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ON THE MULTI-DIMENSIONAL CONTROLLER-AND-STOPPER GAMES
ERHAN BAYRAKTAR AND YU-JUI HUANG

ABSTRACT. We consider a zero-sum stochastic differential controller-and-stopper game in which
the state process is a controlled diffusion evolving in a multi-dimensional Euclidean space. In this
game, the controller affects both the drift and diffusion terms of the state process, and the diffusion
term can be degenerate. Under appropriate conditions, we show that the game has a value and the
value function is the unique viscosity solution to an obstacle problem for a Hamilton-Jacobi-Bellman

equation.

Key Words: Controller-stopper games, weak dynamic programming principle, viscosity solutions,

robust optimal stopping.

1. INTRODUCTION

We consider a zero-sum stochastic differential game of control and stopping under a fixed time
horizon T' > 0. There are two players, the “controller” and the “stopper,” and a state process
X% which can be manipulated by the controller through the selection of the control c.. Suppose
the game starts at time ¢ € [0,7]. While the stopper has the right to choose the duration of this
game (in the form of a random time 7), she incurs the running cost f(s, X&', as) at every moment
t < s < 7, and the terminal cost g(X%) at the time the game stops. Given the instantaneous

discount rate c(s, X&), the stopper would like to minimize her expected discounted cost
E [/t e~ It C(“’XS)d“f(s, X ag)ds +e” ) C(“’XS)d“g(Xf) (1.1)

over all choices of 7. At the same time, however, the controller plays against her by maximizing
(LI) over all choices of .

Ever since the game of control and stopping was introduced by Maitra & Sudderth [25], it has
been known to be closely related to some common problems in mathematical finance, such as pricing
American contingent claims (see e.g. [17, 21] 22]) and minimizing the probability of lifetime ruin
(see [5]). The game itself, however, has not been studied to a great extent except certain particular
cases. Karatzas and Sudderth [20] study a zero-sum controller-and-stopper game in which the
state process X“ is a one-dimensional diffusion along a given interval on R. Under appropriate

conditions they prove that this game has a value and describe fairly explicitly a saddle point of
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optimal choices. It turns out, however, difficult to extend their results to multi-dimensional cases,
as their techniques rely heavily on theorems of optimal stopping for one-dimensional diffusions. To
deal with zero-sum multi-dimensional games of control and stopping, Karatzas and Zamfirescu [23]
develop a martingale approach; also see [2], [4] and [3]. Again, it is shown that the game has a
value, and a saddle point of optimal choices is constructed. However, it is assumed to be that the
controller can affect only the drift term of X<.

There is yet another subtle discrepancy between the one-dimensional game in [20] and the multi-
dimensional game in [23]: the use of “strategies”. Typically, in a two-player game, the player who
acts first would not choose a fixed static action. Instead, she prefers to employ a strategy, which
will give different responses to different future actions the other player will take. This additional
flexibility enables the player to further decrease (increase) the expected cost, if she is the minimizer
(maximizer). For example, in a game with two controllers (see e.g. [13|[12], 14} 9, [7]), the controller
who acts first employs a strategy, which is a function that takes the other controller’s latter decision
as input and generates a control. Note that the use of strategies is preserved in the one-dimensional
controller-and-stopper game in [20]: what the stopper employs is not simply a stopping time, but
a strategy in the form of a random time which depends on the controller’s decision. This kind
of dynamic interaction is missing, however, in the multi-dimensional case: in [23], the stopper is
restricted to use stopping times, which give the same response to any choice the controller makes.

Zero-sum multi-dimensional controller-and-stopper games are also covered in Hamadene & Lep-
eltier [16] and Hamadeéne [15], as a special case of mixed games introduced there. The main tool
used in these papers is the theory of backward differential equations with two reflecting barriers.
Interestingly, even though the method in [16] [15] differs largely from that in [23], these two papers
also require a diffusion coefficient which is not affected by the controller, and do not allow the use
of strategies. This is in contrast with the one-dimensional case in [20], where everything works out
fine without any of the above restrictions. It is therefore of interest to see whether we can construct
a new methodology under which multi-dimensional controller-and-stopper games can be analyzed
even when the conditions required in [23] [16] [15] fail to hold.

In this paper, such a methodology is built, under a Markovian framework. On the one hand,
we allow both the drift and diffusion terms of the state process X® to be controlled. On the
other hand, we allow the players to use strategies. Specifically, we first define non-anticipating
strategies in Definition B.Jl Then, in contrast to two-controller games where both players use
strategies, only the stopper chooses to use strategies in our case (which coincides with the set-up in
[20]). This is because by the nature of a controller-and-stopper game, the controller cannot benefit
from using non-anticipating strategies; see Remark With this observation in mind, we give
appropriate definitions of the upper value function U and the lower value function V in (B.6]) and
B7) respectively. Under this set-up, one presumably could construct a saddle point of optimal
choices by imposing suitable assumptions on the cost functions, the dynamics of X, the associated
Hamiltonian, or the control set (as is done in [20], 23| 15 [16]; see Remark [3.4]). However, we have

no plan to impose assumptions for constructing a saddle point. Instead, we intend to work under a



3

rather general framework, and determine under what conditions the game has a value (i.e. U =V)
and how we can derive a PDE characterization for this value when it exists.

Our method is motivated by Bouchard & Touzi [8], where the weak dynamic programming
principle for stochastic control problems was first introduced. By generalizing the weak dynamic
programming principle in [§] to the context of controller-and-stopper games, we show that V is a
viscosity supersolution and U* is a viscosity subsolution to an obstacle problem for a Hamilton-
Jacobi-Bellman equation, where U* denotes the upper semicontinuous envelope of U defined as in
(L3). More specifically, we first prove a continuity result for an optimal stopping problem embed-
ded in V' (Lemma (1)), which enables us to follow the arguments in [8, Theorem 3.5] even under
the current context of controller-and-stopper games. We obtain, accordingly, a weak dynamic pro-
gramming principle for V' (Proposition [1]), which is the key to proving the supersolution property
of V' (Propositions [.3]). On the other hand, by generalizing the arguments in Chapter 3 of Krylov
[24], we derive a continuity result for an optimal control problem embedded in U (Lemma [5.4]).
This leads to a weak dynamic programming principle for U (Proposition [(.1]), from which the sub-
solution property of U* follows (Proposition [5.2)). Finally, under appropriate conditions, we prove
a comparison result for the associated obstacle problem. Since V is a viscosity supersolution and
U™ is a viscosity subsolution, the comparison result implies U* < V. Recalling that U* is actually
larger than V' by definition, we conclude that U* = V. This in particular implies U = V, i.e. the
game has a value, and the value function is the unique viscosity solution to the associated obstacle
problem. This is the main result of this paper; see Theorem Note that once we have this
PDE characterization, we can compute the value of the game using a stochastic numerical scheme
proposed in Bayraktar & Fahim [I].

Another important advantage of our method is that it does not require any non-degeneracy
condition on the diffusion term of X®. For the multi-dimensional case in [23] 16}, [I5], Girsanov’s
theorem plays a crucial role, which entails non-degeneracy of the diffusion term. Even for the one-
dimensional case in [20], this non-degeneracy is needed to ensure the existence of the state process
(in the weak sense). Note that Weerasinghe [32] actually follows the one-dimensional model in
[20] and extends it to the case with degenerate diffusion term; but at the same time, she assumes
boundedness of the diffusion term, and some specific conditions including twice differentiability of
the drift term and concavity of the cost function.

It is worth noting that while [23], 16 [15] do not allow the use of strategies and require the diffusion
coefficient be control-independent and non-degenerate, they allow for non-Markovian dynamics and
cost structures, as well as for non-Lipschitz drift coefficients. As a first step to allowing the use of
strategies and incorporating controlled, and possibly degenerate, diffusion coefficients in a zero-sum
multi-dimensional controller-and-stopper game, this paper focuses on proving the existence and
characterization of the value of the game under a Markovian framework with Lipschitz coefficients.
We leave the general non-Markovian and non-Lipschitz case for future research.

The structure of this paper is as follows: in Section 2, we set up the framework of our study. In

Section B, we define strategies, and give appropriate definitions of the upper value function U and
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the lower value function V. In Sections [ and Bl the supersolution property of V' and the subsolution
property U* are derived, respectively. In Section [6l we prove a comparison theorem, which leads to

the existence of the value of the game and the viscosity solution property of the value function.

1.1. Notation. We collect some notation and definitions here for readers’ convenience.

e Given a probability space (E,Z, P), we denote by L°(E,Z) the set of real-valued random
variables on (E,Z); for p € [1,00), let Lh(E,Z, P) denote the set of R™-valued random
variables R on (E,Z) s.t. Ep[|R|P] < co. For the “n =17 case, we simply write L} as LP.
R, :=[0,00) and S := R x R, x R,.

e M denotes the set of d x d real matrices.

