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GENERALIZED MASS ACTION SYSTEMS:

COMPLEX BALANCING EQUILIBRIA AND SIGN VECTORS OF

THE STOICHIOMETRIC AND KINETIC-ORDER SUBSPACES

STEFAN MÜLLER∗ AND GEORG REGENSBURGER†

Abstract. Mass action systems capture chemical reaction networks in homogeneous and dilute
solutions. We suggest a notion of generalized mass action systems that admits arbitrary power-law
rate functions and serves as a more realistic model for reaction networks in intracellular environments.
In addition to the complexes of a network and the related stoichiometric subspace, we introduce
corresponding kinetic complexes, which represent the exponents in the rate functions and determine
the kinetic-order subspace. We show that several results of Chemical Reaction Network Theory carry
over to the case of generalized mass action kinetics. Our main result essentially states that, if the
sign vectors of the stoichiometric and kinetic-order subspace coincide, there exists a unique complex
balancing equilibrium in every stoichiometric compatibility class. However, in contrast to classical
mass action systems, multiple complex balancing equilibria in one stoichiometric compatibility class
are possible in general.

Key words. chemical reaction network theory, generalized mass action kinetics, complex bal-
ancing, generalized Birch’s theorem, oriented matroids
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1. Introduction. Dynamical systems arising from chemical reaction networks
with mass action kinetics are the subject of Chemical Reaction Network Theory
(CRNT), which was initiated by the work of Horn, Jackson, and Feinberg, cf. [25, 24,
13]. In particular, this theory provides results about existence, uniqueness, and sta-
bility of equilibria independently of rate constants (and initial conditions). However,
the validity of the underlying mass action law is limited; it only holds for elementary
reactions in homogeneous and dilute solutions. In intracellular environments, which
are highly structured and characterized by macromolecular crowding, the rate law has
to be modified, cf. [8, 23, 28].

Two types of modifications have been proposed: “fractal reaction kinetics” [26,
27, 38, 21] and the “power-law formalism” [34, 35, 36, 37]. The names of the two
approaches are a bit misleading, since both approaches address the problem of di-
mensional restriction (i.e. molecules confined to surfaces, channels, or fractal-like
structures) and both use power-laws. More specifically, in fractal-like kinetics, rate
constants are time-dependent (via a power-law), whereas the exponents of the species
concentrations in the rate function are the corresponding stoichiometric coefficients
(as in mass action kinetics). On the other hand, in the power-law formalism, rate
constants are time-independent (as in mass action kinetics), whereas the exponents
of the species concentrations may be (nonnegative) real numbers different from the
respective stoichiometric coefficients. For model selection, data have to be collected
for many molecules and intracellular environments. Recent data of binding kinetics
in crowded media [2, 30] suggest that the power-law formalism is the preferred model.

In this work, we study the consequences of the power-law formalism for chemical
reaction networks. In particular, we demonstrate that several fundamental results

∗Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of
Sciences, Altenberger Straße 69, 4040 Linz, Austria (stefan.mueller@ricam.oeaw.ac.at).
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of CRNT carry over to the case of generalized mass action kinetics (i.e. power-law
rate functions). There has been an early approach to account for generalized mass
action kinetics [25], which entails a redefinition of the complexes of a network. Here,
we suggest a different approach, where we keep the original complexes, but introduce
additional “kinetic complexes”, which determine the exponents of the species concen-
trations in the rate functions. This has the advantage that the underlying chemical
reaction network and thus properties like weak reversibility and deficiency remain the
same.

From the kinetic complexes, we obtain (in addition to the stoichiometric subspace)
a “kinetic-order subspace”, and it turns out that the generalization of a central re-
sult of CRNT (concerned with the uniqueness and existence of a complex balancing
equilibrium in every stoichiometric compatibility class) depends on the sign vectors
of the two subspaces. Our main result Theorem 3.10 essentially states that, if these
sign vectors are equal, there exists a unique complex balancing equilibrium in every
stoichiometric compatibility class. In general, however, there may be more than one
complex balancing equilibrium in a stoichiometric compatibility class, see Proposi-
tion 3.2 and Example 4.2.

Chemical reaction networks with non mass action kinetics are also studied in
[5, 4, 3]. In this approach, one is interested in conditions that guarantee the uniqueness
of equilibria. If autocatalytic reactions are excluded and if the dependence of the
rate functions on the species concentrations corresponds to the stoichiometric matrix,
the structure of the stoichiometric matrix alone guarantees uniqueness. Moreover,
the properties of the stoichiometric matrix can be translated into conditions for the
species reaction graph. As a consequence, this theory is applicable to many types
of kinetics, however, it does not address the existence of equilibria. Existence and
uniqueness of equilibria for general kinetics are discussed in [12]. The methods are
based on homotopy invariance of the Brouwer degree in a related way to the approach
in Section 3.3.

Organization of the work. In the next section, we recall the definition of
mass action systems and several fundamental results of CRNT. Then we introduce
generalized mass action systems and discuss the results that carry over easily to this
framework. In Section 3, we study uniqueness and existence of complex balancing
equilibria; more specifically, we reformulate the problem and study injectivity and
surjectivity of a certain map, (a simplified version of) which appears for example in
toric and computational geometry or statistics. In Section 4, we discuss two examples
of generalized mass action systems. Finally, we draw our conclusions and give an
outlook to further lines of research. In the Appendix, we recall the relevant results
on sign vectors of vector spaces and face lattices of polyhedral cones and polytopes.

Notation. We denote the positive real numbers by R> and the nonnegative real
numbers by R≥. For a finite index set I, we write RI for the real vector space of formal
sums x =

∑

i∈I xi i with xi ∈ R, and R
I
> and R

I
≥ for the corresponding subsets. Given

x ∈ R
I , we write x > 0 if x ∈ R

I
> and x ≥ 0 if x ∈ R

I
≥. Further, we define ex ∈ R

I
>

and ln(x) ∈ R
I componentwise, i.e. (ex)i = exi and (ln(x))i = ln(xi), the latter for

x ∈ R
I
>. Finally, we define x ◦ y ∈ R

I for x, y ∈ R
I as (x ◦ y)i = xiyi and xy ∈ R≥ for

x, y ∈ R
I
≥ as xy =

∏

i∈I x
yi

i , where we set 00 = 1.
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2. Chemical reaction networks. In our presentation of CRNT, we follow the
surveys by Feinberg [14, 15, 16] and Gunawardena [22].

Definition 2.1. A chemical reaction network (S ,C ,R) consists of three finite
sets: (i) a set S of species, (ii) a set C ⊂ R

S
≥ of complexes, and (iii) a set R ⊂ C ×C

of reactions with the following properties: (a) ∀y ∈ C : ∃y′ ∈ C such that (y, y′) ∈ R

or (y′, y) ∈ R and (b) ∀y ∈ C : (y, y) 6∈ R.
Complexes are formal sums of species; they are the left-hand sides and right-hand

sides of chemical reactions. For y ∈ C , we may write y =
∑

s∈S
ys s, where ys is the

stoichiometric coefficient of species s. As usual in chemistry, we write y → y′ for a
reaction (y, y′) ∈ R. In a chemical reaction network, each complex appears in at least
one reaction; moreover, there are no reactions of the form y → y.

A chemical reaction network (S ,C ,R) gives rise to a directed graph with com-
plexes as nodes and reactions as edges. Connected components L1, . . . , Ll ⊆ C are
called linkage classes, strongly connected components are called strong linkage classes,
and strongly connected components without outgoing edges T1, . . . , Tt ⊆ C are called
terminal strong linkage classes. Each linkage class must contain at least one terminal
strong linkage classes, i.e. t ≥ l. The network (S ,C ,R) is called weakly reversible, if
the linkage classes coincide with the strong linkage classes and hence with the terminal
strong linkage classes.

From a dynamic point of view, each reaction y → y′ ∈ R causes a change in species
concentrations proportional to y′ − y ∈ R

S . The change caused by all reactions lies
in a subspace of RS such that any trajectory in R

S
≥ lies in a coset of this subspace.

Definition 2.2. Let (S ,C ,R) be a chemical reaction network. The stoichio-
metric subspace is defined as

S = span{y′ − y ∈ R
S | y → y′ ∈ R} .

