
ar
X

iv
:1

00
9.

09
32

v8
  [

m
at

h.
O

C
] 

 1
4 

Ja
n 

20
13

ON THE MULTI-DIMENSIONAL CONTROLLER-AND-STOPPER GAMES

ERHAN BAYRAKTAR AND YU-JUI HUANG

Abstract. We consider a zero-sum stochastic differential controller-and-stopper game in which

the state process is a controlled diffusion evolving in a multi-dimensional Euclidean space. In this

game, the controller affects both the drift and diffusion terms of the state process, and the diffusion

term can be degenerate. Under appropriate conditions, we show that the game has a value and the

value function is the unique viscosity solution to an obstacle problem for a Hamilton-Jacobi-Bellman

equation.

Key Words: Controller-stopper games, weak dynamic programming principle, viscosity solutions,

robust optimal stopping.

1. Introduction

We consider a zero-sum stochastic differential game of control and stopping under a fixed time

horizon T > 0. There are two players, the “controller” and the “stopper,” and a state process

Xα which can be manipulated by the controller through the selection of the control α. Suppose

the game starts at time t ∈ [0, T ]. While the stopper has the right to choose the duration of this

game (in the form of a random time τ), she incurs the running cost f(s,Xα
s , αs) at every moment

t ≤ s < τ , and the terminal cost g(Xα
τ ) at the time the game stops. Given the instantaneous

discount rate c(s,Xα
s ), the stopper would like to minimize her expected discounted cost

E

[∫ τ

t

e−
∫ s
t
c(u,Xα

u )duf(s,Xα
s , αs)ds+ e−

∫ τ
t
c(u,Xα

u )dug(Xα
τ )

]
(1.1)

over all choices of τ . At the same time, however, the controller plays against her by maximizing

(1.1) over all choices of α.

Ever since the game of control and stopping was introduced by Maitra & Sudderth [25], it has

been known to be closely related to some common problems in mathematical finance, such as pricing

American contingent claims (see e.g. [17, 21, 22]) and minimizing the probability of lifetime ruin

(see [5]). The game itself, however, has not been studied to a great extent except certain particular

cases. Karatzas and Sudderth [20] study a zero-sum controller-and-stopper game in which the

state process Xα is a one-dimensional diffusion along a given interval on R. Under appropriate

conditions they prove that this game has a value and describe fairly explicitly a saddle point of
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optimal choices. It turns out, however, difficult to extend their results to multi-dimensional cases,

as their techniques rely heavily on theorems of optimal stopping for one-dimensional diffusions. To

deal with zero-sum multi-dimensional games of control and stopping, Karatzas and Zamfirescu [23]

develop a martingale approach; also see [2], [4] and [3]. Again, it is shown that the game has a

value, and a saddle point of optimal choices is constructed. However, it is assumed to be that the

controller can affect only the drift term of Xα.

There is yet another subtle discrepancy between the one-dimensional game in [20] and the multi-

dimensional game in [23]: the use of “strategies”. Typically, in a two-player game, the player who

acts first would not choose a fixed static action. Instead, she prefers to employ a strategy, which

will give different responses to different future actions the other player will take. This additional

flexibility enables the player to further decrease (increase) the expected cost, if she is the minimizer

(maximizer). For example, in a game with two controllers (see e.g. [13, 12, 14, 9, 7]), the controller

who acts first employs a strategy, which is a function that takes the other controller’s latter decision

as input and generates a control. Note that the use of strategies is preserved in the one-dimensional

controller-and-stopper game in [20]: what the stopper employs is not simply a stopping time, but

a strategy in the form of a random time which depends on the controller’s decision. This kind

of dynamic interaction is missing, however, in the multi-dimensional case: in [23], the stopper is

restricted to use stopping times, which give the same response to any choice the controller makes.

Zero-sum multi-dimensional controller-and-stopper games are also covered in Hamadène & Lep-

eltier [16] and Hamadène [15], as a special case of mixed games introduced there. The main tool

used in these papers is the theory of backward differential equations with two reflecting barriers.

Interestingly, even though the method in [16, 15] differs largely from that in [23], these two papers

also require a diffusion coefficient which is not affected by the controller, and do not allow the use

of strategies. This is in contrast with the one-dimensional case in [20], where everything works out

fine without any of the above restrictions. It is therefore of interest to see whether we can construct

a new methodology under which multi-dimensional controller-and-stopper games can be analyzed

even when the conditions required in [23, 16, 15] fail to hold.

In this paper, such a methodology is built, under a Markovian framework. On the one hand,

we allow both the drift and diffusion terms of the state process Xα to be controlled. On the

other hand, we allow the players to use strategies. Specifically, we first define non-anticipating

strategies in Definition 3.1. Then, in contrast to two-controller games where both players use

strategies, only the stopper chooses to use strategies in our case (which coincides with the set-up in

[20]). This is because by the nature of a controller-and-stopper game, the controller cannot benefit

from using non-anticipating strategies; see Remark 3.2. With this observation in mind, we give

appropriate definitions of the upper value function U and the lower value function V in (3.6) and

(3.7) respectively. Under this set-up, one presumably could construct a saddle point of optimal

choices by imposing suitable assumptions on the cost functions, the dynamics of Xα, the associated

Hamiltonian, or the control set (as is done in [20, 23, 15, 16]; see Remark 3.4). However, we have

no plan to impose assumptions for constructing a saddle point. Instead, we intend to work under a
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rather general framework, and determine under what conditions the game has a value (i.e. U = V )

and how we can derive a PDE characterization for this value when it exists.

Our method is motivated by Bouchard & Touzi [8], where the weak dynamic programming

principle for stochastic control problems was first introduced. By generalizing the weak dynamic

programming principle in [8] to the context of controller-and-stopper games, we show that V is a

viscosity supersolution and U∗ is a viscosity subsolution to an obstacle problem for a Hamilton-

Jacobi-Bellman equation, where U∗ denotes the upper semicontinuous envelope of U defined as in

(1.3). More specifically, we first prove a continuity result for an optimal stopping problem embed-

ded in V (Lemma 4.1), which enables us to follow the arguments in [8, Theorem 3.5] even under

the current context of controller-and-stopper games. We obtain, accordingly, a weak dynamic pro-

gramming principle for V (Proposition 4.1), which is the key to proving the supersolution property

of V (Propositions 4.3). On the other hand, by generalizing the arguments in Chapter 3 of Krylov

[24], we derive a continuity result for an optimal control problem embedded in U (Lemma 5.4).

This leads to a weak dynamic programming principle for U (Proposition 5.1), from which the sub-

solution property of U∗ follows (Proposition 5.2). Finally, under appropriate conditions, we prove

a comparison result for the associated obstacle problem. Since V is a viscosity supersolution and

U∗ is a viscosity subsolution, the comparison result implies U∗ ≤ V . Recalling that U∗ is actually

larger than V by definition, we conclude that U∗ = V . This in particular implies U = V , i.e. the

game has a value, and the value function is the unique viscosity solution to the associated obstacle

problem. This is the main result of this paper; see Theorem 6.1. Note that once we have this

PDE characterization, we can compute the value of the game using a stochastic numerical scheme

proposed in Bayraktar & Fahim [1].

Another important advantage of our method is that it does not require any non-degeneracy

condition on the diffusion term of Xα. For the multi-dimensional case in [23, 16, 15], Girsanov’s

theorem plays a crucial role, which entails non-degeneracy of the diffusion term. Even for the one-

dimensional case in [20], this non-degeneracy is needed to ensure the existence of the state process

(in the weak sense). Note that Weerasinghe [32] actually follows the one-dimensional model in

[20] and extends it to the case with degenerate diffusion term; but at the same time, she assumes

boundedness of the diffusion term, and some specific conditions including twice differentiability of

the drift term and concavity of the cost function.

It is worth noting that while [23, 16, 15] do not allow the use of strategies and require the diffusion

coefficient be control-independent and non-degenerate, they allow for non-Markovian dynamics and

cost structures, as well as for non-Lipschitz drift coefficients. As a first step to allowing the use of

strategies and incorporating controlled, and possibly degenerate, diffusion coefficients in a zero-sum

multi-dimensional controller-and-stopper game, this paper focuses on proving the existence and

characterization of the value of the game under a Markovian framework with Lipschitz coefficients.

We leave the general non-Markovian and non-Lipschitz case for future research.

The structure of this paper is as follows: in Section 2, we set up the framework of our study. In

Section 3, we define strategies, and give appropriate definitions of the upper value function U and
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the lower value function V . In Sections 4 and 5, the supersolution property of V and the subsolution

property U∗ are derived, respectively. In Section 6, we prove a comparison theorem, which leads to

the existence of the value of the game and the viscosity solution property of the value function.

1.1. Notation. We collect some notation and definitions here for readers’ convenience.

• Given a probability space (E,I, P ), we denote by L0(E,I) the set of real-valued random

variables on (E,I); for p ∈ [1,∞), let Lp
n(E,I, P ) denote the set of Rn-valued random

variables R on (E,I) s.t. EP [|R|p] <∞. For the “n = 1” case, we simply write Lp
1 as Lp.

• R+ := [0,∞) and S := Rd × R+ × R+.

• Md denotes the set of d× d real matrices.

• Given E ⊆ Rn, LSC(E) denotes the set of lower semicontinuous functions defined on E,

and USC(E) denotes the set of upper semicontinuous functions defined on E.

• Let E be a normed space. For any (t, x) ∈ [0, T ]× E, we define two types of balls centered

at (t, x) with radius r > 0 as follows

Br(t, x) := {(t′, x′) ∈ [0, T ]× E | |t′ − t| < r, |x′ − x| < r};
B(t, x; r) := {(t′, x′) ∈ [0, T ]× E | t′ ∈ (t− r, t], |x′ − x| < r}.

(1.2)

We denote by B̄r(t, x) and B̄(t, x, ; r) the closures of Br(t, x) and B(t, x; r), respectively.

Moreover, given w : [0, T ]×E 7→ R, we define the upper and lower semicontinuous envelopes

of w, respectively, by

w∗(t, x) := lim
δ↓0

sup{w(t′, x′) | (t′, x′) ∈ [0, T ) × E with (t′, x′) ∈ Bδ(t, x)};

w∗(t, x) := lim
δ↓0

inf{w(t′, x′) | (t′, x′) ∈ [0, T )× E with (t′, x′) ∈ Bδ(t, x)}.
(1.3)

2. Preliminaries

2.1. The Set-up. Fix T > 0 and d ∈ N. For any t ∈ [0, T ], let Ωt := C([t, T ];Rd) be the canonical

space of continuous paths equipped with the uniform norm ‖ω̃‖t,T := sups∈[t,T ] |ω̃s|, ω̃ ∈ Ωt. Let

W t denote the canonical process on Ωt, and Gt = {Gt
s}s∈[t,T ] denote the natural filtration generated

by W t. Let Pt be the Wiener measure on (Ωt,Gt
T ), and consider the collection of Pt-null sets

N t := {N ∈ Gt
T | Pt(N) = 0} and its completion N t

:= {A ⊆ Ωt | A ⊆ N for some N ∈ N t}.
Now, define G

t
= {Gt

s}s∈[t,T ] as the augmentation of Gt by the sets in N t
, i.e. Gt

s := σ(Gt
s ∪ N t

),

s ∈ [t, T ]. For any x ∈ Rd, we also consider Gt,x
s := Gt

s ∩{W t
t = x}, ∀s ∈ [t, T ]. For Ωt, W t, N t, N t

,

Gt
s, G

t
s and Gt,x

s , we drop the superscript t whenever t = 0.

Given x ∈ Rd, we define for any ω̃ ∈ Ωt the shifted path (ω̃ + x)· := ω̃· + x, and for any A ⊆ Ωt

the shifted set A+ x := {ω̃ ∈ Ωt | ω̃ − x ∈ A}. Then, we define the shifted Wiener measure Pt,x by

Pt,x(F ) := Pt(F − x), F ∈ Gt
T , and let P

t,x
denote the extension of Pt,x on (Ωt,Gt

T ). For Pt,x and

P
t,x
, we drop the superscripts t and x whenever t = 0 and x = 0. We let E denote the expectation

taken under P.

Fix t ∈ [0, T ] and ω ∈ Ω. For any ω̃ ∈ Ωt, we define the concatenation of ω and ω̃ at t as

(ω ⊗t ω̃)r := ωr1[0,t](r) + (ω̃r − ω̃t + ωt)1(t,T ](r), r ∈ [0, T ].
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Note that ω ⊗t ω̃ lies in Ω. Consider the shift operator in space ψt : Ω
t 7→ Ωt defined by ψt(ω̃) :=

ω̃−ω̃t, and the shift operator in time φt : Ω 7→ Ωt defined by φt(ω) := ω|[t,T ], the restriction of ω ∈ Ω

on [t, T ]. For any r ∈ [t, T ], since ψt and φt are by definition continuous under the norms ‖ · ‖t,r
and ‖ · ‖0,r respectively, ψt : (Ω

t,Gt
r) 7→ (Ωt,Gt

r) and φt : (Ω,Gr) 7→ (Ωt,Gt
r) are Borel measurable.

Then, for any ξ : Ω 7→ R, we define the shifted functions ξt,ω : Ω 7→ R by

ξt,ω(ω′) := ξ(ω ⊗t φt(ω
′)) for ω′ ∈ Ω.

Given a random time τ : Ω 7→ [0,∞], whenever ω ∈ Ω is fixed, we simplify our notation as

ω ⊗τ ω̃ = ω ⊗τ(ω) ω̃, ξτ,ω = ξτ(ω),ω, φτ = φτ(ω), ψτ = ψτ(ω).

Definition 2.1. On the space Ω, we define, for each t ∈ [0, T ], the filtration Ft = {F t
s}s∈[0,T ] by

F t
s := J t

s+, where J t
s :=




{∅,Ω}, if s ∈ [0, t],

σ
(
φ−1
t ψ−1

t Gt,0
s ∪ N

)
, if s ∈ [t, T ].

We drop the superscript t whenever t = 0.

Remark 2.1. Given t ∈ [0, T ], note that F t
s is a collection of subsets of Ω for each s ∈ [0, T ],

whereas Gt
s, G

t
s and Gt,x

s are collections of subsets of Ωt for each s ∈ [t, T ].

Remark 2.2. By definition, Js = Gs ∀s ∈ [0, T ]; then the right continuity of G implies Fs = Gs

∀s ∈ [0, T ] i.e. F = G. Moreover, from Lemma A.1 (iii) in Appendix A and the right continuity of

G, we see that F t
s ⊆ Gs = Fs ∀s ∈ [0, T ], i.e. Ft ⊆ F.

Remark 2.3. Intuitively, Ft represents the information structure one would have if one starts

observing at time t ∈ [0, T ]. More precisely, for any s ∈ [t, T ], Gt,0
s represents the information

structure one obtains after making observations on W t in the period [t, s]. One could then deduce

from Gt,0
s the information structure φ−1

t ψ−1
t Gt,0

s for W on the interval [0, s].

We define T t as the set of all Ft-stopping times which take values in [0, T ] P-a.s., and At as the

set of all Ft-progressively measurable M -valued processes, where M is a separable metric space.

Also, for any F-stopping times τ1, τ2 with τ1 ≤ τ2 P-a.s., we denote by T t
τ1,τ2

the set of all τ ∈ T t

which take values in [τ1, τ2] P-a.s. Again, we drop the sub- or superscript t whenever t = 0.

