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Vojtěch Rödl¶ Asaf Shapira∥

October 5, 2011

Abstract

The Frieze-Kannan regularity lemma is a powerful tool in combinatorics. It has also found

applications in the design of approximation algorithms and recently in the design of fast com-

binatorial algorithms for boolean matrix multiplication. The algorithmic applications of this

lemma require one to efficiently construct a partition satisfying the conditions of the lemma.

Williams [25] recently asked if one can construct a partition satisfying the conditions of the

Frieze-Kannan regularity lemma in deterministic sub-cubic time. We resolve this problem by

designing an Õ(nω) time algorithm for constructing such a partition, where ω < 2.376 is the

exponent of fast matrix multiplication. The algorithm relies on a spectral characterization of

vertex partitions satisfying the properties of the Frieze-Kannan regularity lemma.

1 Introduction

1.1 Background and motivation

The Regularity Lemma of Szemerédi [22] is one of the most powerful tools in tackling combinato-

rial problems in various areas like extremal graph theory, additive combinatorics and combinatorial

geometry. For a detailed discussion of these applications, we refer the reader to [15]. The regu-

larity lemma guarantees that the vertex set of any (dense) graph G = (V,E) can be partitioned
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into a bounded number of vertex sets V1, . . . , Vk such that almost all the bipartite graphs (Vi, Vj)

are pseudo-random (see Section 1.2 for precise definitions). Hence, one can think of Szemerédi’s

regularity lemma as saying that any graph can be approximated by a finite structure. This as-

pect of the regularity lemma has turned out to be extremely useful for designing approximation

algorithms, since in some cases one can approximate certain properties of a graph (say, the Max-

Cut of the graph) by investigating its regular partition (which is of constant size). In order to

apply this algorithmic scheme one should be able to efficiently construct a partition satisfying the

condition of the lemma. While Szemerédi’s proof of his lemma was only existential, it is known

how to efficiently construct a partition satisfying the conditions of the lemma. The first to achieve

this goal were Alon et al. [2] who showed that this task can be carried out in time O(nω), where

here and throughout this paper ω is the exponent of fast matrix multiplication. The algorithm of

Coppersmith and Winograd [7] gives ω < 2.376. The O(nω) algorithm of Alon et al. [2] was later

improved by Kohayakawa, Rödl and Thoma [14] who gave a deterministic O(n2) algorithm.

The main drawback of Szemerédi’s regularity lemma is that the constants involved are huge;

Gowers [13] proved that in some cases the number of parts in a Szemerédi regular partition grows

as a tower of exponents of height polynomial in 1/ε, where ε is the error parameter for regularity. It

is thus natural to ask if one can find a slightly weaker regularity lemma which would be applicable,

while at the same time not involve such huge constants. Such a lemma was indeed considered in

[21] for bipartite graphs and in [8] for arbitrary graphs. Subsequently, Frieze and Kannan [9, 10]

devised an elegant regularity lemma of this type. They formulated a slightly weaker notion of

regularity (see Definition 1.1) which we will refer to as FK-regularity. They proved that any graph

has an FK-regular partition involving drastically fewer parts compared to Szemerédi’s lemma. They

also showed that an FK-regular partition can still be used in some of the cases where Szemerédi’s

lemma was previously used. The notion of FK-regularity has been investigated extensively in the

past decade. For example, it is a key part of the theory of graph limits developed in recent years,

see the survey of Lovász [17]. Finally, FK-regularity was a key tool in the recent breakthrough

of Bansal and Williams [4], where they obtained new bounds for combinatorial boolean matrix

multiplication.

As in the case of Szemerédi’s regularity lemma, in order to algorithmically apply the FK-

regularity lemma, one needs to be able to efficiently construct a partition satisfying the conditions

of the lemma. Frieze and Kannan also showed that this task can be performed in randomized O(n2)

time. In fact, they showed that there is a randomized algorithm that allows one to get an implicit

description of the regularity partition in constant time. Alon and Naor [3] have shown that one can

construct such a partition in deterministic polynomial time. The algorithm of Alon and Naor [3]

requires solving a semi-definite program (SDP) and hence is not very efficient1. The fast boolean

matrix multiplication of Bansal and Williams [4] applies the randomized algorithm of [9, 10] for

constructing an FK-regular partition. In an attempt to derandomize their matrix multiplication

algorithm, Williams [25] asked if one can construct an FK-regular partition in deterministic time

O(n3−c) for some c > 0. Our main result in this paper answers this question by exhibiting a

deterministic Õ(nω) time algorithm. Furthermore, as part of the design of this algorithm, we

1In fact, after solving the SDP, the algorithm of [3] needs time O(n3) to round the SDP solution.
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also show that one can find an approximation2 to the first eigenvalue of a symmetric matrix in

deterministic time Õ(nω).

Besides the above algorithmic motivation for our work, a further combinatorial motivation

comes from the study of pseudo-random structures. Different notions of pseudo-randomness have

been extensively studied in the last decade, both in theoretical computer science and in discrete

mathematics. A key question that is raised in such cases is: Does there exist a deterministic

condition which guarantees that a certain structure (say, graph or boolean function) behaves like a

typical random structure? A well known result of this type is the discrete Cheeger’s inequality [1],

which relates the expansion of a graph to the spectral gap of its adjacency matrix. Other results

of this type relate the pseudo-randomness of functions over various domains to certain norms (the

so-called Gowers norms). We refer the reader to the surveys of Gowers [12] and Trevisan [23] for

more examples and further discussion on different notions of pseudo-randomness. An FK-regular

partition is useful since it gives a pseudo-random description of a graph. Hence, it is natural to

ask if one can characterize this notion of pseudo-randomness using a deterministic condition. The

work of Alon and Naor [3] gives a condition which can be checked in polynomial time. However,

as we mentioned before, verifying this condition requires one to solve a semi-definite program and

is thus not efficient. In contrast, our main result in this paper gives a deterministic condition for

FK-regularity which can be stated very simply and checked very efficiently.

