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Abstract

It is well-known that every planar or projective planar graph can
be 3-colored so that each color class induces a forest. This bound is
sharp. In this paper, we show that there are in fact exponentially many
3-colorings of this kind for any (projective) planar graph. The same
result holds in the setting of 3-list-colorings.
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1 Introduction

Motivation for this paper comes from two directions. One is related to the
arboricity of undirected planar graphs, the other one to colorings of planar
digraphs. Let us recall that a partition of vertices of a graph G into classes
V1 ∪ · · · ∪ Vk is an arboreal partition if each Vi (1 ≤ i ≤ k) induces a forest
in G. A function f : V (G) → {1, . . . , k} is called an arboreal k-coloring if
Vi = f−1(i), i = 1, . . . , k, form an arboreal partition. The vertex-arboricity
a(G) of the graph G is the minimum k such that G admits an arboreal
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k-coloring. Note that a(G) ≤ χ(G) ≤ 2a(G), where χ(G) is the chromatic
number of G. Long ago, people asked if every planar graph has arboricity 2
since this would imply the Four Color Theorem. However, planar graphs of
vertex-arboricty 3 have been found (see Chartrand et al. [1]).

Let D be a digraph without cycles of length ≤ 2, and let G be the
underlying undirected graph of D. A function f : V (D)→ {1, . . . , k} is a k-
coloring of the digraph D if Vi = f−1(i) is acyclic in D for every i = 1, . . . , k.
Here we treat the vertex set Vi acyclic if the induced subdigraph D[Vi]
contains no directed cycles (but G[Vi] may contain cycles). The minimum
k for which D admits a k-coloring is called the chromatic number of D, and
is denoted by χ(D) (see Neumann-Lara [6]). Clearly,

χ(D) ≤ a(G).

While planar graphs with arboricity 3 are known, no planar digraph
(without cycles of length ≤ 2) with χ(D) > 2 is known. In fact, the following
conjecture was proposed independently by Neumann-Lara [7] and Škrekovski
in [2].

Conjecture 1.1. Every planar digraph D with no directed cycles of length
at most 2 has χ(D) ≤ 2.

It is an easy consequence of 5-degeneracy of planar graphs that every
planar digraph D without cycles of length at most 2 and its associated
underlying planar graph G satisfy

χ(D) ≤ a(G) ≤ 3. (1)

The main result of this paper is a relaxation of Conjecture 1.1 and a
strengthening of the above stated inequality (1). In doing so, we also extend
the result from planar graphs to graphs embedded in the projective plane.
In particular, we prove the following.

Theorem 1.2. Every planar or projective planar graph of order n has at
least 2n/9 arboreal 3-colorings.

Corollary 1.3. Every planar or projective planar digraph of order n without
cycles of length at most 2 has at least 2n/9 3-colorings.

Let us observe that Theorem 1.2 cannot be extended to graphs embedded
in the torus since a(K7) = 4 and K7 admits an embedding in the torus.
However, for every orientationD ofK7, we have χ(D) ≤ 3 (and in some cases
χ(D) = 3); and it follows from the main result in [3] that every orientation
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of a (simple) graph embeddable in the torus satisfies χ(D) ≤ 3. So it is
possible that Corollary 1.3 extends to the torus. Graphs on the Klein Bottle
behave nicer since K7 can not be embedded in the Klein Bottle. Škrekovski
[8] and Kronk and Mitchem [4] have shown that these graphs have arboricity
at most 3.

It can be shown that a graph on the torus has arboricity at most 3
unless it contains K7 as a subgraph. This can be used to prove that for
every graph G embeddable in the torus, there exists an edge e ∈ E(G) such
that a(G− e) ≤ 3. In this vein, we conjecture the following.

Conjecture 1.4. For every graph G embeddable in the torus, there exists an
edge e ∈ E(G) such that G− e has exponentially many 3-arboreal colorings.

The proof of Theorem 1.2 is deferred until Section 4. Actually, we shall
prove an extended version in the setting of list-colorings which we define
next.

Let C be a finite set of colors. Given a graph G, let L : v 7→ L(v) ⊆ C
be a list-assignment for G, which assigns to each vertex v ∈ V (G) a set of
colors. The set L(v) is called the list (or the set of admissible colors) for
v. We say G is L-colorable if there is an L-coloring of G, i.e., each vertex v
is assigned a color from L(v) such that every color class induces a forest in
G. A k-list-assignment for G is a list-assignment L such that |L(v)| = k for
every v ∈ V (G).

Theorem 1.5. Let L be a 3-list-assignment for a planar or projective planar
graph G of order n. Then G has at least 2n/9 L-colorings.