2.2. The State Process. Given (t, x) ∈ [0, T ] × Rd and α ∈ A, let Xt,x,α denote a Rd-valued

process satisfying the following SDE:

dXt,x,α
s = b(s,Xt,x,α

s , αs)ds+ σ(s,Xt,x,α
s , αs)dWs, s ∈ [t, T ], (2.1)

with the initial condition Xt,x,α
t = x. Let Md be the set of d × d real matrices. We assume that

b : [0, T ] × Rd ×M 7→ Rd and σ : [0, T ] × Rd ×M 7→ Md are deterministic Borel functions, and

b(t, x, u) and σ(t, x, u) are continuous in (x, u); moreover, there exists K > 0 such that for any

t ∈ [0, T ], x, y ∈ Rd, and u ∈M ,

|b(t, x, u) − b(t, y, u)| + |σ(t, x, u) − σ(t, y, u)| ≤ K|x− y|, (2.2)

|b(t, x, u)| + |σ(t, x, u)| ≤ K(1 + |x|). (2.3)
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The conditions above imply that: for any initial condition (t, x) ∈ [0, T ] × Rd and control α ∈ A,

(2.1) admits a unique strong solution Xt,x,α
· . Moreover, without loss of generality, we define

Xt,x,α
s := x for s < t. (2.4)

Remark 2.4. Fix α ∈ A. Under (2.2) and (2.3), the same calculations in [28, Appendix] and [6,

Proposition 1.2.1] yield the following estimates: for each p ≥ 1, there exists Cp(α) > 0 such that

for any (t, x), (t′, x′) ∈ [0, T ] × Rd, and h ∈ [0, T − t],

E

[
sup

0≤s≤T

|Xt,x,α
s |p

]
≤ Cp(1 + |x|p); (2.5)

E

[
sup

0≤s≤t+h

|Xt,x,α
s − x|p

]
≤ Cph

p
2 (1 + |x|p); (2.6)

E

[
sup

0≤s≤T

|Xt′,x′,α
s −Xt,x,α

s |p
]
≤ Cp

[
|x′ − x|p + |t′ − t| p2 (1 + |x|p)

]
. (2.7)

Remark 2.5 (flow property). By pathwise uniqueness of the solution to (2.1), for any 0 ≤ t ≤
s ≤ T , x ∈ Rd, and α ∈ A, we have the following two properties:

(i) Xt,x,α
r (ω) = Xs,X

t,x,α
s ,α

r (ω) ∀ r ∈ [s, T ], for P-a.e. ω ∈ Ω; see [6, Chapter 2] and [29, p.41].

(ii) By (1.16) in [14] and the discussion below it, for P-a.e. ω ∈ Ω, we have

Xt,x,α
r

(
ω ⊗s φs(ω

′)
)
= Xs,X

t,x,α
s (ω),αs,ω

r

(
ω′
)
∀r ∈ [s, T ], for P-a.e ω′ ∈ Ω;

see also [27, Lemma 3.3].

2.3. Properties of Shifted Objects. Let us first derive some properties of F t
T -measurable ran-

dom variables.

Proposition 2.1. Fix t ∈ [0, T ] and ξ ∈ L0(Ω,F t
T ).

(i) F t
T and Ft are independent. This in particular implies that ξ is independent of Ft.

(ii) There exist N,M ∈ N such that: for any fixed ω ∈ Ω \N , ξt,ω(ω′) = ξ(ω′) ∀ω′ ∈ Ω \M .

Proof. See Appendix A.1. �

Fix θ ∈ T . Given α ∈ A, we can define, for P-a.e. ω ∈ Ω, a control αθ,ω ∈ Aθ(ω) by

αθ,ω(ω′) := {αθ,ω
r (ω′)}r∈[0,T ] =

{
αr

(
ω ⊗θ φθ(ω

′)
)}

r∈[0,T ]
, ω′ ∈ Ω;

see [8, proof of Proposition 5.4]. Here, we state a similar result for stopping times in T .

Proposition 2.2. Fix θ ∈ T . For any τ ∈ Tθ,T , we have τ θ,ω ∈ T θ(ω)
θ(ω),T for P-a.e. ω ∈ Ω.

Proof. See Appendix A.2. �

Let ρ : M ×M 7→ R be any given metric on M . By [24, p.142], ρ′(u, v) := 2
π
arctan ρ(u, v) < 1

for u, v ∈M is a metric equivalent to ρ, from which we can construct a metric on A by

ρ̃(α, β) := E

[∫ T

0
ρ′(αt, βt)dt

]
for α, β ∈ A. (2.8)

Now, we state a generalized version of Proposition 2.1 (ii) for controls α ∈ A.
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Proposition 2.3. Fix t ∈ [0, T ] and α ∈ At. There exists N ∈ N such that: for any ω ∈ Ω \N ,

ρ̃(αt,ω, α) = 0. Furthermore, for any (s, x) ∈ [0, T ] × Rd, Xs,x,αt,ω

r (ω′) = Xs,x,α
r (ω′), r ∈ [s, T ], for

P-a.e. ω′ ∈ Ω.

Proof. See Appendix A.3. �

3. Problem Formulation

We consider a controller-and-stopper game under the finite time horizon T > 0. While the

controller has the ability to affect the state process Xα through the selection of the control α,

the stopper has the right to choose the duration of this game, in the form of a random time τ .

Suppose the game starts at time t ∈ [0, T ]. The stopper incurs the running cost f(s,Xα
s , αs) at

every moment t ≤ s < τ , and the terminal cost g(Xα
τ ) at the time the game stops, where f and

g are some given deterministic functions. According to the instantaneous discount rate c(s,Xα
s )

for some given deterministic function c, the two players interact as follows: the stopper would like

to stop optimally so that her expected discounted cost could be minimized, whereas the controller

intends to act adversely against her by manipulating the state process Xα in a way that frustrates

the effort of the stopper.

For any t ∈ [0, T ], there are two possible scenarios for this game. In the first scenario, the stopper

acts first. At time t, while the stopper is allowed to use the information of the path of W up to

time t for her decision making, the controller has advantage: she has access to not only the path

of W up to t but also the stopper’s decision. Choosing one single stopping time, as a result, might

not be optimal for the stopper. Instead, she would like to employ a stopping strategy which will

give different responses to different future actions the controller will take.

Definition 3.1. Given t ∈ [0, T ], we say a function π : A 7→ Tt,T is an admissible stopping strategy

on the horizon [t, T ] if it satisfies the following conditions:

(i) for any α, β ∈ A, it holds for P-a.e. ω ∈ Ω that

if min{π[α](ω), π[β](ω)} ≤ inf

{
s ≥ t

∣∣∣∣
∫ s

t

ρ′(αr(ω), βr(ω))dr 6= 0

}
,

then π[α](ω) = π[β](ω).

(3.1)

Recall that ρ′ is a metric on M defined right above (2.8).

(ii) for any s ∈ [0, t], if α ∈ As, then π[α] ∈ T s
t,T .

(iii) for any α ∈ A and θ ∈ T with {θ ≤ t} /∈ N , it holds for P-a.e. ω ∈ {θ ≤ t} that

π[α]θ,ω(ω′) = π[αθ,ω](ω′), for P-a.e. ω′ ∈ Ω.

We denote by Πt,T the set of all admissible stopping strategies on the horizon [t, T ].

Remark 3.1. Definition 3.1 (i) serves as the non-anticipativity condition for the stopping strategies.

The intuition behind it should be clear: Suppose we begin our observation at time t, and employ

a strategy π ∈ Πt,T . By taking the control α and following the path ω, we decide to stop at the
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moment π[α](ω). If, up to this moment, we actually cannot distinguish between the controls α and

β , then we should stop at the same moment if we were taking the control β.

Moreover, as shown in Proposition 3.1 below, (3.1) is equivalent to the following statement:

For any α, β ∈ A and s ∈ [t, T ], 1{π[α]≤s} = 1{π[β]≤s} for P-a.e. ω ∈ {α =[t,s) β}, (3.2)

where {α =[t,s) β} := {ω ∈ Ω | αr(ω) = βr(ω) for a.e. r ∈ [t, s)}. This shows that Definition 3.1

(i) extends the non-anticipativity of strategies from two-controller games (see e.g. [9]) to current

context of controller-and-stopper games.

Also notice that (3.2) is similar to, yet a bit weaker than, Assumption (C5) in [7]. This is because

in the definition of {α =[t,s) β}, [7] requires αr = βr for all, instead of almost every, r ∈ [t, s).

Proposition 3.1. Fix t ∈ [0, T ]. For any function π : A 7→ Tt,T , (3.1) holds iff (3.2) holds.

Proof. For any α, β ∈ A, we set θ(ω) := inf{s ≥ t |
∫ s

t
ρ′(αr(ω), βr(ω))dr 6= 0}.

Step 1: Suppose π satisfies (3.1). For any α, β ∈ A, take some N ∈ N such that (3.1) holds for

ω ∈ Ω \N . Fix s ∈ [t, T ]. Given ω ∈ {α =[t,s) β} \N , we have s ≤ θ(ω). If π[α](ω) ≤ θ(ω), then

(3.1) implies π[α](ω) = π[β](ω), and thus 1{π[α]≤s}(ω) = 1{π[β]≤s}(ω). If π[α](ω) > θ(ω), then (3.1)

implies π[β](ω) > θ(ω) too. It follows that 1{π[α]≤s}(ω) = 0 = 1{π[β]≤s}(ω), since s ≤ θ(ω). This

already proves (3.2).

Step 2: Suppose (3.2) holds. Fix α, β ∈ A. By (3.2), there exists some N ∈ N such that

for any s ∈ Q ∩ [t, T ], 1{π[α]≤s} = 1{π[β]≤s} for ω ∈ {α =[t,s) β} \N. (3.3)

Fix ω ∈ Ω \N . For any s ∈ Q ∩ [t, θ(ω)], we have ω ∈ {α =[t,s) β}. Then (3.3) yields

1{π[α]≤s}(ω) = 1{π[β]≤s}(ω), for all s ∈ Q ∩ [t, θ(ω)]. (3.4)

If π[α](ω) ≤ θ(ω), take an increasing sequence {sn}n∈N ⊂ Q∩ [t, θ(ω)] such that sn ↑ π[α](ω). Then
(3.4) implies π[β](ω) > sn for all n, and thus π[β](ω) ≥ π[α](ω). Similarly, by taking a decreasing

sequence {rn}n∈N ⊂ Q ∩ [t, θ(ω)] such that rn ↓ π[α](ω), we see from (3.4) that π[β] ≤ rn for all n,

and thus π[β](ω) ≤ π[α](ω). We therefore conclude π[β](ω) = π[α](ω). Now, if π[β](ω) ≤ θ(ω), we

may argue as above to show that π[α](ω) = π[β](ω). This proves (3.1). �

Next, we give concrete examples of strategies under Definition 3.1.

Example 1. Given t ∈ [0, T ], define λt : Ω 7→ Ω by (λt(ω))· := ω·∧t. Recall the space C([t, T ];Rd)

of continuous functions mapping [t, T ] into Rd. For any x ∈ Rd, we define π : A 7→ Tt,T by

π[α](ω) := S
(
{Xt,x,α

r (ω)}r∈[t,T ]

)
, (3.5)

for some function S : C([t, T ];Rd) 7→ [t, T ] satisfying {ξ | S(ξ) ≤ s} ∈ λ−1
s X t

T ∀s ∈ [t, T ], where X t
T

denotes the Borel σ-algebra generated by C([t, T ];Rd). Note that the formulation (3.5) is similar

to the stopping rules introduced in the one-dimensional controller-and-stopper game in [20], and it

covers concrete examples such as exit strategies of a Borel set (see e.g. (5.14) below). We claim

that Definition 3.1 readily includes the formulation (3.5).
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Let the function π : A 7→ Tt,T be given as in (3.5). First, for any α, β ∈ A, set θ := inf{s ≥
t |
∫ s

t
ρ′(αr(ω), βr(ω))dr 6= 0}. Observing that the strong solutions Xt,x,α and Xt,x,β coincide on

the interval [t, θ) P-a.s., we conclude that π satisfies Definition 3.1 (i). Next, for any s ∈ [0, t],

since Xt,x,α depends on Fs only through the control α, Definition 3.1 (ii) also holds for π. To check

Definition 3.1 (iii), let us introduce, for any θ ∈ T with {θ ≤ t} /∈ N , the strong solution X̃ to the

SDE (2.1) with the drift coefficient b̃(s, x, u) := 1{s<t}0+1{s≥t}b(s, x, u) and the diffusion coefficient

σ̃(s, x, u) := 1{s<t}0 + 1{s≥t}σ(s, x, u). Then, by using the pathwise uniqueness of strong solutions

and Remark 2.5 (ii), for P-a.e. ω ∈ {θ ≤ t},

Xt,x,α
r (ω⊗θφθ(ω

′)) = X̃0,x,α
r (ω⊗θφθ(ω

′)) = X̃
θ(ω),X̃0,x,α

θ
(ω),αθ,ω

r (ω′) = X̃θ(ω),x,αθ,ω

r (ω′) = Xt,x,αθ,ω

r (ω′),

∀r ∈ [t, T ], for P-a.e. ω′ ∈ Ω. This implies

π[α]θ,ω(ω′) = S({Xt,x,α
r (ω ⊗θ φθ(ω

′))}r∈[t,T ]) = S({Xt,x,αθ,ω

r (ω′)}r∈[t,T ]) = π[αθ,ω](ω′),

for P-a.e. ω′ ∈ Ω, which is Definition 3.1 (iii).

Let us now look at the second scenario in which the controller acts first. In this case, the stopper

has access to not only the path of W up to time t but also the controller’s decision. The controller,

however, does not use strategies as an attempt to offset the advantage held by the stopper. As

the next remark explains, the controller merely chooses one single control because she would not

benefit from using non-anticipating strategies.

Remark 3.2. Fix t ∈ [0, T ]. Let γ : T 7→ At satisfy the following non-anticipativity condition: for

any τ1, τ2 ∈ T and s ∈ [t, T ], it holds for P-a.e. ω ∈ Ω that

if min{τ1(ω), τ2(ω)} > s, then (γ[τ1])r(ω) = (γ[τ2])r(ω) for r ∈ [t, s).

Then, observe that γ[τ ](ω) = γ[T ](ω) on [t, τ(ω)) P-a.s. for any τ ∈ T . This implies that employing

the strategy γ has the same effect as employing the control γ[T ]. In other words, the controller would

not benefit from using non-anticipating strategies.

Now, we are ready to introduce the upper and lower value functions of the game of control and

stopping. For (t, x) ∈ [0, T ]×Rd, if the stopper acts first, the associated value function is given by

U(t, x) := inf
π∈Πt,T

sup
α∈At

E

[ ∫ π[α]

t

e−
∫ s
t
c(u,Xt,x,α

u )duf(s,Xt,x,α
s , αs)ds+ e−

∫ π[α]
t

c(u,Xt,x,α
u )dug(Xt,x,α

π[α] )

]
.

(3.6)

On the other hand, if the controller acts first, the associated value function is given by

V (t, x) := sup
α∈At

inf
τ∈T t

t,T

E

[ ∫ τ

t

e−
∫ s

t
c(u,Xt,x,α

u )duf(s,Xt,x,α
s , αs)ds + e−

∫ τ

t
c(u,Xt,x,α

u )dug(Xt,x,α
τ )

]
. (3.7)

By definition, we have U ≥ V . We therefore call U the upper value function, and V the lower value

function. We say the game has a value if these two functions coincide.

Remark 3.3. In a game with two controllers (see e.g. [13, 12, 14, 9]), upper and lower value

functions are also introduced. However, since both of the controllers use strategies, it is difficult to
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tell, just from the definitions, whether one of the value functions is larger than the other (despite

their names). In contrast, in a controller-stopper game, only the stopper uses strategies, thanks to

Remark 3.2. We therefore get U ≥ V for free, which turns out to be a crucial relation in the PDE

characterization for the value of the game.

We assume that the cost functions f, g and the discount rate c satisfy the following conditions:

f : [0, T ]×Rd×M 7→ R+ is Borel measurable, and f(t, x, u) is continuous in (x, u), and continuous

in x uniformly in u ∈ M for each t; g : Rd 7→ R+ is continuous; c : [0, T ] × Rd 7→ R+ is continuous

and bounded above by some real number c̄ > 0. Moreover, we impose the following polynomial

growth condition on f and g

|f(t, x, u)| + |g(x)| ≤ K(1 + |x|p̄) for some p̄ ≥ 1. (3.8)

Remark 3.4. Presumably, by imposing additional assumptions, one could construct a saddle point

of optimal choices for a controller-and-stopper game. For example, in the one-dimensional game

in [20], a saddle point is constructed under additional assumptions on the cost function and the

dynamics of the state process (see (6.1)-(6.3) in [20]). For the multi-dimensional case, in order

to find a saddle point, [23] assumes that the cost function and the drift coefficient are continuous

with respect to the control variable, and the associated Hamiltonian always attains its infimum (see

(71)-(73) in [23]); whereas [15] and [16] require compactness of the control set.

In this paper, we have no plan to impose additional assumptions for constructing saddle points.

Instead, we intend to investigate, under a rather general set-up, whether the game has a value and

how we can characterize this value if it exists.