1.2 The main result

We start with more precise definitions related to the regularity lemma. For a pair of subsets

A,B ⊆ V (G) in a graph G = (V,E), let e(A,B) denote the number of edges between A and

B, counting each of the edges contained in A ∩ B twice. The density d(A,B) is defined to be

d(A,B) = e(A,B)
|A||B| . We will frequently deal with a partition of the vertex set P = {V1, V2, . . . , Vk}.

The order of such a partition is the number of sets Vi (k in the above partition). A partition is

equitable if all sets are of size ⌊n/k⌋ or ⌈n/k⌉. We will make use of the shorthand notation for

density across parts, dij = d(Vi, Vj) whenever i ̸= j. Also, we set dii = 0 for all i.

The key notion in Szemerédi’s regularity lemma [22] is the following: Let A,B be disjoint sets

of vertices. We say that (A,B) is ε-regular if |d(A,B)− d(A′, B′)| ≤ ε for all A′ ⊆ A and B′ ⊆ B

satisfying |A′| ≥ ε|A| and |B′| ≥ ε|B|. It is not hard to show (see [15]) that ε-regular bipartite

graphs behave like random graphs in many ways. Szemerédi’s Regularity Lemma [22] states that

given ε > 0 there is a constant T (ε), such that the vertex set of any graph G = (V,E) can be

partitioned into k equitable sets V1, . . . , Vk, where k ≤ T (ε) and all but εk2 of the pairs (i, j) are

such that (Vi, Vj) is ε-regular.

One of the useful aspects of an ε-regular partition of a graph is that it allows one to estimate

the number of edges in certain partitions of G. For example, given an ε-regular partition, one can

estimate the value of the Max-Cut in G within an error of εn2, in time that depends only on the

order of the partition (and independent of the order of G!). Hence, one would like the order of

the partition to be relatively small. However, as we have mentioned above, Gowers [13] has shown

2The necessity of approximation when dealing with eigenvalues is due to the non-existence of algebraic roots of

high degree polynomials.
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that there are graphs whose ε-regular partitions have size at least Tower(1/ε1/16), namely a tower

of exponents of height 1/ε1/16.

To remedy this, Frieze and Kannan [9, 10] introduced the following relaxed notion of regularity,

which we will call ε-FK-regularity.

Definition 1.1 (ε-FK-regularity). Let P = {V1, V2, . . . , Vk} be a partition of V (G). For subsets

S, T ⊆ V and 1 ≤ i ≤ k, let Si = S ∩ Vi and Ti = T ∩ Vi. Define ∆(S, T ) for subsets S, T ⊆ V as

follows:

∆(S, T ) = e(S, T )−
∑
i,j

dij |Si||Tj |. (1)

The partition P is said to be ε-FK-regular if it is equitable and

for all subsets S, T ⊆ V, |∆(S, T )| ≤ εn2. (2)

If |∆(S, T )| > εn2 then S, T are said to be witnesses to the fact that P is not ε-FK-regular.

One can think of Szemerédi’s regularity as dividing the graph into parts such that across most

of the parts the graph looks like a random graph. In FK-regularity, we just want to partition the

graph so that any cut of the graph contains roughly the “expected” number of edges as dictated by

the densities dij . Another way to think about FK-regularity is that we want the bipartite graphs

to be ε-regular (in the sense of Szemerédi) only on average.

The main novelty in this (weaker3) notion of regularity is that it allows one to compute useful

statistics on the graph (such as estimating Max-Cut) while at the same time having the property

that any graph can be partitioned into an ε-FK-regular partition of order 2100/ε
2
, which is drastically

smaller than the tower-type order of a Szemerédi partition. This was proved by Frieze and Kannan

in [9, 10] where they also gave several algorithmic applications of their version of the regularity

lemma. As we have mentioned before, Frieze and Kannan also [9, 10] proved that one can construct

an ε-FK regular partition of a graph in randomized time O(n2). Our main result in this paper is the

following deterministic algorithmic version of the FK-regularity lemma which answers a question

of Williams [25].

Theorem 1 (Main Result). Given ε > 0 and an n vertex graph G = (V,E), one can find in

deterministic time O
(

1
ε6
nω log log n

)
an ε-FK-regular partition of G of order at most 210

8/ε7.

1.3 Paper overview

The rest of the paper is organized as follows. As we have mentioned earlier, the relation between

pseudo-random properties and spectral properties of graphs goes back to the Cheeger’s Inequality

[1]. Furthermore, it was shown in [11] that one can characterize the notion of Szemerédi’s regularity

using a spectral condition. Following [11], we introduce in Section 2 a spectral condition for ε-FK-

regularity and show that it characterizes this property. In order to be able to check this spectral

condition efficiently, one has to be able to approximately compute the first eigenvalue of a matrix.

3It is not hard to see that an ε-regular partition (in the sense of Szemerédi’s lemma) is indeed ε-FK-regular.
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Hence, in Section 3 we show that this task can be carried out in deterministic time Õ(nω). We

use a deterministic variant of the randomized power iteration method. Since we could not find

a reference for this, we include the proof for completeness. As in other algorithmic versions of

regularity lemmas, the non-trivial task is that of checking whether a partition is regular, and if it

is not, then finding sets S, T which violate this property (recall Definition 1.1). This key result is

stated in Corollary 3.1. We explain the (somewhat routine) process of deducing Theorem 1 from

Corollary 3.1 in Section 4. Finally, Section 5 contains some concluding remarks and open problems.