Further, let c′ ∈ R
S
> . The corresponding stoichiometric compatibility class is defined

as

(c′ + S)≥ = (c′ + S) ∩ R
S

≥ .

2.1. Mass action systems. The rate of a reaction y → y′ ∈ R depends on
the concentrations of the species involved. The explicit form of the rate function
Ky→y′ : RS

≥ → R≥ is determined by the underlying kinetics. In the case of mass

action kinetics, it is a monomial in the concentrations c ∈ R
S
≥ of reactant species, i.e.

Ky→y′(c) = ky→y′ cy with rate constant ky→y′ ∈ R>. In other words, the stoichiomet-
ric coefficient of a species on the left-hand side of the reaction equals the exponent of
the corresponding concentration in the rate function. It remains to formally introduce
the rate constants.

Definition 2.3. A mass action system (S ,C ,R, k) is a chemical reaction net-
work (S ,C ,R) together with a vector k ∈ R

R
> of rate constants.

Definition 2.4. The ordinary differential equation (ODE) associated with a
mass action system (S ,C ,R, k) is defined as

dc

dt
= r(c)

with the species formation rate

r(c) =
∑

y→y′∈R

ky→y′ cy (y′ − y) .
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In order to rewrite the species formation rate, we use the unit vectors ωy ∈ R
C

corresponding to complexes y ∈ C and define

• a linear map1 Y : RC → R
S with Y ωy = y,

• a nonlinear map Ψ: RS
≥ → R

C , c 7→
∑

y∈C

cy ωy, and

• a linear map2 A : RC → R
C , x 7→

∑

y→y′∈R

ky→y′ xy (ωy′ − ωy).

Now, the species formation rate can be decomposed as

r(c) =
∑

y→y′∈R

ky→y′ cy (y′ − y) (2.1)

= Y
∑

y→y′∈R

ky→y′ cy (ωy′ − ωy)

= Y
∑

y→y′∈R

ky→y′ Ψ(c)y (ωy′ − ωy)

= Y AΨ(c) .

Equilibria of the ODE associated with a mass action system satisfying AΨ(c) = 0
and c > 0 are called complex balancing equilibria. The possibility of other (positive)
equilibria suggests the definition of the deficiency of a mass action system.

Definition 2.5. Let (S ,C ,R, k) be a mass action system. The set of complex
balancing equilibria is defined as

Z = {c ∈ R
S

> |AΨ(c) = 0} .

The deficiency of the system is defined as

δ = dim(ker(Y ) ∩ im(A)) .

Originally, the deficiency was defined differently. As we will see in Proposition
2.8, the two definitions coincide under certain conditions on the network structure.
In Fig. 2.1, we summarize the definitions associated with a mass action system and
depict their dependencies.

Results. Now we are in a position to present several results of CRNT related to
the Deficiency Zero Theorem. (The results are due to Horn, Jackson, and Feinberg
[25, 24, 13]. For proofs, we refer the reader to the surveys [14, 16] or [22].) As we will
see later, corresponding statements also hold in the case of generalized mass action
kinetics. We start with a foundational linear algebra result, which can be proved
using the Perron-Frobenius Theorem.

1 The corresponding matrix amounts to Ysy = ys.
2 The corresponding matrix amounts to Ayy′ = Ky′y − δyy′

∑

y′′∈C
Kyy′′ , where K ∈ RC×C

with Kyy′ = ky→y′ if y → y′ ∈ R and Kyy′ = 0 otherwise.
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S C
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✍✍

��   ❅
❅❅

❅❅
❅❅

❅

Y

��

Ψ

��
S δ Z
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R

XX✵✵✵✵✵✵✵✵✵✵✵✵✵✵

OO

k

``❅❅❅❅❅❅❅❅

dc

dt
= Y AΨ(c)

Fig. 2.1. The mass action system (S ,C ,R, k): Associated definitions and their dependencies.
(Definitions at arrowheads depend on tails.)

Theorem 2.6. Let (S ,C ,R, k) be a mass action system with the associated map
A, and let T1, . . . , Tt ⊆ C be the terminal strong linkage classes. Then:

1. for i = 1, . . . , t : ∃χi ∈ R
C
≥ with supp(χi) = Ti

2. ker(A) = span{χ1, . . . , χt}
3. dim(ker(A)) = t

The next result is an immediate consequence of Theorem 2.6.
Corollary 2.7. Let (S ,C ,R) be a chemical reaction network. If there exist rate

constants k such that the mass action system (S ,C ,R, k) has a complex balancing
equilibrium, then (S ,C ,R) is weakly reversible.

If each linkage class contains exactly one terminal strong linkage class, the de-
ficiency is independent of the rate constants and can be computed from basic pa-
rameters of the chemical reaction network. The resulting formula was the original
definition of the deficiency.

Proposition 2.8. If a chemical reaction network (S ,C ,R) is weakly reversible
(or more generally if t = l), then, for all rate constants k, the deficiency of the mass
action system (S ,C ,R, k) is given by δ = m− l− s, where m is the number of com-
plexes, l is the number of linkage classes, and s is the dimension of the stoichiometric
subspace.

In the case of deficiency zero, weak reversibility guarantees the existence of com-
plex balancing equilibria.

Proposition 2.9. If a chemical reaction network (S ,C ,R) is weakly reversible
and δ = 0, then, for all rate constants k, the mass action system (S ,C ,R, k) has a
complex balancing equilibrium.

Theorem 2.6 further implies that the set of complex balancing equilibria can be
parametrized by the orthogonal of the stoichiometric subspace.
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Proposition 2.10. Let (S ,C ,R, k) be a mass action system with nonempty set
Z of complex balancing equilibria. Then

Z = {c ∈ R
S

> | ln(c)− ln(c∗) ∈ S⊥} = {c∗ ◦ ev | v ∈ S⊥}

for any c∗ ∈ Z.

Finally, we recall a result concerned with the existence and uniqueness of a com-
plex balancing equilibrium in every stoichiometric compatibility class. It can be
proved using methods from convex analysis.

Theorem 2.11. Let (S ,C ,R, k) be a mass action system with nonempty set
Z of complex balancing equilibria. Then Z meets every stoichiometric compatibility
class in exactly one point.

In Section 3, we study the conditions under which a result analogous to Theorem
2.11 holds in the case of generalized mass action kinetics.

2.2. Generalized mass action systems. Chemical reactions occur between
entire molecules such that the stoichiometric coefficients are integers. Under the as-
sumption of mass action kinetics, the rate functions are monomials in the concentra-
tions of the reactant species. However, in Definition 2.1 we allowed nonnegative real
stoichiometric coefficients and hence “generalized monomials” as rate functions, since
all results presented above also hold in this generality. This observation can be used
to account for generalized mass action kinetics. We outline two different approaches
the second of which is the focus of this paper.

In the first approach [25], chemical reactions are redefined as pseudo-reactions
with the same net balance, but real stoichiometric coefficients. For example, the
reaction

nAA+ nBB → nCC

with nA, nB, nC ∈ N can be redefined as

νAA+ νBB + νCC → (νA − nA)A+ (νB − nB)B + (νC + nC)C

with νA, νB, νC ∈ R≥ and rate function k [A]νA [B]νB [C]νC . The redefinition of chem-
ical reactions does not affect the stoichiometric subspace, however, it entails a new
(and typically larger) set of complexes and hence a new mass action system (with
different properties). For example, consider the (weakly) reversible chemical reaction
network

A+B ⇋ C

with two complexes and one linkage class. Since the stoichiometric subspace S =
span{(−1,−1, 1)T} has dimension one, we obtain δ = 2−1−1 = 0 by Proposition 2.8.
In order to account for generalized mass action kinetics specified by the rate functions
kA+B→C [A]

a[B]b and kC→A+B[C]c with a, b, c ∈ R>, the system can be redefined by
the pseudo-reactions

aA+ bB → (a− 1)A+ (b − 1)B + C

cC → A+B + (c− 1)C

with four complexes and two linkage classes. This new system is not weakly reversible
and has deficiency δ = 4− 2− 1 = 1, again by Proposition 2.8.
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In this paper, we present a different way to account for generalized mass action
kinetics. Most importantly, we disentangle the definition of the rate functions from
the stoichiometric coefficients. In particular, we keep the integer stoichiometric coeffi-
cients, but we allow “generalized monomials” as rate functions, in which the exponents
of the concentrations can be arbitrary nonnegative real numbers. More formally, we
do not change the chemical reaction network, but we associate with each complex a
so-called kinetic complex, which determines the exponents of the concentrations in
the rate function of the respective reaction. In the above example, we associate the
kinetic complexes aA + bB and cC with A + B and C, thereby specifying the rate
functions kA+B→C [A]

a[B]b and kC→A+B[C]c. We obtain the following network, where
we indicate association of kinetic complexes by dots:

A+ B ⇋ C
...

