum. It is clear that problem (1.3) satisfies the strong
second order sufficient condition (SSOSC) at x∗

ξ .

Note that the constraint x2
1 − x2

2 + 1 ≤ 0 is convex and it can be written as a
second order cone constraint

∥
∥(x1, 1)

T
∥
∥
2
≤ x2. Let us define g(x) := x2

1 + 2x2 + 2,

M := −4 and Ω := {x ∈ R
2 |

∥
∥(x1, 1)

T
∥
∥
2
≤ x2, x ≥ 0}. Then, problem (1.3) can be

casted into the form of P(ξ).
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Fig. 1.1. The trajectory of three methods (k = 0, · · · , 9), (⋄ is x∗(ξk) and ◦ is xk ).
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Fig. 1.2. The tracking error and the cone constraint violation of three methods (k = 0, · · · , 9).

The aim is to approximately solve problem (1.3) at each given value ξk of the
parameter ξ. Instead of solving the nonlinear optimization problem at each ξk until
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complete convergence, APCSCP only performs the first step of the SCP algorithm to
obtain an approximate solution xk at ξk. Notice that the convex subproblem needed
to be solved at each ξk in the APCSCP method is

(1.4) min
x

{
−x1 | 2xk

1x1 + 2x2 − (xk
1)

2 + 2− 4ξ = 0,
∥
∥(x1, 1)

T
∥
∥ ≤ x2, x ≥ 0

}
.

We compare this method with other known real-time iteration algorithms. The first
one is the real-time iteration with an exact SQP method and the second algorithm
is the real-time iteration with an SQP method using a projected Hessian [16, 29]. In
the second algorithm, the Hessian matrix of the Lagrange function is projected onto
the cone of symmetric positive semidefinite matrices to obtain a convex quadratic
programming subproblem.

Figures 1.1 and 1.2 illustrate the performance of three methods when ξk = 1.2 +
k∆ξk for k = 0, . . . , 9 and ∆ξk = 0.25. The initial point x0 of three methods is chosen
at the true solution of P(ξ0). We can see that the performance of the exact SQP
and the SQP using projected Hessian is quite similar. However, the second order
cone constraint

∥
∥(x1, 1)

T
∥
∥
2
≤ x2 is violated in both methods. The SCP method

preserves the feasibility and better follows the exact solution trajectory. Note that
the subproblem in the exact SQP method is a nonconvex quadratic program, a convex
QP in the projected SQP case and a second order cone constrained program (1.4) in
the SCP method. ⋄

1.6. Notation. Throughout this paper, we use the notation ∇f for the gra-
dient vector of a scalar function f , g′ for the Jacobian matrix of a vector val-
ued function g and Sn (resp., Sn

+ and Sn
++) for the set of n × n real symmetric

(resp., positive semidefinite and positive definite) matrices. The notation ‖·‖ stands
for the Euclidean norm. The ball B(x, r) of radius r centered at x is defined as
B(x, r) := {y ∈ R

n | ‖y − x‖ < r} and B̄(x, r) is its closure.
The rest of this paper is organized as follows. Section 2 presents a generic frame-

work of the adjoint-based predictor-corrector SCP algorithm (APCSCP). Section 3
proves the local contraction estimate for APCSCP and the stability of the approxima-
tion error. Section 4 considers an adjoint-based SCP algorithm for solving nonlinear
programming problems as a special case. The last section presents computational
results for an application of the proposed algorithms in nonlinear model predictive
control (NMPC) of a hydro power plant.

2. An adjoint-based predictor-corrector SCP algorithm. In this section,
we present a generic algorithmic framework for solving the parametric optimization
problem P(ξ). Traditionally, at each sample ξk of parameter ξ, a nonlinear program
P(ξk) is solved to get a completely converged solution z̄(ξk). Exploiting the real-time
iteration idea [13, 16], in our algorithm below, only one convex subproblem is solved
to get an approximated solution zk at ξk to z̄(ξk).

Suppose that zk := (xk, yk) ∈ Ω×R
m is a given KKT point of P(ξk) (more details

can be found in the next section), Ak is a given m × n matrix and Hk ∈ Sn
+. We

consider the following parametric optimization subproblem:

P(zk, Ak, Hk; ξ)







min
x∈Rn

{
f(x) + (mk)T (x− xk) + 1

2 (x − xk)THk(x − xk)
}

s.t. Ak(x− xk) + g(xk) +Mξ = 0,
x ∈ Ω,

where mk := m(zk, Ak) =
(
g′(xk)−Ak

)T
yk. Matrix Ak is an approximation to

g′(xk) at xk, Hk is a regularization or an approximation to ∇2
xL(z̄k), where L is the
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Lagrange function of P(ξ) to be defined in Section 3. Vector mk can be considered as
a correction term of the inconsistency between Ak and g′(xk). Vector yk is referred to
as the Lagrange multiplier. Since f and Ω are convex and Hk is symmetric positive
semidefinite, the subproblem P(zk, Ak, Hk; ξ) is convex. Here, zk, Ak and Hk are
considered as parameters.

Remark 1. Note that computing the term g′(xk)T yk of the correction vector mk

does not require the whole Jacobian matrix g′(xk), which is usually time consuming to
evaluate. This adjoint directional derivative can be cheaply evaluated by using adjoint
methods [24].

The adjoint-based predictor-corrector SCP algorithmic framework is described as
follows.

Algorithm 1. (Adjoint-based predictor-corrector SCP algorithm (APCSCP)).

Initialization. For a given parameter ξ0 ∈ P , solve approximately (off-line) P(ξ0)
to get an approximate KKT point z0 := (x0, y0). Compute g(x0), find a matrix A0

which approximates g′(x0) andH0 ∈ Sn
+. Then, compute vectorm0 :=

(
g′(x0)−A0

)T
y0.

Set k := 0.
Iteration k (k = 0, 1, . . . ) For a given (zk, Ak, Hk), perform the three steps below:

Step 1. Get a new parameter value ξk+1 ∈ P .
Step 2. Solve the convex subproblem P(zk, Ak, Hk; ξk+1) to obtain a solution

xk+1 and the corresponding multiplier yk+1.
Step 3. Evaluate g(xk+1), update (or recompute) matrices Ak+1 and Hk+1 ∈ Sn

+.
Compute vector mk+1 := g′(xk+1)T yk+1 − AT

k+1y
k+1. Set k := k + 1 and go back to

Step 1.

The core step of Algorithm 1 is to solve the convex subproblem P(zk, Ak, Hk; ξ)
at each iteration. To reduce the computational time, we can either implement an
optimization method which exploits the structure of the problem or rely on several
efficient software tools that are available for convex optimization [9, 35, 36]. In this
paper, we are most interested in the case where one evaluation of g′ is very expensive.
A possibly simple choice of Hk is Hk = 0 for all k ≥ 0.

The initial point z0 is obtained by solving off-line P(ξ0). However, as we will show
later [Corollary 3.5], if we choose z0 close to the set of KKT points Z∗(ξ0) of P(ξ0)
(not necessarily an exact solution) then the new KKT point z1 of P(z0, A0, H0; ξ

1) is
still close to Z∗(ξ1) of P(ξ1) provided that ‖ξ1 − ξ0‖ is sufficiently small. Hence, in
practice, we only need to solve approximately problem P(ξ0) to get a starting point
z0.

In the NMPC framework, the parameter ξ usually coincides with the initial state
of the dynamic system at the current time of the moving horizon. If matrix Ak ≡
g′(xk), the exact Jacobian matrix of g at xk and Hk ≡ 0, then this algorithm collapses
to the real-time SCP method (RTSCP) considered in [46].