2 A Spectral Condition for FK-Regularity

In this section we introduce a spectral condition which “characterizes” partitions which are ε-FK

regular. Actually, the condition will allow us to quickly distinguish between partitions that are

ε-FK regular from partitions that are not ε3/1000-FK regular. As we will show later on, this is all

one needs in order to efficiently construct an ε-FK regular partition. Our spectral condition relies

on the following characterization of eigenvalues of a matrix. We omit the proof of this standard

fact.

Lemma 2.1 (First eigenvalue). For a diagonalizable matrix M , the absolute value of the first

eigenvalue λ1(M) is given by the following:

|λ1(M)| = max
∥x∥=∥y∥=1

xTMy.

We say that an algorithm computes a δ-approximation to the first eigenvalue of a matrix M

if it finds two unit vectors x,y achieving xTMy ≥ (1 − δ)|λ1(M)|. Our goal in this section is to

prove the following theorem.

Theorem 2. Suppose there is an S(n) time algorithm for computing a 1/2-approximation of the

first eigenvalue of a symmetric n× n matrix. Then there is an O(n2 + S(n)) time algorithm which

given ε > 0, and a partition P of the vertices of an n-vertex graph G = (V,E), does one of the

following:

1. Correctly states that P is ε-FK-regular.

2. Produces sets S, T which witness the fact that P is not ε3/1000-FK-regular.

Let A be the adjacency matrix of the graph G = (V,E), where V = {1, 2, . . . , n} = [n]. Let

S, T ⊆ V be subsets of the vertices and xS ,xT denote the corresponding indicator vectors. We

would like to test if a partition P = V1, . . . , Vk of V is a ε-FK-regular partition. We define a matrix

D = D(P) in the following way. Let 1 ≤ i, j ≤ n and suppose vertex i belongs to Vli in P and vertex

j belongs to Vlj , for some 1 ≤ li, lj ≤ k. Then the (i, j)th entry of D is given by Dij = dlilj . Thus

the matrix D is a block matrix (each block corresponding to the parts in the partition), where each

block contains the same value at all positions, the value being the density of edges corresponding

to the two parts. Now define ∆ = A−D. For S, T ⊆ V and an n× n matrix M , define

M(S, T ) =
∑

i∈S,j∈T
M(i, j) = xT

SMxT .
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Notice that for the matrix ∆, the above definition coincides with (1):

∆(S, T ) = A(S, T )−D(S, T )

= e(S, T )−
∑
i,j

dij |Si||Tj |,

where Si = S ∩ Vi and Tj = T ∩ Vj .

Summarizing, P is an ε-FK-regular partition of V if and only if for all S, T ⊆ V , we have

|∆(S, T )| ≤ εn2.

Let G = (V,E) be an n-vertex graph, let P be a partition of V (G) and let ∆ be the matrix

defined above. Notice that by construction, ∆ is a symmetric matrix and so it can be diagonalized

with real eigenvalues. Lemmas 2.2 and 2.4 below will establish a relation between the first eigenvalue

of ∆ and the FK-regularity properties of P.

Lemma 2.2. If |λ1(∆)| ≤ γn then P is γ-FK-regular.

Proof. We prove this in contrapositive. Suppose P is not γ-FK-regular and let S, T be two sets

witnessing this fact, that is, satisfying |∆(S, T )| = |xT
S∆xT | > γn2. Normalizing the vectors xS

and xT , we have x̃S = xS/∥xS∥ = xS/
√

|S| and x̃T = xT /∥xT ∥ = xT /
√

|T |. We get

|x̃T
S∆x̃T | > γn2/(

√
|S| |T |) ≥ γn ,

where the last inequality follows since |S|, |T | ≤ n. By the characterization of the first eigenvalue,

we have that |λ1(∆)| > γn.

Claim 2.3. Suppose two vectors p,q ∈ [−1, 1]n satisfying pT∆q > 0 are given. Then, in deter-

ministic time O(n2), we can find sets S, T ⊆ [n] satisfying |∆(S, T )| ≥ 1
4p

T∆q.

Proof. Let us consider the positive and negative parts of the vectors p and q. Of the four combi-

nations, (p+,q+), (p+,q−), (p−,q+) and (p−,q−), at least one pair should give rise to a product

at least pT∆q/4. Let us call this pair the good pair. Suppose the good pair is p+,q+. Let ∆i,∆
j

denote respectively the ith row and jth column of ∆. We can write (p+)T∆q+ =
∑

i p
+
i ⟨∆i,q

+⟩.
Compute the n products, ⟨∆i,q

+⟩. We put vertex i in S if and only if ⟨∆i,q
+⟩ ≥ 0. For this

choice of S, we have xT
S∆q+ ≥ (p+)T∆q+. Similarly as before, we have xT

S∆q+ =
∑

j q
+
j ⟨xS ,∆

j⟩,
therefore depending on the signs of ⟨xS ,∆

j⟩, we define whether j belongs to T . Thus we get sets

S, T such that ∆(S, T ) = xT
S∆xT ≥ (p+)T∆q+ ≥ pT∆q/4. Notice that this rounding takes O(n2)

time, since we need to perform 2n vector products, each of which takes O(n) time.