Remark 3.5. For any (t, x) ∈ [0, T ] × Rd and α ∈ A, the polynomial growth condition (3.8) and

(2.5) imply that

E

[
sup

t≤r≤T

(∫ r

t

e−
∫ s
t
c(u,Xt,x,α

u )duf(s,Xt,x,α
s , αs)ds + e−

∫ r
t
c(u,Xt,x,α

u )dug(Xt,x,α
r )

)]
<∞. (3.9)

Lemma 3.1. Fix α ∈ A and (s, x) ∈ [0, T ] × Rd. For any {(sn, xn)}n∈N ⊂ [0, T ] × Rd such that

(sn, xn) → (s, x), we have

E

[
sup

0≤r≤T

|g(Xsn,xn,α
r )− g(Xs,x,α

r )|
]
→ 0; (3.10)

E

∫ T

0
|1[sn,T ](r)f(r,X

sn,xn,α
r , αr)− 1[s,T ](r)f(r,X

s,x,α
r , αr)|dr → 0. (3.11)

Proof. In view of (2.7), we have, for any p ≥ 1,

E

[
sup

0≤r≤T

|Xsn,xn,α
r −Xs,x,α

r |p
]
→ 0. (3.12)

Thanks to the above convergence and the polynomial growth condition (3.8) on f , we observe that

(3.11) is a consequence of [24, Lemma 2.7.6].

It remains to prove (3.10). Fix ε, η > 0. Take a > 0 large enough such that 2C1T (2+|x|)
a

< η
3 ,

where C1 > 0 is given as in Remark 2.4. Since g is continuous, it is uniformly continuous on
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B̄a(x) := {y ∈ Rd | |y − x| ≤ a}. Thus, there exists some δ > 0 such that |g(x) − g(y)| < ε for all

x, y ∈ B̄a(x) with |x− y| < δ. Define

A :=

{
sup

0≤r≤T

|Xs,x,α
r − x| > a

}
, Bn :=

{
sup

0≤r≤T

|Xsn,xn,α
r − x| > a

}
,

B′
n :=

{
sup

0≤r≤T

|Xsn,xn,α
r − xn| >

a

2

}
, Dn :=

{
sup

0≤r≤T

|Xsn,xn,α
r −Xs,x,α

r | ≥ δ

}
.

By the Markov inequality and (2.6),

P(A) ≤ C1

√
T (1 + |x|)
a

<
η

3
, P(B′

n) ≤
2C1

√
T (1 + |xn|)
a

<
η

3
for n large enough.

On the other hand, (3.12) implies that P(Dn) <
η
3 for n large enough. Noting that (B′

n)
c ⊆ Bc

n for

n large enough, we obtain

P

(
sup

0≤r≤T

|g(Xsn,xn,α
r )− g(Xs,x,α

r )| > ε

)
≤ 1− P(Ac ∩Bc

n ∩Dc
n) = P(A ∪Bn ∪Dn)

≤ P(A ∪B′
n ∪Dn) < η, for n large enough.

Thus, we have hn := sup0≤r≤T |g(Xsn,xn,α
r ) − g(Xs,x,α

r )| → 0 in probability. Finally, observing

that the polynomial growth condition (3.8) on g and (2.5) imply that {hn}n∈N is L2-bounded, we

conclude that hn → 0 in L1, which gives (3.10). �

3.1. The Associated Hamiltonian. For (t, x, p,A) ∈ [0, T ] × Rd × Rd × Md, we associate the

following Hamiltonian with our mixed control/stopping problem:

H(t, x, p,A) := inf
a∈M

Ha(t, x, p,A), (3.13)

where

Ha(t, x, p,A) := −b(t, x, a) · p− 1

2
Tr[σσ′(t, x, a)A] − f(t, x, a).

Since b, σ, and f are assumed to be continuous only in (x, a), and M is a separable metric space

without any compactness assumption, the operator H may be neither upper nor lower semicontin-

uous. As a result, we will need to consider an upper semicontinuous version of H defined by

H(t, x, p,A) := inf
a∈M

(Ha)∗(t, x, p,A), (3.14)

where (Ha)∗ is the upper semicontinuous envelope of Ha, defined as in (1.3); see Proposition 4.3.

On the other hand, we will need to consider the lower semicontinuous envelope H∗, defined as in

(1.3), in Proposition 5.2. Notice that H is different from the upper semicontinuous envelope H∗,

defined as in (1.3) (in fact, H ≥ H∗). See Remark 4.2 for our choice of H over H∗.

3.2. Reduction to the Mayer Form. Given t ∈ [0, T ] and α ∈ At, let us increase the state

process to (X,Y,Z), where

dY t,x,y,α
s = −Y t,x,y,α

s c(s,Xt,x,α
s )ds, s ∈ [t, T ], with Y t,x,y,α

t = y ≥ 0;

Zt,x,y,z,α
s := z +

∫ s

t

Y t,x,y,α
r f(r,Xt,x,α

r , αr)dr, for some z ≥ 0.



12

Set S := Rd × R+ × R+. For any x := (x, y, z) ∈ S, we define

Xt,x,α
s :=




Xt,x,α
s

Y t,x,y,α
s

Zt,x,y,z,α
s


 ,

and consider the function F : S 7→ R+ defined by

F (x, y, z) := z + yg(x).

Now, we introduce the functions Ū , V̄ : [0, T ] × S 7→ R defined by

Ū(t, x, y, z) := inf
π∈Πt,T

sup
α∈At

E

[
F (Xt,x,α

π[α] , Y
t,x,y,α
π[α] , Zt,x,y,z,α

π[α] )
]
= inf

π∈Πt,T

sup
α∈At

E

[
F (Xt,x,α

π[α] )
]
,

V̄ (t, x, y, z) := sup
α∈At

inf
τ∈T t

t,T

E
[
F (Xt,x,α

τ , Y t,x,y,α
τ , Zt,x,y,z,α

τ )
]
= sup

α∈At

inf
τ∈T t

t,T

E[F (Xt,x,α
τ )].

Given τ ∈ Tt,T , consider the function

J(t,x;α, τ) := E[F (Xt,x,α
τ )]. (3.15)

Observing that F (Xt,x,α
τ ) = z + yF (Xt,x,1,0,α

τ ), we have

J(t,x;α, τ) = z + yJ(t, (x, 1, 0);α, τ), (3.16)

which in particular implies

Ū(t, x, y, z) = z + yU(t, x) V̄ (t, x, y, z) = z + yV (t, x). (3.17)

Thus, we can express the value functions U and V as

U(t, x) = inf
π∈Πt,T

sup
α∈At

J(t, (x, 1, 0);α, π[α]), V (t, x) = sup
α∈At

inf
τ∈T t

t,T

J(t, (x, 1, 0);α, τ).

The following result will be useful throughout this paper.

Lemma 3.2. Fix (t,x) ∈ [0, T ]× S and α ∈ A. For any θ ∈ Tt,T and τ ∈ Tθ,T , we have

E[F (Xt,x,α
τ ) | Fθ](ω) = J

(
θ(ω),Xt,x,α

θ (ω);αθ,ω, τ θ,ω
)
, for P-a.e. ω ∈ Ω.

Proof. See Appendix A.4. �

4. Supersolution Property of V

In this section, we will first study the following two functions

Gα(s,x) := inf
τ∈T s

s,T

J(s,x;α, τ), G̃α(s,x) := inf
τ∈Ts,T

J(s,x;α, τ), for (s,x) ∈ [0, T ]× S, (4.1)

where α ∈ A is being fixed. A continuity result of Gα enables us to adapt the arguments in [8] to cur-

rent context. We therefore obtain a weak dynamic programming principle (WDPP) for the function

V (Proposition 4.1), which in turn leads to the supersolution property of V (Proposition 4.3).

Lemma 4.1. Fix α ∈ A.

(i) G̃α is continuous on [0, T ]× S.
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(ii) Suppose α ∈ At for some t ∈ [0, T ]. Then Gα = G̃α on [0, t] × S. As a result, Gα is

continuous on [0, t]× S.

Proof. (i) For any s ∈ [0, T ] and x = (x, y, z) ∈ S, observe from (3.16) that G̃α(s,x) = z +

yG̃α(s, (x, 1, 0)). Thus, it is enough to prove that G̃α(s, (x, 1, 0)) is continuous on [0, T ]×Rd. Also

note that under (2.4), we have

G̃α(s,x) = inf
τ∈Ts,T

J(s,x;α, τ) = inf
τ∈T0,T

J(s,x;α, τ).

Now, for any (s, x) ∈ [0, T ] × Rd, take an arbitrary sequence {(sn, xn)}n∈N ⊂ [0, T ] × Rd such that

(sn, xn) → (s, x). Then the continuity of G̃α(s, (x, 1, 0)) can be seen from the following estimation
∣∣∣G̃α(sn, (xn, 1, 0)) − G̃α(s, (x, 1, 0))

∣∣∣ =
∣∣∣∣ inf
τ∈T0,T

E[F (Xsn,xn,1,0,α
τ )]− inf

τ∈T0,T

E[F (Xs,x,1,0,α
τ )]

∣∣∣∣

≤ sup
τ∈T0,T

E
[∣∣F (Xsn,xn,1,0,α

τ )− F (Xs,x,1,0,α
τ )

∣∣] ≤ E

[
sup

0≤r≤T

∣∣F (Xsn,xn,1,0,α
r )− F (Xs,x,1,0,α

r )
∣∣
]
→ 0,

where the convergence follows from Lemma 3.1.

(ii) Suppose α ∈ At for some t ∈ [0, T ]. For any (s,x) ∈ [0, t]× S and τ ∈ Ts,T , by taking θ = s

in Lemma 3.2, we have

J(s,x;α, τ) = E [E[F (Xs,x,α
τ ) | Fs](ω)] = E [J(s,x;α, τ s,ω)] ≥ inf

τ∈T s
s,T

J(s,x;α, τ), (4.2)

where in the second equality we replace αs,ω by α, thanks to Proposition 2.3. We then conclude

inf
τ∈Ts,T

J(s,x;α, τ) = inf
τ∈T s

s,T

J(s,x;α, τ), (4.3)

as the “≤” relation is trivial. That is, G̃α(s,x) = Gα(s,x). �

Now, we want to modify the arguments in the proof of [8, Theorem 3.5] to get a weak dynamic

programming principle for V . Given w : [0, T ]× Rd 7→ R, we mimic the relation between V and V̄

in (3.17) and define w̄ : [0, T ] × S 7→ R by

w̄(t, x, y, z) := z + yw(t, x), (t, x, y, z) ∈ [0, T ]× S. (4.4)

Proposition 4.1. Fix (t,x) ∈ [0, T ] × S and ε > 0. Take arbitrary α ∈ At, θ ∈ T t
t,T and

ϕ ∈ USC([0, T ] ×Rd) with ϕ ≤ V . We have the following:

(i) E[ϕ̄+(θ,Xt,x,α
θ )] <∞;

(ii) If, moreover, E[ϕ̄−(θ,Xt,x,α
θ )] < ∞, then there exists α∗ ∈ At with α∗

s = αs for s ∈ [0, θ)

such that

E[F (Xt,x,α∗

τ )] ≥ E[Y t,x,y,α
τ∧θ ϕ(τ ∧ θ,Xt,x,α

τ∧θ ) + Zt,x,y,z,α
τ∧θ ]− 4ε, ∀τ ∈ T t

t,T .

Proof. (i) First, observe that for any x = (x, y, z) ∈ S, ϕ̄(t,x) = yϕ(t, x) + z ≤ yV (t, x) + z ≤
yg(x) + z, which implies ϕ̄+(t,x) ≤ yg(x) + z. It follows that

ϕ̄+(θ,Xt,x,α
θ ) ≤ Y t,x,y,α

θ g(Xt,x,α
θ ) + Zt,x,y,z,α

θ

≤ Y t,x,y,α
θ g(Xt,x,α

θ ) + z +

∫ θ

t

Y t,x,y,α
s f(s,Xt,x,α

s , αs)ds,
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the right-hand-side is integrable as a result of (3.9).

(ii) For each (s, η) ∈ [0, T ]× S, by the definition of V̄ , there exists α(s,η),ε ∈ As such that

inf
τ∈T s

s,T

J(s, η;α(s,η),ε, τ) ≥ V̄ (s, η)− ε. (4.5)

Note that ϕ ∈ USC([0, T ]×Rd) implies ϕ̄ ∈ USC([0, T ]×S). Then by the upper semicontinuity of

ϕ̄ on [0, T ] × S and the lower semicontinuity of Gα(s,η),ε
on [0, s] × S (from Lemma 4.1 (ii)), there

must exist r(s,η) > 0 such that

ϕ̄(t′, x′)− ϕ̄(s, η) ≤ ε and Gα(s,η),ε
(s, η) −Gα(s,η),ε

(t′, x′) ≤ ε for all (t′, x′) ∈ B(s, η; r(s,η)),

where B(s, η; r) = {(t′, x′) ∈ [0, T ] × S | t′ ∈ (s − r, s], |x′ − η| < r}, defined as in (1.2). It follows

that if (t′, x′) ∈ B(s, η; r(s,η)), we have

Gα(s,η),ε
(t′, x′) ≥ Gα(s,η),ε

(s, η)− ε ≥ V̄ (s, η)− 2ε ≥ ϕ̄(s, η)− 2ε ≥ ϕ̄(t′, x′)− 3ε,

where the second inequality is due to (4.5). Here, we do not use the usual topology induced by

balls of the form Br(s, η) = {(t′, x′) ∈ [0, T ] × S | |t′ − s| < r, |x′ − η| < r}; instead, for the

time variable, we consider the topology induced by half-closed intervals on [0, T ], i.e. the so-called

upper limit topology (see e.g. [11, Ex.4 on p.66]). Note from [11, Ex.3 on p.174] and [26, Ex.3

on p.192] that (0, T ] is a Lindelöf space under this topology. It follows that, under this setting,

{B(s, η; r) | (s, η) ∈ [0, T ]×S, 0 < r ≤ r(s,η)} forms an open covering of (0, T ]×S, and there exists

a countable subcovering {B(ti, xi; ri)}i∈N of (0, T ]×S. Now set A0 := {T}×S, C−1 := ∅ and define

for all i ∈ N ∪ {0}

Ai+1 := B(ti+1, xi+1; ri+1) \ Ci, where Ci := Ci−1 ∪Ai.

Under this construction, we have

(θ,Xt,x,α
θ ) ∈ ∪i∈N∪{0}Ai P-a.s., Ai∩Aj = ∅ for i 6= j, and Gαi,ε

(t′, x′) ≥ ϕ̄(t′, x′)−3ε for (t′, x′) ∈ Ai,

(4.6)

where αi,ε := α(ti,xi),ε.

For any n ∈ N, set An := ∪0≤i≤nAi and define

αε,n := α1[0,θ) +

(
α1(An)c(θ,X

t,x,α
θ ) +

n∑

i=0

αi,ε1Ai
(θ,Xt,x,α

θ )

)
1[θ,T ] ∈ At.

Note that αε,n
s = αs for s ∈ [0, θ). Whenever ω ∈ {(θ,Xt,x,α

θ ) ∈ Ai}, observe that (αε,n)θ,ω(ω′) =

αε,n (ω ⊗θ φθ(ω
′)) = αi,ε (ω ⊗θ φθ(ω

′)) = (αi,ε)θ,ω(ω′); also, we have αi,ε ∈ Aθ(ω), as α
i,ε ∈ Ati and

θ(ω) ≤ ti on Ai. We then deduce from Lemma 3.2, Proposition 2.3, and (4.6) that for P-a.e. ω ∈ Ω

E[F (Xt,x,αε,n

τ )1{τ≥θ}|Fθ]1An(θ,Xt,x,α
θ ) = 1{τ≥θ}

n∑

i=0

J(θ,Xt,x,α
θ ;αi,ε, τ θ,ω)1Ai

(θ,Xt,x,α
θ )

≥ 1{τ≥θ}

n∑

i=0

Gαi,ε

(θ,Xt,x,α
θ )1Ai

(θ,Xt,x,α
θ )

≥ 1{τ≥θ}[ϕ̄(θ,X
t,x,α
θ )− 3ε]1An(θ,Xt,x,α

θ ).