Given E C R", LSC(E) denotes the set of lower semicontinuous functions defined on E,

and USC(F) denotes the set of upper semicontinuous functions defined on E.

Let E be a normed space. For any (¢,z) € [0,T] x E, we define two types of balls centered
at (t,z) with radius r > 0 as follows
B.(t,z) :={({t',2) € [0, T| x E||t' —t| <7, |2/ —z| <r};
(1.2)
B(t,z;r) = {({t',2") € [0,T| x E |t' € (t —r,t], |2’ —z| <r}.
We denote by B,.(t,z) and B(t,z,;r) the closures of B,.(t,x) and B(t,x;r), respectively.
Moreover, given w : [0,T] x E — R, we define the upper and lower semicontinuous envelopes
of w, respectively, by
w*(t,x) == lgfgsup{w(t',:nl) | (t,2') € [0,T) x E with (t',2") € Bs(t,x)};

(1.3)
wi(t,z) = lgfrolinf{w(t/,:nl) | (t',2") €[0,T) x E with (¢,2") € Bs(t,x)}.

2. PRELIMINARIES

2.1. The Set-up. Fix T > 0 and d € N. For any t € [0,T], let Q' := C([t, T]; R?) be the canonical
space of continuous paths equipped with the uniform norm [|@[¢r = supsep 7y |@s|, @ € Q. Let
W denote the canonical process on Qf, and G' = {gﬁ}se[t,T] denote the natural filtration generated
by Wt Let P be the Wiener measure on (Q',G%), and consider the collection of P'-null sets
Nt = {N € G4 | P/(N) = 0} and its completion N':={AC Q| AC N for some N € N}
Now, define G' = {Ei}se[t,T} as the augmentation of G! by the sets in N, i.e. ?ts = o(G! U/T/t),
s € [t,T]. For any € R?, we also consider G&* := Gt N{W} = z}, Vs € [t,T]. For Qf, W', N, Nt,
Gt, ?Z and GY”, we drop the superscript ¢ whenever ¢ = 0.

Given 2 € R?, we define for any & € Q¢ the shifted path (& + z). := @. + 2, and for any A C QF
the shifted set A+ z:={@ € Q' | & — 2z € A}. Then, we define the shifted Wiener measure Pt by
Pv*(F) := PY(F — z), F € Gk, and let P"* denote the extension of P4 on (¢, G7). For P4 and
@t’x, we drop the superscripts ¢ and x whenever t = 0 and x = 0. We let E denote the expectation
taken under P.

Fix t € [0,7] and w € Q. For any @ € O, we define the concatenation of w and @ at t as

(w @)y = wrlppy(r) + (@r — O + wi)lg (1), 7 € [0, T7].



Note that w ®; @ lies in Q. Consider the shift operator in space 1 : Qf +— Qf defined by (@) :=
@— &y, and the shift operator in time ¢; : Q — Qf defined by ¢ (w) := W/, 1), the restriction of w € Q
on [t,T]. For any r € [t,T], since ¢; and ¢; are by definition continuous under the norms || - ||,
and || - [|o, respectively, v, : (QF,GL) — (Q,GL) and ¢y : (Q,G,) — (2, GL) are Borel measurable.
Then, for any ¢ : Q — R, we define the shifted functions £ : Q — R by

99 (W) == €(w ®y ¢y (W) for W' € Q.
Given a random time 7 :  — [0, 00], whenever w € Q is fixed, we simplify our notation as
WwRrw=w ®T(w) w, £ = ér'r(w),w’ ¢r = ¢'r(w)7 Yr = ¢T(w)'

Definition 2.1. On the space Q, we define, for each t € [0,T], the filtration F' = {]:;}SE[O,T} by

{0,Q}, if s € 10,1],

]-'; = jst , where J; = L
- o <¢;1nglg§7° UN) , ifse[t,T].

We drop the superscript t whenever t = 0.

Remark 2.1. Given t € [0,T], note that F! is a collection of subsets of Q for each s € [0,T],

S
whereas G, ?Z and G&* are collections of subsets of Q' for each s € [t,T).

Remark 2.2. By definition, Js = G5 Vs € [0,T); then the right continuity of G implies Fs = G
Vs € [0,T] i.e. F =G. Moreover, from Lemma A1l (iii) in Appendiz[4l and the right continuity of
G, we see that FL C Gy = Fs Vs € [0,T], i.e. Ft CF.

Remark 2.3. Intuitively, F' represents the information structure one would have if one starts
observing at time t € [0,T]. More precisely, for any s € [t,T], gLy represents the information
structure one obtains after making observations on W' in the period [t,s]. One could then deduce

from Gt the information structure ¢;1¢;1g§’0 for W on the interval [0, s].

We define T as the set of all F'-stopping times which take values in [0,7] P-a.s., and A; as the
set of all Ff-progressively measurable M-valued processes, where M is a separable metric space.
the set of all 7 € T*

which take values in |71, 75] P-a.s. Again, we drop the sub- or superscript ¢ whenever ¢ = 0.

Also, for any F-stopping times 71,7 with 71 < 75 P-a.s., we denote by ’T}LTQ

2.2. The State Process. Given (t,z) € [0,7] x R? and a € A, let X"®“ denote a R%-valued
process satisfying the following SDE:
dXb"* = b(s, X159 ag)ds + o (s, X0, as)dWs, s € [t,T], (2.1)

with the initial condition X;™* = z. Let M? be the set of d x d real matrices. We assume that

b:[0,T] xRYx M +— R? and o : [0,7] x R? x M + M? are deterministic Borel functions, and
b(t,z,u) and o(t,z,u) are continuous in (x,u); moreover, there exists K > 0 such that for any
t€0,7], z,y € R and u € M,
|b(t7$7u) - b(tvyau)| + |0-(t7337u) - J(tvyau)| < K|$ - y|7 (22)
|b(t, z,u)| + |o(t,z,u)] < K(1+ |z|). (2.3)
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The conditions above imply that: for any initial condition (¢,z) € [0,7] x R? and control a € A,

([21) admits a unique strong solution X L2 Moreover, without loss of generality, we define
Xbne .= x  for s <t. (2.4)
Remark 2.4. Fiz a« € A. Under 22)) and 23)), the same calculations in [28, Appendix| and [0

Proposition 1.2.1] yield the following estimates: for each p > 1, there exists Cp(c) > 0 such that
for any (t,z),(t',2') € [0,T] x RY, and h € [0,T —t],

B | sup X5 | < Gyl1 + ol (25)
0<s<T i

E [ sup | X5 —zlP| < Cph%(l + |z|P); (2.6)
0<s<t+h 1

E [ sup |XUehe — xteap| < o [ya;' ] . ya;v’)] . (2.7)
0<s<T i

Remark 2.5 (flow property). By pathwise uniqueness of the solution to [2.1), for any 0 <t <
s<T,zeR% and a € A, we have the following two properties:

(1) X" w) = Xf’Xz'x'a’a(w) V1€ [s,T], for P-a.e. w € Q; see [6, Chapter 2] and [29, p.41].
(ii) By (1.16) in [14] and the discussion below it, for P-a.e. w € 2, we have

Xboa (w Rs ¢s(w')) = vaxéyzya(“’)"’s’w (w') Vr € [s,T)], for P-a.e w' € Q;
see also [27, Lemma 3.3].

2.3. Properties of Shifted Objects. Let us first derive some properties of f}—measurable ran-

dom variables.

Proposition 2.1. Fiz t € [0,T] and £ € LY(Q, FL).
(i) f} and F; are independent. This in particular implies that & is independent of F.
(ii) There exist N, M € N such that: for any fivzed w € Q\ N, 4 (') = £(w') Yo' € Q\ M.

Proof. See Appendix [A ]l O
Fix 6 € T. Given o € A, we can define, for P-a.e. w € Q, a control a?* ¢ Ap(w) by
Oée’w(wl) = {af’w(w/)}re[o,ﬂ = {ozr (w ®e ¢0(W/)) }re[oj} , whe
see [8, proof of Proposition 5.4]. Here, we state a similar result for stopping times in 7.
Proposition 2.2. Fiz 0 € T. For any 7 € To,1, we have 0w e T;(E:U)?T for P-a.e. w € .
Proof. See Appendix [A.2] O

Let p: M x M +— R be any given metric on M. By [24] p.142], p'(u,v) := 2 arctan p(u,v) < 1

s

for u,v € M is a metric equivalent to p, from which we can construct a metric on A by

(o, B) = E [ /O " e Bt)dt] for a, 8 € A (2.8)

Now, we state a generalized version of Proposition 2] (ii) for controls « € A.
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Proposition 2.3. Fizt € [0,T] and o € A;. There exists N € N such that: for any w € Q\ N,
p(at, a) = 0. Furthermore, for any (s,x) € [0,T] x RY, Xf’x’at’w(w’) = X;"%W), r € [s,T), for
P-a.e. ' €.