If exactly one of p− or q− is part of the good pair, then we could replicate the above argument

in a similar manner. Thus we would get ∆(S, T ) ≤ −pT∆q/4. If the good pair is (p−,q−), we

would again get ∆(S, T ) ≥ pT∆q/4.

Lemma 2.4. If |λ1(∆)| > γn, then P is not γ3/108-FK-regular. Furthermore, given unit vectors

x,y satisfying xT∆y > γn, one can find sets S, T witnessing this fact in deterministic time O(n2).
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Proof. As per the previous observation, it is enough to find sets S, T such that |∆(S, T )| > γ3n2/108.

By Claim 2.3, it is enough to find vectors p and q in [−1, 1]n satisfying pT∆q > γ3n2/27.

Suppose that |λ1(∆)| > γn and let x,y satisfy ∥x∥ = ∥y∥ = 1 and xT∆y > γn. Let β > 1 (β

will be chosen to be 3/γ later on) and define x̂, ŷ in the following manner:

x̂i =

{
xi : if |xi| ≤ β√

n

0 : otherwise
, ŷi =

{
yi : if |yi| ≤ β√

n

0 : otherwise
.

We claim that

x̂T∆ŷ > (γ − 2/β)n . (3)

To prove this, note that

x̂T∆ŷ = xT∆y − (x− x̂)T∆y − x̂T∆(y − ŷ)

> γn− (x− x̂)T∆y − x̂T∆(y − ŷ)

≥ γn− |(x− x̂)T∆y| − |x̂T∆(y − ŷ)| .

Hence, to establish (3) it would suffice to bound |(x− x̂)T∆y| and |x̂T∆(y− ŷ)| from above by n/β.

To this end, let C(x) = {i : |xi| ≥ β/
√
n}, and note that since ∥x∥ = 1 we have |C(x)| ≤ n/β2.

Now define ∆′ as

∆′
ij =

{
∆ij if i ∈ C(x)

0 otherwise
.

We now claim that the following holds.

|(x− x̂)T∆y| = |(x− x̂)T∆′y| ≤ ∥(x− x̂)T ∥∥∆′y∥
≤ ∥∆′y∥
≤ ∥∆′∥F ∥y∥
= ∥∆′∥F
≤ n/β .

Indeed, the first inequality is Cauchy-Schwarz and in the second inequality we use the fact that

∥x− x̂∥ ≤ ∥x∥ = 1. In the third inequality ∥∆′∥F denotes
√∑

i,j(∆
′
ij)

2 and the inequality follows

from Cauchy-Schwarz. The fourth line is an equality that follows from ∥y∥ = 1. The last inequality

follows from observing that since |C(x)| ≤ n/β2 the matrix ∆′ has only n2/β2 non-zero entries,

and each of these entries is of absolute value at most 1. It follows from an identical argument that

|x̂T∆(y − ŷ)| ≤ n/β, thus proving (3). After rescaling x̂ and ŷ, we get

((
√
n/β)x̂)T∆((

√
n/β)ŷ) > (γ − 2/β)n2/β2 .

Setting β = 3/γ so that (γ−2/β)/β2 is maximized, the right hand side of the inequality is γ3n2/27.

Now that we have the necessary vectors p = (
√
n/β)x̂ and q = (

√
n/β)x̂, an application of Claim

2.3 completes the proof.

The proof of Theorem 2 now follows easily from Lemmas 2.2 and 2.4.
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Proof of Theorem 2. We start with describing the algorithm. Given G = (V,E), ε > 0 and a

partition P of V (G), the algorithm first computes the matrix ∆ = A − D (in time O(n2)) and

then computes unit vectors x,y satisfying xT∆y ≥ 1
2 |λ1(∆)| (in time S(n)). If xT∆y ≤ εn/2 the

algorithm declares that P is ε-FK-regular, and if xT∆y > εn/2 it declares that P is not ε3/1000-

FK-regular and then uses the O(n2) time algorithm of Lemma 2.4 in order to produce sets S, T

which witness this fact. The running time of the algorithm is clearly O(n2 + S(n)).

Now let us discuss the correctness of the algorithm. If xT∆y ≤ εn/2 then since xT∆y is a

1/2-approximation for |λ1(∆)|, we can conclude that |λ1(∆)| ≤ εn. Hence, by Lemma 2.2 we have

that P is indeed ε-FK-regular. If xT∆y > εn/2 then by Lemma 2.4 we are guaranteed to obtain

sets S, T which witness the fact that P is not ε3/(108 · 8) ≥ ε3/1000-FK-regular.

3 Finding the First Eigenvalue Deterministically

In order to efficiently apply Theorem 2 from the previous section, we will need an efficient algorithm

for approximating the first eigenvalue of a symmetric matrix. Such an algorithm is guaranteed by

the following theorem which we prove in this section:

Theorem 3. Given an n × n symmetric matrix H, and a parameter 0 < δ < 1, one can find in

deterministic time O
(
nω log

(
1
δ log

(
n
δ

)))
unit vectors x,y satisfying

xTHy ≥ (1− δ)|λ1(H)|.

Setting H = ∆ and δ = 1/2 in Theorem 3, and using Theorem 2 we infer the following corollary.

Corollary 3.1. There is an O(nω log log n) time algorithm, which given ε > 0, an n-vertex graph

G = (V,E) and a partition P of V (G), does one of the following:

1. Correctly states that P is ε-FK-regular.

2. Finds sets S, T which witness the fact that P is not ε3/1000-FK-regular.

As we have mentioned in Section 1, one can derive our main result stated in Theorem 1 from

Corollary 3.1 using the proof technique of Szemerédi [22]. This is discussed in Section 4.