3. Contraction estimate. In this section, we will show that under certain as-
sumptions, the sequence {zk}k≥0 generated by Algorithm 1 remains close to the se-
quence of the true KKT points {z̄k}k≥0 of problem P(ξk). Without loss of generality,
we assume that the objective function f is linear, i.e. f(x) = cTx, where c ∈ R

n is
given. Indeed, since f is convex, by using a slack variable s, we can reformulate P(ξ)
as a nonlinear program min(x,s)

{
s | g(x) +Mξ = 0, x ∈ Ω, f(x) ≤ s

}
.
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3.1. KKT condition as a generalized equation. Let us first define the La-
grange function of problem P(ξ) as

L(x, y; ξ) := cTx+ (g(x) +Mξ)T y,

where y is the Lagrange multiplier associated with the constraint g(x) + Mξ = 0.
Since the constraint x ∈ Ω is convex and implicitly represented, we will consider it
separately. The KKT condition for P(ξ) is now written as

(3.1)

{

0 ∈ c+ g′(x)T y +NΩ(x),

0 = g(x) +Mξ,

where NΩ(x) is the normal cone of Ω at x defined as

(3.2) NΩ(x) :=

{{
u ∈ R

n | uT (x− v) ≥ 0, v ∈ Ω
}
, if x ∈ Ω

∅, otherwise.

Note that the first line of (3.1) implicitly includes the constraint x ∈ Ω.
A pair (x̄(ξ), ȳ(ξ)) satisfying (3.1) is called a KKT point of P(ξ) and x̄(ξ) is called

a stationary point of P(ξ) with the corresponding multiplier ȳ(ξ). Let us denote by
Z∗(ξ) and X∗(ξ) the set of KKT points and the set of stationary points of P(ξ),
respectively. In the sequel, we use the letter z for the pair of (x, y), i.e. z := (xT , yT )T .

Throughout this paper, we require the following assumptions which are standard
in optimization.

A1. The function g is twice differentiable on their domain.
A2. For a given ξ0 ∈ P, problem P(ξ0) has at least one KKT point z̄0, i.e.

Z∗(ξ0) 6= ∅.
Let us define

(3.3) F (z) :=

(
c+ g′(x)T y

g(x)

)

,

and K := Ω × R
m. Then, the KKT condition (3.1) can be expressed in terms of a

parametric generalized equation as follows:

(3.4) 0 ∈ F (z) + Cξ +NK(z),

where C :=
[

0
M

]
. Generalized equations are an essential tool to study many prob-

lems in nonlinear analysis, perturbation analysis, variational calculations as well as
optimization [8, 32, 39].

Suppose that, for some ξk ∈ P , the set of KKT points Z∗(ξk) of P(ξk) is nonempty.
For any fixed z̄k ∈ Z∗(ξk), we define the following set-valued mapping:

(3.5) L(z; z̄k, ξk) := F (z̄k) + F ′(z̄k)(z − z̄k) + Cξk +NK(z).

We also define the inverse mapping L−1 : Rn+m → R
n+m of L(·; z̄k, ξk) as follows:

(3.6) L−1(δ; z̄k, ξk) :=
{
z ∈ R

n+m : δ ∈ L(z; z̄k, ξk)
}
.

Now, we consider the KKT condition of the subproblem P(zk, Ak, Hk; ξ). For
given neighborhoods B(z̄k, rz) of z̄k and B(ξk, rξ) of ξk, and zk ∈ B(z̄k, rz), ξk+1 ∈
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B(ξk, rξ) and given matrices Ak and Hk ∈ Sn
+, let us consider the convex subprob-

lem P(zk, Ak, Hk; ξk+1) with respect to the parameter (zk, Ak, Hk, ξk+1). The KKT
condition of this problem is expressed as follows.

(3.7)

{

0 ∈ c+m(zk, Ak) +Hk(x− xk) +AT
k y +NΩ(x),

0 = g(xk) +Ak(x− xk) +Mξk+1,

where NΩ(x) is defined by (3.2). Suppose that the Slater constraint qualification
holds for the subproblem P(zk, Ak, Hk; ξk+1), i.e.:

ri(Ω) ∩
{
x ∈ R

n | g(xk) +Ak(x− xk) +Mξk+1 = 0
}
6= ∅,

where ri(Ω) is the relative interior of Ω. Then by convexity of Ω, a point zk+1 :=
(xk+1, yk+1) is a KKT point of P(zk, Ak, Hk; ξk+1) if and only if xk+1 is a solution to
P(zk, Ak, Hk; ξk+1) associated with the multiplier yk+1.

Since g is twice differentiable by Assumption A1 and f is linear, for a given
z = (x, y), we have

(3.8) ∇2
xL(z) =

m∑

i=1

yi∇2gi(x),

the Hessian matrix of the Lagrange function L, where ∇2gi(·) is the Hessian matrix
of gi (i = 1, . . . ,m). Let us define the following matrix:

(3.9) F̃ ′
k :=

[
Hk AT

k

Ak 0

]

,

where Hk ∈ Sn
+. The KKT condition (3.7) can be written as a parametric linear

generalized equation:

(3.10) 0 ∈ F (zk) + F̃ ′
k(z − zk) + Cξk+1 +NK(z),

where zk, F̃ ′
k and ξk+1 are considered as parameters. Note that if Ak = g′(xk) and

Hk = ∇2
xL(zk) then (3.10) is the linearization of the nonlinear generalized equation

(3.4) at (zk, ξk+1) with respect to z.
Remark 2. Note that (3.10) is a generalization of (1.2), where the approximate

Jacobian F̃ ′
k is used instead of the exact one. Therefore, (3.10) can be viewed as one

iteration of the inexact predictor-corrector path-following method for solving (3.4).

3.2. The strong regularity concept. We recall the following definition of the
strong regularity concept. This definition can be considered as the strong regularity
of the generalized equation (3.4) in the context of nonlinear optimization, see [38].

Definition 3.1. Let ξk ∈ P such that the set of KKT points Z∗(ξk) of P(ξk) is
nonempty. Let z̄k ∈ Z∗(ξk) be a given KKT point of P(ξk). Problem P(ξk) is said to
be strongly regular at z̄k if there exist neighborhoods B(0, r̄δ) of the origin and B(z̄k, r̄z)
of z̄k such that the mapping z∗k(δ) := B(z̄k, r̄z) ∩ L−1(δ; z̄k, ξk) is single-valued and
Lipschitz continuous in B(0, r̄δ) with a Lipschitz constant 0 < γ < +∞, i.e.

(3.11) ‖z∗k(δ)− z∗k(δ
′)‖ ≤ γ ‖δ − δ′‖ , ∀δ, δ′ ∈ B(0, r̄δ).

Note that the constants γ, r̄z and r̄δ in Definition 3.1 are global and do not depend
on the index k.
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From the definition of L−1 where strong regularity holds, there exists a unique
z∗k(δ) such that δ ∈ F (z̄k) + F ′(z̄k)(z∗k(δ)− z̄k) + Cξk +NK(z∗k(δ)). Therefore,

z∗k(δ) = (F ′(z̄k) +NK)−1
(
F ′(z̄k)z̄k − F (z̄k)− Cξk + δ

)

= J̄k
(
F ′(z̄k)z̄k − F (z̄k)− Cξk + δ

)
,

where J̄k := (F ′(z̄k)+NK)−1. The strong regularity of P(ξ) at z̄k is equivalent to the
single-valuedness and the Lipschitz continuity of J̄k around vk := F ′(z̄k)z̄k −F (z̄k)−
Cξk.

The strong regularity concept is widely used in variational analysis, perturbation
analysis as well as in optimization [8, 32, 39]. In view of optimization, strong regu-
larity implies the strong second order sufficient optimality condition (SSOSC) if the
linear independence constraint qualification (LICQ) holds [38]. If the convex set Ω is
polyhedral and the LICQ holds, then strong regularity is equivalent to SSOSC [19].
In order to interpret the strong regularity condition of P(ξk) at z̄k ∈ Z∗(ξk) in terms
of perturbed optimization, we consider the following optimization problem

(3.12)







min
x∈Rn

(c− δc)
Tx+ 1

2 (x− x̄k)T∇2
xL(x̄k, ȳk)(x− x̄k)

s.t. g(x̄k) + g′(x̄k)(x− x̄k) +Mξk = δg,

x ∈ Ω.