Proof. See Appendix [A.3l O

3. PROBLEM FORMULATION

We consider a controller-and-stopper game under the finite time horizon 7" > 0. While the
controller has the ability to affect the state process X® through the selection of the control «,
the stopper has the right to choose the duration of this game, in the form of a random time 7.
Suppose the game starts at time ¢ € [0,7]. The stopper incurs the running cost f(s, X&, ay) at
every moment ¢ < s < 7, and the terminal cost g(X%) at the time the game stops, where f and
g are some given deterministic functions. According to the instantaneous discount rate c(s, X&)
for some given deterministic function ¢, the two players interact as follows: the stopper would like
to stop optimally so that her expected discounted cost could be minimized, whereas the controller
intends to act adversely against her by manipulating the state process X¢ in a way that frustrates
the effort of the stopper.

For any t € [0,T], there are two possible scenarios for this game. In the first scenario, the stopper
acts first. At time ¢, while the stopper is allowed to use the information of the path of W up to
time ¢ for her decision making, the controller has advantage: she has access to not only the path
of W up to t but also the stopper’s decision. Choosing one single stopping time, as a result, might
not be optimal for the stopper. Instead, she would like to employ a stopping strategy which will

give different responses to different future actions the controller will take.

Definition 3.1. Givent € [0,T], we say a function © : A Ty is an admissible stopping strategy

on the horizon [t,T] if it satisfies the following conditions:

(i) for any o, B € A, it holds for P-a.e. w € Q that

if min{r[a](w),w[f](w)} < inf {s >t ‘ /ts o (o (W), Br(w))dr # 0} ,
then [a](w) = 7[B](w).

(3.1)

Recall that p' is a metric on M defined right above (2.3]).
(ii) for any s € [0,t], if o € A, then w[a] € T
(iii) for any o € A and 6 € T with {6 <t} ¢ N, it holds for P-a.e. w € { <t} that

7o)’ (W) = n[a?*)(W"), for P-a.e. W' € Q.
We denote by Il 7 the set of all admissible stopping strategies on the horizon [t,T].

Remark 3.1. Definition[31] (i) serves as the non-anticipativity condition for the stopping strategies.
The intuition behind it should be clear: Suppose we begin our observation at time t, and employ

a strategy m € Il 7. By taking the control oo and following the path w, we decide to stop at the
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moment wla](w). If, up to this moment, we actually cannot distinguish between the controls a and
B, then we should stop at the same moment if we were taking the control [3.

Moreover, as shown in Proposition [31] below, (B.1)) is equivalent to the following statement:
For any o, B € A and s € [t,T], 1{xjaj<s} = Lr[g<s} for P-a.e. w € {a =it,5) B} (3.2)

where {a = 5) B} == {w € Q| ap(w) = Br(w) for a.e. v € [t,s)}. This shows that Definition [3.1]
(i) extends the non-anticipativity of strategies from two-controller games (see e.g. [9]) to current
context of controller-and-stopper games.

Also notice that [3.2) is similar to, yet a bit weaker than, Assumption (C5) in [7]. This is because
in the definition of {a = 5) B}, [T] requires . = B, for all, instead of almost every, r € [t,s).

Proposition 3.1. Fizt € [0,T]. For any function w: A~ Ty r, BI) holds iff B2) holds.

Proof. For any «,f € A, we set f(w) :=inf{s >t | [ p'(o(w), By (w))dr # 0}.

Step 1: Suppose 7 satisfies ([3.1). For any a, 3 € A, take some N € N such that (1) holds for
w€Q\N. Fix s € [t,T]. Given w € {a =) 8} \ N, we have s < 0(w). If 7[a](w) < §(w), then
(B) implies 7[a](w) = 7[B](w), and thus 1;jq1<s) (W) = Lrg<sy(w). If mla](w) > 0(w), then (BT
implies 7[f](w) > #(w) too. It follows that 1ir(y<s1(w) = 0 = 1izg<s)(w), since s < O(w). This
already proves (3.2]).

Step 2: Suppose ([3.2)) holds. Fix o, 3 € A. By ([B.2)), there exists some N € N such that

for any s € QN [t, 11, 1{7r[a}§s} = 1{W[B}§s} for w € {« =t,s) B} \ N. (3.3)

Fix w € Q\ N. For any s € QN [t,0(w)], we have w € {a =, ;) B}. Then (B8.3) yields

1{W[a]gs}(w) = 1{W[5}Ss}(w), forall s € QN [t, 9((,«))] (34)

If 7[a](w) < O(w), take an increasing sequence {s, tneny C QN [t,0(w)] such that s, T 7[a](w). Then
B4) implies 7[5](w) > s, for all n, and thus 7[8](w) > 7[a](w). Similarly, by taking a decreasing
sequence {rytneny C QN [t,6(w)] such that 7, | 7[a](w), we see from ([B.4]) that «[8] < r, for all n,
and thus 7[f](w) < w[a](w). We therefore conclude 7[f](w) = 7[a](w). Now, if 7[5](w) < O(w), we
may argue as above to show that w[a](w) = 7[5](w). This proves (B.1]). O

Next, we give concrete examples of strategies under Definition Bl

Example 1. Given t € [0,T], define A; : Q — Q by (M\i(w)). := w.ne. Recall the space C([t, T];R?)
of continuous functions mapping [t, T] into RY. For any x € R?, we define 7 : A — Tir by

la](w) = 8 ({Xp™(W)}reper)) - (3.5)

for some function S : C([t, T];RY) w [t,T] satisfying {€ | S(&) < s} € A\;1XL Vs € [t,T], where Xk
denotes the Borel o-algebra generated by C([t,T];R?). Note that the formulation [3.5) is similar
to the stopping rules introduced in the one-dimensional controller-and-stopper game in [20], and it

covers concrete examples such as exit strategies of a Borel set (see e.g. (BI4]) below). We claim
that Definition [31] readily includes the formulation (B.3)).
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Let the function m : A~ Tir be given as in [B0). First, for any o, 5 € A, set 6 := inf{s >
t| J7 0 (ar(w), B (w))dr # 0}. Observing that the strong solutions X*** and X® coincide on
the interval [t,0) P-a.s., we conclude that m satisfies Definition [31 (i). Next, for any s € [0,1],
since X4 depends on Fs only through the control o, Definition[31 (ii) also holds for w. To check
Definition [3) (i), let us introduce, for any 0 € T with {0 < t} ¢ N, the strong solution X to the
SDE 1)) with the drift coefficient b(s, x, u) := Liscty0+ 1154 b(s, 2, u) and the diffusion coefficient
a(s,x,u) := Lis<y0+ 1{82t}0(s,x,u). Then, by using the pathwise uniqueness of strong solutions
and Remark 23 (i), for P-a.e. w € {0 < t},

0(w), Xy " (w),a?
T

~ ~ ~ 0,w 0,w
X2 (wRgdp(w')) = X" (w@pde(w)) = X (') = XP200 (W) = Xpme (W),

Vr € [t,T), for P-a.e. ' € Q. This implies

7] (W) = S{XE" (w ®p po(w) hrepr)) = SUXE™" (W) }reprm) = 7la?](w"),
for P-a.e. w' € Q, which is Definition[31 (iii).

Let us now look at the second scenario in which the controller acts first. In this case, the stopper
has access to not only the path of W up to time ¢ but also the controller’s decision. The controller,
however, does not use strategies as an attempt to offset the advantage held by the stopper. As
the next remark explains, the controller merely chooses one single control because she would not

benefit from using non-anticipating strategies.

Remark 3.2. Fixt € [0,T]. Let v : T — Ay satisfy the following non-anticipativity condition: for
any 11,72 € T and s € [t,T)], it holds for P-a.e. w € Q that

if min{m (w),2(w)} > s, then (y[m1])r(w) = (y[m2])r(w) for r € [t,s).

Then, observe that v[1](w) = Y[T](w) on [t,7(w)) P-a.s. for any T € T. This implies that employing
the strategy v has the same effect as employing the control ¥[T']. In other words, the controller would

not benefit from using non-anticipating strategies.

Now, we are ready to introduce the upper and lower value functions of the game of control and
stopping. For (¢,z) € [0,T] X R?, if the stopper acts first, the associated value function is given by

ﬂ—[a] s T, [ T,
U(t,a;) = inf sup E|:/ e_ft c(u, Xt )dujc'(S,‘X*;f,gv,oz7 as)ds L (o] ¢ (u, XL )dug(Xt,x,a):| .
t

WEHt)T acA; 7'('[04
(3.6)
On the other hand, if the controller acts first, the associated value function is given by
V(t,z) := sup inf E[/ e Ji C(“’X’t"x’a)duf(S, XEme og)ds + e I C(“’X’t"x’a)dug(Xﬁ’m’a)] . (3.7)
Q€A TET ¢ ¢

By definition, we have U > V. We therefore call U the upper value function, and V' the lower value

function. We say the game has a value if these two functions coincide.