(4.7)
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Hence, we have

E[F (Xt,x,αε,n

τ )] = E[F (Xt,x,α
τ )1{τ<θ}] + E[F (Xt,x,αε,n

τ )1{τ≥θ}]

= E[F (Xt,x,α
τ )1{τ<θ}] + E

[
E[F (Xt,x,αε,n

τ )1{τ≥θ}|Fθ]1An(θ,Xt,x,α
θ )

]

+ E

[
E[F (Xt,x,αε,n

τ )1{τ≥θ}|Fθ]1(An)c(θ,X
t,x,α
θ )

]

≥ E[F (Xt,x,α
τ )1{τ<θ}] + E[1{τ≥θ}ϕ̄(θ,X

t,x,α
θ )1An(θ,Xt,x,α

θ )]− 3ε

≥ E[1{τ<θ}ϕ̄(τ,X
t,x,α
τ )] + E[1{τ≥θ}ϕ̄(θ,X

t,x,α
θ )1An(θ,Xt,x,α

θ )]− 3ε,

(4.8)

where the first inequality comes from (4.7), and the second inequality is due to the observation that

F (Xt,x,α
τ ) = Y t,x,y,α

τ g(Xt,x,α
τ ) + Zt,x,y,z,α

τ ≥ Y t,x,y,α
τ V (τ,Xt,x,α

τ ) + Zt,x,y,z,α
τ

≥ Y t,x,y,α
τ ϕ(τ,Xt,x,α

τ ) + Zt,x,y,z,α
τ .

Since E[ϕ̄+(θ,Xt,x,α
θ )] <∞ (by part (i)), there exists n∗ ∈ N such that

E[ϕ̄+(θ,Xt,x,α
θ )]− E[ϕ̄+(θ,Xt,x,α

θ )1An∗ (θ,Xt,x,α
θ )] < ε.

We observe the following holds for any τ ∈ T t
t,T

E[1{τ≥θ}ϕ̄
+(θ,Xt,x,α

θ )]− E[1{τ≥θ}ϕ̄
+(θ,Xt,x,α

θ )1An∗ (θ,Xt,x,α
θ )]

≤ E[ϕ̄+(θ,Xt,x,α
θ )]− E[ϕ̄+(θ,Xt,x,α

θ )1An∗ (θ,Xt,x,α
θ )] < ε.

(4.9)

Suppose E[ϕ̄−(θ,Xt,x,α
θ )] <∞, then we can conclude from (4.9) that for any τ ∈ T t

t,T

E[1{τ≥θ}ϕ̄(θ,X
t,x,α
θ )] = E[1{τ≥θ}ϕ̄

+(θ,Xt,x,α
θ )]− E[1{τ≥θ}ϕ̄

−(θ,Xt,x,α
θ )]

≤ E[1{τ≥θ}ϕ̄
+(θ,Xt,x,α

θ )1An∗ (θ,Xt,x,α
θ )] + ε− E[1{τ≥θ}ϕ̄

−(θ,Xt,x,α
θ )1An∗ (θ,Xt,x,α

θ )]

= E[1{τ≥θ}ϕ̄(θ,X
t,x,α
θ )1An∗ (θ,Xt,x,α

θ )] + ε. (4.10)

Taking α∗ = αε,n∗
, we now conclude from (4.8) and (4.10) that

E[F (Xt,x,α∗

τ )] ≥ E[1{τ<θ}ϕ̄(τ,X
t,x,α
τ )] + E[1{τ≥θ}ϕ̄(θ,X

t,x,α
θ )]− 4ε

= E[ϕ̄(τ ∧ θ,Xt,x,α
τ∧θ )]− 4ε

= E[Y t,x,y,α
τ∧θ ϕ(τ ∧ θ,Xt,x,α

τ∧θ ) + Zt,x,y,z,α
τ∧θ ]− 4ε.

�

We still need the following property of V in order to obtain the supersolution property.

Proposition 4.2. For any (t, x) ∈ [0, T ] × Rd, V (t, x) = supα∈A G̃
α(t, (x, 1, 0)).

Proof. Thanks to Lemma 4.1 (ii), we immediately have

V (t, x) = sup
α∈At

Gα(t, (x, 1, 0)) = sup
α∈At

G̃α(t, (x, 1, 0)) ≤ sup
α∈A

G̃α(t, (x, 1, 0)).

For the reverse inequality, fix α ∈ A and x ∈ S. By a calculation similar to (4.2), we have

J(t,x;α, τ) = E[J(t,x;αt,ω , τ t,ω)], for any τ ∈ Tt,T . Observing that τ t,ω ∈ T t
t,T for all τ ∈ Tt,T
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(by Proposition 2.2), and that E[J(t,x;αt,ω , τ t,ω)] = E[J(t,x;αt,ω , τ)] for all τ ∈ T t
t,T (by Proposi-

tion 2.1), we obtain

inf
τ∈Tt,T

J(t,x;α, τ) = inf
τ∈Tt,T

E[J(t,x;αt,ω , τ t,ω)] = inf
τ∈T t

t,T

E[J(t,x;αt,ω , τ)]

≤ sup
α∈At

inf
τ∈T t

t,T

E[J(t,x;α, τ)] = sup
α∈At

inf
τ∈T t

t,T

J(t,x;α, τ),

where the inequality is due to the fact that αt,ω ∈ At. By setting x := (x, 1, 0) and taking supremum

over α ∈ A, we get supα∈A G̃
α(t, (x, 1, 0)) ≤ V (t, x). �

Corollary 4.1. V ∈ LSC([0, T ] × Rd).

Proof. By Proposition 4.2 and Lemma 4.1 (i), V is a supremum of a collection of continuous

functions defined on [0, T ] × Rd, and thus has to be lower semicontinuous on the same space. �

Now, we are ready to present the main result of this section. Recall that the operator H is

defined in (3.14).

Proposition 4.3. The function V is a lower semicontinuous viscosity supersolution to the obstacle

problem of a Hamilton-Jacobi-Bellman equation

max

{
c(t, x)w − ∂w

∂t
+H(t, x,Dxw,D

2
xw), w − g(x)

}
= 0 on [0, T )× Rd, (4.11)

and satisfies the polynomial growth condition: there exists N > 0 such that

|V (t, x)| ≤ N(1 + |x|p̄), ∀(t, x) ∈ [0, T ]× Rd. (4.12)

Proof. The lower semicontinuity of V was shown in Corollary 4.1. Observe that 0 ≤ V (t, x) ≤
supα∈At

E[F (Xt,x,1,0,α
T )] ≤ supα∈A E[F (Xt,x,1,0,α

T )] =: v(t, x). Since v satisfies (4.12) as a result of

[24, Theorem 3.1.5], so does V .

To prove the supersolution property, let h ∈ C1,2([0, T )× Rd) be such that

0 = (V − h)(t0, x0) < (V − h)(t, x), for any (t, x) ∈ [0, T ) × Rd, (t, x) 6= (t0, x0), (4.13)

for some (t0, x0) ∈ [0, T ) × Rd. If V (t0, x0) = g(x0), then there is nothing to prove. We, therefore,

assume that V (t0, x0) < g(x0). For such (t0, x0) it is enough to prove the following inequality:

0 ≤ c(t0, x0)h(t0, x0)−
∂h

∂t
(t0, x0) +H(·,Dxh,D

2
xh)(t0, x0).

Assume the contrary. Then, by the definition of H in (3.14), there must exist ζ0 ∈M such that

0 > c(t0, x0)h(t0, x0)−
∂h

∂t
(t0, x0) + (Hζ0)∗(·,Dxh,D

2
xh)(t0, x0).

Moreover, from the upper semicontinuity of (Hζ0)∗ and the fact that (Hζ0)∗ ≥ Hζ0 , we can choose

some r > 0 with t0 + r < T such that

0 > c(t, x)h(t, x) − ∂h

∂t
(t, x) +Hζ0(·,Dxh,D

2
xh)(t, x), for all (t, x) ∈ B̄r(t0, x0). (4.14)
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Define ζ ∈ A by setting ζt = ζ0 for all t ≥ 0, and introduce the stopping time

θ := inf
{
s ≥ t0

∣∣∣ (s,Xt0,x0,ζ
s ) /∈ Br(t0, x0)

}
∈ T t0

t0,T
.

Note that we have θ ∈ T t0
t0,T

as the control ζ is by definition independent of Ft0 . Now, by applying

the product rule of stochastic calculus to Y t0,x0,1,ζ
s h(s,Xt0,x0,ζ

s ) and recalling (4.14) and c ≤ c̄, we

obtain that for any τ ∈ T t0
t0,T

,

V (t0, x0) = h(t0, x0) = E

[
Y t0,x0,1,ζ
θ∧τ h(θ ∧ τ,Xt0,x0,ζ

θ∧τ )

+

∫ θ∧τ

t0

Y t0,x0,1,ζ
s

(
ch− ∂h

∂t
+Hζ0(·,Dxh,D

2
xh) + f

)
(s,Xt0,x0,ζ

s , ζ0)ds

]

< E

[
Y t0,x0,1,ζ
θ∧τ h(θ ∧ τ,Xt0,x0,ζ

θ∧τ ) +

∫ θ∧τ

t0

Y t0,x0,1,ζ
s f(s,Xt0,x0,ζ

s , ζ0)ds

]
. (4.15)

In the following, we will work towards a contradiction to (4.15). First, define

h̄(θ,Xt0,x0,1,0,ζ
θ ) := Y t0,x0,1,ζ

θ h(θ,Xt0,x0,ζ
θ ) +

∫ θ

t0

Y t0,x0,1,ζ
s f(s,Xt0,x0,ζ

s , ζ0)ds.

Note from (4.15) that E[h̄(θ,Xt0,x0,1,0,ζ
θ )] is bounded from below. It follows from this fact that

E[h̄−(θ,Xt0,x0,1,0,ζ
θ )] < ∞, as we already have E[h̄+(θ,Xt0,x0,1,0,ζ

θ )] < ∞ from Proposition 4.1 (i).

For each n ∈ N, we can therefore apply Proposition 4.1 (ii) and conclude that there exists α∗,n ∈ At0 ,

with α∗,n
s = ζs for all s ≤ θ, such that for any τ ∈ T t0

t0,T
,

E[F (Xt0,x0,1,0,α∗,n

τ )] ≥ E

[
Y t0,x0,1,ζ
θ∧τ h(θ ∧ τ,Xt0,x0,ζ

θ∧τ ) +

∫ θ∧τ

t0

Y t0,x0,1,ζ
s f(s,Xt0,x0,ζ

s , ζ0)ds

]
− 1

n
.

(4.16)

Next, thanks to the definition of V and the classical theory of Snell envelopes (see e.g. Appendix

D, and especially Theorem D.12, in [19]), we have

V (t0, x0) ≥ Gα∗,n

(t0, (x0, 1, 0)) = E[F (Xt0,x0,1,0,α∗,n

τn )], (4.17)

where

τn := inf
{
s ≥ t0

∣∣∣ Gα∗,n

(s,Xt0,x0,1,0,α∗,n

s ) = g(Xt0,x0,α
∗,n

s )
}
∈ T t0

t0,T
.

Note that we may apply [19, Theorem D.12] because (3.9) holds. Combining (4.17) and (4.16), we

obtain

V (t0, x0) ≥ E

[
Y t0,x0,1,ζ
θ∧τn h(θ ∧ τn,Xt0,x0,ζ

θ∧τn ) +

∫ θ∧τn

t0

Y t0,x0,1,ζ
s f(s,Xt0,x0,ζ

s , ζ0)ds

]
− 1

n
.

By sending n to infinity and using Fatou’s Lemma, we conclude that

V (t0, x0) ≥ E

[
Y t0,x0,1,ζ
θ∧τ∗ h(θ ∧ τ∗,Xt0,x0,ζ

θ∧τ∗ ) +

∫ θ∧τ∗

t0

Y t0,x0,1,ζ
s f(s,Xt0,x0,ζ

s , ζ0)ds

]
,

where τ∗ := lim infn→∞ τn is a stopping time in T t0
t0,T

, thanks to the right continuity of the filtration

Ft0 . The above inequality, however, contradicts (4.15). �
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Remark 4.1. The lower semicontinuity of V is needed for the proof of Proposition 4.3. To see

this, suppose V is not lower semicontinuous. Then V should be replaced by V∗ in (4.13) and (4.15).

The last inequality in the proof and (4.15) would then yield V∗(t0, x0) < V (t0, x0), which is not a

contradiction.

Remark 4.2. Due to the lack of continuity in t of the functions b, σ, and f , we use H, instead of

H∗, in (4.11). If we were using H∗, we in general would not be able to find a ζ0 ∈ M such that

(4.14) holds (due to the lack of continuity in t). If b, σ, and f are actually continuous in t, then

we see from (3.13) and (3.14) that H = H = H∗.

5. Subsolution Property of U∗

As in Section 4, we will first prove a continuity result (Lemma 5.4), which leads to a weak dynamic

programming principle for U (Proposition 5.1). Then, we will show that the subsolution property

of U∗ follows from this weak dynamic programming principle (Proposition 5.2). Remember that

U∗ is the upper semicontinuous envelope of U defined as in (1.3).

Fix s ∈ [0, T ] and ξ ∈ Lp
d(Ω,Fs) for some p ∈ [1,∞). For any α ∈ A and π1, π2 ∈ Πs,T with

π1[β] ≤ π2[β] P-a.s. for all β ∈ A, we define

Bs,ξ,α
π1

:=

{
β ∈ A

∣∣∣∣
∫ π1[α]

s

ρ′(βu, αu)du = 0 P-a.s.

}
, (5.1)

and introduce the random variable

Ks,ξ,α(π1, π2) :=

esssup
β∈Bs,ξ,α

π1

E

[∫ π2[β]

π1[α]
Y

π1[α],X
s,ξ,β

π1[α]
,1,β

u f(u,Xs,ξ,β
u , βu)du+ Y

π1[α],X
s,ξ,β

π1[α]
,1,β

π2[β]
g(Xs,ξ,β

π2[β]
)

∣∣∣∣∣ Fπ1[α]

]
.
(5.2)

Observe from the definition of Bs,ξ,α
π1 and Definition 3.1 (i) that

π1[β] = π1[α] P-a.s. ∀β ∈ Bs,ξ,α
π1

. (5.3)

This in particular implies π2[β] ≥ π1[β] = π1[α] P-a.s. ∀β ∈ Bs,ξ,α
π1 , which shows that Ks,ξ,α(π1, π2)

is well-defined. Given any constant strategies π1[·] ≡ τ1 ∈ T s
s,T and π2[·] ≡ τ2 ∈ T s

s,T , we will simply

write Ks,ξ,α(π1, π2) as K
s,ξ,α(τ1, τ2). For the particular case where ξ = x ∈ Rd, we also consider

Γs,x,α(π1, π2) :=

∫ π1[α]

s

Y s,x,1,α
u f(u,Xs,x,α

u , αu)du+ Y s,x,1,α
π1[α]

Ks,x,α(π1, π2).

Remark 5.1. Let us write Ks,x,α(π1, π2) = esssupβ∈Bs,x,α
π1

E[Rs,x,α
π1,π2(β) | Fπ1[α]] for simplicity. Note

that the set of random variables {E[Rs,x,α
π1,π2(β) | Fπ1[α]]}β∈Bs,x,α

π1
is closed under pairwise maximiza-

tion. Indeed, given β1, β2 ∈ Bs,x,α
π1 , set A := {E[Rs,x,α

π1,π2(β1) | Fπ1[α]] ≥ E[Rs,x,α
π1,π2(β2) | Fπ1[α]]} ∈ Fπ1[α]

and define β3 := β11[0,π1[α]) + (β11A + β21Ac)1[π1[α],T ] ∈ Bs,x,α
π1 . Then, observe that

E[Rs,x,α
π1,π2

(β3) | Fπ1[α]] = E[Rs,x,α
π1,π2

(β1) | Fπ1[α]]1A + E[Rs,x,α
π1,π2

(β2) | Fπ1[α]]1Ac

= E[Rs,x,α
π1,π2

(β1) | Fπ1[α]] ∨ E[Rs,x,α
π1,π2

(β2) | Fπ1[α]].
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Thus, we conclude from Theorem A.3 in [19, Appendix A] that there exists a sequence {βn}n∈N in

Bs,x,α
π1 such that Ks,x,α(π1, π2) =↑ limn→∞ E[Rs,x,α

π1,π2(β
n) | Fπ1[α]] P-a.s.

Lemma 5.1. Fix (s, x) ∈ [0, T ]× Rd and α ∈ A. For any r ∈ [s, T ] and π ∈ Πr,T , we have

Ks,x,α(r, π) = Kr,X
s,x,α
r ,α(r, π) P-a.s.

Proof. For any β ∈ Bs,x,α
r , we see from Remark 2.5 (i) that Xs,x,β

u = Xr,X
s,x,α
r ,β

u for u ∈ [r, T ] P-a.s.

It follows from (5.2) that

Ks,x,α(r, π) = esssup
β∈Bs,x,α

r

E

[ ∫ π[β]

r

Y r,X
s,x,α
r ,1,β

u f(u,Xr,X
s,x,α
r ,β

u , βu)du+ Y r,X
s,x,α
r ,1,β

π[β] g(Xr,X
s,x,α
r ,β

π[β] )

∣∣∣∣ Fr

]
.