Similarly, we define list colorings for digraphs, where we insist that color
classes induce acyclic subdigraphs. Corollary 1.3 then extends, as a corollary
to Theorem 1.5 to the list coloring setting as well.

2 Unavoidable configurations

We define a configuration as a plane graph C together with a function
δ : V (C) → N such that δ(v) ≥ degC(v) for every v ∈ V (C). A plane
graph G contains the configuration (C, δ) if there is an injective mapping
h : V (C)→ V (G) such that the following statements hold:

(i) For every edge ab ∈ E(C), h(a)h(b) is an edge of G.

(ii) For every facial walk a1 . . . ak in C, except for the unbounded face, the
image h(a1) . . . h(ak) is a facial walk in G.
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(iii) For every a ∈ V (C), the degree of h(a) in G is equal to δ(a).

If v is a vertex of degree k in G, then we call it a k-vertex , and a vertex
of degree at least k (at most k) will also be referred to as a k+-vertex (k−-
vertex ). A neighbor of v whose degree is k is a k-neighbor (similarly k+-
and k−-neighbor).

The goal of this section is to prove the following theorem.

Theorem 2.1. Every planar or projective planar triangulation contains one
of the configurations listed in Fig. 1.

Proof. The proof uses the discharging method. Assume, for a contradiction,
that there is a (projective) planar triangulation G that contains none of the
configurations shown in Fig. 1. We shall refer to these configurations as
Q1, Q2, . . . , Q23.

Let G be a counterexample of minimum order. To each vertex v of G, we
assign a charge of c(v) = deg(v) − 6. A well-known consequence of Euler’s
formula is that the total charge is always negative,

∑
v∈V (G) c(v) = −12 in

the plane and
∑

v∈V (G) c(v) = −6 in the projective plane, see [5]. We are
going to apply the following discharging rules:

R1: A 7-vertex sends charge of 1/3 to each adjacent 5-vertex.

R2: A 7-vertex sends charge of 1/2 to each adjacent 4-vertex.

R3: An 8+-vertex sends charge of 1/2 to each adjacent 5-vertex.

R4: An 8+-vertex sends charge of 2/3 to each adjacent 4-vertex whose
neighbors have degrees 8+, 8+, 8+, 6.

R5: An 8+-vertex sends charge of 3/4 to each adjacent 4-vertex whose
neighbors have degrees 8+, 8+, 7, 6.

R6: An 8+-vertex sends charge of 1/2 to each adjacent 4-vertex whose
neighbors have degrees 8+, 7+, 7+, 7+.

R7: An 8+-vertex sends charge of 1 to each adjacent 4-vertex whose neigh-
bors have degrees 8+, 8+, 6, 6 or 8+, 7, 7, 6.

R8: An 8+-vertex sends charge of 3/2 to each adjacent 4-vertex whose
neighbors have degrees 8+, 7, 6, 6.
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Figure 1: Unavoidable configurations. The listed numbers refer to the degree
function δ, and the notation d− at a vertex v means all such configurations
where the value δ(v) is either d or d− 1.

Let c∗(v) be the final charge obtained after applying rules R1–R8 to all
vertices in G. We will show that every vertex has non-negative final charge.
This will yield a contradiction since the initial total charge of −12 (or −6
in the projective plane) must be preserved.

We say that a 4-vertex is bad if its neighbors have degrees 8+, 7, 6, 6,
i.e., the rule R8 applies to it and its 8+-neighbor. Let us observe that the
clockwise order of degrees of the neighbors of a bad vertex is 8+, 7, 6, 6 (or
8+, 6, 6, 7) since Q7 is excluded.

First, note that G has no 3−-vertices since the configuration Q1 is ex-
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cluded and since a triangulation cannot have 2−-vertices. We will also have
in mind that Q2 is excluded, so every neighbor of a 4-vertex is a 6+-vertex.

4-vertices: Let v be a 4-vertex. Note that v has only 6+-neighbor. If
all neighbors have degree at most 7, then they all have degree exactly 7 since
Q6, Q7 and Q8 are excluded. Since the vertex v has initial charge of −2, and
each 7-neighbor sends a charge of 1/2 to it, the final charge of v is 0.

Now, assume that v is adjacent to an 8+-vertex. First, assume that the
remaining three neighbors v1, v2, v3 of v are all 7−-vertices. The vertices
v1, v2, v3 cannot all have degree 6 since Q8 is excluded. If deg(v1) = 7 and
deg(v2) = deg(v3) = 6, then the rules R2 and R8 imply that v receives a
charge of 2, resulting in the final charge of 0. If deg(v1) = deg(v2) = 7 and
deg(v3) = 6, then by rules R2 and R7, v again receives a charge of 2. The
case where deg(v1) = deg(v2) = deg(v3) = 7 is similar through rules R2 and
R6.