Remark 3.3. In a game with two controllers (see e.g. [13, 12, 14, 0] ), upper and lower value

functions are also introduced. However, since both of the controllers use strategies, it is difficult to
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tell, just from the definitions, whether one of the value functions is larger than the other (despite
their names). In contrast, in a controller-stopper game, only the stopper uses strategies, thanks to
Remark[3.3. We therefore get U >V for free, which turns out to be a crucial relation in the PDE

characterization for the value of the game.

We assume that the cost functions f, g and the discount rate ¢ satisfy the following conditions:
f:[0,T] x R% x M + R, is Borel measurable, and f(,z,u) is continuous in (z, ), and continuous
in z uniformly in u € M for each t; g : R? — R, is continuous; ¢ : [0,7] x R? — R, is continuous
and bounded above by some real number ¢ > 0. Moreover, we impose the following polynomial

growth condition on f and g
F(t,2,0)] + lg(@)| < K(1+ |o]?) for some 5> 1. (3.8)

Remark 3.4. Presumably, by imposing additional assumptions, one could construct a saddle point
of optimal choices for a controller-and-stopper game. For example, in the one-dimensional game
in [20], a saddle point is constructed under additional assumptions on the cost function and the
dynamics of the state process (see (6.1)-(6.3) in [20]). For the multi-dimensional case, in order
to find a saddle point, [23] assumes that the cost function and the drift coefficient are continuous
with respect to the control variable, and the associated Hamiltonian always attains its infimum (see
(71)-(73) in [23]); whereas [15] and [16] require compactness of the control set.

In this paper, we have no plan to impose additional assumptions for constructing saddle points.
Instead, we intend to investigate, under a rather general set-up, whether the game has a value and

how we can characterize this value if it exists.

Remark 3.5. For any (t,x) € [0,T] x R and a € A, the polynomial growth condition [B.8) and
23) imply that

r
E{ sup </ = Ji el Xu® Y (s, XEB o) ds + e~ i el Xu® )d“g(Xﬁ’m’a)> ] < 00. (3.9)
t<r<T t

Lemma 3.1. Fiz a € A and (s,x) € [0,T] x R For any {(sn,2n)nen C [0,T] x R? such that

(Sn,xn) = (s,2), we have

E[ sup [g(X7m ) — Q(Xf’m’a)!] —0; (3.10)
0<r<T
T
E/O ‘1[sn,T} (T)f(ra Xin7mn7a7ar) - 1[S,T} (T)f(ra Xi’x’aa a?“)‘dr — 0. (311)
Proof. In view of (2.7)), we have, for any p > 1,
E[ sup |Xjmome — Xf’w’a\p} — 0. (3.12)
o<r<T

Thanks to the above convergence and the polynomial growth condition ([B.8]) on f, we observe that
(311)) is a consequence of [24] Lemma 2.7.6].

It remains to prove ([BI0). Fix ¢, n > 0. Take a > 0 large enough such that 26, T2+ zl)

a
where C7 > 0 is given as in Remark 24l Since g is continuous, it is uniformly continuous on

< 1,
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B,(x) :={y € R?| |y — x| < a}. Thus, there exists some J > 0 such that |g(z) — g(y)| < ¢ for all
7,y € By(r) with |x — y| < . Define

A= { sup | X0 —z| > a}, B, = { sup | Xt — x| > a},

0<r<T 0<r<T

Bl = { sup | X vt — x| > g}, D, = { sup | Xt — X559 > 5}.

o<r<T 2 o<r<T

By the Markov inequality and (2.6)),
200VT (1 + |za])

(1 5
< M < g’ P(B!) < < 3 for n large enough.
a a

P(4)

On the other hand, 312) implies that P(D,) < # for n large enough. Noting that (Bj},)¢ C B for
n large enough, we obtain
ﬁ< sup |g(X;mT%) — g( X259 > E> <1-PA°NBSNDE)=P(AUB,UD,)
0<r<T
<P(AUB,,UD,)<mn, forn large enough.

Sn,Tn,

Thus, we have hy, := sup,.,, [g(X7"*™%) — g(X;7”"%)] — 0 in probability. Finally, observing
that the polynomial growth condition 3.8) on g and ([Z3) imply that {h,}nen is L?-bounded, we
conclude that h,, — 0 in L', which gives (B.10). O

3.1. The Associated Hamiltonian. For (t,z,p, A) € [0,T] x RY x R? x M?, we associate the

following Hamiltonian with our mixed control/stopping problem:
H(t,z,p,A) == inf H*(t,z,p, A), (3.13)
aceM

where
1
Ha(t7$7p7 A) = _b(t7x7a) p— §T7"[O'O'/(t,$,a)A] - f(t,x,a).

Since b, o, and f are assumed to be continuous only in (x,a), and M is a separable metric space
without any compactness assumption, the operator H may be neither upper nor lower semicontin-

uous. As a result, we will need to consider an upper semicontinuous version of H defined by

H(t,x,p,A) := inﬂf/[(H“)*(t,x,p, A), (3.14)
ac

where (H®)* is the upper semicontinuous envelope of H®, defined as in (L3)); see Proposition [4.3]
On the other hand, we will need to consider the lower semicontinuous envelope H,, defined as in
(L3), in Proposition Notice that H is different from the upper semicontinuous envelope H*,
defined as in (L3)) (in fact, H > H*). See Remark for our choice of H over H*.

3.2. Reduction to the Mayer Form. Given t € [0,7] and o € A, let us increase the state
process to (X,Y, Z), where

dYSt’x’y’a - —ﬁ’x’y’ac(s,Xﬁ’x’o‘)ds, s € [t,T], with Y;t,x,y,a =y >0;

S
AN / Y v f(p, X552 q,)dr,  for some z > 0.
t
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Set S:=R% x R, x R,. For any x := (2,9, 2) € S, we define
Xt,m,a
S

t,x,o ,__ t,z,y,a
st ) = Y:vav ,

Zbewe
and consider the function F': S — Ry defined by

F(z,y,2) =z +yg(x).
Now, we introduce the functions U,V : [0,7] x S + R defined by

Ut,z,y,z) ;= inf sup E [F(Xt’w’a Yt’w’y’a,Zt’w’y’z’a)] = inf sup E [F(Xt’x’a)] ,

7€l 1 e A, 7la] 7 " wlo] 7[o] 7Tl 1 e Ay (o]
V(t,z,y,2) == sup inf E[F(XL™* YH®¥e ZL2¥54] = gup inf E[F(XY)).
acd; TET ac Ay TET! ¢
Given 7 € T; 1, consider the function
J(t,x; o, 7) = B[F(XE%9)). (3.15)
Observing that F(X2*%) = 2z + yF(X2"%%) we have
J(t,x;a,7) =z 4+ yJ(t, (x,1,0);, 7), (3.16)
which in particular implies
Ult,z,y,2) =2 +yU(t,z) V(t,z,y,2) =2+ yV(tz). (3.17)

Thus, we can express the value functions U and V as

U(t,z) = inf sup J(t,(z,1,0);,7[a]), V(t,x)= sup inf J(t,(x,1,0);0,7).
mEllL T ac A, acA; Teﬁt,T

The following result will be useful throughout this paper.
Lemma 3.2. Fiz (t,x) € [0,7] xS and a € A. For any 0 € Ty and 7 € Ty, we have
E[F (X% | Fol(w) = J <e(w),xg’x7a(w); oﬁvW,TW) , for P-a.e. we Q.

Proof. See Appendix [A.4l O

4. SUPERSOLUTION PROPERTY OF V
In this section, we will first study the following two functions

GY(s,x):= inf J(s,x;0,7), G%(s,x):= inf J(s,x;,7), for (s,x)€[0,T]xS, (4.1)

Ty T€Tsr

where o € A is being fixed. A continuity result of G enables us to adapt the arguments in [§] to cur-
rent context. We therefore obtain a weak dynamic programming principle (WDPP) for the function

V' (Proposition [1]), which in turn leads to the supersolution property of V' (Proposition F3)).

Lemma 4.1. Fiz o € A.

(i) G* is continuous on [0,T] X S.
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(ii) Suppose o € Ay for some t € [0,T]. Then G* = G* on [0,t] x S. As a result, G* is

continuous on [0,t] x S.

Proof. (i) For any s € [0,7] and x = (z,y,2) € S, observe from (BI6]) that éo‘(s,x) = z+
yG®(s, (2,1,0)). Thus, it is enough to prove that G (s, (x,1,0)) is continuous on [0, 7] x R%. Also
note that under (2.4]), we have

G*(s,x) = Teil%;f,;r J(s,x;0,7) = Tei%f,;p J(s,x;0a,7T).