Observing from (5.1) that Bs,x,α
r ⊆ A = Br,X

s,x,α
r ,α

r , we conclude Ks,x,α(r, π) ≤ Kr,X
s,x,α
r ,α(r, π). On

the other hand, for any β ∈ A, define β̄ := α1[0,r)+β1[r,T ] ∈ Bs,x,α
r . Then, by Remark 2.5 (i) again,

we have Xs,x,β̄
u = Xr,X

s,x,α
r ,β

u for u ∈ [r, T ] P-a.s. Also, we have π[β̄] = π[β], thanks to Definition 3.1

(i). Therefore,

E

[ ∫ π[β]

r

Y r,X
s,x,α
r ,1,β

u f(u,Xr,X
s,x,α
r ,β

u , βu)du+ Y r,X
s,x,α
r ,1,β

π[β] g(Xr,X
s,x,α
r ,β

π[β] )

∣∣∣∣ Fr

]

= E

[∫ π[β̄]

r

Y r,X
s,x,β̄
r ,1,β̄

u f(u,Xs,x,β̄
u , β̄u)du+ Y r,X

s,x,β̄
r ,1,β̄

π[β̄]
g(Xs,x,β̄

π[β̄]
)

∣∣∣∣ Fr

]
.

In view of (5.2), this implies Kr,X
s,x,α
r ,α(r, π) ≤ Ks,x,α(r, π). �

Lemma 5.2. Fix (s, x) ∈ [0, T ]×Rd. Given α ∈ A and π1, π2, π3 ∈ Πs,T with π1[β] ≤ π2[β] ≤ π3[β]

P-a.s. for all β ∈ A, it holds P-a.s. that

E

[∫ π2[α]

π1[α]
Y s,x,1,α
u f(u,Xs,x,α

u , αu)du+ Y s,x,1,α
π2[α]

Ks,x,α(π2, π3)

∣∣∣∣ Fπ1[α]

]
≤ Y s,x,1,α

π1[α]
Ks,x,α(π1, π3).

Moreover, we have the following supermartingale property:

E[Γs,x,α(π2, π3) | Fπ1[α]] ≤ Γs,x,α(π1, π3) P-a.s.

Proof. By Remark 5.1, there exists a sequence {βn}n∈N in Bs,x,α
π2 such that Ks,x,α(π2, π3) =↑

limn→∞ E[Rs,x,α
π2,π3(β

n) | Fπ2[α]] P-a.s. From the definition of Bs,x,α
π2 in (5.1), βnu = αu for a.e.

u ∈ [s, π2[α]) P-a.s. We can then compute as follows:

E

[
Y s,x,1,α
π2[α]

Ks,x,α(π2, π3)
∣∣∣ Fπ1[α]

]

= E

{
Y s,x,1,α
π2[α]

·

lim
n→∞

E

[ ∫ π3[βn]

π2[α]
Y

π2[α],X
s,x,βn

π2[α]
,1,βn

u f(u,Xs,x,βn

u , βnu )du+ Y
π2[α],X

s,x,βn

π2[α]
,1,βn

π3[βn] g(Xs,x,βn

π3[βn])

∣∣∣∣Fπ2[α]

]∣∣∣∣Fπ1[α]

}

= E

{
lim
n→∞

E

[ ∫ π3[βn]

π2[α]
Y s,x,1,βn

u f(u,Xs,x,βn

u , βnu )du+ Y s,x,1,βn

π3[βn] g(Xs,x,βn

π3[βn])

∣∣∣∣ Fπ2[α]

] ∣∣∣∣ Fπ1[α]

}

= lim
n→∞

E

[ ∫ π3[βn]

π2[α]
Y s,x,1,βn

u f(u,Xs,x,βn

u , βnu )du+ Y s,x,1,βn

π3[βn] g(Xs,x,βn

π3[βn])

∣∣∣∣ Fπ1[α]

]
,
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where the last line follows from the monotone convergence theorem and the tower property for

conditional expectations. We therefore conclude that

E

[ ∫ π2[α]

π1[α]
Y s,x,1,α
u f(u,Xs,x,α

u , αu)du+ Y s,x,1,α
π2[α]

Ks,x,α(π2, π3)

∣∣∣∣ Fπ1[α]

]

= lim
n→∞

E

[ ∫ π3[βn]

π1[α]
Y s,x,1,βn

u f(u,Xs,x,βn

u , βnu )du+ Y s,x,1,βn

π3[βn] g(Xs,x,βn

π3[βn])

∣∣∣∣ Fπ1[α]

]

= Y s,x,1,α
π1[α]

lim
n→∞

E

[ ∫ π3[βn]

π1[α]
Y

π1[α],X
s,x,βn

π1[α]
,1,βn

u f(u,Xs,x,βn

u , βnu )du+ Y
π1[α],X

s,x,βn

π1[α]
,1,βn

π3[βn] g(Xs,x,βn

π3[βn])

∣∣∣∣Fπ1[α]

]

≤ Y s,x,1,α
π1[α]

Ks,x,α(π1, π3),

where the inequality follows from the fact that βn ∈ Bs,x,α
π2 ⊆ Bs,x,α

π1 . It then follows that

E[Γs,x,α(π2, π3) | Fπ1[α]] =

∫ π1[α]

s

Y s,x,1,α
u f(u,Xs,x,α

u , αu)du

+ E

[ ∫ π2[α]

π1[α]
Y s,x,1,α
u f(u,Xs,x,α

u , αu)du+ Y s,x,1,α
π2[α]

Ks,x,α(π2, π3)

∣∣∣∣ Fπ1[α]

]

≤
∫ π1[α]

s

Y s,x,1,α
u f(u,Xs,x,α

u , αu)du+ Y s,x,1,α
π1[α]

Ks,x,α(π1, π3) = Γs,x,α(π1, π3).

�

Lemma 5.3. For any (t,x) ∈ [0, T ]× S and π ∈ Πt,T ,

sup
α∈A

J(t,x;α, π[α]) = sup
α∈At

J(t,x;α, π[α]).

Proof. Fix α ∈ A and x ∈ S. For any π ∈ Πt,T , by taking θ = t in Lemma 3.2, we have

J(t,x;α, π[α]) = E

[
E[F (Xt,x,α

π[α] ) | Ft](ω)
]
= E

[
J(t,x;αt,ω , π[αt,ω ])

]
≤ sup

α∈At

J(t,x;α, π[α]).

Note that in the second equality we replace π[α]t,ω by π[αt,ω], thanks to Definition 3.1 (iii). Then,

the last inequality holds as αt,ω ∈ At for P-a.e. ω ∈ Ω. Now, by taking supremum over α ∈ A, we

have supα∈A J(t,x;α, π[α]) ≤ supα∈At
J(t,x;α, π[α]). Since the reverse inequality is trivial, this

lemma follows. �

Now, we are ready to state a continuity result for an optimal control problem.

Lemma 5.4. Fix t ∈ [0, T ]. For any π ∈ Πt,T , the function Lπ : [0, t]× S defined by

Lπ(s,x) := sup
α∈As

J(s,x;α, π[α]) (5.4)

is continuous.

Proof. Observing from (3.16) that Lπ(s,x) = yLπ(s, (x, 1, 0))+z, it is enough to show the continuity

of Lπ(s, (x, 1, 0)) in (s, x) on [0, t]×Rd. By [24, Theorem 3.2.2], we know that J(s, (x, 1, 0);α, τ) is

continuous in x uniformly with respect to s ∈ [0, t], α ∈ A, and τ ∈ Tt,T . This shows that the map
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(s, x, α) 7→ J(s, (x, 1, 0);α, π[α]) is continuous in x uniformly with respect to s ∈ [0, t] and α ∈ A.

Then, we see from the following estimation

sup
s∈[0,t]

|Lπ(s, (x, 1, 0)) − Lπ(s, (x′, 1, 0))| ≤ sup
s∈[0,t]

sup
α∈As

|J(s, (x, 1, 0);α, π[α]) − J(s, (x′, 1, 0);α, π[α])|

that Lπ(s, (x, 1, 0)) is continuous in x uniformly with respect to s ∈ [0, t]. Thus, it suffices to prove

that Lπ(s, (x, 1, 0)) is continuous in s for each fixed x. To this end, we will first derive a dynamic

programming principle for Lπ(s, (x, 1, 0)), which corresponds to [24, Theorem 3.3.6]; the rest of the

proof will then follow from the same argument in [24, Lemma 3.3.7].

Fix (s, x) ∈ [0, t] × Rd. Observe from (5.1) that Bs,x,α
s = A for all α ∈ A. In view of (5.2),

this implies that Ks,x,α(s, π) = esssupβ∈A E[F (Xs,x,1,0,β
π[β] ) | Fs], which is independent of α ∈ A. We

will therefore drop the superscript α in the rest of the proof. Now, we claim that Ks,x(s, π) is

deterministic and equal to Lπ(s, (x, 1, 0)). First, since π[α] ∈ T s
t,T for all α ∈ As (by Definition 3.1

(ii)), we observe from Lemma 3.2, Proposition 2.1 (ii), and Proposition 2.3 that

Ks,x(s, π) ≥ esssup
α∈As

E[F (Xs,x,1,0,α
π[α] ) | Fs](·) = esssup

α∈As

J(s, (x, 1, 0);αs,·, π[α]s,·)

= sup
α∈As

J(s, (x, 1, 0);α, π[α]) = Lπ(s, (x, 1, 0)).
(5.5)

On the other hand, in view of Remark 5.1, there exists a sequence {αn}n∈N in A such that

Ks,x(s, π) =↑ limn→∞ E[F (Xs,x,1,0,αn

π[αn] ) | Fs] P-a.s. By the monotone convergence theorem,

E[Ks,x(s, π)] = E

[
lim
n→∞

E[F (Xs,x,1,0,αn

π[αn] ) | Fs]
]
= lim

n→∞
E[F (Xs,x,1,0,αn

π[αn] )]

≤ sup
α∈A

E[F (Xs,x,1,0,α
π[α] )] = Lπ(s, (x, 1, 0)),

(5.6)

where the last equality is due to Lemma 5.3. From (5.5) and (5.6), we getKs,x(s, π) = Lπ(s, (x, 1, 0)).

Then, for any α ∈ A, thanks to the supermartingale property introduced in Lemma 5.2, we have

for all r ∈ [s, t] that

Lπ(s, (x, 1, 0)) = Ks,x(s, π) = Γs,x,α(s, π) ≥ E[Γs,x,α(r, π)] ≥ E[Γs,x,α(π, π)] ≥ E[F (Xs,x,1,0,α
π[α] )],

where the last equality follows from the fact that Ks,x,α(π, π) = esssupβ∈Bs,x,α
π

g(Xs,x,β
π[β] ) ≥ g(Xs,x,α

π[α] )

P-a.s.; see (5.2). By taking supremum over α ∈ A and using Lemma 5.3, we obtain the following

dynamic programming principle for Lτ (s, (x, 1, 0)): for all r ∈ [s, t],

Lπ(s, (x, 1, 0)) = sup
α∈A

E[Γs,x,α(r, π)]

= sup
α∈A

E

[∫ r

s

Y s,x,1,α
u f(u,Xs,x,α

u , αu)du+ Y s,x,1,α
r Lπ(r, (Xs,x,α

r , 1, 0))

]
,

where the second equality follows from the fact Ks,x,α(r, π) = Kr,X
s,x,α
r ,α(r, π) = Lπ(r, (Xs,x,α

r , 1, 0))

P-a.s., as a consequence of Lemma 5.1. Now, we may apply the same argument in [24, Lemma 3.3.7]

to show that Lπ(s, (x, 1, 0)) is continuous in s on [0, t]. �
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Proposition 5.1. Fix (t,x) ∈ [0, T ] × S and ε > 0. For any π ∈ Πt,T and ϕ ∈ LSC([0, T ] × Rd)

with ϕ ≥ U , there exists π∗ ∈ Πt,T such that

E

[
F (Xt,x,α

π∗[α])
]
≤ E

[
Y t,x,y,α
π[α] ϕ

(
π[α],Xt,x,α

π[α]

)
+ Zt,x,y,z,α

π[α]

]
+ 3ε, ∀α ∈ A.

Proof. For each (s, η) ∈ [0, T ]× S, by the definition of Ū , there exists π(s,η),ε ∈ Πs,T such that

sup
α∈As

J
(
s, η;α, π(s,η),ε[α]

)
≤ Ū(s, η) + ε. (5.7)

Recall the definition of ϕ̄ in (4.4) and note that ϕ ∈ LSC([0, T ] ×Rd) implies ϕ̄ ∈ LSC([0, T ]× S).
Then, by the lower semicontinuity of ϕ̄ on [0, T ] × S and the upper semicontinuity of Lπ(s,η),ε

on

[0, s]× S (from Lemma 5.4), there must exist r(s,η) > 0 such that

ϕ̄(t′, x′)− ϕ̄(s, η) ≥ −ε and Lπ(s,η),ε
(t′, x′)− Lπ(s,η),ε

(s, η) ≤ ε,

for any (t′, x′) contained in the ball B(s, η; r(s,η)), defined as in (1.2). It follows that if (t′, x′) ∈
B(s, η; r(s,η)), we have

Lπ(s,η),ε
(t′, x′) ≤ Lπ(s,η),ε

(s, η) + ε ≤ Ū(s, η) + 2ε ≤ ϕ̄(s, η) + 2ε ≤ ϕ̄(t′, x′) + 3ε,

where the second inequality is due to (5.7). By the same construction in the proof of Proposition 4.1,

there exists a countable covering {B(ti, xi; ri)}i∈N of (0, T ]×S, from which we can take a countable

disjoint covering {Ai}i∈N∪{0} of (0, T ] × S such that

(π[α],Xt,x,α

π[α] ) ∈ ∪ℓ
i=1Ai P-a.s. ∀α ∈ A,

Lπi,ε

(t′, x′) ≤ ϕ̄(t′, x′) + 3ε for (t′, x′) ∈ Ai, where π
i,ε := π(ti,xi),ε.

(5.8)

Now, define π∗ ∈ Πt,T by

π∗[α] :=
∑

i≥1

πi,ε[α]1Ai
(π[α],Xt,x,α

π[α] ), ∀α ∈ A.

Fix α ∈ At. Observe that for P-a.e. ω ∈
{
(π[α],Xt,x,α

π[α] ) ∈ Ai

}
⊆ {π[α] ≤ ti}, Definition 3.1 (iii)

gives

(πi,ε[α])π[α],ω(ω′) = πi,ε[απ[α],ω](ω′) for P-a.e. ω′ ∈ Ω. (5.9)

We then deduce from Lemma 3.2, (5.9), (5.4), and (5.8) that for P-a.e. ω ∈ Ω,

E

[
F (Xt,x,α

π∗[α])
∣∣∣ Fπ[α]

]
(ω) 1Ai

(π[α](ω),Xt,x,α
π[α] (ω))

= J
(
π[α](ω),Xt,x,α

π[α] (ω);α
π[α],ω, πi,ε[απ[α],ω]

)
1Ai

(π[α](ω),Xt,x,α

π[α] (ω))

≤ Lπi,ε
(
π[α](ω),Xt,x,α

π[α] (ω)
)
1Ai

(π[α](ω),Xt,x,α
π[α] (ω))

≤
[
ϕ̄
(
π[α](ω),Xt,x,α

π[α] (ω)
)
+ 3ε

]
1Ai

(π[α](ω),Xt,x,α
π[α] (ω)).

It follows from the monotone convergence theorem that

E

[
F (Xt,x,α

π∗[α])
]
=
∑

i≥1

E

[
E

[
F (Xt,x,α

π∗[α])
∣∣∣ Fπ[α]

]
1Ai

(π[α],Xt,x,α
π[α] )

]
≤ E

[
ϕ̄(π[α],Xt,x,α

π[α] )
]
+ 3ε,

which is the desired result by recalling again the definition of ϕ̄ in (4.4). �
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The following is the main result of this section. Recall that the operator H is defined in (3.13),

and H∗ denotes the lower semicontinuous envelope of H defined as in (1.3).

Proposition 5.2. The function U∗ is a viscosity subsolution to the obstacle problem of a Hamilton-

Jacobi-Bellman equation

max

{
c(t, x)w − ∂w

∂t
+H∗(t, x,Dxw,D

2
xw), w − g(x)

}
= 0 on [0, T ) × Rd,

and satisfies the polynomial growth condition (4.12).