...
aA+ bB cC

For an arbitrary chemical reaction network with generalized mass action kinetics, the
rate function Ky→y′ : RS

≥ → R≥ corresponding to reaction y → y′ ∈ R is given by

Ky→y′(c) = ky→y′ cỹ, where ỹ is the kinetic complex associated with y.

Definition 2.12. A generalized chemical reaction network (S ,C , C̃ ,R) is a
chemical reaction network (S ,C ,R) together with a family C̃ = (xy)y∈C in R

S
≥ of

kinetic complexes, where |{xy | y ∈ C }| = |C |. We write ỹ = xy for the kinetic
complex associated with the complex y ∈ C .

A generalized chemical reaction network (S ,C , C̃ ,R) contains the chemical reac-
tion network (S ,C ,R); moreover, it entails the fictitious chemical reaction network
(S , C̃ ,R) where the set C̃ = {ỹ | y ∈ C } has the same cardinality as C (by defini-
tion) and the relation R is isomorphic to R, i.e. ỹ → ỹ′ ∈ R whenever y → y′ ∈ R.
Hence the networks (S ,C ,R) and (S , C̃ ,R) give rise to the same directed graph
(up to renaming of vertices). A generalized chemical reaction network (S ,C , C̃ ,R)
is called weakly reversible if (S ,C ,R) is weakly reversible. Also the definitions of the
stoichiometric subspace and the stoichiometric compatibility classes carry over from
(S ,C ,R) to (S ,C , C̃ ,R), cf. Definition 2.2. Additionally, we introduce the kinetic-
order subspace of a generalized chemical reaction network, which coincides with the
stoichiometric subspace of the fictitious network.

Definition 2.13. Let (S ,C , C̃ ,R) be a generalized chemical reaction network.
The kinetic-order subspace is defined as

S̃ = span{ỹ′ − ỹ | y → y′ ∈ R} .

For consistency, the name kinetic subspace would be more appropriate for S̃ but
this name has already been given to a certain subspace of the stoichiometric subspace
[18], which coincides with the stoichiometric subspace if t = l.

For later use, we introduce the maps

• Ỹ : RC → R
S with Ỹ ωy = ỹ and

• Ψ̃ : RS
≥ → R

C , c 7→
∑

y∈C

cỹ ωy ,

where we identify R
C and R

C̃ .
Definition 2.14. A generalized mass action system (S ,C , C̃ ,R, k) is a gener-

alized chemical reaction network (S ,C , C̃ ,R) together with a vector k ∈ R
R
> of rate



8 STEFAN MÜLLER AND GEORG REGENSBURGER

constants.
Definition 2.15. The ordinary differential equation (ODE) associated with a

generalized mass action system (S ,C , C̃ ,R, k) is defined as

dc

dt
= r̃(c)

with the species formation rate

r̃(c) =
∑

y→y′∈R

ky→y′ cỹ (y′ − y) .

As in Eqn. (2.1), we can decompose the species formation rate of a generalized
mass action system as

r̃(c) = Y A Ψ̃(c) .

In analogy to Definition 2.5, equilibria satisfying A Ψ̃(c) = and c > 0 are called
complex balancing equilibria; they coincide with the complex balancing equilibria of
the fictitious mass action system (S , C̃ ,R, k). The deficiency, which quantifies the
possibility of other equilibria, coincides with the deficiency of the mass action system
(S ,C ,R, k).

Definition 2.16. Let (S ,C , C̃ ,R, k) be a generalized mass action system. The
set of complex balancing equilibria is defined as

Z̃ = {c ∈ R
S
> |A Ψ̃(c) = 0}

and the deficiency as

δ = dim(ker(Y ) ∩ im(A)) .

It remains to introduce the kinetic deficiency, which coincides with the deficiency
of the fictitious system.

Definition 2.17. Let (S ,C , C̃ ,R, k) be a generalized mass action system. The
kinetic deficiency is defined as

δ̃ = dim(ker(Ỹ ) ∩ im(A)) .

In Fig. 2.2, we summarize the definitions associated with a generalized mass action
system and depict their dependencies. From the mass action system (S ,C ,R, k), we
keep the stoichiometric subspace S and the deficiency δ, whereas we use all defini-
tions associated with the fictitious mass action system (S , C̃ ,R, k); in particular, the
kinetic-order subspace S̃, the kinetic deficiency δ̃, and the set Z̃ of complex balancing
equilibria.

Results. Now we return to the results of CRNT that have been derived for mass
action systems. Since Theorem 2.6 is concerned with the kernel of the linear map
A, the underlying kinetics is not relevant at all. But also Corollary 2.7 and Proposi-
tions 2.8–2.10 carry over easily to generalized mass action systems if we consider the
fictitious chemical reaction network (S , C̃ ,R) and the fictitious mass action system
(S , C̃ ,R, k) defined above. For reference, we present the analogous results.
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dc

dt
= Y A Ψ̃(c)

Fig. 2.2. The generalized mass action system (S ,C , C̃ ,R, k): Associated definitions and their
dependencies. (For better readability, k and A are plotted twice.)

Proposition 2.18. Let (S ,C ,R) be a chemical reaction network. If there exists
a generalized mass action system (S ,C , C̃ ,R, k) with a complex balancing equilib-
rium, then (S ,C ,R) is weakly reversible.

Proof. Assume that (S ,C , C̃ ,R, k) and hence the mass action system (S , C̃ ,R, k)
have a complex balancing equilibrium. By Corollary 2.7, the chemical reaction net-
work (S , C̃ ,R) and hence (S ,C ,R) are weakly reversible.

Proposition 2.19. If a chemical reaction network (S ,C ,R) is weakly reversible
(or more generally if t = l), then the deficiencies of any generalized mass action system
(S ,C , C̃ ,R, k) are given by δ = m− l−s and δ̃ = m− l− s̃, where m is the number of
complexes, l is the number of linkage classes, s is the dimension of the stoichiometric
subspace, and s̃ is the dimension of the kinetic-order subspace.

Proof. Assume that (S ,C ,R) and hence the chemical reaction network (S , C̃ ,R)
arising from (S ,C , C̃ ,R, k) are weakly reversible (or more generally that t = l). The
deficiency of the generalized mass action system equals the deficiency of (S ,C ,R, k),
and the kinetic deficiency equals the deficiency of (S , C̃ ,R, k). By Proposition 2.8,
the deficiencies of the two mass action systems are given by the formulas stated.

Proposition 2.20. If a generalized chemical reaction network (S ,C , C̃ ,R) is
weakly reversible and δ̃ = 0, then any generalized mass action system (S ,C , C̃ ,R, k)
has a complex balancing equilibrium.

Proof. Assume that (S ,C ,R) and hence the chemical reaction network (S , C̃ ,R)
arising from (S ,C , C̃ ,R, k) are weakly reversible. Additionally, assume δ̃ = 0. By
Proposition 2.9, the mass action system (S , C̃ ,R, k) and hence (S ,C , C̃ ,R, k) have
a complex balancing equilibrium.
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Proposition 2.21. Let (S ,C , C̃ ,R, k) be a generalized mass action system with
nonempty set Z̃ of complex balancing equilibria. Then

Z̃ = {c ∈ R
S

> | ln(c)− ln(c∗) ∈ S̃⊥} = {c∗ ◦ eṽ | ṽ ∈ S̃⊥}

for any c∗ ∈ Z̃.
Proof. The complex balancing equilibria of the mass action system (S , C̃ ,R, k)

coincides with Z̃, and its stoichiometric subspace coincides with S̃, the kinetic-order
subspace of (S ,C , C̃ ,R, k). By Proposition 2.10, the nonempty set Z̃ is given by the
formula stated.