We also note that the proof of Theorem 3 can be modified to approximate the quantity

max∥x∥=∥y∥=1 x
THy for any matrix H. This quantity is the so-called first singular value of H.

But since we do not need this for our specific application to FK-regularity, we state the theorem

“only” for symmetric matrices H.

Getting back to the proof of Theorem 3 we first recall that for any matrix H we have |λ1(H)| =√
λ1(H2) (notice that H2 is positive semi-definite, so all its eigenvalues are non-negative). Hence,

in order to compute an approximation to |λ1(H)|, we shall compute an approximation to λ1(H
2).

Theorem 3 will follow easily once we prove the following.

Theorem 4. Given an n × n positive semi-definite matrix M , and a parameter 0 < δ < 1, there

exists an algorithm that runs in O
(
nω log

(
1
δ log

(
n
δ

)))
time and outputs a vector b such that

bTMb

bTb
≥ (1− δ)λ1(M).
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We shall first derive Theorem 3 from Theorem 4.

Proof of Theorem 3. As mentioned above, |λ1(H)| =
√

λ1(H2). Since H2 is positive semi-definite

we can use Theorem 4 to compute a vector b satisfying

bTH2b

bTb
= λ̂1 ≥ (1− δ)λ1(H

2).

We shall see that
√

λ̂1 is a (1 − δ) approximation to the first eigenvalue of H. To recover the

corresponding vectors as in Lemma 2.1, notice that

bTH2b = ∥Hb∥2 = λ̂1∥b∥2 =⇒ ∥Hb∥ =

√
λ̂1∥b∥.

Setting x = Hb√
λ̂1∥b∥

and y = b
∥b∥ , we obtain unit vectors x and y satisfying

xTHy =

√
λ̂1 ≥

√
(1− δ)λ1(H2) ≥ (1− δ)|λ1(H)| .

The main step that contributes to the running time is the computation of b using Theorem 4 and

hence the running time is O
(
nω log

(
1
δ log

(
n
δ

)))
, as needed.

We turn to prove Theorem 4. We shall apply the power iteration method to compute an

approximation of the first eigenvalue of a positive semi-definite (PSD) matrix. Power iteration

is a technique that can be used to compute the largest eigenvalues and is a very widely studied

method. For instance, the paper [16] by Kuczyński and Woźniakowski has a very thorough analysis

of the method. The earlier work of [19] shows that power iteration is much more effective with

PSD matrices. A much simpler (albeit slightly weaker) analysis was given in [24].

A PSD matrix M has all nonnegative eigenvalues. The goal of power iteration is to find the

first eigenvalue and the corresponding eigenvector of M . The basic idea is that an arbitrary vector

r is taken, and is repeatedly multiplied with the matrix M . The eigenvectors of M provide an

orthonormal basis for Rn. The vector r can be seen as a decomposition into components along

the direction of each of the eigenvectors of the matrix. With each iteration of multiplication by

M , the component of r along the direction of the first eigenvector gets magnified more than the

component of r along the direction of the other eigenvectors. This is because the first eigenvalue

is larger than the other eigenvalues. One of the key properties that is required of r is that it has

a nonzero component along the first eigenvector. This is typically ensured by setting r to be a

random unit vector. However, since we are looking for a deterministic algorithm, we ensure that

by using n different orthogonal basis vectors.

We first need the following key lemma.

Lemma 3.2. Let M be a positive semi-definite matrix. Let a ∈ Rn be a unit vector such that

|⟨v1,a⟩| ≥ 1/
√
n. Then, for every positive integer s and 0 < δ < 1, for b = M sa, we have

bTMb

bTb
≥ λ1 ·

(
1− δ

2

)
· 1

1 + n
(
1− δ

2

)2s ,

where λ1 denotes the first eigenvalue of M .
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Proof. Let λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 be the n eigenvalues of M (with multiplicities), and let

v1, . . . ,vn be the corresponding orthonormal eigenvectors. We can write a as a linear combination

of the eigenvectors of M .

a = α1v1 + α2v2 + . . .+ αnvn,

where the coefficients are αi = ⟨a,vi⟩. By assumption, we have |α1| ≥ 1/
√
n and since a is a unit

vector,
∑

i α
2
i = 1. Now, we can write b as follows.

b = α1λ
s
1v1 + α2λ

s
2v2 + . . .+ αnλ

s
nvn .

So we have

bTMb =
∑
i

α2
iλ

2s+1
i , and

bTb =
∑
i

α2
iλ

2s
i .

We will compute a lower bound to the numerator and upper bound to the denominator, resulting

in a lower bound for the fraction.

Let ℓ be the number of eigenvalues larger than λ1 · (1− δ
2). Since the eigenvalues are numbered

in non-increasing order and using the fact that M is positive semi-definite 4, we have

bTMb ≥
ℓ∑

i=1

α2
iλ

2s+1
i ≥ λ1

(
1− δ

2

) ℓ∑
i=1

α2
iλ

2s
i . (4)

We also have
n∑

i=ℓ+1

α2
iλ

2s
i ≤ λ2s

1 ·
(
1− δ

2

)2s n∑
i=ℓ+1

α2
i ≤ λ2s

1 ·
(
1− δ

2

)2s

,

where the last inequality follows since
∑n

i=ℓ+1 α
2
i ≤

∑n
i=1 α

2
i = 1. Continuing using the fact that

1 ≤ nα2
1, we get

λ2s
1 ·
(
1− δ

2

)2s

≤ nα2
1λ

2s
1 ·
(
1− δ

2

)2s

≤ n

(
1− δ

2

)2s ℓ∑
i=1

α2
iλ

2s
i .