Now, for any (s,z) € [0,T] x R%, take an arbitrary sequence {(s,2n)}nen C [0,7] x R? such that

(Sn,@n) — (s,z). Then the continuity of G(s, (z,1,0)) can be seen from the following estimation

G (sn (20, 1,0) = G*(s, (2, 1,0))| = | inf E[F(Xpowl0e)] — inf E[F(X55100)

Te%,T Te%,T

< sup E [‘F(Xf_n,xn,l,o,a) _ F(Xf_,x,l,O,a)|] < E|: sup |F(Xin,xn,1,0,a) _ F(Xi’m’l’o’a)‘:| - 0’

T€To 1 0<r<T
where the convergence follows from Lemma [3.11
(ii) Suppose a € A; for some ¢ € [0,T]. For any (s,x) € [0,¢] x S and 7 € T5 7, by taking 6 = s

in Lemma 3.2 we have

J(s,x;a,7) = E[E[F(X2%Y) | Fs](w)] = E[J(s,x;,75Y)] > inf J(s,x;0,7), (4.2)

TEES;T

where in the second equality we replace a®* by «, thanks to Proposition 2.3l We then conclude

i f J ) ; ) = i f J ) ; ) ) 4'3
TEH%;,T (s,x;0,7) 761171;% (s,x;0,7) (4.3)
as the “<” relation is trivial. That is, G*(s,x) = G*(s,x). O

Now, we want to modify the arguments in the proof of [8, Theorem 3.5] to get a weak dynamic
programming principle for V. Given w : [0,T] x R? — R, we mimic the relation between V and V
in (3I7) and define w : [0,7] x S — R by

w(tv Y, Z) =z+ yw(t, $)7 (t7 LY, Z) € [07 T] X S. (44)
Proposition 4.1. Fiz (t,x) € [0,T] x S and ¢ > 0. Take arbitrary o € Ay, 6 € Ty and
@ € USC([0,T] x R?) with ¢ < V. We have the following:
(i) E[pH(0,X5™")] < oo;
(i) If, moreover, E[3~(0,X;%)] < oo, then there ewists a* € A, with o = a, for s € [0,6)
such that

E[F (X)) > E[Y 5V Yo (r A0, XETY) + Z0505% — de, V71 € Ty

TNO TNO
Proof. (i) First, observe that for any x = (x,y,2) € S, ¢(t,x) = yo(t,z) + z < yV(t,x) + z <
yg(x) + z, which implies T (¢,x) < yg(x) + z. It follows that

(’5+ (0’ Xg7x7a) é }/ézx’yvag(Xé’x’a) + Zg7m7y7z7a

0
< }/et,x,y,ag(Xg,x,a)_‘_Z_l_/ Y;”m’y’af(s,Xﬁ’m’a,as)ds,
t
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the right-hand-side is integrable as a result of (B.9]).
(ii) For each (s,n) € [0,T] x S, by the definition of V, there exists a(5™ € A, such that
inf J(s,n;aME 1) > V(s,n) —e. (4.5)

TE7T:T

Note that ¢ € USC([0,7] x R?) implies ¢ € USC([0, 7] x S). Then by the upper semicontinuity of
@ on [0,T] x § and the lower semicontinuity of G on [0,s] x S (from Lemma [£.1] (ii)), there

must exist (&7 > 0 such that
ot 2') — @(s,m) < e and Ga(s’n)'g(s,n) —qetme (t',2") < e forall (t,2) € B(s,n; r(sm)),

where B(s,n;r) = {(t',2') € [0,T] xS | t' € (s —r,s],|2' —n| < r}, defined as in (L2). It follows
that if (t',2") € B(s,n;7(*>™), we have

G ) > GO (s,m) — e = V(s,m) — 26 > @(s,m) — 2 > @(t,a') — 3e,

where the second inequality is due to (A5]). Here, we do not use the usual topology induced by
balls of the form B,(s,n) = {(¢,2') € [0,T] xS | |t' —s| < r,|2' —n| < r}; instead, for the
time variable, we consider the topology induced by half-closed intervals on [0, 7], i.e. the so-called
upper limit topology (see e.g. [I1, Ex.4 on p.66]). Note from [II, Ex.3 on p.174] and [26, Ex.3
on p.192] that (0,7] is a Lindel6f space under this topology. It follows that, under this setting,
{B(s,m;7) | (s,m) € [0,T] xS,0 < r < r®>M} forms an open covering of (0,7] x S, and there exists
a countable subcovering { B(t;, z;;7;) }ien of (0,7] x S. Now set Ag := {T'} xS, C_1 := () and define
for all i € NU {0}

Ai+1 = B(ti+1,xi+1; TZ'+1) \Cw where CZ = Cz'—l @] Az
Under this construction, we have

(6, X5™) € Useruuqoy Ai P-as., Ain\A; = Dfori # j, and G (t,a') > Bt a') 3¢ for (1, ) € A;
(4.6)
where ot = qti:Ti)e

For any n € N, set A" := Up<;<nA; and define

afm = al[oﬂ) + <a1(A7L)C(07XZ7X7OC) + Zai7elAi (07Xg,x,a)> 1[0,T] c -At-
=0
Note that a5" = a; for s € [0,0). Whenever w € {(H,XZ’X’O‘) € A;}, observe that (a®")%%(u') =
o (w ®p dg(w')) = € (w @9 Pp(w')) = (') (w'); also, we have o € Ay, as o’ € Ay, and
0(w) < t; on A;. We then deduce from Lemma [3.2] Proposition 2.3 and (£8)) that for P-a.e. w €

E[F (X ) o0y | Follan (60, X57%) = Lirsgy D J(0, X570 a8, 7)1, (6, X577)
1=0

> Loy G (0, X5 1a, (0, X5
1=0
> Lo (8, X5™) = 3]Lan (6, X5™).

(4.7)
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Hence, we have

£,M £,M

E[F(X5")] = B[F(X4%)1 o)) + E[F(XE" )1 1)
= B[F(XE%)1cpp] + B [BIF(XE )1y ol Lae (0, X557
+E [E[F(Xix"’s’”)l{ng} | Fo) L (an e (6, Xg”‘ﬂ)] (4.8)
> B[F (X2 1 rcpy] + E[1 {20y 8(0, X5™%) Lan (6, X5™)] — 3¢
> B[l <0y @(7, X)) + E[1 720y 8(6, X5 Lan (6, X5™%)] — 3¢,
where the first inequality comes from (4.7]), and the second inequality is due to the observation that
F(KUX) = yiewog(Xine) 4 ZL0a > Yoy (r, Xine) 4 gims
> YETbep(r, Xb0) 4 Zbemne,

Since E[@ (0, X;™*)] < 0o (by part (i)), there exists n* € N such that
E[g" (0, X)) — E[@T (0, X5 1 4us (6, X57%)] < e.
We observe the following holds for any 7 € 7??T
E[l{T2€}¢+(97 ng’a)] - E[l{T2€}¢+(97 sz’a)lA"* (97 XZ’XA)] (4 9)
< E[gH (0, X5 — E[g (0, X5)1 4ur (0, X5°)] < .

Suppose E[@~ (6, XZ’X’O‘)] < 00, then we can conclude from @3) that for any 7 € 77
E[l¢->0y0(0, ng’a)] = E[1{729}¢+(97 ng’a)] —E[l{r>0y07 (0, XZ’X’O‘)]
< B[1 207 (0, X1 (0, X5 - — Bl 207 (0, X551 0, X5
= E[l{508(0, X571 40n (0, X57%)] + €. (4.10)
Taking o* = o™, we now conclude from (&3] and @I0) that
E[F(X7)] 2 Elrapy (7, X25)] + E[l {20y 0(0, X5™)] — 4e
=E[p(T A0, X)) — 4e

= B[YI50(r NG, XET0) 1 26550 ge.

We still need the following property of V' in order to obtain the supersolution property.
Proposition 4.2. For any (t,r) € [0,T] x RY, V(t,2) = supye4 G(t, (z,1,0)).
Proof. Thanks to Lemma [4.]] (ii), we immediately have

V(t,z) = sup G*(t, (z,1,0)) = sup G*(t, (x,1,0)) < sup G*(t, (z,1,0)).
acA; aEA; acA

For the reverse inequality, fix & € A and x € S§. By a calculation similar to (£2), we have
J(t,x;a,7) = E[J(t,x;a"%, 78%)], for any 7 € Ty . Observing that 7% € 7??T for all 7 € Ty r
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(by Proposition 22), and that E[J(t,x; o, 74¥)] = E[J(t,x;a", 7)] for all T € T/, (by Proposi-
tion 2.1]), we obtain

inf J(t,x;o,7) = inf E[J(t,x;0", 7")] = inf E[J(t,x;0"*, )]
T€Ts, T T€T,T TeﬁfT

< sup inf E[J(¢t,x;a,7)] = sup inf J(t,x;a,7),
ac A T€T p acA; €Ty

where the inequality is due to the fact that a“ € A;. By setting x := (x, 1,0) and taking supremum
over a € A, we get sup,c 4 Go(t, (z,1,0)) < V(t,z). O

Corollary 4.1. V € LSC([0,T] x R%).