One might conjecture that also Theorem 2.11 holds for generalized mass action
systems. However, an analogous result depends on both the complexes C and the
kinetic complexes C̃ , where C determines the stoichiometric subspace S (and hence
the stoichiometric compatibility classes (c′ + S)≥), whereas C̃ determines the set Z̃

of complex balancing equilibria (and the related kinetic-order subspace S̃). It turns
out that the result depends on additional assumptions concerning the sign vectors of
the subspaces S and S̃, see Theorem 3.10.

3. Complex balancing equilibria. In the following, we consider a generalized
mass action system (S ,C , C̃ ,R, k) with stoichiometric subspace S, kinetic-order sub-
space S̃, and nonempty set Z̃ of complex balancing equilibria.

From Proposition 2.21 we know that Z̃ = {c∗ ◦ eṽ | ṽ ∈ S̃⊥} for any c∗ ∈ Z̃. We
provide necessary and sufficient conditions such that in every stoichiometric compat-
ibility class (c′ + S)≥ there is at most one complex balancing equilibrium. Moreover,
we provide sufficient conditions such that in every stoichiometric compatibility class
there is at least one complex balancing equilibrium.

The question of uniqueness is answered by the following result for arbitrary sub-
spaces S and S̃. It involves the corresponding sets of sign vectors denoted by σ(S) and
σ(S̃); for the definition of sign vectors and related notions we refer the reader to the
Appendix. We note that sign vectors also appear in the study of multiple equilibria
that are not necessarily complex balancing [17, 32].

Proposition 3.1. Let S, S̃ be subspaces of R
n. Then the two statements are

equivalent:
1. For all c∗ > 0 and c′ > 0, the intersection (c′ + S)≥ ∩ {c∗ ◦ eṽ | ṽ ∈ S̃⊥}

contains at most one element.
2. σ(S) ∩ σ(S̃⊥) = {0}.

Proof. (¬1 ⇒ ¬2): Suppose there exist u1 6= u2 ∈ S and ṽ1 6= ṽ2 ∈ S̃⊥ such that
c′ + u1 = c∗ ◦ eṽ1 and c′ + u2 = c∗ ◦ eṽ2 (for a certain c′ and a certain c∗). Then
u1 − u2 = c∗ ◦ (eṽ1 − eṽ2) and by the monotonicity of the exponential function

σ(u1 − u2

︸ ︷︷ ︸

∈S

) = σ(c∗ ◦ (eṽ
1

− eṽ
2

)) = σ(eṽ
1

− eṽ
2

) = σ(ṽ1 − ṽ2
︸ ︷︷ ︸

∈ S̃⊥

) .

Hence σ(S) ∩ σ(S̃⊥) 6= {0}.
(¬2 ⇒ ¬1): Suppose that 0 6= τ ∈ σ(S) ∩ σ(S̃⊥). Then there exist u ∈ S and

ṽ1 ∈ S̃⊥ such that σ(u) = σ(ṽ1) = τ . Further, let ṽ2 = 1

2
ṽ1. Then σ(ṽ1− ṽ2) = τ and

σ(u) = σ(ṽ1 − ṽ2) = σ(eṽ
1

− eṽ
2

) = σ(c∗ ◦ (eṽ
1

− eṽ
2

))

for all c∗ > 0. In particular, there is c∗ such that u = c∗ ◦ (eṽ
1

− eṽ
2

). With c′ =

c∗ ◦ eṽ
1

, one has c′ − u = c∗ ◦ eṽ
2

and hence both c′ and c′ − u are elements of
(c′ + S)≥ ∩ {c∗ ◦ eṽ | ṽ ∈ S̃⊥}.
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It follows in particular that if the sign vectors are equal, σ(S) = σ(S̃), complex
balancing equilibria are unique (in a stoichiometric compatibility class) since then

σ(S) ∩ σ(S̃⊥) = σ(S) ∩ σ(S̃)⊥ = σ(S) ∩ σ(S)⊥ = {0}

using Eqn. (A.1). Note that this is only a sufficient condition; for example, with
S = span{(−1, 1)} and S̃ = span{(−1, 0)}, we have σ(S) ∩ σ(S̃⊥) = {0} but σ(S) 6=
σ(S̃). However, it includes classical mass action kinetics where S = S̃ and each
stoichiometric compatibility class contains at most one complex balancing equilibrium.
On the other hand, if σ(S) ∩ σ(S̃⊥) 6= {0} and the underlying network is weakly
reversible, then such a generalized chemical reaction network has the capacity for
multiple complex balancing equilibria, as shown in the following result.

Proposition 3.2. If a generalized chemical reaction network (S ,C , C̃ ,R) is
weakly reversible and σ(S) ∩ σ(S̃⊥) 6= {0}, there exist rate constants k such that the
generalized mass action system (S ,C , C̃ ,R, k) has more than one complex balancing
equilibrium in some stoichiometric compatibility class.

Proof. Let σ(S) ∩ σ(S̃⊥) 6= {0}. By Proposition 3.1, there exist c∗ > 0 and
c′ > 0 such that (c′ +S)≥ ∩{c∗ ◦ eṽ | ṽ ∈ S̃⊥} contains more than one element. Using
Proposition 2.21, it remains to show that there exist rate constants k ∈ R

R
> such that

c∗ is a complex balancing equilibrium of (S ,C , C̃ ,R, k), i.e.

A Ψ̃(c∗) =
∑

y→y′∈R

ky→y′ (c∗)ỹ (ωy′ − ωy) = 0 .

Since (S ,C , C̃ ,R) and hence (S ,C ,R) are weakly reversible, this is guaranteed by
Lemma 3.3.

In the proof of Proposition 3.2, we use the following result.
Lemma 3.3. Let (S ,C ,R) be a chemical reaction network. Then, the following

statements are equivalent:
1. (S ,C ,R) is weakly reversible.
2. There exists k ∈ R

R
> such that

∑

y→y′∈R
ky→y′ (ωy′−ωy) = 0, where ωy ∈ R

C

denotes the unit vector corresponding to y ∈ C .
Proof. (1 ⇒ 2): By weak reversibility, there exists a cycle y → y′ → . . . → y for

each reaction y → y′ ∈ R and we denote the set of reactions involved in this cycle by
Cy→y′ . Clearly,

∑

z→z′∈Cy→y′
(ωz′ − ωz) = 0 and hence

∑

y→y′∈R

∑

z→z′∈Cy→y′

(ωz′ − ωz) =
∑

y→y′∈R

ky→y′ (ωy′ − ωy) = 0 ,

where ky→y′ > 0 records in how many cycles the reaction y → y′ appears.
(2 ⇒ 1): We write

∑

y→y′∈R
ky→y′ (ωy′−ωy) = AΩ with Ω = (1, 1, . . . , 1)T ∈ R

C
> .

By Theorem 2.6, if AΩ = 0, then (S ,C ,R) is weakly reversible.
The second implication is a basic fact from CRNT [24, 16].

3.1. The map F . In order to study uniqueness and existence in a common
framework, we rephrase the problem. We suppose that S contains n species and fix an
order among them. Then we can identify R

S with R
n such that S, S̃ ⊆ R

n. Further,

let V = (v1, . . . , vd) and Ṽ = (ṽ1, . . . , ṽd̃) be bases for S⊥ and S̃⊥, respectively.
In other words, S⊥ = im(V ) and dim(S⊥) = d and analogously S̃⊥ = im(Ṽ ) and
dim(S̃⊥) = d̃.
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An element in (c′ + S)≥ ∩ {c∗ ◦ eṽ | ṽ ∈ S̃⊥} corresponds to u ∈ S and ṽ ∈ S̃⊥

such that c∗ ◦ eṽ = c′ + u or equivalently to λ ∈ R
d̃ such that

〈c∗ ◦ e
∑d̃

j=1
λj ṽ

j

, vi〉 = 〈c′, vi〉 for i = 1, . . . , d .