Next, assume that v has exactly two 8+-neighbors v1, v2. If the remaining
two vertices v3, v4 are both 7-vertices, then rules R2 and R6 imply that v
receives a total charge of 2, giving it the final charge of 0. If the remaining
two vertices are both 6-vertices, then rule R7 implies that v receives a total
charge of 2, resulting in 0 final charge. Therefore, we may assume that
deg(v3) = 7 and deg(v4) = 6. In this case, both v1 and v2 send a charge of
3/4 to v by R5, and v3 sends a charge of 1/2, resulting in a final charge of
0 for v.

Finally, assume that v has at least three 8+-neighbors. By rule R4 (if v
has a 6-neighbor), or by rules R2 and R6 (if v has a 7-neighbor), or by rule
R6 (otherwise), we see that v receives total charge of 2, so c∗(v) = 0.

5-vertices: Let v be a 5-vertex. Note that v is not adjacent to a 4-
vertex. If all neighbors of v are 7−-vertices, then exclusion of Q4, Q8 and
Q10 implies that v has at least three 7-neighbors. By R1, each such neighbor
sends a charge of 1/3 to v. Since v has initial charge of −1, its final charge
is at least 0. Next, suppose that v has an 8+-neighbor. If v has at least
two 8+-neighbors, then by rule R3, v receives a charge of 1/2 from each of
them, yielding c∗(v) ≥ 0. Therefore, we may suppose that v has exactly
one 8+-neighbor. If v has at least two 7-neighbors, then by R1 and R3, v
receives a total charge of at least 1/2 + 1/3 + 1/3 > 1, resulting in a positive
final charge for v. Finally, if v has at most one 7-neighbor, then we get the
configuration Q4, Q8 or Q10.

6-vertices: They have initial charge of 0, and by the discharging rules,
they do not give or receive any charge, which implies that they have a final
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charge of 0.

7-vertices: Let v be a 7-vertex, and note that v has initial charge
of 1. If v has no 4-neighbors then it has at most three 5-neighbors since
Q11 is excluded. Therefore, it sends a charge of 1/3 to each such vertex,
resulting in a non-negative final charge. Next, suppose that v has at least
one 4-neighbor. Since Q12 is excluded, v has at most one other 5−-neighbor.
Therefore, v sends a charge of at most 1/2 + 1/2 = 1, resulting in the final
charge of at least 0 for v.

8-vertices: An 8-vertex v has initial charge of +2. SinceQ17 is excluded,
v has at most three 4-neighbors. First, suppose that v has exactly three 4-
neighbors. Let u be one of them. We claim that v sends charge of at
most 2/3 to u. Since Q15 and Q13 are excluded, we have that N(u)\{v}
contains vertices of degrees either 7+, 7+, 7+ or 8+, 8+, 6. In the first case,
v sends charge 1/2 to u, and in the second case charge 2/3. Since v has no
5-neighbors (again, by exclusion of Q17), c

∗(v) ≥ 2− 3× 2/3 = 0.
Next, suppose that v has exactly two 4-neighbors, say v1 and v2. We

consider two subcases. First, assume that v has a 5-neighbor. Excluding Q2

and Q14, no vertex in N(v1) ∩ N(v) and N(v2) ∩ N(v) has degree at most
6. If the two vertices in N(v1) ∩ N(v) are both 7-vertices, then v1 has no
6−-neighbor (Q2 and Q15 being excluded). This implies that v sends charge
of 1/2 to v1. Otherwise, the two vertices in N(v1) ∩N(v) are an 8+ and a
7+-vertex, respectively. This implies that by rules R4, R5 and R6, v sends
charge of 3/4, 2/3 or 1/2 to v1. Therefore, in all cases, v sends no more than
3/4 charge to v1. An identical argument shows that v sends a charge of at
most 3/4 to v2. Since v sends a charge of 1/2 to a 5-vertex, we have that
v sends a total charge of at most 3/4 + 3/4 + 1/2 = 2. Secondly, assume
that v has no 5-neighbors. Consider v1. Excluding Q7 and Q16, v1 is not
a bad 4-vertex. Therefore, v sends charge of at most 1 to v1. An identical
argument shows that v sends charge of at most 1 to v2. Therefore, the final
charge of v is non-negative.