Here, δ = (δc, δg) ∈ B(0, r̄δ) is a perturbation. Problem P(ξk) is strongly regular at z̄k

if and only if (3.12) has a unique KKT point z∗k(δ) in B(z̄k, r̄z) and z∗k(·) is Lipschitz
continuous in B(0, r̄δ) with a Lipschitz constant γ.

Example.3.1. Let us recall example (1.3) in Section 1.1. The optimal multipliers
associated with two constraints x2

1+2x2+2−4ξ = 0 and x2
1−x2

2+1 ≤ 0 are y∗1 = (2
√
ξ−

1)[8
√

ξ2 − ξ
√
ξ]−1 > 0 and y∗2 = [8

√

ξ2 − ξ
√
ξ]−1 > 0, respectively. Since the last

inequality constraint is active while x ≥ 0 is inactive, we can easily compute the critical
cone as C(x∗

ξ , y
∗) = {(d1, 0) ∈ R

2 | x∗
ξ1d1 = 0}. The Hessian matrix ∇2

xL(x∗
ξ , y

∗) =
[
2(y∗

1+y∗

2 ) 0

0 −2y∗

2

]

of the Lagrange function L is positive definite in C(x∗
ξ , y

∗). Hence,

the second order sufficient optimality condition for (1.5) is satisfied. Moreover, y∗2 > 0
which says that the strict complementarity condition holds. Therefore, problem (1.5)
satisfies the the strong second order sufficient condition. On the other hand, it is easy
to check that the LICQ condition holds for (1.5) at x∗

ξ . By applying [38, Theorem
4.1], we can conclude that (1.3) is strongly regular at (x∗

ξ , y
∗). ⋄

The following lemma shows the nonemptiness of Z∗(ξ) in the neighborhood of ξk.
Lemma 3.2. Suppose that Assumption A1 is satisfied and Z∗(ξk) is nonempty

for a given ξk ∈ P. Suppose further that problem P(ξk) is strongly regular at z̄k for
a given z̄k ∈ Z∗(ξk). Then there exist neighborhoods B(ξk, rξ) of ξk and B(z̄k, rz) of
z̄k such that Z∗(ξk+1) is nonempty for all ξk+1 ∈ B(ξk, rξ) and Z∗(ξk+1) ∩ B(z̄k, rz)
contains only one point z̄k+1. Moreover, there exists a constant 0 ≤ σ̄ < +∞ such
that:

(3.13)
∥
∥z̄k+1 − z̄k

∥
∥ ≤ σ̄ ‖ξk+1 − ξk‖ .

Proof. Since the KKT condition of P(ξk) is equivalent to the generalized equation
(3.4) with ξ = ξk. By applying [38, Theorem 2.1] we conclude that there exist neigh-
borhoods B(ξk, rξ) of ξk and B(z̄k, rz) of z̄k such that Z∗(ξk+1) is nonempty for all
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ξk+1 ∈ B(ξk, rξ) and Z∗(ξk+1)∩B(z̄k, rz) contains only one point z̄k+1. On the other
hand, since

∥
∥F (z̄k) + Cξk − F (z̄k)− Cξk+1

∥
∥ = ‖M(ξk − ξk+1)‖ ≤ ‖M‖ ‖ξk+1 − ξk‖,

by using the formula [38, 2.4], we obtain the estimate (3.13).

3.3. A contraction estimate for APCSCP using an inexact Jacobian
matrix. In order to prove a contraction estimate for APCSCP, throughout this sec-
tion, we make the following assumptions.

A3. For a given z̄k ∈ Z∗(ξk), k ≥ 0, the following conditions are satisfied.
a) There exists a constant 0 ≤ κ < 1

2γ such that:

(3.14)
∥
∥
∥F ′(z̄k)− F̃ ′

k

∥
∥
∥ ≤ κ,

where F̃ ′
k is defined by (3.9).

b) The Jacobian mapping F ′(·) is Lipschitz continuous on B(z̄k, rz) around z̄k,
i.e. there exists a constant 0 ≤ ω < +∞ such that:

(3.15)
∥
∥F ′(z)− F ′(z̄k)

∥
∥ ≤ ω

∥
∥z − z̄k

∥
∥ , ∀z ∈ B(z̄k, rz).

Note that Assumption A3 is commonly used in the theory of Newton-type and
Gauss-Newton methods [12, 15], where the residual term is required to be sufficiently
small in a neighborhood of the local solution. From the definition of F̃ ′

k we have

F ′(z̄k)− F̃ ′
k =

[
∇2

xL(z̄k)−Hk g′(x̄k)T −AT
k

g′(x̄k)−Ak O

]

.

Hence,
∥
∥
∥F ′(z̄k)− F̃ ′

k

∥
∥
∥ depends on the norms of ∇2

xL(z̄k)−Hk and g′(x̄k)−Ak. These

quantities are the error of the approximations Hk and Ak to the Hessian matrix
∇2

xL(z̄k) and the Jacobian matrix g′(x̄k), respectively. On the one hand, Assumption
A3a) requires the positive definiteness of Hk to be an approximation of ∇2

xL (which
is not necessarily positive definite). On the other hand, it requires that matrix Ak is a
sufficiently good approximation to the Jacobian matrix g′ in the neighborhood of the
stationary point x̄k. Note that the matrix Hk in the Newton-type method proposed
in [7] is not necessarily positive definite.

Now, let us define the following mapping:

(3.16) Jk := (F̃ ′
k +NK)−1,

where F̃ ′
k is defined by (3.9). The lemma below shows that Jk is single-valued and

Lipschitz continuous in a neighbourhood of v̄k := F̃ ′
kz̄

k − F (z̄k)− Cξk.
Lemma 3.3. Suppose that Assumptions A1, A2 and A3a) are satisfied. Then

there exist neighborhoods B(ξk, rξ) and B(z̄k, rz) such that if we take any zk ∈ B(z̄k, rz)
and ξk+1 ∈ B(ξk, rξ) then the mapping Jk defined by (3.16) is single-valued in a

neighbourhood B(v̄k, rv), where v̄k := F̃ ′
k z̄

k − F (z̄k) − Cξk. Moreover, the following
inequality holds:

(3.17) ‖Jk(v)− Jk(v
′)‖ ≤ β ‖v − v′‖ , ∀v, v′ ∈ B(v̄k, rv),

where β := γ
1−γκ

> 0 is a Lipschitz constant.

Proof. Let us fix a neighbourhood B(v̄k, rv) of v̄k. Suppose for contradiction that
Jk is not single-valued in B(v̄k, rv), then for a given v the set Jk(v) contains at least
two points z and z′ such that ‖z − z′‖ 6= 0. We have

(3.18) v ∈ F̃ ′
kz +NK(z) and v ∈ F̃ ′

kz
′ +NK(z′).
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Let

δ := v − [F̃ ′
k z̄

k − F (z̄k)− Cξk] + [F ′(z̄k)− F̃ ′
k](z − z̄k),

and(3.19)
δ′ := v − [F̃ ′

kz̄
k − F (z̄k)− Cξk] + [F ′(z̄k)− F̃ ′

k](z
′ − z̄k).

Then (3.18) can be written as

δ ∈ F (z̄k) + F ′(z̄k)(z − z̄k) + Cξk +NK(z),
and(3.20)

δ′ ∈ F (z̄k) + F ′(z̄k)(z′ − z̄k) + Cξk +NK(z′).

Since v in the neighbourhood B(v̄k, rv) of v̄k := F̃ ′
k z̄

k − F (z̄k)− Cξk, we have

‖δ‖≤
∥
∥v − v̄k

∥
∥+

∥
∥
∥[F ′(z̄k)− F̃ ′

k](z − z̄k)
∥
∥
∥

≤ rv +
∥
∥
∥F

′(z̄k)− F̃ ′
k

∥
∥
∥

∥
∥z − z̄k

∥
∥

(3.14)

≤ rv + κ
∥
∥z − z̄k

∥
∥ .