Thus we get,

bTb ≤

(
1 + n

(
1− δ

2

)2s
)

·
ℓ∑

i=1

α2
iλ

2s
i . (5)

From (4) and (5) we deduce that

bTMb

bTb
≥ λ1 ·

(
1− δ

2

)
· 1

1 + n
(
1− δ

2

)2s ,

thus completing the proof.

4We are dropping terms to get an inequality, implicitly assuming that the dropped terms are nonnegative. If the

eigenvalues are negative, this need not hold.
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Now we are ready to analyze the power iteration algorithm and to prove Theorem 4.

Proof of Theorem 4. Consider the n canonical basis vectors, denoted by ei, for i = 1, . . . , n. We

can decompose the first eigenvector v1 of M along these n basis vectors. Since v1 has norm 1,

there must exist an i such that |⟨v1, ei⟩| ≥ 1/
√
n, by pigeonhole principle. We can perform power

iteration of M , starting at these n basis vectors. We would get n output vectors, and for each

output vector x, we compute xTMx/(xTx), and choose the one which gives us the maximum. By

Lemma 3.2, one of these output vectors x is such that

xTMx

xTx
≥ λ1(M) ·

(
1− δ

2

)
· 1

1 + n
(
1− δ

2

)2s .
If we use s = O

(
1
δ log

(
n
δ

))
, we can eliminate the factor n in the denominator, and the denominator

would become (1 + δ
2), giving us an estimate of at least λ1 · (1− δ), which is what we require.

To perform the n power iterations efficiently, consider taking the sth power of M . Let N =

M s = M s · I. We can think of this as performing n power iteration algorithms in parallel, each one

starting with a different canonical basis vector. For each vector x = M sei, we need to compute

(xTMx)/(xTx). For that we compute the products P = NTMN and Q = NTN . To get the

x that maximizes the answer, we choose max{Pii/Qii : 1 ≤ i ≤ n}. The maximized ratio is the

approximation to the first eigenvalue, and the corresponding ith column of N is the estimation of

the maximizing eigenvector.

For the running time analysis, the most time consuming step is taking the sth power of the

matrix M . Using repeated squaring, this can be done in 2 log s matrix multiplications, each of

which takes time O(nω). Since we need s = O
(
1
δ log

(
n
δ

))
, the running time required by the entire

algorithm is bounded by O
(
nω log

(
1
δ log

(
n
δ

)))
.

4 Constructing an FK-Regular Partition

In this section we show how to derive Theorem 1 from Corollary 3.1. We start with defining

the index of a partition, which will be helpful in showing that the algorithm terminates within a

bounded number of iterations.

Definition 4.1 (Index). For a partition P = (V1, V2, . . . , Vk) of the vertex sets of a graph G =

(V,E), the index of P is defined by

ind(P) =
1

n(n− 1)

∑
i ̸=j

d2ij |Vi| |Vj | .

Notice that 0 ≤ ind(P) ≤ 1 for any partition P. We make use of the following theorem (using

ideas from the original Szemerédi paper [21]) to refine the partition, whenever the original partition

is not ε-FK-regular and improve the index. Since the index is upper bounded by 1, we should not

be able to use the following theorem too many times. This implies that refining a finite number of

times would result in an ε-FK-regular partition.
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Theorem 5. Let ε′ > 0. Given a graph G = (V,E) and a partition P which is not ε′-FK-regular,

and sets S, T ⊆ V which violate the condition, the partition can be refined in O(n) time to get a

new equitable partition Q, such that ind(Q) ≥ ind(P) + ε′2/2. Moreover the new partition Q has

size at most 8/ε′2 times the size of the original partition P.

Before proving the above theorem, we would need the following form of Cauchy-Schwarz in-

equality, which we quote from [20] without proof.

Lemma 4.2. Let 1 ≤ M ≤ N , let ζ1, . . . , ζN be positive and d1, . . . , dN and d be reals. If
∑N

i=1 ζi =

1 and d =
∑N

i=1 diζi then

N∑
i=1

d2i ζi ≥ d2 +

(
d−

∑M
i=1 diζi∑M
i=1 ζi

)2 ∑M
i=1 ζi

1−
∑M

i=1 ζi
.

Proof of Theorem 5. Let P be the partition P = (V1, V2, . . . , Vk). By the hypothesis that P is not

ε′-FK-regular, we have sets S, T such that∣∣∣∣∣∣e(S, T )−
∑
i̸=j

dij |Si||Tj |

∣∣∣∣∣∣ > ε′n2 .

Let us define the following for i = 1, 2, . . . , k:

Si = Vi ∩ S, S̄i = Vi\S, Ti = Vi ∩ T, T̄i = Vi\T .

For each i = 1, 2, . . . , k, let us define the following sets as well:

V
(1)
i = Vi ∩ (S\T ), V

(2)
i = Vi ∩ (T\S), V

(3)
i = Vi ∩ (S ∩ T ), V

(4)
i = Vi\(S ∪ T ) .

Let R be the partition consisting of all the sets V
(1)
i , V

(2)
i , V

(3)
i , V

(4)
i for i = 1, . . . , k. We shall show

that ind(R) ≥ ind(P) + ε′2.

Define ηi,j = d(Si, Tj)− dij for all i, j. We have,

e(Vi, Vj) = e(Si, Tj) + e(S̄i, Tj) + e(Si, T̄j) + e(S̄i, T̄j) .