Next, suppose that v has exactly one 4-neighbor, say v1. First, suppose
that v1 is a bad 4-vertex. Excluding Q7 and Q15, v has at most one 5-
neighbor. Since v sends a charge of at most 3/2 to v1 and charge 1/2 to its
5-neighbor, its final charge is at least 0. Thus, we may assume that v1 is
not a bad 4-vertex. Then v sends at most charge of 1 to v1. Because Q17 is
excluded, v has at most two 5-neighbors, to each of which it sends a charge
of 1/2. Therefore, v sends a total charge of at most 1+1/2+1/2 = 2, which
implies that c∗(v) ≥ 0.

Finally, suppose that v has no 4-neighbors. Excluding Q18 and Q4, v has
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at most four 5-neighbors, to each of which it sends charge of 1/2. Therefore,
the final charge of v is non-negative.

9-vertices: A 9-vertex v has a charge of +3. Since Q22 is excluded,
v has at most four 4-neighbors. First, suppose that v has exactly four 4-
neighbors or three 4-neighbors and at least one 5-neighbor; let u be one of
the 4-neighbors. We claim that v sends charge of at most 2/3 to u. Since Q20

and Q19 are excluded, we have that N(u)\{v} contains vertices of degrees
7+, 7+, 7+ or 8+, 8+, 6. In the first case, v sends charge 1/2 to u, and in the
second case charge 2/3. Since v has only one 5-neighbor (again, by exclusion
of Q22), c

∗(v) ≥ 3− 4× 2/3 > 0.
Next, suppose that v has exactly three 4-neighbors and no 5-neighbors.

Since Q7 and Q21 are excluded, none of the 4-neighbors are bad. Therefore,
in this case v sends charge of at most 1 to each 4-neighbor, resulting in a
non-negative final charge.

If v has exactly two 4-neighbors, we consider two subcases. For the first
subcase, suppose that none of the 4-neighbors are bad. Now, v has at most
two 5-neighbors since Q22 is excluded. This implies that v sends total charge
of at most 1 + 1 + 1/2 + 1/2 = 3 to its neighbors, resulting in a non-negative
final charge for v. For the second subcase, assume that v has at least one
bad 4-neighbor. Now, the exclusion of Q21 implies that v has no 5-neighbors.
Thus, v sends total charge of at most 3/2+3/2 = 3, and therefore c∗(v) ≥ 0.

Suppose now that v has exactly one 4-neighbor. The exclusion of Q22

implies that v has at most three 5-neighbors, and hence it sends out a total
charge of at most 3/2 + 1/2 + 1/2 + 1/2 = 3, resulting in c∗(v) ≥ 0. Lastly,
assume that v has no 4-neighbors. ExcludingQ4 we see that v has at most six
5-neighbors. This implies that v sends a total charge of at most 6× 1/2 = 3
to its neighbors, thus c∗(v) ≥ 0.

10-vertices: A 10-vertex v has a charge of +4. Let v1, . . . , v10 be the
neighbors of v in the cyclic order around v. If vi is a bad 4-neighbor of v
and deg(vi−1) = 7, deg(vi+1) = 6, then the absence of Q3 and Q9 implies
that deg(vi+2) ≥ 6 and deg(vi−2) ≥ 5. The absence of Q5 also implies that
if vi+3 is another bad 4-neighbor, then deg(vi+2) = 7, thus deg(vi+4) = 6
and deg(vi+5) ≥ 6 (all indices modulo 10). By excluding Q23 and Q4, we
conclude that if v has two bad 4-neighbors, then it has no other 4-neighbor
and has at most two 5-neighbors. This implies that c∗(v) ≥ 0. Suppose now
that v has precisely one bad 4-neighbor, say v2. We may assume deg(v1) = 7,
deg(v3) = 6 and by the arguments given above, deg(v10) ≥ 5, deg(v4) ≥
6. Excluding Q4, v can have at most four 5-neighbors. Thus, the only
possibility that c∗(v) < 0 is that v has three more 4-neighbors (and the only
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way to have this is that the 4-neighbors are v5, v7, v9) or that v has two more
4-neighbors and two 5-neighbors (in which case 4-neighbors are v5, v7 and
5-neighbors are v9, v10). In each of these cases, we see, by excluding Q3 and
Q5, that deg(v4) ≥ 7, deg(v6) ≥ 7 and deg(v8) ≥ 7. Thus, excluding Q9, v
sends charge of at most 3/4 to each of v5 and v7 and at most 1 together to
both v9 and v10. Hence, c∗(v) ≥ 4− 3/2− 2× 3/4− 1 = 0.