Hence, provided c∗ ∈ Z̃, uniqueness and existence (of a complex balancing equilibrium
in every stoichiometric compatibility class) correspond to injectivity and surjectivity
of the following map:

F : Rd̃ → C◦ ⊆ R
d (3.1)

λ 7→ F (λ) with (F (λ))i = 〈c∗ ◦ e
∑d̃

j=1
λj ṽ

j

, vi〉 ,

where c∗ > 0 and

C◦ = {γ ∈ R
d | γi = 〈c′, vi〉, c′ ∈ R

n
>} .

Note that F depends on c∗. It is instructive to reformulate the definition of F . To
this end, we express the columns of V and Ṽ by its rows,

V = (v1, . . . , vd) = (w1, . . . , wn)T

Ṽ = (ṽ1, . . . , ṽd̃) = (w̃1, . . . , w̃n)T ,

or equivalently vji = wi
j and ṽji = w̃i

j , and obtain:

(F (λ))i = 〈c∗ ◦ e
∑d̃

j=1
λj ṽ

j

, vi〉 =
n∑

k=1

c∗k e
∑d̃

j=1
λj ṽ

j

k vik

=

n∑

k=1

c∗k e
∑d̃

j=1
λjw̃

k
j wk

i =

n∑

k=1

c∗k e〈λ,w̃
k〉 wk

i

and

γi = 〈c′, vi〉 =
n∑

k=1

c′k v
i
k =

n∑

k=1

c′k w
k
i .

Hence we can write F (λ) =
∑n

k=1
c∗k e〈λ,w̃

k〉 wk and γ =
∑n

k=1
c′k w

k.

Definition 3.4. Let V ∈ R
n×d, Ṽ ∈ R

n×d̃ with n ≥ d, d̃ have full rank. We write

V = (v1, . . . , vd) = (w1, . . . , wn)T and Ṽ = (ṽ1, . . . , ṽd̃) = (w̃1, . . . , w̃n)T . Further, let
c∗ > 0. We define

F : Rd̃ → C◦ ⊆ R
d

λ 7→
n∑

k=1

c∗k e〈λ,w̃
k〉 wk ,

where

C◦ = {
n∑

k=1

c′k w
k ∈ R

d | c′ ∈ R
n
>} .
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This definition is more transparent than the equivalent one given above. It be-
comes clear that the set C◦ is the interior of the polyhedral cone generated by the
vectors (w1, . . . , wn). The map F itself (in case V = Ṽ ) appears in toric geometry
[20], where it is related to moment maps, and in statistics [31], where it is related to
exponential families. There is a useful result [20], which guarantees injectivity and
surjectivity of F in case V = Ṽ .

Proposition 3.5. Let V , Ṽ , and F be as in Definition 3.4. If V = Ṽ , then F
is a real analytic isomorphism of Rd onto C◦ for all c∗ > 0.

This is a variant of Birch’s Theorem [31, 41, 9]; it implies Theorem 2.11. We will
build on this result when we study the surjectivity of F , but first we deal with its
injectivity in case V 6= Ṽ .

3.2. Injectivity of F . In the context of multiple equilibria in mass action sys-
tems [10] and geometric modeling [11], it was shown that the map F (in case d = d̃)
is injective for all c∗ if and only if F is a local isomorphism for all c∗. We give an
alternative proof of this result and extend it to the case d 6= d̃, where we use the sign
vectors of the spaces im(V ) and im(Ṽ ).

Theorem 3.6. Let V , Ṽ , and F be as in Definition 3.4. Then, the following
statements are equivalent:

1. F is injective for all c∗ > 0.
2. F is an immersion for all c∗ > 0. (∂F

∂λ
is injective for all λ and c∗ > 0.)

3. σ(im(V )⊥) ∩ σ(im(Ṽ )) = {0}.

Proof. We use F in the form of Eqn. (3.1).

(1 ⇔ 3): By Proposition 3.1.
Using S⊥ = im(V ) and S̃⊥ = im(Ṽ ), the injectivity of F for all c∗ is equivalent to
the existence of at most one element in (c′ +S)≥ ∩{c∗ ◦ eṽ | ṽ ∈ S̃⊥} for all c′ and c∗.

(¬2 ⇒ ¬3): Suppose that ∂F
∂λ

is not injective (for a certain c∗ and a certain λ),

i.e. there exists a nonzero λ′ ∈ R
d̃ such that ∂F

∂λ
λ′ = 0. Since

d̃∑

j=1

∂Fi

∂λj

λ′
j =

d̃∑

j=1

〈c∗ ◦ e
∑d̃

k=1
λk ṽ

k

◦ṽj, vi〉λ′
j = 〈c∗ ◦ e

∑d̃
k=1

λk ṽ
k

︸ ︷︷ ︸

c

◦
d̃∑

j=1

λ′
j ṽ

j

︸ ︷︷ ︸

ṽ′

, vi〉 ,

this is equivalent to the existence of c > 0 and ṽ′ ∈ im(Ṽ ) such that 〈c◦ ṽ′, vi〉 = 0 for
i = 1, . . . , d, which in turn is equivalent to c ◦ ṽ′ ∈ im(V )⊥. Clearly σ(c ◦ ṽ′) = σ(ṽ′)
and hence σ(im(V )⊥) ∩ σ(im(Ṽ )) 6= {0}.

(¬3 ⇒ ¬2): Suppose that 0 6= τ ∈ σ(im(V )⊥) ∩ σ(im(Ṽ )). Then, there exist
u ∈ im(V )⊥ and ṽ′ ∈ im(Ṽ ) such that σ(u) = σ(ṽ′) = τ . Clearly, one can choose
c > 0 such that u = c ◦ ṽ′ and hence c ◦ ṽ′ ∈ im(V )⊥. As demonstrated in the

previous step, this is equivalent to the existence of c∗ > 0 and λ, λ′ 6= 0 ∈ R
d̃ such

that ∂F
∂λ

λ′ = 0.

Finally, we note that for d = d̃, Statement 3 in Theorem 3.6 is symmetric with
respect to V and Ṽ .

Corollary 3.7. Let V , Ṽ be as in Definition 3.4 with d = d̃. Then, σ(im(V )⊥)∩
σ(im(Ṽ )) = {0} if and only if σ(im(Ṽ )⊥) ∩ σ(im(V )) = {0}.

Proof. Let F be in the form of Eqn. (3.1) with d = d̃, and let F̃ be obtained from
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F by changing the roles of V and Ṽ ,

F̃ : Rd → R
d

λ 7→ F̃ (λ) with (F̃ (λ))i = 〈c∗ ◦ e
∑d

j=1
λjv

j

, ṽi〉 .

We will show that ∂F
∂λ

is injective for all c∗ if and only if ∂F̃
∂λ

is injective for all c∗.
Then, by Theorem 3.6 we will obtain the desired result.

Suppose that ∂F̃
∂λ

(or equivalently its transpose) is not injective (for a certain c∗

and a certain λ), i.e. there exists λ′ ∈ R
d̃ such that (∂F̃

∂λ
)Tλ′ = 0. Since

d∑

j=1

∂F̃j

∂λi

λ′
j =

d∑

j=1

〈c∗ ◦ e
∑d

k=1
λkv

k

◦vi, ṽj〉λ′
j = 〈c∗ ◦ e

∑d
k=1

λkv
k

︸ ︷︷ ︸

c

◦ vi,
d∑

j=1

λ′
j ṽ

j

︸ ︷︷ ︸

ṽ′

〉

and 〈c ◦ vi, ṽ′〉 = 〈c ◦ ṽ′, vi〉, this is equivalent to the non-injectivity condition for ∂F
∂λ

derived in the proof of Theorem 3.6.

3.3. Surjectivity of F . It is more difficult to derive conditions for the surjec-
tivity of F . Our main result is concerned with sufficient conditions, however, we start
with a discussion of necessary conditions.

Let C and C̃ be the polyhedral cones generated by the vector configurations
V T = (w1, . . . , wn) and Ṽ T = (w̃1, . . . , w̃n), respectively. Then C◦ = int(C), and
analogously we write C̃◦ = int(C̃). We note that C◦ and C̃◦ are nonempty since V
and Ṽ have full rank.