From this inequality, we see that we can shrink B(z̄k, rz) and B(v̄k, rv) sufficiently
small (if necessary) such that ‖δ‖ ≤ r̄δ. Hence, δ ∈ B(0, r̄δ). Similarly, δ′ ∈ B(0, r̄δ).

Now, using the strong regularity assumption of P(ξk) at z̄
k, it follows from (3.20)

that

‖z − z′‖ ≤ γ ‖δ − δ′‖ .(3.21)

However, using (3.19), we have

‖δ − δ′‖=
∥
∥
∥[F ′(z̄k)− F̃ ′

k](z − z′)
∥
∥
∥

≤
∥
∥
∥F ′(z̄k)− F̃ ′

k

∥
∥
∥ ‖z − z′‖

(3.14)

≤ κ ‖z − z′‖ .

Plugging this inequality into (3.21) and then using the condition γκ < 1
2 < 1, we get

‖z − z′‖ < ‖z − z′‖ ,

which contradicts to z 6= z′. Hence, Jk is single-valued.
Finally, we prove the Lipschitz continuity of Jk. Let z = Jk(v) and z′ = Jk(v

′),
where v, v′ ∈ B(v̄k, rv). Similar to (3.20), these expressions can be written equivalently
to

δ ∈ F (z̄k) + F ′(z̄k)(z − z̄k) + Cξk +NK(z),
and(3.22)

δ′ ∈ F (z̄k) + F ′(z̄k)(z′ − z̄k) + Cξk +NK(z′),

where

δ := v − [F̃ ′
kz̄

k − F (z̄k)− Cξk] + [F ′(z̄k)− F̃ ′
k](z − z̄k),

and(3.23)
δ′ := v′ − [F̃ ′

k z̄
k − F (z̄k)− Cξk] + [F ′(z̄k)− F̃ ′

k](z
′ − z̄k).
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By using again the strong regularity assumption, it follows from (3.22) and (3.23)
that

‖z − z′‖≤ γ ‖δ − δ′‖
≤ γ ‖v − v′‖+ γ

∥
∥
∥[F ′(z̄k)− F̃ ′

k](z − z′)
∥
∥
∥

(3.14)

≤ γ ‖v − v′‖+ γκ ‖z − z′‖ .

Since γκ < 1
2 < 1, rearranging the last inequality we get

‖z − z′‖ ≤ γ

1− γκ
‖v − v′‖ ,

which shows that Jk satisfies (3.17) with a constant β := γ
1−γκ

> 0.

Let us recall that if zk+1 is a KKT of the convex subproblem P(zk, Ak, Hk; ξk+1)
then

0 ∈ F̃ ′
k(z

k+1 − zk) + F (zk) + Cξk+1 +NK(zk+1).

According to Lemma 3.3, if zk ∈ B(z̄k, rz) then problem P(zk, Ak, Hk; ξ) is uniquely
solvable. We can write its KKT condition equivalently as

(3.24) zk+1 = Jk

(

F̃ ′
kz

k − F (zk)− Cξk+1

)

.

Since z̄k+1 is the solution of (4.2) at ξk+1, we have 0 = F (z̄k+1) + Cξk+1 + ūk+1,
where ūk+1 ∈ NK(z̄k+1). Moreover, since z̄k+1 = Jk(F̃

′
kz̄

k+1 + ūk+1), we can write

(3.25) z̄k+1 = Jk

(

F̃ ′
kz̄

k+1 − F (z̄k+1)− Cξk+1

)

.

The main result of this section is stated in the following theorem.
Theorem 3.4. Suppose that Assumptions A1-A2 are satisfied for some ξ0 ∈ P.

Then, for k ≥ 0 and z̄k ∈ Z∗(ξk), if P(ξk) is strongly regular at z̄k then there exist
neighborhoods B(z̄k, rz) and B(ξk, rξ) such that:

a) The set of KKT points Z∗(ξk+1) of P(ξk+1) is nonempty for any ξk+1 ∈
B(ξk, rξ).

b) If, in addition, Assumption A3a) is satisfied then subproblem P(zk, Ak, Hk; ξk+1)
is uniquely solvable in the neighborhood B(z̄k, rz).

c) Moreover, if, in addition, Assumption A3b) is satisfied then the sequence
{zk}k≥0 generated by Algorithm 1, where ξk+1 ∈ B(ξk, rξ), guarantees

∥
∥zk+1 − z̄k+1

∥
∥≤

(
α+ c1

∥
∥zk − z̄k

∥
∥
) ∥
∥zk − z̄k

∥
∥

(3.26)
+ (c2 + c3 ‖ξk+1 − ξk‖) ‖ξk+1 − ξk‖ ,

where 0 ≤ α < 1, 0 ≤ ci < +∞, i = 1, . . . , 3 and c2 > 0 are given constants
and z̄k+1 ∈ Z∗(ξk+1).

Proof. We prove the theorem by induction. For k = 0, we have Z∗(ξ0) is nonempty
by Assumption A2. Now, we assume Z∗(ξk) is nonempty for some k ≥ 0. We will
prove that Z∗(ξk+1) is nonempty for some ξk+1 ∈ B(ξk, rξ), a neighborhood of ξk.

Indeed, since Z∗(ξk) is nonempty for some ξk ∈ P , we take an arbitrary z̄k ∈
Z∗(ξk) such that P(ξk) is strong regular at z̄k. Now, by applying Lemma 3.2 to
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problem P(ξk), then we conclude that there exist neighborhoods B(z̄k, rz) of z̄k and
B(ξk, rξ) of ξk such that Z∗(ξk+1) is nonempty for any ξk+1 ∈ B(ξk, rξ).

Next, if, in addition, Assumption A3a) holds then the conclusions of Lemma 3.3
hold. By induction, we conclude that the convex subproblem P(z̄k, Ak, ξk) is uniquely
solvable in B(z̄k, rz) for any ξk+1 ∈ B(ξk, rξ).

Finally, we prove inequality (3.26). From (3.24), (3.25) and the mean-value the-
orem and Assumption A3b), we have

∥
∥zk+1−z̄k+1

∥
∥
(3.24)
=

∥
∥
∥Jk

(

(F̃ ′
kz

k − F (zk)− Cξk+1

)

− z̄k+1
∥
∥
∥

(3.25)
=

∥
∥
∥Jk

(

F̃ ′
kz

k − F (zk)− Cξk+1

)

− Jk

(

F̃ ′
kz̄

k+1 − F (z̄k+1)− Cξk+1

)∥
∥
∥

(3.17)

≤ β
∥
∥
∥F̃

′
k(z

k − z̄k+1)− F (zk) + F (z̄k+1)
∥
∥
∥

= β
∥
∥
∥

[

F̃ ′
k(z

k−z̄k)−F (zk)+F (z̄k)
]

+
[

F (z̄k+1)−F (z̄k)−F̃ ′
k(z̄

k+1−z̄k)
]∥
∥
∥

(3.27)

≤ β

∥
∥
∥
∥
[F̃ ′

k − F ′(z̄k)](zk − z̄k)−
∫ 1

0

[F ′(z̄k+t(zk−z̄k))−F ′(z̄k)](zk−z̄k)dt

∥
∥
∥
∥

+β

∥
∥
∥
∥
[F̃ ′

k−F ′(z̄k)](z̄k+1−z̄k)−
∫ 1

0

[F ′(z̄k+t(z̄k+1−z̄k))−F ′(z̄k)](zk+1−z̄k)dt

∥
∥
∥
∥

(3.14)+(3.15)

≤ β
(

κ+
ω

2

∥
∥zk − z̄k

∥
∥

) ∥
∥zk − z̄k

∥
∥

+β
(

κ+
ω

2

∥
∥z̄k+1 − z̄k

∥
∥

)∥
∥z̄k+1 − z̄k

∥
∥ .

By substituting (3.13) into (3.27) we obtain

∥
∥zk+1 − z̄k+1

∥
∥≤ β

(

κ+
ω

2

∥
∥zk − z̄k

∥
∥

) ∥
∥zk − z̄k

∥
∥

+β

(

κσ̄ +
ωσ̄2

2
‖ξk+1 − ξk‖

)

‖ξk+1 − ξk‖ .