Suppose now that v has no bad 4-neighbors. If v has five 4-neighbors,
then they are (without loss of generality) v1, v3, v5, v7, v9, and excluding Q3

we see that deg(vj) ≥ 7 for j = 2, 4, 6, 8, 10. This implies (by the argument
as used above) that v sends charge of at most 3/4 to each 4-neighbor, thus
c∗(v) ≥ 4 − 5 × 3/4 > 0. Similarly, if v has one 5-neighbor v1 and four 4-
neighbors v3, v5, v7, v9, then we see as above that v sends charge of at most
3/4 to each 4-neighbor, and thus c∗(v) ≥ 4 − 4 × 3/4 − 1/2 > 0. If v has
three 4-neighbors, then the exclusion of Q4 implies that it has at most two
5-neighbors. Similarly, if v has two 4-neighbors, then it has at most four
5-neighbors. If v has one 4-neighbor, then it has at most five 5-neighbors. If
v has no 4-neighbors, it has at most six 5-neighbors. In each case, c∗(v) ≥ 0.

11+-vertices: Let v be a d-vertex, with d ≥ 11. Let v1, . . . , vd be the
neighbors of v in cyclic clockwise order, indices modulo d. Suppose that vi is
a bad 4-vertex. Then we may assume that deg(vi−1) = 7 and deg(vi+1) = 6
(or vice versa), since Q7 is excluded. By noting that the fourth neighbor
of vi has degree 6, we see that deg(vi+2) ≥ 6 (since Q3 is excluded) and
deg(vi−2) ≥ 5 (since Q9 is excluded). If vi is a good 4-vertex, then its
neighbors are 6+-vertices. Now, we redistribute the charge sent from v to
its neighbors so that from each bad 4-vertex vi we give 1/2 to vi−1 and
1/2 to vi+1, and from each good 4-vertex vi we give 1/4 to vi−1 and 1/4
to vi+1. We claim that after the redistribution, each neighbor of v receives
from v at most 1/2 charge in total. This is clear for 4-neighbors of v. A
5-neighbor of v is not adjacent to a 4-vertex, so it gets charge of at most
1/2 as well. The claim is clear for each 6-neighbor of v since it is adjacent
to at most one 4-vertex (Q3 is excluded). If a 7-neighbor vj of v satisfies
deg(vj+1) = deg(vj−1) = 4, the exclusion of Q9 implies that both vj−1 and
vj+1 are good 4-vertices. Thus, the claim holds for 7-neighbors of v. An
8+-neighbor of v cannot be adjacent to a bad 4-neighbor of v, and therefore
it receives charge of at most 1/2 from v after the redistribution. This implies
that if d ≥ 12, then the final charge at v is c∗(v) ≥ c(v)− 1

2d ≥ 0.
It remains to consider the case when d = 11. In this case the same

conclusion as above can be made if we show that either the redistributed
charge at one of the vertices vi is 0, or that there are two vertices whose re-
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distributed charge is at most 1/4. If there exists a good 4-vertex, then there
exists a good 4-vertex vi, one of whose neighbors, say vi−1, gets 1/4 total
redistributed charge. This is easy to see since d = 11 is odd and Q3 and Q9

are excluded. Let t ≥ 0 be the largest integer such that vi, vi+2, . . . , vi+2t are
all good 4-neighbors of v. Then it is clear that vi+2t+1 has total redistributed
charge 1/4 and that vi−1 6= vi+2t+1 (by parity). This shows that the total
charge sent from v is at most 5, thus the final charge c∗(v) is non-negative.
Thus, we may assume that v has no good 4-neighbors. If v has a bad 4-
neighbor vi, then we may assume that deg(vi−1) = 7 and deg(vi+1) = 6.
As mentioned above, we conclude that deg(vi+2) ≥ 6. We are done if this
vertex has 0 redistributed charge. Otherwise, vi+2 is adjacent to another
bad 4-neighbor vi+3 of v. Since vi, vi+1, vi+2, vi+3 do not correspond to the
excluded configuration Q5, we conclude that deg(vi+2) = 7. Now we can
repeat the argument with vi+3 to conclude that vi+6, vi+9 are also bad 4-
vertices and deg(vi+8) = 7. However, since deg(vi−1) = 7, we conclude
that vi+9 cannot be a bad 4-vertex and hence there is a neighbor of v with
redistributed charge 0.

Thus, v has no 4-neighbors. Now the only way to send charge 1/2 to
each neighbor of v is that all neighbors of v are 5-vertices. However, in this
case we have the configuration Q4.

To summarize, we have shown that the final charge of each vertex is
non-negative and this completes the proof.