We write σ(im(V ))≥ = σ(im(V )) ∩ {0,+}n for the face lattice of C, see the

Appendix, and analogously σ(im(Ṽ ))≥ = σ(im(Ṽ ))∩{0,+}n for the face lattice of C̃.
A face f of C is characterized by a sign vector τ ∈ σ(im(V ))≥ or equivalently by a
supporting hyperplane with normal vector λ ∈ R

d, where τk = 0 whenever 〈λ,wk〉 = 0
(for wk lying on f) and τk = + whenever 〈λ,wk〉 > 0.

Now, we can study a necessary condition for surjectivity: The image of F must
contain points arbitrarily close to any point on a face of C. We assume that C is
pointed, more specifically that (+, . . . ,+)T ∈ σ(im(V )), and we consider the simplest
nontrivial face, namely an extreme ray e. To begin with, we assume that e contains
only one generator, say w1; hence the characteristic sign vector amounts to τ =
(0,+, . . . ,+)T . If F is surjective, then the cone C̃ must have a corresponding extreme

ray ẽ with the same sign vector τ . Only then there is µ ∈ R
d̃ with 〈µ, w̃1〉 = 0 and

〈µ, w̃k〉 > 0 for k = 2, . . . , n such that the limit

lim
a→∞

F (−aµ+ ν) = lim
a→∞

n∑

k=1

c∗k e−a〈µ,w̃k〉+〈ν,w̃k〉 wk = c∗1 e〈ν,w̃
1〉 w1

can be placed arbitrarily close to any point on e (by appropriate choice of ν ∈ R
d̃).

If the extreme ray e contains more than one generator, there may be several
corresponding extreme rays ẽ. For a particular ẽ with characteristic sign vector τ̃ ,

there is µ ∈ R
d̃ (with 〈µ, w̃k〉 = 0 if τ̃k = 0 and 〈µ, w̃k〉 > 0 if τ̃k = +) such that

lima→∞ F (−aµ+ ν) lies on e. We note that if ẽ contains w̃k, then e must contain wk;
otherwise the limit does not lie on e. This condition on the corresponding extreme
rays ẽ and e can be expressed by their characteristic sign vectors τ̃ and τ , namely as
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τ̃ ≥ τ . For higher-dimensional faces, similar (but more complicated) conditions can
be formulated.

For the proof of the following surjectivity result, we will employ Degree Theory.
In particular, we use two properties of the Brouwer degree d(f,D, y) of a continuous
function f : D̄ → R

d defined on the closure of an open and bounded subset D ⊂ R
d

(with boundary ∂D) at a value y 6∈ f(∂D): (i) the degree is invariant under homotopy,
and (ii) if the degree is nonzero, there exists x such that y = f(x), see [29] or [19].

Theorem 3.8. Let V , Ṽ , and F be as in Definition 3.4. If there exists a
lattice isomorphism Φ: σ(im(Ṽ ))≥ → σ(im(V ))≥ with τ̃ ≥ Φ(τ̃ ) and (+, . . . ,+)T ∈
σ(im(V )), then F is surjective for all c∗ > 0.

Proof. In order to use the Brouwer degree, we require a map on a closed and
bounded set. To this end, we define a map G equivalent to F from the interior of C̃
to the interior of C and extend G to the boundaries such that it maps faces to faces.
Then, we cut the pointed cones such that we obtain polytopes P̃ and P . Finally, we
define a homotopy between the map G and a homeomorphism between the polytopes
guaranteed by the face lattice isomorphism. As a consequence, every point in the
interior of P has nonzero Brouwer degree and hence is in the image of G. Since the
cut of the cone C can be placed at arbitrary distance from the origin, this holds for
every point in the interior of C.

Since (+, . . . ,+)T ∈ σ(im(V )), the face lattice isomorphism implies (+, . . . ,+)T ∈
σ(im(Ṽ )), and hence the cones C and C̃ are pointed. We start by choosing a minimal
set of generators for C̃, which (after reordering) we assume to be (w̃1, . . . , w̃nE ), where
nE is the number of extreme rays of C̃. We define an auxiliary map,

F̃ : Rd̃ → C̃◦

λ 7→
nE∑

k=1

c̃∗k e〈λ,w̃
k〉 w̃k ,

which is a real analytic isomorphism by Proposition 3.5, and a composed map,

G◦ : C̃◦ → C◦

x 7→ F (F̃−1(x)) ,

which is surjective whenever F is surjective.
Since G◦ is defined only on C̃◦, we want to extend it continuously to the bound-

ary ∂C̃, i.e. to the faces of the cone. Let f̃ be a face of C̃. It contains a subset
of the minimal set of generators for C̃, which (after reordering) we assume to be
(w̃1, . . . , w̃nmin). There may be additional generators on f̃ , which we assume to be
(w̃nE+1, . . . , w̃nE+nadd), where nmin + nadd is the total number of generators on f̃ .

Now, let (xi)i∈N be a sequence with xi ∈ C̃◦ and limi→∞ xi ∈ f̃ . Via the isomor-

phism F̃ , there is a corresponding sequence (λi)i∈N with λi ∈ R
d̃. From

lim
i→∞

xi =

nmin∑

k=1

c̃∗k lim
i→∞

e〈λ
i,w̃k〉 w̃k +

nE∑

k=nmin+1

c̃∗k lim
i→∞

e〈λ
i,w̃k〉 w̃k,

we conclude that limi→∞ e〈λ
i,w̃k〉 ≥ 0 for k = 1, . . . , nmin and limi→∞ e〈λ

i,w̃k〉 = 0
for k = nmin + 1, . . . , nE . Additional generators w̃k on f̃ can be written as non-
negative linear combinations of the minimal generators (w̃1, . . . , w̃nmin) and hence3

3 By using e〈λ
i,
∑nmin

k=1
akw̃

k〉 =
∏nmin

k=1

(

e〈λ
i,w̃k〉

)ak
.
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we obtain limi→∞ e〈λ
i,w̃k〉 ≥ 0. Generators w̃k not on f̃ can be written as nonnega-

tive linear combinations containing at least one of the remaining minimal generators

(w̃nmin+1, . . . , w̃nE ) and hence4 we obtain limi→∞ e〈λ
i,w̃k〉 = 0. As a consequence, the

image of the sequence converges and

lim
i→∞

G◦(xi) =

nmin∑

k=1

c∗k lim
i→∞

e〈λ
i,w̃k〉 wk +

nE+nadd∑

k=nE+1

c∗k lim
i→∞

e〈λ
i,w̃k〉 wk .

The isomorphism Φ (between the face lattices of C̃ and C) with τ̃ ≥ Φ(τ̃ ) implies
that there is a face f of C with wk ∈ f if w̃k ∈ f̃ . That is, w1, . . . , wnmin ∈ f as well
as wnE+1, . . . , wnE+nadd ∈ f and hence limi→∞ G◦(xi) ∈ f .

In other words, there is a continuous extension of G◦ to the face f̃ , which maps f̃
to the corresponding face f . We set G := G◦ on C̃◦ and G(x) := limi→∞ G◦(xi) for
any sequence (xi)i∈N with xi ∈ C̃◦ and limi→∞ xi = x ∈ f̃ . Since this can be done
for all faces of C̃, there is a map G : C̃ → C which extends G◦ continuously to ∂C̃
and maps faces to faces.

Due to the face lattice isomorphism, a minimal set of generators for C is given
by (w1, . . . , wnE ). The isomorphism further implies d = d̃.

Since C is a pointed cone, we can choose a (d − 1)-dimensional subspace of Rd

such that C lies on one side of the subspace. We cut C with a hyperplane parallel
to the subspace and obtain a polytope P (lying on one side of the hyperplane). In
particular, we intersect the extreme rays of C with the hyperplane: the intersection
of the extreme ray ek (generated by wk) is located at αkw

k with αk > 0.

Analogously, we cut C̃ with a hyperplane and obtain a polytope P̃ . The intersec-
tion of the extreme ray ẽk (generated by w̃k) is located at α̃kw̃

k with α̃k > 0.