If we define α := βκ = γκ
1−γκ

< 1 due to A3a), c1 := γω
2(1−γκ) ≥ 0, c2 := γκσ̄

1−γκ
> 0 and

c3 := γωσ̄2

2(1−γκ) ≥ 0 as four given constants then the last inequality is indeed (3.26).

The following corollary shows the stability of the approximate sequence {zk}k≥0

generated by Algorithm 1.
Corollary 3.5. Under the assumptions of Theorem 3.4, there exists a positive

number 0 < rz < r̄z := (1 − α)c−1
1 such that if the initial point z0 in Algorithm 1 is

chosen such that
∥
∥z0 − z̄0

∥
∥ ≤ rz, where z̄0 ∈ Z∗(ξ0) then, for any k ≥ 0, we have

(3.28)
∥
∥zk+1 − z̄k+1

∥
∥ ≤ rz ,

provided that ‖ξk+1 − ξk‖ ≤ rξ, where z̄k+1 ∈ Z∗(ξk+1) and 0 < rξ ≤ r̄ξ with

r̄ξ :=

{

(2c3)
−1

[√

c22 + 4c3rz(1− α− c1rz)− c2

]

if c3 > 0,

c−1
2 rz(1− α− c1rz) if c3 = 0.

Consequently, the error sequence {ek}k≥0, where ek :=
∥
∥zk − z̄k

∥
∥, between the exact

KKT point z̄k and the approximate KKT point zk of P(ξk) is bounded.
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Proof. Since 0 ≤ α < 1, we have r̄z := (1−α)c−1
1 > 0. Let us choose rz such that

0 < rz < r̄z. If z
0 ∈ B(z̄0, rz), i.e.

∥
∥z0 − z̄0

∥
∥ ≤ rz , then it follows from (3.26) that

∥
∥z1 − z̄1

∥
∥ ≤ (α+ c1rz)rz + (c2 + c3 ‖ξ1 − ξ0‖) ‖ξ1 − ξ0‖ .

In order to ensure
∥
∥z1 − z̄1

∥
∥ ≤ rz , we need (c2 + c3 ‖ξ1 − ξ0‖) ‖ξ1 − ξ0‖ ≤ ρ :=

(1 − α − c1rz)rz . Since 0 < rz < r̄z , ρ > 0. The last condition leads to ‖ξ1 − ξ0‖ ≤
(2c3)

−1(
√

c22 + 4c3ρ− c2) if c3 > 0 and ‖ξ1 − ξ0‖ ≤ c−1
2 rz(1− α− c1rz) if c3 = 0. By

induction, we conclude that inequality (3.28) holds for all k ≥ 0.

The conclusion of Corollary 3.5 is illustrated in Figure 3.1, where the approximate
sequence {zk}k≥0 computed by Algorithm 1 remains close to the sequence of the true
KKT points {z̄k}k≥0 if the starting point z0 is sufficiently close to z̄0.

✻
z̄(ξ)

✲ξ

✡
✡✡

♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

✭✭✭✭✭

♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

r

r

r

r

r

r

r

r

♣ ♣
♣ ♣
♣ ♣
♣ ♣
♣ ♣
♣ ♣
♣ ♣
♣ ♣

ξ0 ξ1 ξk ξk+1

z0

z̄0

zk

z̄k

zk+1

z̄k+1

0

[1]{
} [2]

︷ ︸︸ ︷
[4]

[3]{
✻

❄
B(z̄k, rz)

✲✛B(ξk, rξ)

[1] :
∥
∥
∥z

k − z̄k
∥
∥
∥

[2] :
∥
∥
∥z

k+1 − z̄k+1
∥
∥
∥

[3] :
∥
∥
∥z̄

k+1 − z̄k
∥
∥
∥

[4] : ‖ξk+1 − ξk‖

KKT point sequence z̄k

Approximate sequence {zk}

Fig. 3.1. The approximate sequence {zk}k≥0 along the trajectory z̄(·) of the KKT points.

3.4. A contraction estimate for APCSCP using an exact Jacobian ma-
trix. If Ak ≡ g′(xk) then the correction vector mk = 0 and the convex subproblem
P(zk, Ak, Hk; ξ) collapses to the following one:

P(xk, Hk; ξ)







min
x∈Rn

{

cTx+ 1
2 (x− xk)THk(x − xk)

}

s.t. g(xk) + g′(xk)(x − xk) +Mξ = 0,
x ∈ Ω.

Note that problem P(xk, Hk; ξ) does not depend on the multiplier yk if we choose
Hk independently of yk. We refer to a variant of Algorithm 1 where we use the con-
vex subproblem P(xk, Hk; ξ) instead of P(zk, Ak, Hk; ξ) as a predictor-corrector SCP
algorithm (PCSCP) for solving a sequence of the optimization problems {P(ξk)}k≥0.

Instead of Assumption A3a) in the previous section, we make the following as-
sumption.

A3’. There exists a constant 0 ≤ κ̃ < 1
2γ such that

(3.29)
∥
∥∇2

xL(z̄k)−Hk

∥
∥ ≤ κ̃, ∀k ≥ 0.

where ∇2
xL(z) defined by (3.8).

AssumptionA3’ requires that the approximationHk to the Hessian matrix∇2
xL(z̄k)

of the Lagrange function L at z̄k is sufficiently close. Note that matrix Hk in the
framework of the SSDP method in [11] is not necessarily positive definite.
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Example.3.5. Let us continue analyzing example (1.3). The Hessian matrix of the
Lagrange function L associated with the equality constraint x2

1 + 2x2 + 2 − 4ξ = 0

is ∇2
xL(x∗

ξ , y
∗
1) =

[
2y∗

1 0
0 0

]

, where y∗1 is the multiplier associated with the equality

constraint at x∗
ξ . Let us choose a positive semidefinite matrix Hk :=

[
h11 0
0 0

]
, where

h11 ≥ 0, then
∥
∥
∥∇2

xL(x∗
ξ , y

∗
1)−Hk

∥
∥
∥ = |y∗1 − h11|. Since y∗1 ≥ 0, for an arbitrary κ̃ > 0,

we can choose h11 ≥ 0 such that |h11 − y∗1 | ≤ κ̃. Consequently, the condition (3.29)
is satisfied. In the example (1.3) of Subsection 1.5, we choose h11 = 0. ⋄

The following theorem shows the same conclusions as in Theorem 3.4 and Corol-
lary 3.5 for the predictor-corrector SCP algorithm.

Theorem 3.6. Suppose that Assumptions A1-A2 are satisfied for some ξ0 ∈ P.
Then, for k ≥ 0 and z̄k ∈ Z∗(ξk), if P(ξk) is strongly regular at z̄k then there exist
neighborhoods B(z̄k, rz) and B(ξk, rξ) such that:

a) The set of KKT points Z∗(ξk+1) of P(ξk+1) is nonempty for any ξk+1 ∈
B(ξk, rξ).

b) If, in addition, Assumption A3’ is satisfied then subproblem P(xk, Hk; ξk+1)
is uniquely solvable in the neighborhood B(z̄k, rz).

c) Moreover, if, in addition, Assumption A3b) then the sequence {zk}k≥0 gen-
erated by the PCSCP, where ξk+1 ∈ B(ξk, rξ), guarantees the following in-
equality:

∥
∥zk+1 − z̄k+1

∥
∥≤

(
α̃+ c̃1

∥
∥zk − z̄k

∥
∥
) ∥
∥zk − z̄k

∥
∥

+(c̃2 + c̃3 ‖ξk+1 − ξk‖) ‖ξk+1 − ξk‖ ,(3.30)

where 0 ≤ α̃ < 1, 0 ≤ c̃i < +∞, i = 1, · · · , 3 and c̃2 > 0 are given constants
and z̄k+1 ∈ Z∗(ξk+1).

d) If the initial point z0 in the PCSCP is chosen such that
∥
∥z0 − z̄0

∥
∥ ≤ r̃z, where

z̄0 ∈ Z∗(ξ0) and 0 < r̃z < ˜̄rz := c̃−1
1 (1− α̃), then:

(3.31)
∥
∥zk+1 − z̄k+1

∥
∥ ≤ r̃z ,

provided that ‖ξk+1 − ξk‖ ≤ r̃ξ with 0 < r̃ξ ≤ ¯̃rξ,

¯̃rξ :=

{

(2c̃3)
−1

[√

c̃22 + 4c̃3r̃z(1− α̃− c̃1r̃z)− c̃2

]

if c̃3 > 0,

c̃−1
2 r̃z(1− α̃− c̃1r̃z) if c̃3 = 0.