Proof. We may argue as in the proof of Proposition 4.3 to show that U∗ satisfies (4.12). To

prove the subsolution property, we assume the contrary that there exist h ∈ C1,2([0, T ) × Rd) and

(t0, x0) ∈ [0, T )× Rd satisfying

0 = (U∗ − h)(t0, x0) > (U∗ − h)(t, x), for any (t, x) ∈ [0, T )× Rd, (t, x) 6= (t0, x0),

such that

max

{
c(t0, x0)h(t0, x0)−

∂h

∂t
(t0, x0) +H∗(·,Dxh,D

2
xh)(t0, x0), h(t0, x0)− g(x0)

}
> 0. (5.10)

Since U∗(t0, x0) = h(t0, x0) and U ≤ g by definition, continuity of g implies that h(t0, x0) =

U∗(t0, x0) ≤ g(x0). Therefore, we can conclude from (5.10) that

c(t0, x0)h(t0, x0)−
∂h

∂t
(t0, x0) +H∗(·,Dxh,D

2
xh)(t0, x0) > 0. (5.11)

Define the function h̃ by

h̃(t, x) := h(t, x) + ε(|t− t0|2 + |x− x0|4).

Note that (h̃, ∂th̃,Dxh̃,D
2
xh̃)(t0, x0) = (h, ∂th,Dxh,D

2
xh)(t0, x0). Then, by the lower semicontinuity

of H∗, there exists r > 0 with t0 + r < T such that

c(t, x)h̃(t, x) − ∂h̃

∂t
(t, x) +Ha(·,Dxh̃,D

2
xh̃)(t, x) > 0, ∀ a ∈M and (t, x) ∈ B̄r(t0, x0). (5.12)

Now, define η > 0 by

ηec̄T := min
∂Br(t0,x0)

(h̃− h) > 0. (5.13)

Take (t̂, x̂) ∈ Br(t0, x0) such that |(U − h̃)(t̂, x̂)| < η/2, and define π ∈ Πt̂,T by

π[α] := inf
{
s ≥ t̂

∣∣∣ (s,X t̂,x̂,α
s ) /∈ Br(t0, x0)

}
, ∀α ∈ A. (5.14)

For any α ∈ At̂, applying the product rule of stochastic calculus to Y t̂,x̂,1,α
s h̃(s,X t̂,x̂,α

s ), we get

h̃(t̂, x̂) = E

[
Y t̂,x̂,1,α
π[α] h̃(π[α],X t̂,x̂,α

π[α] )

+

∫ π[α]

t̂

Y t̂,x̂,1,α
s

(
ch̃− ∂h̃

∂t
+Hαs(·,Dxh̃,D

2
xh̃) + f

)
(s,X t̂,x̂,α

s , αs)ds

]

> E

[
Y t̂,x̂,1,α
π[α] h(π[α],X t̂,x̂,α

π[α] ) +

∫ π[α]

t̂

Y t̂,x̂,1,α
s f(s,X t̂,x̂,α

s , αs)ds

]
+ η,
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where the inequality follows from (5.13), (5.12) and c ≤ c̄. Moreover, by our choice of (t̂, x̂), we

have U(t̂, x̂) + η/2 > h̃(t̂, x̂). It follows that

U(t̂, x̂) > E

[
Y t̂,x̂,1,α
π[α] h(π[α],X t̂,x̂,α

π[α] ) +

∫ π[α]

t̂

Y t̂,x̂,1,α
s f(s,X t̂,x̂,α

s , αs)ds

]
+
η

2
, for any α ∈ At̂. (5.15)

Finally, we conclude from the definition of U and Proposition 5.1 that there exist π∗ ∈ Πt̂,T and

α̂ ∈ At̂ such that

U(t̂, x̂) = Ū(t̂, x̂, 1, 0) ≤ sup
α∈At̂

E

[
F
(
Xt̂,x̂,1,0,α

π∗[α]

)]
≤ E

[
F
(
Xt̂,x̂,1,0,α̂

π∗[α̂]

)]
+
η

4

≤ E

[
Y t̂,x̂,1,α̂
π[α̂] h(π[α̂],X t̂,x̂,α̂

π[α̂] ) + Z t̂,x̂,1,0,α̂
π[α̂]

]
+
η

2
,

which contradicts (5.15). �

6. Comparison

In this section, to state an appropriate comparison result, we assume a stronger version of (2.2)

as follows: there exists K > 0 such that for any t, s ∈ [0, T ], x, y ∈ Rd, and u ∈M ,

|b(t, x, u) − b(s, y, u)|+ |σ(t, x, u) − σ(s, y, u)| ≤ K(|t− s|+ |x− y|). (6.1)

Moreover, we impose an additional condition on f :

f(t, x, u) is uniformly continuous in (t, x), uniformly in u ∈M. (6.2)

Note that the conditions (6.1) and (6.2), together with the linear growth condition (2.3) on b and

σ, imply that the operator H defined in (3.13) is continuous, and H = H = H∗.

Proposition 6.1. Assume (6.1) and (6.2). Let u (resp. v) be an upper semicontinuous viscosity

subsolution (resp. a lower semicontinuous viscosity supersolution), with polynomial growth in x, to

max

{
c(t, x)w − ∂w

∂t
+H(t, x,Dxw,D

2
xw), w − g(x)

}
= 0 on [0, T )× Rd, (6.3)

and u(T, x) ≤ v(T, x) for all x ∈ Rd. Then u ≤ v on [0, T )× Rd.

Proof. For λ > 0, define uλ := eλtu(t, x), vλ := eλtv(t, x), and

Hλ(t, x, p,A) := inf
a∈M

{
−b(t, x, a) · p− 1

2
Tr[σσ′(t, x, a)A] − eλtf(t, x, a)

}
.

Note that the conditions (6.1) and (6.2), together with the linear growth condition (2.3) on b and σ

and the polynomial growth condition (3.8) on f , imply that Hλ is continuous. By definition, u (resp.

v) is upper semicontinuous (resp. lower semicontinuous) and has polynomial growth. Moreover, by

direct calculations, the subsolution property of u (resp. supersolution property of v) implies that

uλ (resp. vλ) is a viscosity subsolution (resp. viscosiy supersolution) to

max

{
(c(t, x) + λ)w − ∂w

∂t
+Hλ(t, x,Dxw,D

2
xw), w − eλtg(x)

}
= 0 on [0, T )× Rd. (6.4)
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For any (t, x, r, q, p,A) ∈ [0, T ]× Rd × R× R× Rd ×Md, define

F1(t, x, r, q, p,A) := (c(t, x) + λ) r − q +Hλ(t, x, p,A) and F2(t, x, r) := r − eλtg(x).

Since F1 and F2 are by definition continuous, so is F3 := max{F1, F2}. We can then write (6.4) as

F3(t, x, w,
∂w
∂t
,Dxw,D

2
xw) = 0.

From the polynomial growth condition on uλ and vλ, there exists some p > 0 such that

sup
[0,T ]×Rd

|uλ(t, x)|+ |vλ(t, x)|
1 + |x|p <∞.

Define γ(x) := 1 + |x|2p and set ϕ(t, x) := e−λtγ(x). From the linear growth condition (2.3) on

b and σ, a direct calculation shows that |b(t, x, a) ·Dxγ + 1
2Tr[σσ

′(t, x, a)D2
xγ]| ≤ Cγ(x) for some

C > 0. It follows that

(c(t, x) + λ)ϕ− ∂ϕ

∂t
+ inf

a∈M

{
−b(t, x, a)Dxϕ− 1

2
Tr[σσ′(t, x, a)D2

xϕ]

}

= e−λt

(
[c(t, x) + 2λ]γ + inf

a∈M

{
−b(t, x, a)Dxγ − 1

2
Tr[σσ′(t, x, a)D2

xγ]

})

≥ e−λt[c(t, x) + 2λ− C]γ ≥ 0, if λ ≥ C

2
.

(6.5)

Now, take λ ≥ C
2 and define vλε := vλ + εϕ for all ε > 0. By definition, vλε is lower semi-

continuous. Given any h ∈ C1,2([0, T ) × Rd) and (t0, x0) ∈ [0, T ) × Rd such that vλε − h at-

tains a local minimum, which equals 0, at (t0, x0), the supersolution property of vλ implies either

F1

(
·, h(·), ∂h

∂t
(·),Dxh(·),D2

xh(·)
)
(t0, x0) ≥ 0 or F2 (·, h(·)) (t0, x0) ≥ 0. If the former holds true, we

see from (6.5) that

F1

(
·, vλε (·),

∂vλε
∂t

(·),Dxv
λ
ε (·),D2

xv
λ
ε (·)

)
(t0, x0) ≥ 0;

if the latter holds true, then F2

(
·, vλε (·)

)
(t0, x0) = vλε (t0, x0) − eλt0g(x0) = F2

(
·, vλ(·)

)
(t0, x0) +

εϕ(t0, x0) = F2 (·, h(·)) (t0, x0) + εϕ(t0, x0) ≥ 0. Therefore, vλε is a lower semicontinuous viscosity

supersolution to (6.4).

We would like to show uλ ≤ vλε on [0, T ) × Rd for all ε > 0; then by sending ε to 0, we can

conclude u ≤ v on [0, T )× Rd, as desired. We will argue by contradiction, and thus assume that

N := sup
[0,T ]×Rd

(uλ − vλε )(t, x) > 0

From the polynomial growth condition on uλ and vλ and the definition of ϕ, we have

lim
|x|→∞

sup
[0,T ]

(uλ − vλε )(t, x) = −∞.

It follows that there exists some bounded open set O ⊂ Rd such that the maximum N is attained

at some point contained in [0, T ]×O. For each δ > 0, define the functions

Φδ(t, s, x, y) := uλ(t, x)− vλε (s, y)− ηδ(t, s, x, y), with ηδ(t, s, x, y) :=
1

2δ
[|t− s|2 + |x− y|2].
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Since Φδ is upper semicontinuous, it attains its maximum, denoted by Nδ, on the compact set

[0, T ]2 × O2
at some point (tδ, sδ, xδ , yδ). Then, the upper semicontinuity of uλ(t, x) − vλε (s, y)

implies that
(
uλ(tδ, xδ)− vλε (sδ, yδ)

)
δ
is bounded above; moreover, it is also bounded below as

N ≤ Nδ = uλ(tδ, xδ)− vλε (sδ, yδ)− ηδ(tδ, sδ, xδ, yδ) ≤ uλ(tδ, xδ)− vλε (sδ, yδ). (6.6)

Then we see from (6.6) and the boundedness of
(
uλ(tδ, xδ)− vλε (sδ, yδ)

)
δ
that (ηδ(tδ, sδ, xδ , yδ))δ

is also bounded. Now, note that the bounded sequence (tδ, sδ, xδ , yδ)δ converges, up to a subse-

quence, to some point (t̃, s̃, x̃, ỹ) ∈ [0, T ]2 × O2
. Then the definition of ηδ and the boundedness of

(ηδ(tδ, sδ, xδ, yδ))δ imply that t̃ = s̃ and x̃ = ỹ. Then, by sending δ to 0 in (6.6), we see that the

last expression becomes (uλ − vλε )(t̃, x̃) ≤ N , which implies that

Nδ → N and ηδ(tδ, sδ, xδ, yδ) → 0. (6.7)

In view of Ishii’s Lemma (see e.g. [29, Lemma 4.4.6]) and [29, Remark 4.4.9], for each δ > 0,

there exist Aδ, Bδ ∈ Md such that

Tr(CC ′Aδ −DD′Bδ) ≤
3

δ
|C −D|2 for all C,D ∈ Md, (6.8)

and
(
1

δ
(tδ − sδ),

1

δ
(xδ − yδ), Aδ

)
∈ P̄2,+uλ(tδ, xδ),

(
1

δ
(tδ − sδ),

1

δ
(xδ − yδ), Bδ

)
∈ P̄2,−vλε (sδ, yδ),

where P̄2,+w(t, x) (resp. P̄2,−w(t, x)) denotes the superjet (resp. subjet) of an upper semicontin-

uous (resp. a lower semicontinuous) function w at (t, x) ∈ [0, T ] × Rd; for the definition of these

notions, see e.g. [10] and [29]. Since the function F3 = max{F1, F2} is continuous, we may apply

[29, Lemma 4.4.5] and obtain that

max

{
(c(tδ, xδ) + λ)uλ(tδ, xδ)−

1

δ
(tδ − sδ) +Hλ(tδ, xδ,

1

δ
(xδ − yδ), Aδ), u

λ(tδ, xδ)− eλtδg(xδ)

}
≤ 0,

max

{
(c(sδ, yδ) + λ) vλε (sδ, yδ)−

1

δ
(tδ − sδ) +Hλ(sδ, yδ,

1

δ
(xδ − yδ), Bδ), v

λ
ε (sδ, yδ)− eλsδg(yδ)

}
≥ 0.

Noting that max{a, b} −max{c, d} ≥ min{a− c, b− d} for any a, b, c, d ∈ R, we then have

min

{
(c(tδ, xδ) + λ)uλ(tδ, xδ)− (c(sδ, yδ) + λ) vλε (sδ, yδ) +Hλ(tδ, xδ,

1

δ
(xδ − yδ), Aδ)

−Hλ(sδ, yδ,
1

δ
(xδ − yδ), Bδ), u

λ(tδ , xδ)− vλε (sδ, yδ) + eλsδg(yδ)− eλtδg(xδ)

}
≤ 0.

(6.9)

Since uλ(tδ, xδ)− vλε (sδ, yδ)+ eλsδg(yδ)− eλtδg(xδ) = Nδ+ηδ(tδ, sδ, xδ, yδ)+ e
λsδg(yδ)− eλtδg(xδ) →

N > 0, we conclude from (6.9) that as δ small enough, we must have

(c(tδ , xδ) + λ) uλ(tδ, xδ)− (c(sδ, yδ) + λ) vλε (sδ, yδ)

≤ Hλ(sδ, yδ,
1

δ
(xδ − yδ), Bδ)−Hλ(tδ, xδ,

1

δ
(xδ − yδ), Aδ) ≤ µ(|tδ − sδ|+ |xδ − yδ|+

3

δ
|xδ − yδ|2),

for some function µ such that µ(z) → 0 as z → 0; note that the second inequality follows from

(6.1), (6.2), and (6.8). Finally, by sending δ to 0 and using (6.7), we get (c(t̃, x̃) + λ)N ≤ 0, a

contradiction. �
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Now, we turn to the behavior of V∗, the lower semicontinuous envelope of V defined as in (1.3),

at terminal time T .

Lemma 6.1. For all x ∈ Rd, V∗(T, x) ≥ g(x).

Proof. Fix α ∈ A. Take an arbitrary sequence (tm, xm) → (T, x) with tm < T for all m ∈ N. By

the definition of V , we can choose for each m ∈ N a stopping time τm ∈ T tm
tm,T such that

V (tm, xm) ≥ inf
τ∈T tm

tm,T

E

[∫ τ

tm

Y tm,xm,1,αf(s,Xtm,xm,α, αs)ds+ Y tm,xm,1,α
τ g(Xtm ,xm,α

τ )

]

≥ E

[∫ τm

tm

Y tm,xm,1,αf(s,Xtm,xm,α, αs)ds+ Y tm,xm,1,α
τm

g(Xtm ,xm,α
τm

)

]
− 1

m
.

Note that τm → T as τm ∈ T tm
tm,T and tm → T . Then it follows from Fatou’s lemma that

lim infm→∞ V (tm, xm) ≥ g(x). Since (tm, xm) is arbitrarily chosen, we conclude V∗(T, x) ≥ g(x). �

Theorem 6.1. Assume (6.1) and (6.2). Then U∗ = V on [0, T ] × Rd. In particular, U = V on

[0, T ]×Rd, i.e. the game has a value, which is the unique viscosity solution to (4.11) with terminal

condition w(T, x) = g(x) for x ∈ Rd.

Proof. Since by definition U(t, x) ≤ g(x) on [0, T ] × Rd, we have U∗(t, x) ≤ g(x) on [0, T ] × Rd

by the continuity of g. Then by Lemma 6.1 and the fact that U∗ ≥ U ≥ V , we have U∗(T, x) =

V (T, x) = g(x) for all x ∈ Rd. Recall that under (6.1) and (6.2), the function H is continuous, and

H = H = H∗. Now, in view of Propositions 4.3 and 5.2, and the fact that U∗(T, ·) = V (T, ·) and

H = H = H∗, we conclude from Proposition 6.1 that U∗ = V on [0, T ] × Rd, which in particular

implies U = V on [0, T ]× Rd. �

Appendix A. Proofs for Sections 2 and 3

This Appendix is devoted to rigorous proofs of Propositions 2.1, 2.2, 2.3, and Lemma 3.2. To

this end, we will first derive several auxiliary results.