3 Reducibility

This section is devoted to the reducibility part of the proof of our main
result (Theorem 1.5) using the unavoidable configurations in Fig. 1. Let G
be a (projective) planar graph and L a 3-list-assignment. It is sufficient to
prove the theorem when G is a triangulation. Otherwise, we triangulate G
and any L-coloring of the triangulation is an L-coloring of G.1 Of course,
we only consider arboreal L-colorings, and we omit the adverb “arboreal”
in the sequel.

A configuration C contained in G is called reducible if |C| ≤ 9 and any
L-coloring of G−V (C) can be extended to an L-coloring of G in at least two
ways. Showing that every triangulation G contains a reducible configuration
will imply that G has at least 2|V (G)|/9 arboreal L-colorings.

1While this argument is standard for planar graphs, it is much less clear (and only
conditionally true) for the case of projective plane. The details about this case are provided
in the next section.
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Here we prove our main theorem by showing that each configuration
from Section 5.2 is reducible. The following lemma will be used throughout
this section to prove reducibility.

Lemma 3.1. Let G be a planar graph, L a 3-list-assignment for G, and
v1, . . . , vk ∈ V (G). Let Gi = G − {vi+1, . . . , vk} for i = 0, . . . , k and
consider the following properties:

(1) For every i = 1, . . . , k, degGi(vi) ≤ 5.

(2) There exists an i such that degGi(vi) ≤ 3.

If (1) holds, then every arboreal L-coloring of G0 can be extended to G. If
both (1) and (2) hold, then every arboreal L-coloring of G0 can be extended
to G in at least two ways.

Proof. Let f be an L-coloring of G0. Since v1 has degree at most 5 in G1,
there is a color c ∈ L(v1) such that c appears at most once on NG1(v1).
Therefore, coloring v1 with c gives an L-coloring of G1. Repeating this
argument, we see that the L-coloring of G0 can be extended to an L-coloring
of G by consecutively L-coloring v1, v2, . . . , vk. If (2) holds for i, then there
are actually two possible colors that can be used to color vi. Therefore,
every L-coloring of G0 can be extended to G in at least two ways.

Lemma 3.2. Configurations Q1, . . . , Q5, Q8, . . . , Q13, Q15, . . . , Q22 listed
in Fig. 1 are reducible. The configuration Q′23 that is obtained from Q23 by
deleting the pendant vertex with δ(v) = 4 is also reducible.

Proof. For these configurations Qi and Q′23 we simply apply Lemma 3.1.
The corresponding enumeration v1, . . . , vk (k = |V (Qi)| or k = |V (Q′23)|) is
shown in Figure 2. The vertex for which condition (2) of Lemma 3.1 applies
is always v1; it is shown by a larger circle.

Lemma 3.3. Configuration Q6 in Fig. 1 is reducible.

Proof. Let u be the 4-vertex and let u1, u2, u3, u4 be its neighbors in cyclic
order and let C be the cycle u1u2u3u4. Suppose that deg(u1) = deg(u2) = 7,
deg(u3) ≤ 7 and deg(u4) = 6. Let f be an L-coloring of G−{u, u1, u2, u3, u4}.
Now, consider u2. If there are at least two ways to extend the coloring f
to u2, then we can obtain at least two different colorings for G by sequen-
tially coloring u1, u3, u4, u using Lemma 3.1. Therefore, we may assume
that L(u2) = {1, 2, 3} and that colors 1 and 2 each appear exactly twice on
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Figure 2: Lemma 3.1 applies to several configurations.

N(u2). Now, let us color u2 with color 3. We now consider coloring u1 and
u3. We claim that at least one of u1 and u3 must be forced to be colored
3. Otherwise, we color u1 and u3 without using color 3, then we color u4
arbitrarily (this is possible since u is yet uncolored). Now, if 3 ∈ L(u), then
we can color u with 3 since u2 has no neighbor of color 3 and hence it is
not possible to make a cycle colored 3. Moreover, there is at most one color
(other than color 3) that can appear on the neighborhood of u twice. There-
fore, u has another available color in its list and so there are two ways to
color u. Similarly, we get two different colorings of u when 3 /∈ L(u). This
proves the claim, and we may assume that L(u1) = {a, b, 3}, u1 is forced to
be colored 3, and that the four colored neighbors of u1 not on C have colors
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a, a, b, b. Now, we color u3 arbitrarily with a color c. We may assume that
c 6= 3, for otherwise we color u4 arbitrarily and we will have two available
colors for u. To complete the proof it is sufficient to show that u4 can be
colored with a color that is not c, for then we could color u with at least
two different colors. If u4 is forced to be colored c, then for every color
x ∈ L(u4), x 6= c, the color x must appear at least twice on N(u4). This
implies that the three colored neighbors of u4 not on the cycle have colors
3, y, y, for some color y and that 3, y ∈ L(u4). But recall that u1 and u2 have
no neighbors outside C having color 3. Therefore, coloring u4 with color 3
gives a proper coloring of G − u. Now, u can be colored with at least two
colors to obtain a coloring of G.