We can rewrite this as

dij |Vi| |Vj | = d(Si, Tj)|Si| |Tj | + d(S̄i, Tj)|S̄i| |Tj |
+ d(Si, T̄j)|Si| |T̄j |+ d(S̄i, T̄j)|S̄i| |T̄j | .

We also have

|Vi| |Vj | = |Si| |Tj |+ |S̄i| |Tj |+ |Si| |T̄j |+ |S̄i| |T̄j | .

Using Lemma 4.2 with the above two identities, (setting N = 4, M = 1, ζ1 =
|Si| |Tj |
|Vi| |Vj | , ζ2 =

|S̄i| |Tj |
|Vi| |Vj | ,

ζ3 =
|Si| |T̄j |
|Vi| |Vj | and ζ4 =

|S̄i| |T̄j |
|Vi| |Vj | ) we get

1

|Vi| |Vj |
[
d2(Si, Tj)|Si| |Tj |+ d2(S̄i, Tj)|S̄i| |Tj |+ d2(Si, T̄j)|Si| |T̄j |+ d2(S̄i, T̄j)|S̄i| |T̄j |

]
≥

d2ij + [dij − d(Si, Tj)]
2

 |Si| |Tj |
|Vi| |Vj |

1− |Si| |Tj |
|Vi| |Vj |

 .
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That is,

d2(Si, Tj)|Si| |Tj |+ d2(S̄i, Tj)|S̄i| |Tj |+ d2(Si, T̄j)|Si| |T̄j |+ d2(S̄i, T̄j)|S̄i| |T̄j |

≥ d2ij |Vi| |Vj |+ η2i,j

 |Si| |Tj |
1− |Si| |Tj |

|Vi| |Vj |

 ≥ d2ij |Vi| |Vj |+ η2i,j |Si| |Tj | .
(6)

We have for the index of partition R

ind(R) =
1

n(n− 1)

∑
(i,li )̸=(j,lj)

d2(V
(li)
i , V

(lj)
j )|V (li)

i | |V (lj)
j |

≥ 1

n(n− 1)

∑
i ̸=j

∑
li,lj∈{1,2,3,4}

d2(V
(li)
i , V

(lj)
j )|V (li)

i | |V (lj)
j |

≥ 1

n(n− 1)

∑
i ̸=j

d2(Si, Tj)|Si| |Tj |+ d2(S̄i, Tj)|S̄i| |Tj |+ d2(Si, T̄j)|Si| |T̄j |+ d2(S̄i, T̄j)|S̄i| |T̄j | .

where the first inequality follows from the fact that we are dropping some terms from the sum-

mation. The second inequality follows from Cauchy-Schwarz, and by observations such as Si =

V
(1)
i ∪ V

(3)
i . To see why the second inequality is true, note that we have Si = V

(1)
i ∪ V

(3)
i and

Tj = V
(2)
j ∪ V

(3)
j . We can conclude that d2(V

(1)
i , V

(2)
j )|V (1)

i | |V (2)
j | + d2(V

(1)
i , V

(3)
j )|V (1)

i | |V (3)
j | +

d2(V
(3)
i , V

(2)
j )|V (3)

i | |V (2)
j |+d2(V

(3)
i , V

(3)
j )|V (3)

i | |V (3)
j | ≥ d2(Si, Tj)|Si| |Tj | by using Cauchy-Schwarz.

Similarly, we can derive the remaining terms in the RHS of the second inequality.

We can now proceed by using (6)

ind(R) ≥ 1

n(n− 1)

∑
i̸=j

[
d2ij |Vi| |Vj |+ η2i,j |Si| |Tj |

]
= ind(P) +

1

n(n− 1)

∑
i ̸=j

η2i,j |Si| |Tj |

≥ ind(P) +

(∑
i ̸=j ηi,j |Si| |Tj |

)2
n(n− 1)

∑
i̸=j |Si| |Tj |

,

where the last inequality follows by Cauchy-Schwarz. We have∣∣∣∣∣∣
∑
i ̸=j

ηi,j |Si| |Tj |

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
i̸=j

(e(Si, Tj)− dij |Si| |Tj |)

∣∣∣∣∣∣ =
∣∣∣∣∣∣e(S, T )−

∑
i ̸=j

dij |Si| |Tj |

∣∣∣∣∣∣ ≥ ε′n2 .

So we get

ind(R) ≥ ind(P) +
(ε′n2)2

(n(n− 1))2
≥ ind(P) + ε′2 .

Now we shall show how to get an equitable partition Q, which is a refinement of P, such that the

ind(Q) is at least ind(P) + ε′2/2. The partition Q is formed by subdividing each vertex class Vi
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of P into sets Wi,a of size ⌊ε′2n/(7k)⌋ or ⌊ε′2n/(7k)⌋ + 1 in such a way that all but at most three

of these sets Wi,a is completely contained inside one of V
(1)
i , V

(2)
i , V

(3)
i or V

(4)
i . W.l.o.g, let these

three sets be Wi,1,Wi,2 and Wi,3. In other words, the partition Q consists of the sets Wi,a for

i = 1 to k. The partition Q is a refinement of P because each Wi,a is a partition of Vi. But Q
is not a refinement of R since the sets Wi,1,Wi,2 and Wi,3 are not completely contained in one of

V
(1)
i , V

(2)
i , V

(3)
i or V

(4)
i for each i. We can divide the three sets Wi,1,Wi,2 and Wi,3 further to get

a partition Q∗ such that it is a refinement of R. Since Q∗ is a refinement of R, Cauchy-Schwarz

implies that ind(Q∗) ≥ ind(R). We shall now show that the indices of Q∗ and Q are not too far

apart. The only parts which differ in these partitions are Wi,1,Wi,2 and Wi,3, for each i. Also

|Wi,j | ≤ ⌊ε′2n/(7k)⌋+ 1. We get

ind(Q∗)− ind(Q) ≤ 1

n(n− 1)

k∑
i=1

3

(
ε′2n

7k
+ 1

)
n ≤ ε′2

2
.