Recall the definitions introduced in Subsection 2.1. Fix t ∈ [0, T ]. For any A ⊆ Ω, Ã ⊆ Ωt, and

x ∈ Rd, we set

Ãx := {ω̃ ∈ Ã | ω̃t = x},
and define

At,ω := {ω̃ ∈ Ωt | ω ⊗t ω̃ ∈ A}, At,ω
x := (At,ω)x, ω ⊗t Ã := {ω ⊗t ω̃ | ω̃ ∈ Ã}.

Given a random time τ : Ω 7→ [0,∞], whenever ω ∈ Ω is fixed, we simplify our notation as

Aτ,ω = Aτ(ω),ω . We also consider

Ht
s := ψ−1

t Gt,0
s ⊆ Gt

s, ∀s ∈ [t, T ]. (A.1)

Note that the inclusion follows from the Borel measurability of ψt. Finally, while E denotes the

expectation taken under P, in this appendix we also consider EP, the expectation taken under P.

Lemma A.1. Fix t ∈ [0, T ] and ω ∈ Ω. For any r ∈ [t, T ], A ∈ Gr, Ã ∈ Gt
r, and ξ ∈ L0(Ω,Gr),
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(i) At,ω
x = At,ω

0 + x and At,ω
x ∈ Gt,x

r , ∀x ∈ Rd.

(ii) At,ω = ψ−1
t At,ω

0 ∈ Ht
r ⊆ Gt

r and Pt(At,ω) = Pt,x(At,ω
x ) = Pt,x(At,ω), ∀x ∈ Rd.

(iii) φ−1
t At,ω ∈ φ−1

t Ht
r ⊆ Gr and P(φ−1

t At,ω) = Pt(At,ω).

(iv) ω ⊗t Ãωt ∈ Gr. Hence, ω ⊗t A
t,ω
ωt ∈ Gr.

(v) For any Borel subset E of R, (ξt,ω)−1(E) ∈ φ−1
t Ht

r ⊆ Gr. Hence, ξt,ω ∈ L0(Ω,Gr).

Proof. (i) Fix x ∈ Rd. Since ω̃ ∈ At,ω
0 ⇔ ω ⊗t ω̃ ∈ A and ω̃t = 0 ⇔ (ω ⊗t (ω̃ + x))· = ω·1[0,t](·) +

((ω̃· + x) − (ω̃t + x) + ωt)1(t,T ](·) = (ω ⊗t ω̃)· ∈ A and (ω̃ + x)t = x ⇔ ω̃ + x ∈ At,ω
x , we conclude

At,ω
x = At,ω

0 + x.

Set Λ := {A ⊆ Ω | At,ω
x ∈ Gt,x

r }. Note that Ω ∈ Λ since Ωt,ω
x = {w̃ ∈ Ωt | ω ⊗t ω̃ ∈ Ω, ω̃t = x} =

(Ωt)x ∈ Gt,x
r . Given A ∈ Λ, we have (Ac)t,ωx = (Ωt)x \{ω̃ ∈ Ωt | ω⊗t ω̃ ∈ A, ω̃t = x} = (Ωt)x \At,ω

x ∈
Gt,x
r , which shows Ac ∈ Λ. Given {Ai}i∈N ⊂ Λ, we have

(⋃
i∈NAi

)t,ω
x

=
⋃

i∈N{ω̃ ∈ Ωt | ω ⊗t ω̃ ∈
Ai, ω̃t = x} =

⋃
i∈N(Ai)

t,ω
x ∈ Gt,x

r , which shows
⋃

i∈NAi ∈ Λ. Thus, we conclude Λ is a σ-algebra

of Ω. For any x ∈ Qd and λ ∈ Q+, the set of positive rationals, let Oλ(x) denote the open ball

in Rd centered at x with radius λ. Note from [18, p.307] that for each s ∈ [0, T ], Gs
r is countably

generated by

Cs
r :=

{ m⋂

i=1

(W s
ti
)−1(Oλi

(xi))

∣∣∣∣ m ∈ N, ti ∈ Q, s ≤ t1 < · · · < tm ≤ r, xi ∈ Qd, λi ∈ Q+

}
. (A.2)

Given C =
⋂m

i=1(Wti)
−1(Oλi

(xi)) in Cr = C0
r , if tm ≥ t, set k = min{i = 1, · · · ,m | ti ≥ t};

otherwise, set k = m+1. Then, if ωti /∈ Oλi
(xi) for some i = 1, · · · , k− 1, we have Ct,ω

x = ∅ ∈ Gt,x
r ;

if k = m+ 1 and wti ∈ Oλi
(xi) ∀i = 1, · · · ,m, we have Ct,ω

x = (Ωt)x ∈ Gt,x
r ; for all other cases,

Ct,ω
x = {W t

t = x} ∩
m⋂

i=k

(W t
ti
)−1 (Oλi

(xi − ωt + x)) ∈ Gt,x
r . (A.3)

Thus, Cr ⊆ Λ, which implies Gr = σ(Cr) ⊆ Λ. Now, for any A ∈ Gr, A
t,ω
x ∈ Gt,x

r ⊆ Gt
r.

(ii) Observe from part (i) that ω̃ ∈ At,ω ⇔ ω̃ ∈ At,ω
ω̃t

⇔ ω̃ − ω̃t ∈ At,ω
0 i.e. ψt(ω̃) ∈ At,ω

0 ⇔ ω̃ ∈
ψ−1
t (At,ω

0 ). Thus, At,ω = ψ−1
t (At,ω

0 ) ∈ ψ−1
t (Gt,0

r ) = Ht
r ⊆ Gt

r, thanks to part (i) and (A.1). Then,

using part (i) again, Pt(At,ω) = Pt(At,ω
0 ) = Pt,x(At,ω

0 + x) = Pt,x(At,ω
x ) = Pt,x(At,ω), ∀x ∈ Rd.

(iii) By part (ii) and the Borel measurability of φt : (Ω,Gr) 7→ (Ωt,Gt
r), we immediately have

φ−1
t At,ω ∈ φ−1

t Ht
r ⊆ Gr. Now, by property (e”) in [18, p.84] and part (ii),

P[φ−1
t At,ω | Gt+](ω

′) = Pt,ω′
t(At,ω) = Pt(At,ω) for P-a.e. ω′ ∈ Ω,

which implies P[φ−1
t At,ω] = Pt(At,ω).

(iv) Set Λ := {Ã ⊆ Ωt | ω ⊗t Ãωt ∈ Gr}. Let Ct
r be given as in (A.2). For any C =

⋂m
i=1(W

t
ti
)−1(Oλi

(xi)) in Ct
r, we deduce from the continuity of paths in Ω that

ω ⊗t Cωt = {ω′ ∈ Ω | ω′
s = ωs ∀s ∈ Q ∩ [0, t) and ω′

ti
∈ Oλi

(xi) for i = 1, · · · ,m}

=

( ⋂

s∈Q∩[0,t)

(Ws)
−1(ωs)

)
∩
( m⋂

i=1

(Wti)
−1(Oλi

(xi))

)
∈ Gr.
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Thus, we have Ct
r ⊆ Λ. Given {Ãi}i∈N ⊂ Λ, we have ω ⊗t (

⋃
i∈N Ãi)ωt =

⋃
i∈N(ω ⊗t (Ãi)ωt) ∈ Gr,

which shows
⋃

i∈N Ãi ∈ Λ; this in particular implies Ωt =
⋃

n∈N(W
t
r)

−1(On(0)) ∈ Λ. Given Ã ∈ Λ,

we have ω⊗t (Ã
c)ωt = (ω⊗t (Ω

t)ωt) \ (ω⊗t Ãωt) ∈ Gr, which shows Ãc ∈ Λ. Hence, Λ is a σ-algebra

of Ωt, which implies Gt
r = σ(Ct

r) ⊆ Λ. Now, by part (i), we must have ω ⊗t A
t,ω
ωt ∈ Gr.

(v) Since ξ−1(E) ∈ Gr, (ξ
t,ω)−1(E) = {ω′ ∈ Ω | ξ(ω ⊗t φt(ω

′)) ∈ E} = {ω′ ∈ Ω | ω ⊗t φt(ω
′) ∈

ξ−1(E)} = φ−1
t (ξ−1(E))t,ω ∈ φ−1

t Ht
r ⊆ Gr, thanks to part (iii). �

In light of Theorem 1.3.4 and equation (1.3.15) in [31], for any G-stopping time τ , there ex-

ists a family {Qω
τ }ω∈Ω of probability measures on (Ω,GT ), called a regular conditional probability

distribution (r.c.p.d.) of P given Gτ , such that

(i) for each A ∈ GT , the mapping ω 7→ Qω
τ (A) is Gτ -measurable.

(ii) for each A ∈ GT , it holds for P-a.e. ω ∈ Ω that P[A | Gτ ](ω) = Qω
τ (A).

(iii) for each ω ∈ Ω, Qω
τ

(
ω ⊗τ (Ω

τ(ω))ωτ

)
= 1.

By property (iii) above and Lemma A.1 (iv), for any fixed ω ∈ Ω, we can define a probability

measure Qτ,ω on
(
Ωτ(ω),Gτ(ω)

T

)
by

Qτ,ω(Ã) := Qω
τ (ω ⊗τ Ãωτ ), ∀Ã ∈ Gτ(ω)

T .

Then, combining properties (ii) and (iii) above, we have: for A ∈ GT , it holds for P-a.e. ω ∈ Ω that

P[A | Gτ ](ω) = Qω
τ

(
(ω ⊗τ (Ω

τ(ω))ωτ ) ∩A
)
= Qω

τ (ω ⊗τ A
τ,ω
ωτ

) = Qτ,ω(Aτ,ω). (A.4)

Note that the r.c.p.d. {Qω
τ }ω∈Ω is generally not unique. For each (t, x) ∈ [0, T ] × Rd, observe

that the shifted Wiener measure Pt,x can be characterized as the unique solution to the martingale

problem for the operator L := 1
2

∑d
i,j=1

∂2

∂xi∂xj
starting from time t with initial value x (see [30,

Remark 7.1.23] and [31, Exercise 6.7.3]). Then, thanks to the strong Markov property of solutions

to the martingale problem (see e.g. [31, Theorem 6.2.2]), there exists a particular r.c.p.d. {Qω
τ }ω∈Ω

such that Qτ,ω = Pτ(ω),ωτ(ω) . Now, by (A.4) and Lemma A.1 (ii), we have: for A ∈ GT ,

P[A | Gτ ](ω) = Pτ(ω),ωτ(ω)(Aτ,ω) = Pτ(ω)(Aτ,ω), P-a.s. (A.5)

So far, we have restricted ourselves to G-stopping times. We say a random variable τ : Ω 7→ [0,∞]

is a G-optional time if {τ < t} ∈ Gt for all t ∈ [0, T ]. In the following, we obtain a generalized

version of (A.5) for G-optional times.

Lemma A.2. Fix a G-optional time τ ≤ T . For any A ∈ GT ,

P[A | Gτ+](ω) = Pτ(ω)(Aτ,ω) for P-a.e. ω ∈ Ω.

Proof. Step 1: By [18, Problem 1.2.24], we can take a sequence {τn}n∈N of G-stopping times such

that τn(ω) ↓ τ(ω) for all ω ∈ Ω. Fix A ∈ GT . For each n ∈ N, (A.5) implies that for any B ∈ Gτn ,

EP[1A1B ] = EP[P
τn(ω)(Aτn,ω)1B ]. (A.6)
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Then, for any B ∈ Gτ+, we must have (A.6) for all n ∈ N, since Gτ+ =
⋂

n∈N Gτn . Now, by taking

the limit in n and assuming that for each ω ∈ Ω

lim
n→∞

Pτn(ω)(Aτn,ω) = Pτ(ω)(Aτ,ω), (A.7)

we obtain from the dominated convergence theorem that EP[1A1B ] = EP[P
τ(ω)(Aτ,ω)1B ]. Since

B ∈ Gτ+ is arbitrary, we conclude P[A | Gτ+](ω) = Pτ(ω)(Aτ,ω) for P-a.e. ω ∈ Ω.

Step 2: It remains to prove (A.7). Fix ω ∈ Ω and set Λ := {A ⊆ Ω | (A.7) holds}. Since

Ωs,ω = Ωs, ∀s ∈ [0, T ], (A.7) holds for Ω and thus Ω ∈ Λ. Given A ∈ Λ, we have Pτn(ω)[(Ac)τn,ω] =

Pτn(ω)[(Aτn,ω)c] = 1 − Pτn(ω)(Aτn,ω) → 1 − Pτ(ω)(Aτ,ω) = Pτ(ω)[(Aτ,ω)c] = Pτ(ω)[(Ac)τ,ω], which

shows Ac ∈ Λ. Given a sequence {Ai}i∈N of disjoint sets in Λ, observe that {As,ω
i }i∈N is a sequence

of disjoint sets in Ωs for any s ∈ [0, T ]. Then we have Pτn(ω)[(
⋃

i∈NAi)
τn,ω] = Pτn(ω)[

⋃
i∈NA

τn,ω
i ] =

∑
i∈N Pτn(ω)(Aτn,ω

i ) → ∑
i∈N Pτ(ω)(Aτ,ω

i ) = Pτ(ω)[
⋃

i∈NA
τ,ω
i ] = Pτ(ω)[(

⋃
i∈NAi)

τ,ω], which shows
⋃

i∈NAi ∈ Λ. Thus, we conclude that Λ is a σ-algebra of Ω.

As mentioned in the proof of Lemma A.1 (i), GT is countably generated by CT = C0
T given in (A.2).

Given C =
⋂m

i=1(Wti)
−1(Oλi

(xi)) in CT , if tm ≥ τ(ω) we set k := min{i = 1, · · · ,m | ti ≥ τ(ω)};
otherwise, set k := m+1. We see that: 1. If ωti /∈ Oλi

(xi) for some i = 1, · · · , k− 1, then Cs,ω = ∅
∀s ∈ [τ(ω), T ] and thus (A.7) holds for C. 2. If k = m + 1 and ωti ∈ O(xi) for all i = 1, · · · ,m,

we have Cs,ω = Ωs ∀s ∈ [τ(ω), T ] and thus (A.7) still holds for C. 3. For all other cases, Cs,ω
ωs is of

the form in (A.3) ∀s ∈ [τ(ω), T ]. Let B be a d-dimensional Brownian motion defined on any given

filtered probability space (E,I, {Is}s≥0, P ). Then by Lemma A.1 (ii),

Pτn(ω)[Cτn,ω] = Pτn(ω),ωτn(ω) [Cτn,ω
ωτ

] = P [Bti−τn(ω) ∈ Oλi
(xi − ωτn(ω)), i = k · · · ,m]

→ P [Bti−τ(ω) ∈ Oλi
(xi − ωτ(ω)), i = k · · · ,m] = Pτ(ω),ωτ(ω) [Cτ,ω

ωτ
] = Pτ(ω)[Cτ,ω].

Hence, we conclude that CT ⊆ Λ and therefore GT = σ(CT ) ⊆ Λ. �

Now, we want to generalize Lemma A.1 to incorporate F-stopping times.

Lemma A.3. Fix θ ∈ T . We have

(i) For any N ∈ N , N
θ,ω ∈ N θ(ω)

and φ−1
θ N

θ,ω ∈ N for P-a.e. ω ∈ Ω.

(ii) For any r ∈ [0, T ] and A ∈ Fr, it holds for P-a.e. ω ∈ Ω that

if θ(ω) ≤ r, Aθ,ω ∈ Hθ(ω)
r ∪ N θ(ω) ⊆ Gθ(ω)

r and φ−1
θ Aθ,ω ∈ Fθ(ω)

r .

(iii) For any r ∈ [0, T ] and ξ ∈ L0(Ω,Fr), it holds for P-a.e. ω ∈ Ω that

if θ(ω) ≤ r, ξθ,ω ∈ L0(Ω,Fθ(ω)
r ).