Consequently, the error sequence {
∥
∥zk − z̄k

∥
∥}k≥0 between the exact KKT

point z̄k and the approximation KKT point zk of P(ξk) is still bounded.
Proof. The statement a) of Theorem 3.6 follows from Theorem 3.4. We prove b).

Since Ak ≡ g′(xk), the matrix F̃ ′
k defined in (3.9) becomes

ˆ̃
F ′
k :=

[
Hk g′(xk)

g′(xk) 0

]

,

Moreover, since g is twice differentiable due to Assumption A1, g′ is Lipschitz contin-
uous with a Lipschitz constant Lg ≥ 0 in B(x̄k, rz). Therefore, by Assumption A3’,
we have

∥
∥
∥F ′(z̄k)− ˆ̃

F ′
k

∥
∥
∥

2

=

∥
∥
∥
∥

[
∇2

xL(z̄k) g′(x̄k)T − g′(xk)T

g′(x̄k)− g′(xk) 0

]∥
∥
∥
∥

2

≤
∥
∥∇2

xL(z̄k)−Hk

∥
∥
2
+ 2

∥
∥g′(xk)− g′(x̄k)

∥
∥
2

(3.32)

≤ κ̃2 + 2L2
g

∥
∥xk − x̄k

∥
∥
2
.
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Since κ̃γ < 1
2 , we can shrink B(z̄k, rz) sufficiently small such that

γ
√

κ̃2 + 2L2
gr

2
z <

1

2
.

If we define κ̃1 :=
√

κ̃2 + 2L2
gr

2
z ≥ 0 then the last inequality and (3.32) imply

(3.33)
∥
∥
∥F

′(z̄k)− ˆ̃
F ′
k

∥
∥
∥ ≤ κ̃1,

where κ̃1γ < 1
2 . Similar to the proof of Lemma 3.3, we can show that the mapping

Ĵk := ( ˆ̃F ′
k+NK)−1 is single-valued and Lipschitz continuous with a Lipschitz constant

β̃ := γ(1−γκ̃1)
−1 > 0 in B(z̄k, rz). Consequently, the convex problem P(xk, Hk; ξk+1)

is uniquely solvable in B(z̄k, rz) for all ξk+1 ∈ B(ξk, rξ), which proves b).
With the same argument as the proof of Theorem 3.4, we can also prove the

following estimate
∥
∥zk+1 − z̄k

∥
∥ ≤

(
α̃k + c̃1

∥
∥zk − z̄k

∥
∥
) ∥
∥zk − z̄k

∥
∥+ (c̃2 + c̃3 ‖ξk+1 − ξk‖) ‖ξk+1 − ξk‖ ,

where α̃ := γκ̃1(1 − γκ̃1)
−1 ∈ [0, 1), c̃1 := γω(2 − 2γκ̃1)

−1 ≥ 0, c̃2 := γκ̃1σ̄(1 −
1γκ̃1)

−1 > 0 and c̃3 := γωσ̄2(2−2γκ̃1)
−1 ≥ 0. The remaining statements of Theorem

3.6 are proved similarly to the proofs of Theorem 3.4 and Corollary 3.5.
Remark on updating matrices Ak and Hk. In the adjoint-based predictor-corrector

SCP algorithm, an approximate matrix Ak of g′(xk) and a vector mk = (g′(xk) −
Ak)

T yk are required at each iteration such that they maintain Assumption A3. Sup-
pose that the initial approximation A0 is known. For given zk and Ak, k ≥ 0, we
need to compute Ak+1 and mk+1 in an efficient way. If

∥
∥Ak − g′(x̄k+1)

∥
∥ is still small

then we can even use the same matrix Ak for the next iteration, i.e. Ak+1 = Ak due
to Assumption A3 (see Section 5). Otherwise, matrix Ak+1 can be constructed in
different ways, e.g. by using low-rank updates or by a low accuracy computation. As
by an inexactness computation, we can either use the two sided rank-1 updates (TR1)
[18, 26] or the Broyden formulas [41]. However, it is important to note that the use of
the low-rank update for matrix Ak might destroy possible sparsity structure of matrix
Ak. Then high-rank updates might be an option [6, 25].

In Algorithm 1 we can set matrix Hk = 0 for all k ≥ 0. However, this matrix
can be updated at each iteration by using BFGS-type formulas or the projection of
∇2

xL(zk) onto Sn
+.

4. Applications in nonlinear programming. If the set of parameters Σ col-
lapses to one point, i.e. Σ := {ξ} then, without loss of generality, we assume that
ξ = 0 and problem P(ξ) is reduced to a nonlinear programming problem of the form:

(P)







min
x∈Rn

f(x) := cTx

s.t. g(x) = 0,
x ∈ Ω,

where c, g and Ω are as in P(ξ). In this section we develop local optimization algo-
rithms for solving (P).

The KKT condition for problem (P) is expressed as:

(4.1)

{

0 ∈ c+ g′(x)T y +NΩ(x),

0 = g(x),
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where NΩ(x) defined by (3.2). A pair ẑ := (x̂T , ŷT )T satisfying (4.1) is called a
KKT point, x̂ is called a stationary point and ŷ is the corresponding multiplier of
(P), respectively. We denote by Ẑ∗ the set of the KKT points and by Ŝ∗ the set of
stationary points of (P).

Now, with the mapping F defined as (3.3), the KKT condition (4.1) can be
reformulated as a generalized equation:

(4.2) 0 ∈ F (z) +NK(z),

where K = Ω× R
m as before and NK(z) is the normal cone of K at z.

The subproblem P(zk, Ak, Hk; ξ) in Algorithm 1 is reduced to

P(zj, Aj , Hj)







min
x∈Rn

cTx+ (mj)T (x− xj) + 1
2 (x− xj)THj(x− xj)

s.t. g(xj) +Aj(x− xj) = 0,
x ∈ Ω.

Here, we use the index j in the algorithms for the nonparametric problems (see below)
to distinguish from the index k in the parametric cases.

In order to adapt to the theory in the previous sections, we only consider the
full-step algorithm for solving (P) which is called full-step adjoint-based sequential
convex programming is described as follows.

Algorithm 2. (Full-step adjoint-based SCP algorithm (FASCP))

Initialization. Find an initial guess x0 ∈ Ω and y0 ∈ R
m, a matrix A0 approxi-

mated to g′(x0) and H0 ∈ Sn
+. Set m

0 := (g′(x0)−A0)
T y0 and j := 0.

Iteration j. For a given (zj, Aj , Hj), perform the following steps:

Step 1. Solve the convex subproblem P(zj, Aj , Hj) to obtain a solution x
j+1
t and

the corresponding multiplier yj+1.

Step 2. If
∥
∥
∥x

j+1
t − xj

∥
∥
∥ ≤ ε, for a given tolerance ε > 0, then: terminate. Other-

wise, compute the search direction ∆xj := x
j+1
t − xj .

Step 3. Update xj+1 := xj + ∆xj . Evaluate the function value g(xj+1), update
(or recompute) matrices Aj+1 and Hj+1 ∈ Sn

+ (if necessary) and the correction vector
mj+1. Increase j by 1 and go back to Step 1.

The following corollary shows that the full-step adjoint-based SCP algorithm generates
an iterative sequence that converges linearly to a KKT point of (P).