Combining, we get

ind(Q) ≥ ind(Q∗)− ε′2

2
≥ ind(R)− ε′2

2
≥ ind(P) +

ε′2

2
,

which is what we wanted to prove.

In each refinement step, we split the classes into at most ⌊7/ε′2 + 1⌋ ≤ 8/ε′2 classes Wi,a. So

the new partition Q has size at most 8/ε′2 the size of P. Also, the construction involves only the

breaking up of the sets Vi using S, T . This can be performed in O(n) time.

We can now prove the main theorem.

Theorem 1 (Restated). Given ε > 0 and an n vertex graph G = (V,E), one can construct in

deterministic time O
(

1
ε6
nω log log n

)
an ε-FK-regular partition of G of order at most 210

8/ε7.

Proof. If n ≤ 210
8/ε7 , we simply return each single vertex as a separate set Vi, which is clearly

ε-FK-regular for any ε > 0. Else, we start with an arbitrary equitable partition of vertices V .

Using Corollary 3.1 we can either check that the partition is ε-FK-regular, or obtain a proof (i.e.,

sets S and T which violate the condition) that the partition is not ε3/1000-FK-regular. Now using

Theorem 5 (with ε′ = ε3/1000), we can refine the partition such that the index increases by at

least (ε3/1000)2/2 = ε6/(2 · 106). Since the index is upper bounded by 1, we would terminate in at

most 2 · 106/ε6 iterations.

The size of the partition gets multiplied by 8/ε′2 = 8 · 106/ε6 during each iteration. So the

number of parts in the final partition is at most
(
8·106
ε6

)(2·106/ε6)
. A quick calculation gives us that

(
8 · 106

ε6

)(2·106/ε6)
= 2

(
log 8·106

ε6

)
2·106
ε6 ≤ 2

(
log(8·106)+log 1

ε6

)
2·106
ε6 ≤ 210

8/ε7 .

We need to use Corollary 3.1 a total at most 2 ·106/ε6 times, and each use takes O(nω log log n)

time. So the total running time is O
(

1
ε6
nω log log n

)
.
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5 Concluding Remarks and Open Problems

• We have designed an Õ(nω) time deterministic algorithm for constructing an ε-FK regular

partition of a graph. It would be interesting to see if one can design an O(n2) time determin-

istic algorithm for this problem. We recall that it is known [14] that one can construct an

ε-regular partition of a graph (in the sense of Szemerédi) in deterministic time O(n2). This

algorithm relies on a combinatorial characterization of ε-regularity using a co-degree condi-

tion. Such an approach might also work for ε-FK regularity, though the co-degree condition

in this case might be more involved.

• We have used a variant of the power iteration method to obtain an Õ(nω) time algorithm

for computing an approximation to the first eigenvalue of a symmetric matrix. It would be

interesting to see if the running time can be improved to O(n2). Recall that our approach

relies on (implicitly) running n power-iterations in parallel, each of which on one of the n

standard basis vectors. One approach to design an Õ(n2) algorithm would be to show that

given an n×n PSD matrix M , one can find in time O(n2) a set of n0.1 unit vectors such that

one of the vectors v in the set has an inner product at least 1/poly(n) with the first eigenvector

ofM . If this can indeed be done, then one can replace the fast matrix multiplication algorithm

for square matrices that we use in the algorithm, by an algorithm of Coppersmith [6] that

multiplies an n × n matrix by an n × n0.1 matrix in time Õ(n2). The modified algorithm

would then run in Õ(n2).

• Designing an Õ(n2) algorithm for finding the first eigenvalue of a PSD matrix would of course

yield an Õ(n2) algorithm for finding an ε-FK regular partition of a graph (via Theorem 2).

In our case, it is enough to find the first eigenvalue up to a δn additive error. So another

approach to getting an Õ(n2) algorithm for ε-FK regularity would be to show that in time

Õ(n2) we can approximate the first eigenvalue up to an additive error of δn. It might be

easier to design such an Õ(n2) algorithm than for the multiplicative approximation discussed

in the previous item.

• After a preliminary version of this paper appeared in RANDOM 2011, we learned that another

characterization of FK-regularity had appeared in a paper of Lovász and Szegedy [18], and

that one can use this characterization to design an O(nω) algorithm for constructing an ε-FK-

regular partition of a graph. However, this characterization is different from the spectral one

we obtain here. Furthermore, we are currently working on improving the spectral approach

described here in order to design an optimal O(n2) algorithm for FK-regularity, so we expect

the ideas presented here to be useful in future studies.
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[16] J. Kuczyński and H. Woźniakowski. Estimating the largest eigenvalue by the power and

Lanczos algorithms with a random start. SIAM Journal on Matrix Analysis and Applications,

13(4):1094–1122, 1992.

16



[17] L. Lovász. Very large graphs. In D. Jerison, B. Mazur, T. Mrowka, W. Schmid, R. Stanley,

and S. T. Yau, editors, Current Developments in Mathematics 2008.
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[21] E. Szemerédi. On sets of integers containing no k elements in arithmetic progressions. Polska

Akademia Nauk. Instytut Matematyczny. Acta Arithmetica, 27:199–245, 1975.
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