Proof. By Proposition and Lemma (1] (i), V is a supremum of a collection of continuous

functions defined on [0, 7] x R?, and thus has to be lower semicontinuous on the same space. [

Now, we are ready to present the main result of this section. Recall that the operator H is

defined in (3.14).

Proposition 4.3. The function V is a lower semicontinuous viscosity supersolution to the obstacle

problem of a Hamilton-Jacobi-Bellman equation

dw

max {c(t, T)w — B

+ H(t,z, Dyw, D?w), w — g(m)} =0 0n[0,T) x RY, (4.11)
and satisfies the polynomial growth condition: there exists N > 0 such that
V(t,z)] < N(1+ |z[P), Y(t,z) € [0,T] x RY. (4.12)

Proof. The lower semicontinuity of V' was shown in Corollary Il Observe that 0 < V(t,z) <
supgea, E[F(X5510)] < supuea E[F(X55M0)] = u(t, x). Since v satisfies (@IZ) as a result of
[24, Theorem 3.1.5], so does V.

To prove the supersolution property, let h € C12([0,T) x R?) be such that

0= (V = h)(to, z0) < (V — h)(t,z), for any (t,x) € [0,T) x R, (¢,2) # (to,x0), (4.13)

for some (tg,z9) € [0,T) x R%. If V(tg, z0) = g(x0), then there is nothing to prove. We, therefore,
assume that V' (to,zo) < g(zo). For such (o, x¢) it is enough to prove the following inequality:

oh —
0 S C(to,xo)h(to,xo) — E(to,xo) + H(',th,Dg,h)(to,xo).

Assume the contrary. Then, by the definition of H in ([B.I4]), there must exist (y € M such that

oh .
0> C(to,l‘o)h(t(],$0) — E(t0,$0) + (HCO) (',Dmh,Dzh)(t0,$0).

Moreover, from the upper semicontinuity of (H%)* and the fact that (H<)* > H, we can choose
some r > 0 with tg + r < T such that

0> c(t,x)h(t,x) — %(t,x) + H(-, Dyh, D2h)(t, z), for all (t,z) € B,(to,x0). (4.14)
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Define ¢ € A by setting (; = (p for all ¢ > 0, and introduce the stopping time

to,

6 :— inf {s >t ( (s, Xtow0.C) ¢ Br(to,:no)} e T,

Note that we have 0 € 7;20T as the control ( is by definition independent of F3,. Now, by applying
the product rule of stochastic calculus to Y3" ¢ (s, X27¢) and recalling @I4) and ¢ < ¢, we

obtain that for any 7 € tfﬁT,

V(to, z0) = h(to,z0) = E [lﬁﬁfo’l’ch(e AT, XéoA’fO’C)

ONT
w [ e (an - St HOC D D) + £ ) (5, X0 o)

to

ONT
<E [Yto’xo’l’ch(H/\T, Xlowo.0) +/ Y;O’wo’“f(s,X;OvavC,go)ds] . (4.15)

ONT ONT
to

In the following, we will work towards a contradiction to ([@I5]). First, define

0
]‘1(97 Xgo,wo,LO,C) — Yéfo,wo,LCh(e’ Xgo,wo,C) + Ysto,wo,LCf(S’ X;fo,ro,C, Co)ds.
to
Note from (£I5) that E[E(H,Xgo’xo’l’o’c)] is bounded from below. It follows from this fact that
E[h~ (0, X170 100)] < 0o, as we already have E[AT (0, X070 < oo from Proposition BTl (i).
For each n € N, we can therefore apply Proposition[4.](ii) and conclude that there exists a*" € A,
with ag™ = (, for all s < 6, such that for any 7 € ZZOT,

ON
E[F(Xio,x(),l,qa*m)] > E YZR,T%O,LCh(Q AT, Xé(}\nyyC) _|_/

to

-
1
tho,xo,vaf(S’XgovxovC, Co)ds| — —.

(4.16)
Next, thanks to the definition of V' and the classical theory of Snell envelopes (see e.g. Appendix
D, and especially Theorem D.12, in [19]), we have

V(to,z0) > G (to, (w0, 1,0)) = E[F (X 01007y (4.17)

where
7" ;= inf {s >t ‘ GO (5, Xlomo, 10,07y g(XﬁO’wO’a*'n)} € T

to,

Note that we may apply [19, Theorem D.12] because ([8.9) holds. Combining (4I7) and (£.I16), we

obtain

ONT™
1
V(to,z0) > E [Yg/iff’l’chw A Tanto,xo,C) +/ Y;O’wo’l’gf(s,Xgo’mo’c,Co)ds] -

ONT™
to

By sending n to infinity and using Fatou’s Lemma, we conclude that

ONT™
V(to, o) > E[Ymﬁo,l,ch(e A T*’Xto,wo,é) _|_/ Kf(”xo’l’cf(s,X;O’xo’C,Co)ds],

ONT™
to

where 7" := lim inf,,_,,, 7" is a stopping time in 7;2071, thanks to the right continuity of the filtration
Fl. The above inequality, however, contradicts ([I5]). O
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Remark 4.1. The lower semicontinuity of V is needed for the proof of Proposition [{.3. To see
this, suppose V is not lower semicontinuous. Then V' should be replaced by Vi in (£13]) and (EI5).
The last inequality in the proof and (LID) would then yield Vi(to,xo) < V (to, o), which is not a

contradiction.

Remark 4.2. Due to the lack of continuity in t of the functions b, o, and f, we use H, instead of
H*, in (AII)). If we were using H*, we in general would not be able to find a (o € M such that
(@I4]) holds (due to the lack of continuity in t). If b, o, and f are actually continuous in t, then

we see from BI3) and BI4) that H=H = H*.

5. SUBSOLUTION PROPERTY OF U*

As in Section 4 we will first prove a continuity result (Lemma[5.4]), which leads to a weak dynamic
programming principle for U (Proposition 5.I]). Then, we will show that the subsolution property
of U* follows from this weak dynamic programming principle (Proposition [5.2). Remember that
U* is the upper semicontinuous envelope of U defined as in (L3)).

Fix s € [0,7] and § € L5(Q, F;) for some p € [1,00). For any @ € A and 11,7 € Il 7 with
71 [B] < m3[B] P-a.s. for all 3 € A, we define

T P S T o

and introduce the random variable

Ks,ﬁ,a(ﬂ_h 7T2) =

m2[f] 1], X3 ,,5 mila] X2 ,,5 5.2

esssup E " 2B 7218]

BEBS €, a

Observe from the definition of B&5® and Definition B (i) that
m[B] = m|a] P-as. VB € 85’5 “ (5.3)

This in particular implies mo[8] > m[8] = m[a] P-a.s. V3 € B25*, which shows that K56 (o)
is well-defined. Given any constant strategies mi[-] =7 € T and mo[] = 7 € T 7, we will simply
write K56(ry,mp) as K55%(1, 7). For the particular case where & = z € R?, we also consider

[
Fs’m’a(ﬂ'l, 7T2) — / Yusw,l,af(u, Xi,m,a’ ozu)du + Y; J[Eo,l]l,aKs \ T, a(ﬂ'la 7_‘_2)‘
S

S,T,xx

Remark 5.1. Let us write K%%%(my,mg) = €SSSUP ez o E[Rz 75 (8) | Fryja)] for simplicity. Note
that the set of random variables {E[Rx{ry(8) | Fr, a]]}BeB;f o is closed under pairwise mazimiza-
tion. Indeed, given (1, By € Bz, set A = {E[Rx\"my (B1) | Fryja)] = B[R (82) | Fryjall} € Freyfal

and define B3 := B1ljo.r (o)) + (B11a + Bolac) iz (o)) € Bri". Then, observe that

B[R (B3) | Frilal]l = B[Ry e (B1) | Fryjag)la + E[Ry 5 (B2) | Fryjag]lac
= E[Ry" 5 (B1) | Frijl V EIRY 5 (B2) | Fryjag)-

1,72 1,72
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Thus, we conclude from Theorem A.3 in [19, Appendix A] that there exists a sequence {8" }nen in
B such that K% (ry,m2) =1 limp_ee E[R7 75 (8") | Frryla)] P-a.s.

Lemma 5.1. Fiz (s,z) € [0,7] x R? and o € A. For any r € [s,T] and 7 € 1L, 1, we have
K> (r,m) = KT”Xﬁ’x’a’o‘(r, 7) P-a.s.