Lemma 3.4. Let u be a 4-vertex, and suppose u1, u2, u3, u4 are the neighbors
of u in cyclic order. Suppose that deg(u1) ≤ 6, deg(u2) ≤ 7 and deg(u3) ≤ 6.
This configuration is reducible. In particular, the configuration Q7 in Fig. 1
is reducible.

Proof. Let f be an L-coloring of G′ = G − {u, u1, u2, u3}. Suppose that
f(u4) = 3. Now, consider u1. Note that we can extend the coloring of G′

to u1, u2, u3, u (in this order) by Lemma 3.1. Suppose, for a contradiction,
that f has only one extension to an L-coloring of G. Then colors of each of
u1, u2, u3, u are uniquely determined in each step and two colors from each
vertex list are forbidden. Now, consider u1. Since only four of its neighbors
are colored and f(u4) = 3, we can color u1 with a color other than 3, say
2, and we may further assume that its colored neighbors use colors 1 and
3 twice, where L(u1) = {1, 2, 3}. Now, consider coloring u2. The color 2
at u1 cannot create a monochromatic cycle containing u2. Thus, the only
way for a color of u2 to be forced is that L(u2) = {a, b, x} and colors a
and b each appear twice on N(u2)\{u1}. In this case, we color u2 with
the color x. Similarly, x does not give any restriction for a color at u3, so
u3 satisfies L(u3) = {3, c, y} and the three neighbors of u3 distinct from
u4 are colored with colors 3, c, c. Now, if u does not have two colors on
N(u), each appearing twice, we have two different available colors in L(u).
Therefore, we may assume that {x, y} = {2, 3} and that 2, 3 ∈ L(u). Since
L(u3) = {3, c, y}, it follows that y = 2 and x = 3. Now we see that coloring
u with color 3 does not create a monochromatic cycle, so u has two available
colors: color 3 and z ∈ L(u)\{2, 3}.

Lemma 3.5. The configuration Q14 is reducible.

Proof. Let u be an 8-vertex and assume its neighbors (in the clockwise cyclic
order) are u1, . . . , u8 and let C be the 8-cycle u1u2 . . . u8u1. Suppose that

13



deg(ui) = deg(uj) = 4, deg(uk) ≤ 5 and deg(ul) = 6, where i, j, k, l ∈
{1, . . . , 8} and i 6= j. Assume that ul and uj are adjacent on C. We may
assume that ul = uj+1. If ui = uj+2, then we can use Lemma 3.1 (with
v1 = ui, v2 = u, v3 = uj+1, v4 = uj , v5 = uk), where property (2) applies for
v1.

Therefore, we may assume that ui 6= uj+2. Let L(u) = {1, 2, 3} and
consider an L-coloring f of G−{u, ui, uj , uk, ul}. Without loss of generality,
we may assume that colors 1 and 2 each appear exactly twice on N(u) in
the coloring f . Otherwise, there are two ways to extend the coloring f
of G − {u, ui, uj , uk, ul} to a coloring of G − {ui, uj , uk, ul}, and applying
Lemma 3.1 we can extend each of these to a coloring of G. Therefore, color
3 does not appear in the neighborhood of u in the coloring f . We color u
with color 3 to obtain a coloring g of G − {ui, uj , uk, ul}. Now, consider
the 6-vertex uj+1. Since uj+1 has at most five colored neighbors so far,
we have at least one available color for it from its list. If 3 /∈ L(uj+1)
we color uj+1 arbitrarily with an available color. If 3 ∈ L(uj+1), we color
uj+1 with 3 if color 3 does not appear on N(uj+1)\{u}. If color 3 appears
on N(uj+1)\{u}, we color uj+1 with any other available color from its list
except 3 (this is possible since the remaining three colored neighbors of uj+1

can forbid only one additional color from L(uj+1)). Now, consider ui. We
know that ui 6= uj+2. First, assume that 3 /∈ L(ui). Since ui has only
three colored neighbors and u is colored 3, there are at least two available
colors in L(ui) that can be used to color ui. Each coloring then can be
extended to a coloring of G by Lemma 3.1. Therefore, we may assume that
3 ∈ L(ui). Recall that no neighbor of u, except possibly uj+1, is colored 3,
and if so, then uj+1 has no neighbor besides u of color 3. Therefore, ui can
be colored with color 3 without creating a monochromatic cycle of color 3.
Consequently, the four colored neighbors of ui can forbid at most one color
from L(ui), which implies that we can color ui with two different colors.
Now, applying Lemma 3.1 to G − {uk, uj}, we see that each of these two
colorings can be extended to a coloring of G.