Corollary 4.1. Let Ẑ∗ 6= ∅ and ẑ∗ ∈ Ẑ∗. Suppose that Assumption A1
holds and that problem (P) is strongly regular at ẑ∗ (in the sense of Definition 3.1).
Suppose further that Assumption A3a) is satisfied in B(ẑ∗, r̂z). Then there exists a
neighborhood B(ẑ∗, rz) of ẑ∗ such that, in this neighborhood, the convex subproblem
P(xj , Aj , Hj) has a unique KKT point zj+1 for any zj ∈ B(ẑ∗, rz). Moreover, if, in
addition, Assumption A3b) holds then the sequence {zj}j≥0 generated by Algorithm
2 starting from z0 ∈ B(ẑ∗, rz) satisfies

(4.3)
∥
∥zj+1 − ẑ∗

∥
∥ ≤ (α̂ + ĉ1

∥
∥zj − ẑ∗

∥
∥)

∥
∥zj − ẑ∗

∥
∥ , ∀j ≥ 0,

where 0 ≤ α̂ < 1 and 0 ≤ ĉ1 < +∞ are given constants. Consequently, this sequence
converges linearly to ẑ∗, the unique KKT point of (P) in B(ẑ∗, rz).

Proof. The estimate (4.3) follows directly from Theorem 3.4 by taking ξk = 0 for
all k. The remaining statement is a consequence of (4.3).
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If Aj = g′(xj) then the convex subproblem P(zj, Aj , Hj) in Algorithm 2 is reduced
to:

P(xj , Hj)







min
x∈Rn

{
cTx+ 1

2 (x − xj)THj(x− xj)
}

s.t. g(xj) + g′(xj)(x − xj) = 0,
x ∈ Ω.

The local convergence of the full-step SCP algorithm considered in [44] follows from
Theorem 3.6 as a consequence, which is restated in the following corollary.

Corollary 4.2. Suppose that Assumption A1 holds and problem (P) is strongly
regular at a KKT point ẑ∗ ∈ Ẑ∗ (in the sense of Definition 3.1). Suppose further that
Assumptions A3’ and A3b) are satisfied. Then there exists a neighborhood B(ẑ∗, rz)
of ẑ∗ such that the full-step SCP algorithm starting from x0 with (x0, y0) ∈ B(ẑ∗, rz)
generates a sequence {zj}j≥0 satisfying:

∥
∥zj+1 − ẑ∗

∥
∥ ≤ (ᾰ+ c̆1

∥
∥zj − ẑ∗

∥
∥)

∥
∥zj − ẑ∗

∥
∥ ,

where ᾰ ∈ [0, 1) and c̆1 ∈ [0,+∞) are constants and zj+1 is a unique KKT point of
the subproblem P(xj , Hj). As a consequence, the sequence {zj} converges linearly to
ẑ∗, the unique KKT point of (P) in B(ẑ∗, rz).

Finally, it is necessary to remark that if Ω is a polyhedral convex set in R
n, i.e.

Ω is the intersection of finitely many closed half spaces of Rn, then problem (P) also
covers the standard nonlinear programming problem. It was proved in [19] that if Ω
is polyhedral convex and the constraint qualification (LICQ) holds then the strong
regularity concept coincides with the strong second order sufficient condition (SSOSC)
for (P). In this case, by an appropriate choice of Hk, the SCP algorithm collapses
to the constrained Gauss-Newton method which has been widely used in numerical
solution of optimal control problems, see, e.g. [6].

5. Numerical Results. In this section we implement the algorithms proposed
in the previous sections to solve the model predictive control problem of a hydro power
plant.

5.1. Dynamic model. We consider a hydro power plant composed of several
subsystems connected together. The system includes six dams with turbines Di (i =
1, . . . , 6) located along a river and three lakes L1, L2 and L3 as visualized in Fig. 5.1.
U1 is a duct connecting lakes L1 and L2. T1 and T2 are ducts equipped with turbines
and C1 and C2 are ducts equipped with turbines and pumps. The flows through the
turbines and pumps are the controlled variables. The complete model with all the
parameters can be found in [40].

The dynamics of the lakes is given by

(5.1)
∂h(t)

∂t
=

qin(t)− qout(t)

S
,

where h(t) is the water level and S is the surface area of the lakes; qin and qout are the
input and output flows, respectively. The dynamics of the reaches Ri (i = 1, . . . , 6) is
described by the one-dimensional Saint-Venant partial differential equation:

(5.2)

{
∂q(t,y)

∂y
+ ∂s(t,y)

∂t
= 0,

1
g

∂
∂t

(
q(t,y)
s(t,y)

)

+ 1
2g

∂
∂y

(
q2(t,y)
s2(t,y)

)

+ ∂h(t,y)
∂y

+ If (t, y)− I0(y) = 0.
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D3

R4D4

R5D5

R6D6

C1

T1

C2

T2

U1

qtributary

Fig. 5.1. Overview of the hydro power plant.

Here, y is the spatial variable along the flow direction of the river, q is the river flow (or
discharge), s is the wetted surface, h is the water level with respect to the river bed,
g is the gravitation acceleration, If is the friction slope and I0 is the river bed slope.
The partial differential equation (5.2) can be discretized by applying the method of
lines in order to obtain a system of ordinary differential equations. Stacking all the
equations together, we represent the dynamics of the system by

(5.3) ẇ(t) = f(w, u),

where the state vector w ∈ Rnw includes all the flows and the water levels and
u ∈ Rnu represents the input vector. The dynamic system consists of nw = 259 states
and nu = 10 controls. The control inputs are the flows going in the turbines, the
ducts and the reaches.

5.2. Nonlinear MPC formulation. We are interested in the following NMPC
setting:

(5.4)

min
w,u

J(w(·), u(·))
s.t. ẇ = f(w, u), w(t) = w0(t),

u(τ) ∈ U, w(τ) ∈ W, τ ∈ [t, t+ T ]
w(t+ T ) ∈ RT ,

where the objective function J(w(·), u(·)) is given by

J(w(·), u(·)) :=
∫ t+T

t

[
(w(τ) − ws)

TP (w(τ) − ws) + (u(τ)− us)
TQ(u(τ)− us)

]
dτ

(5.5)
+ (w(t + T )− ws)

TS(x(t+ T )− ws).

Here P,Q and S are given symmetric positive definite weighting matrices, and (ws, us)
is a steady state of the dynamics (5.3). The control variables are bounded by lower
and upper bounds, while some state variables are also bounded and the others are
unconstrained. Consequently, W and U are boxes in R

nw and R
nu , respectively, but

W is not necessarily bounded. The terminal regionRT is a control-invariant ellipsoidal
set centered at ws of radius r > 0 and scaling matrix S, i.e.:

(5.6) RT :=
{
w ∈ R

nw | (w − ws)
TS(w − ws) ≤ r

}
.
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To compute matrix S and the radius r in (5.6) the procedure proposed in [10] can be
used. In [28] it has been shown that the receding horizon control formulation (5.4)
ensures the stability of the closed-loop system under mild assumptions. Therefore,
the aim of this example is to track the steady state of the system and to ensure the
stability of the system by satisfying the terminal constraint along the moving horizon.
To have a more realistic simulation we added a disturbance to the input flow qin at
the beginning of the reach R1 and the tributary flow qtributary.

The matrices P and Q have been set to

P := diag

(
0.01

(ws)2i + 1
: 1 ≤ i ≤ nw

)

,

Q := diag

(
4

(ul + ub)2i + 1
: 1 ≤ i ≤ nu

)

,

where ul and ub is the lower and upper bound of the control input u.

5.3. A short description of the multiple shooting method. We briefly
describe the multiple shooting formulation [6] which we use to discretize the continu-
ous time problem (5.4). The time horizon [t, t+ T ] of T = 4 hours is discretized into
Hp = 16 shooting intervals with ∆τ = 15 minutes such that τ0 = t and τi+1 := τi+∆τ

(i = 0, . . . , Hp − 1). The control u(·) is parametrized by using a piecewise constant
function u(τ) = ui for τi ≤ τ ≤ τi +∆τ (i = 0, . . . , Hp − 1).