Proof. (i) Take N ∈ N such that N ⊆ N . By [18, Exercise 2.7.11], there exists a G-optional

time τ such that N1 := {θ 6= τ} ∈ N . By Lemma A.2, there exists N2 ∈ N ⊂ N such that

0 = P[N | Gτ+](ω) = Pτ(ω)(N τ,ω), for ω ∈ Ω \ N2. Thus, for ω ∈ Ω \ (N1 ∪ N2), we have

0 = Pτ(ω)(N τ,ω) = Pθ(ω)(N θ,ω), i.e. N θ,ω ∈ N θ(ω). Since N
θ,ω ⊆ N θ,ω, we have N

θ,ω ∈ N θ(ω)
P-a.s.

On the other hand, from Lemma A.1 (iii), P(φ−1
θ N θ,ω) = Pθ(ω)(N θ,ω) = 0 for ω ∈ Ω \ (N1 ∪N2),

which shows φ−1
θ N θ,ω ∈ N P-a.s. Since φ−1

θ N
θ,ω ⊆ φ−1

θ N θ,ω, we conclude φ−1
θ N

θ,ω ∈ N P-a.s.
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(ii) By [18, Problem 2.7.3], there exist Ã ∈ Gr and N ∈ N such that A = Ã∪N and Ã∩N = ∅.
From Lemma A.1 (ii), we know that for any ω ∈ Ω, if θ(ω) ≤ r then Ãθ,ω ∈ Hθ(ω)

r ⊆ Gθ(ω)
r . Also,

from part (i) we have N
θ,ω ∈ N θ(ω)

P-a.s. We therefore conclude that for P-a.e. ω ∈ Ω, if θ(ω) ≤ r,

then Aθ,ω = Ãθ,ω ∪ N θ,ω ∈ Hθ(ω)
r ∪ N θ(ω) ⊆ Gθ(ω)

r . Then, thanks to part (i) and Definition 2.1, it

holds P-a.s. that φ−1
θ Aθ,ω = φ−1

θ Ãθ,ω ∪ φ−1
θ N

θ,ω ∈ φ−1
θ Hθ(ω)

r ∪ N ⊆ Fθ(ω)
r if θ(ω) ≤ r.

(iii) Let E be a Borel subset of R. Since ξ−1(E) ∈ Fr, we see from part (ii) that, for P-a.e. ω ∈ Ω,(
ξθ,ω

)−1
(E) = {ω′ ∈ Ω | ξ(ω⊗θ φθ(ω

′)) ∈ E} = {ω′ ∈ Ω | ω⊗θ φθ(ω
′) ∈ ξ−1(E)} = φ−1

θ (ξ−1(E))θ,ω ∈
Fθ(ω)
r if θ(ω) ≤ r. �

Now, we generalize Lemma A.2 to incorporate F-stopping times.

Lemma A.4. Fix θ ∈ T . For any A ∈ FT , P[A | Fθ](ω) = P
θ(ω)

(Aθ,ω), for P-a.e. ω ∈ Ω.

Proof. Thanks again to [18, Exercise 2.7.11], we may take a G-optional time τ such that N1 :=

{θ 6= τ} ∈ N and Fτ = Fθ. Moreover, we have A = Ã ∪ N for some Ã ∈ GT and N ∈ N with

Ã ∩ N = ∅, by using [18, Exercise 2.7.3]. Then, in view of Lemma A.1 (ii), Lemma A.3 (i), and

Lemma A.2, we can take some N2 ∈ N such that for ω ∈ Ω \ (N1 ∪N2),

P
θ(ω)

(Aθ,ω) = P
τ(ω)

(Aτ,ω) = P
τ(ω)

(Ãτ,ω) + P
τ(ω)

(N
τ,ω

) = Pτ(ω)(Ãτ,ω)

= P[Ã | Gτ+](ω) = P[Ã | Gτ+](ω) = P[A | Gτ+](ω).
(A.8)

For any B ∈ Fτ , B = B̃ ∪N ′
for some B̃ ∈ Gτ ⊆ Gτ+ and N

′ ∈ N with B̃ ∩N ′
= ∅, thanks again

to [18, Exercise 2.7.3]. We then deduce from (A.8) that E[1Ã1B ] = E[1Ã1B̃ ] = E

[
P
θ(ω)

(Aθ,ω)1B̃

]
=

E
[
P
θ(ω)

(Aθ,ω)1B

]
. Hence, we conclude P

θ(ω)
(Aθ,ω) = P[A | Fτ ](ω) = P[A | Fθ](ω), for ω ∈ Ω \

(N1 ∪N2). �

Finally, we are able to generalize Lemma A.1 (iii) to incorporate F-stopping times.

Proposition A.1. Fix θ ∈ T . We have

(i) for any A ∈ FT , P[A | Fθ](ω) = P[φ−1
θ Aθ,ω], for P-a.e. ω ∈ Ω.

(ii) for any ξ ∈ L1(Ω,FT ,P), E[ξ | Fθ](ω) = E
[
ξθ,ω

]
for P-a.e. ω ∈ Ω.

Proof. (i) By Lemma A.3 (i) and Lemma A.1 (iii), it holds P-a.s. that

P[φ−1
θ Aθ,ω] = P[φ−1

θ Ãθ,ω] + P[φ−1
θ N

θ,ω
] = P[φ−1

θ Ãθ,ω] = Pθ(ω)[Ãθ,ω] = P
θ(ω)

[Ãθ,ω] = P
θ(ω)

[Aθ,ω].

The desired result then follows from the above equality and Lemma A.4.

(ii) Given A ∈ FT , observe that for any fixed ω ∈ Ω, (1A)
θ,ω(ω′) = 1A (ω ⊗θ φθ(ω

′)) =

1φ−1
θ

Aθ,ω(ω′). Then we see immediately from part (i) that part (ii) is true for ξ = 1A. It fol-

lows that part (ii) also holds true for any FT -measurable simple function ξ. For any positive

ξ ∈ L1(Ω,FT ,P), we can take a sequence {ξn}n∈N of FT -measurable simple functions such that

ξn(ω) ↑ ξ(ω) ∀ω ∈ Ω. By the monotone convergence theorem, there exists N ∈ N such that

E[ξn | Fθ](ω) ↑ E[ξ | Fθ](ω), for ω ∈ Ω \ N . For each n ∈ N, since ξn is an FT -measurable simple

function, there exists Nn ∈ N such that E[ξn | Fθ](ω) = E
[
(ξn)

θ,ω
]
, for ω ∈ Ω\Nn. Finally, noting

that there exists N
′ ∈ N such that ξθ,ω is FT -measurable for ω ∈ Ω \ N ′

(from Lemma A.3 (iii))
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and that (ξn)
θ,ω(ω′) ↑ ξθ,ω(ω′) ∀ω′ ∈ Ω (from the everywhere convergence ξn ↑ ξ), we obtain from

the monotone convergence theorem again that for ω ∈ Ω \
(
(
⋃

n∈NNn) ∪N ∪N ′
)
,

E[ξ | Fθ](ω) = lim
n→∞

E[ξn | Fθ](ω) = lim
n→∞

E[(ξn)
θ,ω] = E[ξθ,ω].

The same result holds true for any general ξ ∈ L1(Ω,FT ,P) as ξ = ξ+ − ξ−. �

A.1. Proof of Proposition 2.1.

Proof. (i) Set Λ := {A ⊆ Ω | P(A ∩ B) = P(A)P(B) ∀B ∈ Ft}. It can be checked that Λ is a

σ-algebra of Ω. Take A ∈ φ−1
t Ht

T ∪ N . If A ∈ N , it is trivial that A ∈ Λ; if A = φ−1
t C with

C ∈ Ht
T , then for any B ∈ Ft,

P(A ∩B) = P(B ∩ φ−1
t C) = E

[
P(B ∩ φ−1

t C | Ft)
]
= E

[
P(B ∩ φ−1

t C | Ft)(ω)1B(ω)
]
.

By Proposition A.1 (i), for P-a.e. ω ∈ Ω, P(B ∩φ−1
t C | Ft)(ω) = P[φ−1

t (B ∩φ−1
t C)t,ω] = P[φ−1

t C] =

P(A) if ω ∈ B. We therefore have P(A ∩ B) = P(A)P(B), and conclude A ∈ Λ. It follows that

φ−1
t Ht

T ∪ N ⊆ Λ, which implies F t
T = σ(φ−1

t Ht
T ∪N ) ⊆ Λ. Thus, F t

T and Ft are independent.

(ii) Let ∆ denote the set operation of symmetric difference. Set Λ := {A ⊆ Ω | (φ−1
t At,ω)∆A ∈

N for P-a.e. ω ∈ Ω}. It can be checked that Λ is a σ-algebra of Ω. Take A ∈ φ−1
t Ht

T ∪N . If A ∈ N ,

we see from Lemma A.3 (i) that A ∈ Λ; if A = φ−1
t C with C ∈ Ht

T , then φ
−1
t At,ω = φ−1

t C = A for

all ω ∈ Ω, and thus A ∈ Λ. We then conclude that F t
T = σ(φ−1

t Ht
T ∪ N ) ⊆ Λ.

Take a sequence {ξn} of random variables in L0(Ω,F t
T ) taking countably many values {ri}i∈N

such that ξn(ω) → ξ(ω) for all ω ∈ Ω. This everywhere convergence implies that for any fixed ω ∈ Ω,

(ξn)
t,ω(ω′) → ξt,ω(ω′) for all ω′ ∈ Ω. Now, fix n ∈ N. For each i ∈ N, since (ξn)

−1{ri} ∈ F t
T ⊆ Λ,

there exists N
n
i ∈ N such that for ω ∈ Ω \Nn

i ,
([

(ξn)
t,ω
]−1 {ri}

)
∆(ξn)

−1{ri} =
[
φ−1
t

(
(ξn)

−1{ri}
)t,ω]

∆(ξn)
−1{ri} =:M

n
i ∈ N , (A.9)

where the first equality follows from the calculation in the proof of Lemma A.3 (iii). Then, we deduce

from (A.9) that: for any fixed ω ∈ Ω \⋃i∈NN
n
i , (ξn)

t,ω(ω′) = ξn(ω
′) for all ω′ ∈ Ω \⋃i∈NM

n
i . It

follows that: for any fixed ω ∈ Ω \⋃i,n∈NN
n
i , (ξn)

t,ω(ω′) = ξn(ω
′) for all ω′ ∈ Ω \⋃i,n∈NM

n
i and

n ∈ N. Setting N =
⋃

i,n∈NN
n
i and M =

⋃
i,n∈NM

n
i , we obtain that for any ω ∈ Ω \N ,

ξ(ω′) = lim
n→∞

ξn(ω
′) = lim

n→∞
(ξn)

t,ω(ω′) = ξt,ω(ω′), for ω′ ∈ Ω \M.

�

A.2. Proof of Proposition 2.2.

Proof. Take a sequence of stopping times {τi}i∈N ⊂ T such that τi takes values in {m/2i | m ∈ N} for
each i ∈ N and τi(ω) ↓ τ(ω) for all ω ∈ Ω (thanks to [18, Problem 1.2.24]). Set N := {τ < θ} ∈ N .

Since τi(ω) ↓ τ(ω) for all ω ∈ Ω, we have τi ≥ θ on Ω \ N for all i ∈ N. For each i ∈ N, let

rim := m/2i, m ∈ N. Since {τi ≤ rim} ∈ Frim
for all m ∈ N, we deduce from Lemma A.3 (ii) and the

countability of {rim}m∈N that there exists N
i ∈ N such that for ω ∈ Ω \N i

,

if θ(ω) ≤ rim, φ
−1
θ {τi ≤ rim}θ,ω ∈ Fθ(ω)

rim
for all m ∈ N. (A.10)
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Fix r ∈ [0, T ]. For any ω ∈ Ω\(N∪N i
), if θ(ω) > r, then τi(ω) ≥ θ(ω) > r and thus φ−1

θ {τi ≤ r}θ,ω =

φ−1
θ ∅ = ∅ ∈ Fθ(ω)

r ; if θ(ω) ≤ r, there are two cases: 1. ∃ m∗ ∈ N s.t. rim∗ ∈ [θ(ω), r] and rim∗+1 > r.

Then, by (A.10), φ−1
θ {τi ≤ r}θ,ω = φ−1

θ {τi ≤ rim∗}θ,ω ∈ Fθ(ω)

ri
m∗

⊂ Fθ(ω)
r ; 2. ∃ m∗ ∈ N s.t. rim∗ < θ(ω)

and rim∗+1 > r. Since τi(ω) ≥ θ(ω) > rim∗ , φ−1
θ {τi ≤ r}θ,ω = φ−1

θ {τi ≤ rim∗}θ,ω = φ−1
θ ∅ = ∅ ∈ Fθ(ω)

r .

Thus, for ω ∈ Ω \ (N ∪N i
), we have φ−1

θ {τi ≤ r}θ,ω ∈ Fθ(ω)
r , and therefore

{τ θ,ωi ≤ r} = {τi
(
ω ⊗θ φθ(ω

′)
)
≤ r} = φ−1

θ {τi ≤ r}θ,ω ∈ Fθ(ω)
r , ∀ r ∈ [0, T ].

This shows that τ θ,ωi ∈ T θ(ω)
θ(ω),T for ω ∈ Ω \ (N ∪ N

i
). Hence, for ω ∈ Ω \

(
N ∪ (

⋃
i∈NN

i
)
)
, we

have τ θ,ωi ∈ T θ(ω)
θ(ω),T ∀i ∈ N. Finally, since the filtration Fθ(ω) is right-continuous, τ θ,ω(ω′) =↓

limi→∞ τ θ,ωi (ω′) (this is true since τi ↓ τ everywhere) must also be a stopping time in T θ(ω)
θ(ω),T . �

A.3. Proof of Proposition 2.3. Recall the metric ρ̃ on A defined in (2.8). We say β ∈ A is a

step control if there exists a subdivision 0 = t0 < t1 < · · · < tm = T , m ∈ N, of the interval [0, T ]

such that βt = βti for t ∈ [ti, ti+1) for i = 0, 1, · · · ,m− 1.

Proof. By [24, Lemma 3.2.6], there exist a sequence {αn} of step controls such that αn → α. For

each n ∈ N, in view of Proposition 2.1 (ii), there exist Nn,Mn ∈ N such that: for any fixed

ω ∈ Ω \ Nn, (α
n
r )

t,ω(ω′) = αn
r (ω

′) for (r, ω′) ∈ [0, T ] × (Ω \Mn). It follows that: for any fixed

ω ∈ Ω \⋃n∈NNn, (α
n
r )

t,ω(ω′) = αn
r (ω

′) for all (r, ω′) ∈ [0, T ]× (Ω \⋃n∈NMn) and n ∈ N. With the

aid of Proposition A.1 (ii), we obtain

0 = lim
n→∞

ρ̃(αn, α) = lim
n→∞

E

[∫ T

0
ρ′(αn

r , αr)dr

]
= lim

n→∞
E

(
E

[∫ T

0
ρ′(αn

r , αr)dr

∣∣∣∣ Ft

]
(ω)

)

= lim
n→∞

∫ ∫ (∫ T

0
ρ′(αn

r , αr)dr

)t,ω

(ω′) dP(ω′) dP(ω)

= lim
n→∞

∫ ∫ ∫ T

0
ρ′
(
(αn

r )
t,ω(ω′), αt,ω

r (ω′)

)
dr dP(ω′) dP(ω)

= lim
n→∞

∫
ρ̃
(
(αn)t,ω, αt,ω

)
dP(ω) = lim

n→∞

∫
ρ̃(αn, αt,ω)dP(ω) =

∫
lim
n→∞

ρ̃(αn, αt,ω)dP(ω),

where the last equality is due to the dominated convergence theorem. This implies that 0 =

limn→∞ ρ̃(αn, αt,ω), for P-a.e. ω ∈ Ω. Recalling that αn → α, we conclude that ρ̃(αt,ω, α) = 0 for

P-a.e. ω ∈ Ω. The second assertion follows immediately from [24, Exercise 3.2.4]. �

A.4. Proof of Lemma 3.2.

Proof. By taking ξ = F (Xt,x,α
τ ) in Proposition A.1 (ii) and using Remark 2.5 (ii),

E[F (Xt,x,α
τ ) | Fθ](ω) = E

[
F (Xt,x,α

τ )θ,ω
]
=

∫
F
(
Xt,x,α

τ

(
ω ⊗θ φθ(ω

′)
))
dP(ω′)

=

∫
F

(
X

θ(ω),Xt,x,α
θ

(ω),αθ,ω

τθ,ω
(ω′)

)
dP(ω′) = J

(
θ(ω),Xt,x,α

θ (ω);αθ,ω , τ θ,ω
)
, for P-a.e. ω ∈ Ω.

�
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