Proof. For any 8 € By, we see from Remark (i) that X357 = XX for w e [r,T] P-a.s.
It follows from (5.2)) that

W[B] s,@,a T, s,z 0
K*%%(r, m) = esssup E[ / YT f, XEXTT By du+ YT (XA ‘ }“,} :
pesree Ly
Observing from (E.1)) that B/ C A = BT we conclude Ks©o(r ) < K™% (r 7). On
the other hand, for any 5 € A, define 3 := aljg )+ B1j.7) € BF™*. Then, by Remark 27 (i) again,
we have X357 = XX for u € [r, T] P-a.s. Also, we have w[3] = 7[3], thanks to Definition 311
(i). Therefore,

ﬂ—[ﬁ] 8,T,00 S$,T,0 T, s,x, a
E[ / YN , XN B du 4+ Y (g ‘f}

7 (5] s3.8 1 7 3 3
:E[ / Y, X3, Bdu + YT P ‘f }

In view of (5.2)), this implies K™Xr """ (r 1) < K% (r, 7). O

Lemma 5.2. Fiz (s,z) € [0,T] xR, Given o € A and w1, 72,73 € U 1 with m[8] < ma[B] < m3(p]
P-a.s. for all B € A, it holds P-a.s. that

(e

mo o]
E[/ Y;7x71,af( Xs:ca Oéu)du—l-ysm’l’asta(ﬂg,Wg)
™

m m2la]

]:7r1 [a]:| < Yy x’LQKS © a(ﬂ-b 71'3)-

Moreover, we have the following supermartingale property:

E[**%(me, 73) | Fryog) < T (w1, 73) P-a.s.
Proof. By Remark [B] there exists a sequence {"}nen in Bry'® such that K$%%(mg,m3) =1
limp o0 B[Ry 5 (8") | Fryjg] P-a.s. From the definition of Bzy"® in BI), B = ay for ae.

u € [s,m2[a]) P-a.s. We can then compute as follows:

E |:YS SCJ,O!KS-'Ea(ﬂ-z”]Tg) ‘ fﬂ'l[a}]

mo o]
. s,x, 1,
_E{ng[a] °
. m3[B"] 7r2[a]7XS’zf7l71,B" n m2la], X Szaﬁ 1,8"
e R X g Y () et P
™2

n3[8"]
. $,T n $,T n $,2,1, XS
:E{ lim E|:/7T Y, o flu, X h B )du+Y [5n]g BB"] ‘ ) a]:| ‘]:m[a]}

n—oo 5 [O!]
"]

w3 ” n
— lim E|:/ Yus,gc,l,ﬁ f(quz,x,B ,ﬁf})dquYs x,1,8™ (Xs :cﬁ ' ‘Fm a]:|

n—oo 2[0{] [Bn] 3 Bn]
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where the last line follows from the monotone convergence theorem and the tower property for

conditional expectations. We therefore conclude that

o (a]
E [/ Yusmc,l,af(u, X5, )du + Y;ZZQ[EO’C}LQKS’LQ(WQ, 3)

1[e]

fm[ﬂ]]

m3[B"] n n n n
— lim E[ / Yo fu, X2 gmydu + YL g(X 500 ' fm[a]}

n—o0 o] m3[8"] m3[B"]

8] mfa), X2 8" 1,67 n [a], X255 1,67 n
_ ysola jip E[/ Yo T X B du+ Y, g T (X2 )‘f maJ

m1[a] n— o0 1] w3[B"] w3 (B8]

< Y&%l,aKs,x,a(ﬂl, 7_‘_3)7

1]

where the inequality follows from the fact that 8" € By,"® C By, It then follows that
(e

B (o) | Frall = [ Yo (0, X5, )
S

m2[a]
FE| [ X )+ VR )
s

1[e]

]:7r1[a]:|

1]
< [T Y, X+ Y ) = D )
s

w1 |a

O

Lemma 5.3. For any (t,x) € [0,T] x S and © € I, r,

sup J(t,x; o, wlar]) = sup J(t,x; o, 7[a]).
acA ac Ay

Proof. Fix o € Aand x € S§. For any 7 € Il , by taking § = ¢ in Lemma B.2] we have
J(t.x:0,7la]) = B [ELF(XES0) | F)@)] = B [J(t.x:0", 7a"])] < sup J(t,x:0,7]a).
€A

Note that in the second equality we replace w[a]"“ by 7[a!*], thanks to Definition 3] (iii). Then,
the last inequality holds as o € A; for P-a.e. w € Q. Now, by taking supremum over o € A, we
have sup,ec 4 J(t,x;a,m[a]) < supgyeq, J(t,x; o, 7[a]). Since the reverse inequality is trivial, this

lemma follows. U
Now, we are ready to state a continuity result for an optimal control problem.
Lemma 5.4. Fiz t € [0,T]. For any w € I, 7, the function L™ : [0,t] x S defined by

L™(s,x) := asg}‘) J(s,x;a,m[a]) (5.4)

15 continuous.

Proof. Observing from ([B.I6]) that L™(s,x) = yL™(s, (x,1,0))+z, it is enough to show the continuity
of L™ (s, (x,1,0)) in (s,z) on [0,¢] x R%. By [24, Theorem 3.2.2], we know that J(s, (x,1,0);a,7) is

continuous in x uniformly with respect to s € [0,t], « € A, and 7 € T 7. This shows that the map
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(s,x,a) — J(s,(x,1,0); o, w[]) is continuous in = uniformly with respect to s € [0,¢] and « € A.

Then, we see from the following estimation

sup |L™(s,(z,1,0)) — L™ (s, (2',1,0))| < sup sup |J(s,(z,1,0);, w[a]) — J(s, (2, 1,0); o, 7[c])|
s€[0,t] s€[0,t] a€As
that L™ (s, (x,1,0)) is continuous in x uniformly with respect to s € [0,¢]. Thus, it suffices to prove
that L™ (s, (z,1,0)) is continuous in s for each fixed x. To this end, we will first derive a dynamic
programming principle for L™ (s, (z,1,0)), which corresponds to [24, Theorem 3.3.6]; the rest of the
proof will then follow from the same argument in [24] Lemma 3.3.7].

Fix (s,z) € [0,t] x R%. Observe from (5.I) that Bs™“ = A for all @ € A. In view of (5.2,
this implies that K*%%(s, ) = esssupge 4 E[F(Xfr’é’]l’o’ﬁ) | Fs], which is independent of o € A. We
will therefore drop the superscript « in the rest of the proof. Now, we claim that K*%(s,m) is
deterministic and equal to L™ (s, (z,1,0)). First, since 7[a] € Tior for all a € A, (by Definition B.1]
(ii)), we observe from Lemma [3.2] Proposition 2] (i), and Proposition 23] that

uyfe’

K*2(s,m) = esssup E[F(X30 ) | FJ() = esssup.J(s, (2, 1,0)50° 7la]*)

QEAS QEAS (5 5)
= sup J(s,(z,1,0);a,7[]) = L™ (s, (x,1,0)). '
CYGAS

On the other hand, in view of Remark [l there exists a sequence {a"},en in A such that

K*%(s,m) =1 limp 00 E[F (Xi’@i}’o’an) | Fs] P-a.s. By the monotone convergence theorem,

E[K**(s,n)] = E [ lim E[F(X7") [ F)| = lim E[F(X0")]
n—00 n—oo

wlan] wlam]

s,z,1,0,a T (56)
S SupE[F(Xﬂ7[o;} w )] =L (37 (‘Ta 170))7

acA

where the last equality is due to Lemmal[5.3l From (5.5]) and (5.6]), we get K% (s, ) = L™ (s, (z,1,0)).

Then, for any o € A, thanks to the supermartingale property introduced in Lemma (.21 we have

for all r € [s, t] that

L™ (s, (2,1,0)) = K*%(s,7) = T5®%(s, 1) > E[[*®%(r, 7)] > E[05%(x, 7)] > E[F (X550,

(]

where the last equality follows from the fact that K%< (m, 1) = esssupge s g(Xfr’[z’]ﬁ ) > g(Xfr’[Z’]a)
P-a.s.; see (5.2). By taking supremum over a € A and using Lemma [5.3], we obtain the following
dynamic programming principle for L7 (s, (x,1,0)): for all r € [s,t],

L™(s,(x,1,0)) = sup E[[***%(r, 7)]
acA

T

=supE [ / Y ohe f (y, X3 o )du 4 YOO LT () (X57,1,0)) |,
acA s

where the second equality follows from the fact K*%(r, ) = K“Xﬁ’x’avo‘(r’ 7) = L™(r, (X,;7*%,1,0))

P-a.s., as a consequence of Lemmal[5.Il Now, we may apply the same argument in [24, Lemma 3.3.7]

to show that L™ (s, (x,1,0)) is continuous in s on [0, ¢]. O
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Proposition 5.1. Fiz (t,x) € [0,7] x S and ¢ > 0. For any 7 € ;7 and ¢ € LSC([0,T] x R?)
with ¢ > U, there exists ™ € II; 7 such that

E [F(Xt’x’o‘)} <E [Yt e, (w[a], X“"l) + fo’y’z’a] +3e, YacA

m*[a] [a] (o] [a]

Proof. For each (s,n) € [0,T] x S, by the definition of U, there exists 7(*"):< II; 7 such that

sup J (s,m: . w[a] ) < U(s,m) +=. (5.7)
QEAS
Recall the definition of @ in ([@4) and note that ¢ € LSC([0,T] x R%) implies ¢ € LSC([0,T] x S).