Let us introduce Hp+1 shooting node variables si (i = 0, . . . , Hp). Then, by inte-
grating the dynamic system ẇ = f(w, u) in each interval [τi, τi +∆τ ], the continuous
dynamic (5.3) is transformed into the nonlinear equality constraints of the form:

(5.7) g(x) +Mξ :=







s0 − ξ

w(s0, u0)− s1
. . .

w(sHp−1, uHp−1)− sHp






= 0.

Here, vector x combines all the controls and shooting node variables ui and si as
x = (sT0 , u

T
0 , . . . , s

T
Hp−1, u

T
Hp−1, s

T
Hp

)T , ξ is the initial state w0(t) which is considered

as a parameter, and w(ui, wi) is the result of the integration of the dynamics from τi
to τi +∆τ where we set u(τ) = ui and w(τi) = si.

The objective function (5.5) is approximated by

f(x):=

Hp−1
∑

i=0

[
(si − ws)

TP (si − ws) + (ui − us)
TQ(ui − us)

]

(5.8)
+(sHp

− ws)
TS(sHp

− ws),

while the constraints are imposed only at τ = τi, the beginning of the intervals, as

(5.9) si ∈ W, ui ∈ U, sHp
∈ RT , (i = 0, . . . , Hp − 1).

If we define Ω := UHp ×(WHp ×RT ) ⊂ R
nx then Ω is convex. Moreover, the objective

function (5.8) is convex quadratic. Therefore, the resulting optimization problem is
indeed of the form P(ξ). Note that Ω is not a box but a curved convex set due to RT .

The nonlinear program to be solved at every sampling time has 4563 decision
variables and 4403 equality constraints, which are expensive to evaluate due to the
ODE integration.
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5.4. Numerical simulation. Before presenting the simulation results, we give
some details on the implementation. To evaluate the performance of the methods
proposed in this paper we implemented the following algorithms:

• Full-NMPC – the nonlinear program obtained by multiple shooting is solved
at every sampling time to convergence by several SCP iterations.

• PCSCP – the implementation of Algorithm 1 using the exact Jacobian matrix
of g.

• APCSCP – the implementation of Algorithm 1 with approximated Jacobian
of g. MatrixAk is fixed atAk = g′(x0) for all k ≥ 0, where x0 is approximately
computed off-line by performing the SCP algorithm (Algorithm 2) to solve
the nonlinear programming P(ξ) with ξ = ξ0 = w0(t).

• RTGN – the solution of the nonlinear program is approximated by solving
a quadratic program obtained by linearizing the dynamics and the terminal
constraint sHp

∈ RT . The exact Jacobian g′(·) of g is used. This method can
be referred to as a classical real-time iteration [16] based on the constrained
Gauss-Newton method [6, 12].

To compute the set RT a mixed Matlab and C++ code has been used. The computed
value of r is 1.687836, while the matrix S is dense, symmetric and positive definite.

The quadratic programs (QPs) and the quadratically constrained quadratic pro-
gramming problems (QCQPs) arising in the algorithms we implemented can be ef-
ficiently solved by means of interior point or other methods [9, 35]. In our imple-
mentation, we used the commercial solver CPLEX which can deal with both types of
problems.

All the tests have been implemented in C++ running on a 16 cores workstation
with 2.7GHz Intel R©Xeron CPUs and 12 GB of RAM. We used CasADi, an open
source C++ package [1] which implements automatic differentiation to calculate the
derivatives of the functions and offers an interface to CVODES from the Sundials pack-
age [42] to integrate the ordinary differential equations and compute the sensitivities.
The integration has been parallelized using openmp.

In the full-NMPC algorithm we perform at most 5 SCP iterations for each time
interval. We stopped the SCP algorithm when the relative infinity-norm of the search
direction as well as of the feasibility gap reached the tolerance ε = 10−3. To have a
fair comparison of the different methods, the starting point x0 of the PCA, APCA
and RTGN algorithms has been set to the solution of the first full-NMPC iteration.

The disturbance on the flows qin and qtributary are generated randomly and varying
from 0 to 30 and 0 to 10, respectively. All the simulations are perturbed at the same
disturbance scenario.

We simulated the algorithms for Hm = 30 time intervals. The average time
required by the four methods is summarized in Table 5.1. Here, AvEvalTime is the

Table 5.1

The average time of four methods

Methods AvEvalTime[s] AvSolTime[s] AvAdjDirTime[s] Total[s]

Full-NMPC 220.930 (91.41%) 20.748 (8.58%) - 241.700
PCSCP 70.370 (90.05%) 7.736 (9.90%) - 78.142
RTGN 70.588 (96.97%) 2.171 (2.98%) - 72.795
APCSCP 0.458 ( 3.28%) 11.367 (81.34%) 2.122 (15.18%) 13.975

average time in seconds needed to evaluate the function g and its Jacobian; AvSolTime



22 D.Q. TRAN, C. SAVORGNAN AND M. DIEHL

is the average time for solving the QP or QCQP problems; AvAdjTime is the average
time for evaluating the adjoint direction g′(xk)T yk in Algorithm 1; Total corresponds
to the sum of the previous terms and some preparation time. On average, the full-
NMPC algorithm needed 3.27 iterations to converge to a solution.

It can be seen from Table 5.1 that evaluating the function and its Jacobian matrix
costs 90%− 97% of the total time. On the other hand, solving a QCQP problem is
almost 3− 5 times more expensive than solving a QP problem. The computationally
expensive step at every iteration is the integration of the dynamics and its lineariza-
tion. The computational time of PCSCP and RTGN is almost similar, while the time
consumed in APCSCP is about 6 times less than PCSCP.

The closed-loop control profiles of the simulation are illustrated in Figures 5.2
and 5.3. Here, the first figure shows the flows in the turbines and the ducts of lakes
L1 and L2, while the second one plots the flows to be controlled in the reaches Ri

(i = 1, . . . , 6). We can observe that the control profiles achieved by PCSCP as well
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Fig. 5.2. The controller profiles qT1
, qC1

, qT2
and qC1

.

as APCSCP are close to the profiles obtained by Full-NMPC, while the results from
RTGN oscillate in the first intervals due to the violation of the terminal constraint.
The terminal constraint in the PCSCP is active in many iterations.

Figure 5.4 shows the relative tracking error of the solution of the nonlinear pro-
gramming problem of the PCSCP, APCSCP and RTGN algorithms when compared
to the full-NMPC one. The error is quite small in PCSCP and APCSCP while it
is higher in the RTGN algorithm. This happens because the linearization of the
quadratic constraint can not adequately capture the shape of the terminal constraint
sN ∈ RT . The performance of APCSCP is nearly as good as PCSCP. This feature
confirms the statement of Corollary 3.5.

6. Conclusions. We have proposed an adjoint-based predictor-corrector SCP
algorithm and its variants for solving parametric optimization problems as well as
nonlinear optimization problems. We proved the stability of the tracking error for the
online SCP algorithms and the local convergence of the SCP algorithms. These meth-
ods are suitable for nonconvex problems that possess convex substructures which can
be efficiently handled by using convex optimization techniques [45]. The performance
of the algorithms is validated by a numerical implementation of an application in non-
linear model predictive control. The basic assumptions used in our development are
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Fig. 5.4. The relative errors of PCSCP, APCSCP and RTGN compared to Full-NMPC.

the strong regularity, Assumption A3b) and Assumption A3a) (or A3’). The strong
regularity concept introduced by Robinson in [38] and is widely used in optimization
and nonlinear analysis, Assumption A3b) (or A3’) is needed in any Newton-type
algorithm. As in SQP methods, these assumptions involve some Lipschitz constants
that are difficult to determine in practice.

Our future work is to develop a complete theory for this approach and apply it to
new problems. For example, in some robust control problem formulations as well as
robust optimization formulations, where we consider worst-case performance within
robust counterparts, a nonlinear programming problem with second order cone and
semidefinite constraints needs to be solved that can profit from the SCP framework.
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