From now on, we restrict the map G to P̃ and choose c̃∗ such that G maps
corners of P̃ to corresponding corners of P . For example, the corner α̃1w̃

1 on ẽ1

corresponds (by F̃−1) to the sequence (λi)i∈N with λi ∈ R
n, limi→∞ c̃∗1 e〈λ

i,w̃1〉 = α̃1,

and limi→∞ e〈λ
i,w̃k〉 = 0 for k = 2, . . . , nE. In turn, (λi)i∈N corresponds (by F ) to the

corner α1w
1 on e1:

lim
i→∞

(

c∗1 e〈λ
i,w̃1〉 w1 +

nE+nadd∑

k=nE+1

c∗k e〈λ
i,w̃k〉 wk

)

= α1w
1 .

Here, we have assumed that in addition to w̃1 there are additional generators w̃k

(with k = nE + 1, . . . , nE + nadd) on ẽ1 with corresponding generators wk on e1. If

we write w̃k = β̃kw̃
1, wk = βkw

1, and x = limi→∞ e〈λ
i,w̃1〉, we can determine c̃∗1 from

c̃∗1 x = α̃1 with c∗1 x+

nE+nadd∑

k=nE+1

c∗k x
β̃kβk = α1 .

If we choose c̃∗k accordingly for each extreme ray ẽk, then G maps “side-edges” of P̃

to corresponding side-edges of P . The image of other faces of P̃ need not coincide
with the corresponding faces of P . (However, due to the face lattice isomorphism,
the image of a “side-face” of P̃ lying on a face of C̃, lies in the corresponding face of

4 By using e〈λ
i,
∑nE

k=1
akw̃

k〉 =
∏nmin

k=1

(

e〈λ
i,w̃k〉

)ak ∏nE
k=nmin+1

(

e〈λ
i,w̃k〉

)ak
.
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C.) In particular5, the image of the “cut-face” of P̃ (arising from the cut with the
hyperplane) may lie outside the cut-face of P .

The isomorphism between the face lattices of C̃ and C has another important con-
sequence. It guarantees the existence of a piecewise linear homeomorphism G′ : P̃ →
P , which restricts to homeomorphisms between corresponding faces of P̃ and P , see
the Appendix. We note that G′ has nonzero Brouwer degree on P ◦ = int(P ) and
define a homotopy between G (restricted to P̃ ) and G′,

H : P̃ × [0, 1] → C ⊂ R
d

(x, t) 7→ tG(x) + (1− t)G′(x) .

(The homotopy H maps to C, since both G and G′ map to C and C is convex.)

Now, let y ∈ P ◦. Below we will show that y 6∈ H(∂P̃ , t) for all t ∈ [0, 1]. Writing
P̃ ◦ = int(P̃ ), we conclude that d(G, P̃ ◦, y) = d(G′, P̃ ◦, y) 6= 0 (by the homotopy
invariance of the Brouwer degree) and that there exists x ∈ P̃ ◦ with G(x) = y (by the
existence property of the Brouwer degree). In other words, the image of G restricted
to P̃ ◦ contains P ◦. Since the cut of the cone C can be placed at arbitrary distance
from the origin, G◦ : C̃◦ → C◦ and hence F : Rd → C◦ are surjective.

It remains to show that y 6∈ H(∂P̃ , t) for all t ∈ [0, 1]: For side-faces f̃ ⊂ ∂P̃ ,
one has H(f̃ , t) ⊂ ∂C for all t ∈ [0, 1] (since G and G′ map side-faces to side-faces),
whereas for the cut-face f̃ ⊂ ∂P̃ , one either has H(f̃ , t) ⊂ ∂P for all t ∈ [0, 1]
(whenever G maps one cut-face to the other) or H(int(f̃), t) ∩ P = ∅ for all t ∈ [0, 1]
(whenever G maps the cut-face out of P ). In each case, one obtains H(∂P̃ , t)∩P ◦ = ∅
for all t ∈ [0, 1].

We think that the technical condition (+, . . . ,+)T ∈ σ(im(V )) in Theorem 3.8,
which requires the cone C to be pointed, is not necessary, and a similar result can
be obtained for arbitrary cones. However, at the moment we do not have a complete
proof for such a theorem.

3.4. Main results. The previous two theorems concerned with injectivity and
surjectivity of F allow the following generalization of Proposition 3.5 (Birch’s Theo-
rem).

Proposition 3.9. Let V , Ṽ , and F be as in Definition 3.4. If σ(im(V )) =
σ(im(Ṽ )) and (+, . . . ,+)T ∈ σ(im(V )), then F is a real analytic isomorphism of Rd

onto C◦ for all c∗ > 0.

Proof. From σ(im(V )) = σ(im(Ṽ )) it follows that d = d̃ and with Eqn. (A.1)
that σ(im(V )⊥) ∩ σ(im(Ṽ )) = {0}. Hence, F is injective and a local isomorphism by
Theorem 3.6. Moreover, with Φ being the identity, F is surjective by Theorem 3.8.

Note that the condition σ(im(V )) = σ(im(Ṽ )) in the previous proposition can be
tested algorithmically using chirotopes, see the Appendix. We can now formulate a
result analogous to Theorem 2.11 in the case of generalized mass action kinetics.

Theorem 3.10. Let (S ,C , C̃ ,R, k) be a generalized mass action system with
nonempty set Z̃ of complex balancing equilibria, stoichiometric subspace S, and kinetic-
order subspace S̃. If σ(S) = σ(S̃) and (+, . . . ,+)T ∈ σ(S⊥), then Z̃ meets every
stoichiometric compatibility class in exactly one point.

5 A point on the cut-face of P̃ is a convex combination of the “corners” α̃kw̃
k, k = 1, . . . , nE .

By F̃−1 it corresponds to some λ ∈ Rn, which by F corresponds to a point on the cut-face of P ,
that is, a convex combination (with the same coefficients) of the corners αkw

k, k = 1, . . . , nE , plus
a positive linear combination of the additional generators wk, k = nE + 1, . . . , n.
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Proof. Suppose Z̃ 6= ∅. As discussed at the beginning of Subsection 3.1, unique-
ness and existence of a complex balancing equilibrium in every stoichiometric com-
patibility class correspond to injectivity and surjectivity of the map F as given in
Definition 3.4, where V and Ṽ are bases for S⊥ and S̃⊥, respectively. By Eqn. (A.1),
σ(S) = σ(S̃) is equivalent to σ(im(V )) = σ(im(Ṽ )), and obviously (+, . . . ,+)T ∈
σ(S⊥) is equivalent to (+, . . . ,+)T ∈ σ(im(V )) such that F is injective and surjective
by Proposition 3.9.

In the terminology of CRNT, a chemical reaction network is conservative if S⊥ ∩
R

S
> 6= ∅, i.e. if there is a “vector of molecular weights”, relative to which all reactions

are mass conserving. Note that the condition (+, . . . ,+)T ∈ σ(S⊥) in Theorem 3.10
means that the underlying chemical reaction network is conservative.

4. Examples. We discuss two examples of generalized mass action systems.
First, we continue the example of the generalized chemical reaction network intro-
duced in Section 2.2,

A+ B ⇋ C
...

...
aA+ bB cC

(4.1)

with a, b, c ∈ R>. The kinetic complexes aA+ bB and cC (associated with the com-
plexes A+B and C) determine the exponents in the rate functions kA+B→C [A]

a[B]b

and kC→A+B [C]c.
The network is (weakly) reversible and has 2 complexes and 1 linkage class. The

stoichiometric and kinetic-order subspace amount to S = span{(−1,−1, 1)T} and
S̃ = span{(−νA,−νB, νC)

T } with dimensions d = d̃ = 1. By Proposition 2.19, δ =
δ̃ = 2− 1− 1 = 0, and by Proposition 2.20, Z̃ 6= ∅. Further, the sign vectors of S and
S̃ coincide, i.e. σ(S) = σ(S̃), and (1, 1, 2)T ∈ S⊥, which implies (+,+,+)T ∈ σ(S⊥).
Hence, by Theorem 3.10, every stoichiometric compatibility class contains exactly one
complex balancing equilibrium.

In the rest of this section, we study an autocatalytic mechanism (for the overall
reaction A+B ⇋ C) endowed with generalized mass action kinetics:

A+ 2B ⇋ B + C
...