4 Proof of the main theorem

It is easy to see that every plane graph is a spanning subgraph of a tri-
angulation; we can always add edges joining distinct nonadjacent vertices
until we obtain a triangulation. However, graphs in the projective plane no
longer satisfy this property. The following extension will be sufficient for
our purpose.
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Proposition 4.1. Let G be a graph embeddable in the projective plane.
Then one of the following holds:

(a) G is a spanning subgraph of a triangulation of the plane or the projec-
tive plane.

(b) G contains vertices u, v of degree at most 3 such that the graph G−u−v
is planar.

(c) G contains adjacent vertices u, v of degree at most 4 such that the
graph G− u− v is planar.

Proof. If G is a planar graph, then we have (a); so we may assume that
G is not planar. The proof proceeds by induction on the number k =
3|V (G)| − |E(G)| − 3. If k = 0, then G triangulates the projective plane (cf.
[5, Proposition 4.4.4]), and we have (a). If G is not 2-connected, then we
can add an edge joining two vertices in distinct blocks of G and keep the
embeddability in the projective plane, and we win by induction. Thus we
may assume that G is 2-connected and non-planar. This assures that facial
walks of every embedding of G are cycles of G (cf. [5, Proposition 5.5.11]).
If G is not a triangulation, then there is a facial cycle C = v1v2 . . . vrv1,
where r ≥ 4. If two vertices of C are nonadjacent in G, we can add the edge
joining them and win by induction. Thus, the subgraph K of G induced on
V (C) is the complete graph of order r. Since this subgraph has a facial walk
of length r > 3, we conclude that r ∈ {4, 5} and the induced embedding of
K is as shown in Figure 3.

v1 v2

v3v4

v1 v2

v3
v4

v5

Figure 3: K4 and K5 embedded in the projective plane

Let us consider the vertex v1 and the edges v1v3 and v2v4 (if r = 4), and
v1v3, v1v4 and v2v5 (if r = 5). These edges are embedded as shown in Figure
3. Suppose that v1 has two neighbors a, b /∈ V (C) such that the cyclic order
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around v1 is v1v4, v1a, v1v3, v1b when r = 4 and v1v5, v1a, v1vs, v1b (where
s = 3 or s = 4) when r = 5. Then we can re-embed the edge v1v3 (if r = 4)
or re-embed the edges v1v3 and v1v4 (if r = 5) into the face bounded by C
and then add an edge joining two nonadjacent neighbors of v1. Again, we
are done by applying the induction hypothesis.

Thus we may assume henceforth that all neighbors of each vertex vi that
are not on C are contained in a single face of K. If a face F of K contains
at least one vertex that is not on C, then each vertex of C on the boundary
of F has a neighbor inside F . If not, we would be able to add an edge and
would be done by applying induction. Since any two faces of K have a vertex
in common, the aforementioned property implies that at most one face of K
contains any vertices of G. If r = 5, this implies that (c) is satisfied. Thus
r = 4 and since G is non-planar, there is a face F of K that contains vertices
of G in its interior. We may assume that F contains the edge v1v2 on its
boundary. Now, if we re-embed the edge v1v2 into the face of K distinct
from F and C, we obtain a new face containing the former face bounded by
C that is of length at least 5. Thus we get into one of the above cases, and
we are done.

Proof of Theorem 1.5. The proof is by induction on the number of vertices,
n = |G|. Let L be a 3-list-assignment for G. Let us first suppose that
G is a triangulation. By Theorem 2.1 and Lemmas 3.2–3.5, G contains a
reducible configuration C on k ≤ 9 vertices. By the induction hypothesis,
G − V (C) has at least 2(n−k)/9 arboreal L-colorings. Since C is reducible,
each of these colorings extends to G in at least two ways, giving at least
2× 2(n−k)/9 ≥ 2n/9 arboreal L-colorings in total.

If G is a spanning subgraph of a triangulation, we apply the above to
the triangulation containing G. Otherwise, Proposition 4.1 shows that G
contains vertices u, v of low degree such that G−u−v is a spanning subgraph
of a triangulation G′. By the induction hypothesis, G′ has at least 2(n−2)/9

L-colorings. By properties (b) and (c) of the proposition, each of them can
be extended to G in at least two ways by applying Lemma 3.1, and we
conclude as before.
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