...
A+B 2B + C

(4.2)

The kinetic complexes A+B and 2B+C (associated with the complexes A+2B
and B+C) determine the rate functions kA+2B→B+C [A][B] and kB+C→A+2B[B]2[C].
The particular kinetics may be unrealistic from a chemical point of view, however,
it will serve to demonstrate how the conditions in Theorem 3.10 for existence and
uniqueness of a complex balancing equilibrium (in every stoichiometric compatibility
class) are violated.

The network is weakly reversible, δ = δ̃ = 0, and hence Z̃ 6= ∅. In particular,
the stoichiometric and kinetic-order subspace amount to S = span{(−1,−1, 1)T} and
S̃ = span{(−1, 1, 1)T}. For the orthogonal complements S⊥ and S̃⊥ we choose the
bases

V =





1 0
0 1
1 1



 and Ṽ =





1 1
0 1
1 0



 .
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The cones C and C̃ generated by V T = (wA, wB , wC) and Ṽ T = (w̃A, w̃B, w̃C)
both coincide with R

2
≥:

t
wA

t
wB

t
wC

0 1
0

1

t
w̃C

t
w̃B

t
w̃A

0 1
0

1

First, we address the question of existence. We observe that the cone C has an
extreme ray generated by wA, whereas the cone C̃ does not have a corresponding
extreme ray generated by w̃A (since w̃A lies in the interior of C̃). As a consequence,
the map F is not surjective for all c∗, cf. the argument at the beginning of Subsection
3.3. In other words, there may be a stoichiometric compatibility class that does not
contain a complex balancing equilibrium.

Now, we turn to the question of uniqueness. In order to employ Proposition 3.1
or 3.2, we determine σ(S) ∩ σ(S̃⊥). The sign vectors of S are (−,−,+)T , its inverse,
and 0, whereas the sign vectors of S̃⊥ can be read off from the above figure: For every
hyperplane of R2, i.e. for every line through 0 ∈ R

2, we check if w̃A, w̃B , and w̃C lie
on the line or on its negative or positive side. We obtain

σ(S) =





− 0
− . . . 0
+ 0



 and σ(S̃⊥) =





+ + + 0 − − 0
+ 0 − − − − . . . 0
+ + + + + 0 0



 ,

where we use matrix notation for sets of vectors and where we do not state vectors
explicitly that are inverses of others. We find that σ(S)∩ σ(S̃⊥) contains (−,−,+)T .
Hence, by Proposition 3.2, there exist rate constants kA+2B→B+C and kB+C→A+2B

such that some stoichiometric compatibility class contains more than one complex
balancing equilibrium.

Due to the simplicity of the generalized mass action system, the equilibria of the
associated ODE can be determined analytically. The equilibrium condition amounts
to

kA+2B→B+C [A][B] = kB+C→A+2B[B]2[C] ,

and since δ = 0 all equilibria are complex balancing. By using the conservation
relations [A] + [C] = [A]0 + [C]0 = ΣAC and [B] + [C] = [B]0 + [C]0 = ΣBC and by
writing K = kA+2B→B+C/kB+C→A+2B, we obtain a quadratic equation in [C], which
can be solved as

[C] =
K +ΣBC

2
±

√
(
K +ΣBC

2

)2

−K ΣAC .

Depending on the equilibrium constant K and the initial values ΣAC and ΣBC (which
determine a stoichiometric compatibility class), the quadratic equation has 0, 1, or 2
solutions with [C] > 0. If additionally [A] = ΣAC − [C] > 0 and [B] = ΣBC − [C] > 0,
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then ([A], [B], [C])T is a complex balancing equilibrium. Obviously, a stoichiometric
compatibility class contains 0, 1, or 2 complex balancing equilibria; it turns out that
each case is realized.

5. Conclusion. CRNT establishes intriguing results about the ODEs associated
with mass action systems, in particular about the existence, uniqueness, and stability
of equilibria. For application in molecular biology, however, one would like to have a
framework that permits rate laws more general than mass action kinetics.

In this paper we show that the suggested notion of generalized mass action sys-
tems, which admits arbitrary nonnegative power-law rate functions, allows to gener-
alize several results of CRNT. In particular, Theorem 3.10 essentially states that if
the sign vectors of the stoichiometric and the kinetic-order subspace coincide, there
exists a unique complex balancing equilibrium in every stoichiometric compatibility
class.

A natural next step is to study other results of CRNT in the case of generalized
mass action kinetics, most importantly, to analyze the stability of complex balancing
equilibria, which is guaranteed in the classical case. Further, genuinely biological no-
tions such as the robustness [6, 39, 40] of chemical reaction networks can be addressed
in a framework with more realistic kinetics.

Appendix. Sign vectors and face lattices.

In this section, we outline some facts on the relation between sign vectors of vector
spaces and face lattices of polyhedral cones and polytopes. For further details we refer
to [1, Ch. 7] and [42, Ch. 2, 6] and to [33, 7] in the context of oriented matroids.

We obtain the sign vector σ(x) ∈ {−, 0,+}n of a vector x ∈ R
n by applying the

sign function componentwise, and we write

σ(S) = {σ(x) |x ∈ S}

for a subset S ⊆ R
n.

Two sign vectors ς, τ ∈ {−, 0,+}n are orthogonal, if ςkτk = 0 for all k or if there
exist k, l with ςkτk = − and ςlτl = + (where the product on {−, 0,+} is defined in
the obvious way); we write ς⊥τ . Note that ς⊥τ if and only if there are orthogonal
vectors x, y ∈ R

n such that σ(x) = ς and σ(y) = τ .
The orthogonal complement Σ⊥ of a set Σ ⊆ {−, 0,+}n is defined by

Σ⊥ = {ς ∈ {−, 0,+}n | ς⊥τ for all τ ∈ Σ} .

The sign vectors of the orthogonal complement of a subspace S ⊆ R
n are given by

σ(S⊥) = σ(S)⊥; (A.1)

see for example [42, Prop. 6.8.].
Let V = (v1, . . . , vd) ∈ R

n×d with n ≥ d have full rank. Then V T = (w1, . . . , wn)

is called a vector configuration (of n vectors in R
d). With λ ∈ R

d and v =
∑d

j=1 λjv
j ∈

im(V ), we obtain vk =
∑d

j=1
λjv

j
k =

∑d
j=1

λjw
k
j = 〈λ,wk〉. Hence, σ(v) describes the

positions of the vectors w1, . . . , wn relative to the hyperplane with normal vector λ.
The face lattice of the cone C generated by w1, . . . , wn can be recovered from the

sign vectors of the subspace generated by v1, . . . , vd. It is the set σ(im(V )) ∩ {0,+}n

with the partial order induced by the relation 0 < +, which we denote by

σ(im(V ))≥ = σ(im(V )) ∩ {0,+}n.
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A face f of C is characterized by a supporting hyperplane with normal vector λ ∈ R
d

such that 〈λ,wk〉 = 0 for generators wk lying on f and 〈λ,wk〉 > 0 for the remaining
wk (thus lying on the positive side of the hyperplane).

A cone C is called pointed if C ∩ (−C) = {0} or equivalently if it has vertex 0. A
cone is pointed if and only if it has an extreme ray, and every pointed polyhedral cone is
the conical hull of its finitely many extreme rays. Note that if (+, . . . ,+)T ∈ σ(im(V )),
the cone C generated by V T is pointed.

As for polyhedral cones, the faces of a polytope form a lattice. Two polytopes
are combinatorially equivalent if their face lattices are isomorphic. Combinatorial
equivalence corresponds to the existence of a piecewise linear homeomorphism between
the polytopes that restricts to homeomorphisms between faces.

The sign vectors σ(im(V )) of the subspace im(V ) can be equivalently charac-
terized by the chirotope χV T of the point configuration V T , which is defined as the
map

χV T : {1, . . . , n}d → {−, 0,+}

(i1, . . . , id) 7→ sign(det(wi1 , . . . , wid)) .

The chirotope records for each d-tuple of vectors if it forms a positively (or nega-
tively) oriented basis of Rd or it is not a basis. It can for example be used to test
algorithmically if the sign vectors of two subspaces are equal, that is, to decide if
σ(im(V )) = σ(im(Ṽ )) for two matrices V, Ṽ ∈ R

n×d.
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