Then, by the lower semicontinuity of @ on [0,7] x S and the upper semicontinuity of L7 on

[0,5] x S (from Lemma [5.4)), there must exist (> > 0 such that
o(t',2") — @(s,m) > — and e t,2') — e (s,m) <e¢,
for any (t',2') contained in the ball B(s,n; (™M), defined as in (). It follows that if (#, ') €
B(s,n; T(S’”)), we have
L™ 2!y < L7 (s,m) + € < Uls,m) + 26 < @(s,m) + 26 < @(¢,2') + 3¢,

where the second inequality is due to (5.7]). By the same construction in the proof of Proposition [4.]
there exists a countable covering {B(t;, z;;7;) }ien of (0,7] x S, from which we can take a countable

disjoint covering {A;};enuqoy of (0,7] x S such that
(r]a], X txa) € UleAi P-a.s. Vo € A,

(ol

(5.8)

€

s (t',2') < @(t',2") + 3¢ for (',2') € A;, where ab€ = ptiTi)e,
Now, define 7* € II; 7 by
= Zwi’e [a]14, (z[a], XP5%), Va € A.

(ol
1>1

Fix a € A;. Observe that for P-a.e. w € {( [a], X" E;f‘) € 4 } C {m[a] < t;}, Definition B (iii)

gives
(7 [a])™w (W) = 7P [a™ @] (W) for P-ae. o' € Q. (5.9)
We then deduce from Lemma B2, (5.9), (5.4), and (5.8) that for P-a.e. w € €,
E[FXI5D) | Fagog] (@) L, (rla)(w), X257 (@)
= J (la(w), Xi;;;f" (w); @™o, < ame]) 14, (rla) (w), X2 (@)
< 27 (lo](w), X5 @) 1a, (rla] (@), X2 (@)

< ¢ (mlalw >X“‘“< )) + 3e] L, (rla)(w), X5 @)):

It follows from the monotone convergence theorem that
t x a t X, t,x,a - t,x,«
E|[FXE5)] = ZE B [FXE5) | Fria| 1a(7lal, X250)] < E [@(rla], X25M)] + 32,

which is the desired result by recalling again the definition of ¢ in (Z4]). O
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The following is the main result of this section. Recall that the operator H is defined in (3.13),

and H, denotes the lower semicontinuous envelope of H defined as in (L3).

Proposition 5.2. The function U* is a viscosity subsolution to the obstacle problem of a Hamilton-

Jacobi-Bellman equation

ow

ot
and satisfies the polynomial growth condition (EI12]).

max {c(t,a:)w — + H,(t,z, Dyw, D2w),w — g(m)} =0 on [0,T) x RY,

Proof. We may argue as in the proof of Proposition 13| to show that U* satisfies ([£12)). To
prove the subsolution property, we assume the contrary that there exist h € C12([0,T) x }Rd) and
(to, o) € [0,T) x R? satisfying

0= (U* - h)(to,xo) > (U* - h)(t7x)7 for any (tax) € [07T) X Rda (t,.’,l') 7é (t07x0)7
such that

Oh
max {C(to, xo)h(t(), LZ'()) — E(io, LZ'()) + H*(-, D.h, Dgh) (t(), xo), h(to, LZ'()) — g(wo)} > 0. (510)

Since U*(tg,z9) = h(to,z9) and U < g by definition, continuity of g implies that h(tg,z¢) =
U*(to, o) < g(xg). Therefore, we can conclude from (5.I0) that
oh
C(t(], :Eo)h(to, l‘o) — E(fo, l‘o) + H*(', D.h, Dgh)(to, ZE(]) > 0. (5.11)
Define the function h by

h(t,z) := h(t,z) + (|t — to|* + |z — z0|?).

Note that (h, d;h, Dyh, Dgﬁ)(to, xo) = (h,0th, Dyh, D2h)(to, o). Then, by the lower semicontinuity
of H,, there exists r > 0 with ¢y + r < T such that

c(t, x)h(t, z) — %(t,x) + H%(-,Dyh, D2h)(t,z) >0, ¥ a € M and (t,z) € B,(ty,zo).  (5.12)

Now, define n > 0 by

cT : 7
= min h — h 0. 5.13
,’76 8B'r'(t1()7550)( ) ~ ( )

Take (f,&) € B, (to,x0) such that |(U — h)(f,#)| < n/2, and define 7 € I; 7 by

mla] = inf{s >t

(s, XE2) ¢ By (to,20) } , Yo € A (5.14)

t,z,1,a7 t,2,a

For any o € A;, applying the product rule of stochastic calculus to Y h(s, Xs%), we get

h(i,#) = E [Yi’i’l’aﬁ(w[a],Xi’i’o‘)

(] (]
oh

mle] . - - .
# [ viene (i G H Db D)+ £ ) 5, X2 )
t

. . wla] .
SE [Yt’f”’l’“h(w[a], XEamy+ [ e s, b, as>ds] .
t

(]
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where the inequality follows from (5.13), (5.I2) and ¢ < & Moreover, by our choice of (¢,4), we
have U(f, 1) +1/2 > h(t, ). Tt follows that

) - - rla] -
Ut,z) > E Yt’x’l’“h(ﬂ[a],Xt’x’“)Jr/ Y Ebe f (s, XoB®, ag)ds
t

ol (ol

+ g, for any o € A;. (5.15)

Finally, we conclude from the definition of U and Proposition [B.1] that there exist 7 € ;7 and
& € A; such that

Ut,2)=0U(#,2,1,0) < sup E [F <Xf,i,1,0,a):| <E [F (Xf,fc,l,O,dﬂ n g

- w*[al w*[al

<E [Yj’z’l’dh(ﬂ[d],X'g’i’é‘) I Zi,i,l,o,éc] I g’

(4] 7[d] 7[d]

which contradicts (5.15]). O

6. COMPARISON

In this section, to state an appropriate comparison result, we assume a stronger version of (2.2))
as follows: there exists K > 0 such that for any ¢,s € [0,7], x,y € R%, and u € M,

|b(t,x,u) - b(S,y,U)| + |O-(t7$7u) - 0(3,y,u)| < K(|t - 8| + |$ - y|) (61)
Moreover, we impose an additional condition on f:
f(t,z,u) is uniformly continuous in (¢,z), uniformly in v € M. (6.2)

Note that the conditions (6.1 and (6.2]), together with the linear growth condition (2.3]) on b and
o, imply that the operator H defined in (3.I3)) is continuous, and H = H = H,.

Proposition 6.1. Assume (6.1) and ([6.2]). Let u (resp. v) be an upper semicontinuous viscosity
subsolution (resp. a lower semicontinuous viscosity supersolution), with polynomial growth in x, to

ow

max {c(t, x)w — T

+ H(t,z, Dyw, D2w), w — g(x)} =0 on[0,T) x RY, (6.3)
and w(T,z) < v(T,x) for all x € R%. Then u < v on [0,T) x R%.
Proof. For A\ > 0, define u* := eMu(t, z), v* := e Mu(t,z), and

Hy(t,x,p,A) :== in{/[ {—b(t,x,a) -p— %Tr[aal(t,x,a)A] - er(t,a;,a)} .
ac

Note that the conditions (6.1) and (6.2)), together with the linear growth condition (23] on b and o
and the polynomial growth condition (B.8]) on f, imply that H) is continuous. By definition, u (resp.
v) is upper semicontinuous (resp. lower semicontinuous) and has polynomial growth. Moreover, by
direct calculations, the subsolution property of u (resp. supersolution property of v) implies that
u (resp. v) is a viscosity subsolution (resp. viscosiy supersolution) to

ow

max {(c(t, )+ AN w— 5

+ Hy(t, x, Dyw, D*w), w — eAtg(:E)} =0on [0,T) x R% (6.4)
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For any (t,z,7,q,p,A) € [0,T] x R* x R x R x R% x M, define
Fl(t7x7T7Q7p7 A) = (C(th) + )‘) r—q+ H)\(t,l',p, A) and FQ(taxar) =T e)\tg(x)'

Since F and F, are by definition continuous, so is F3 := max{Fi, F5}. We can then write (G.4]) as
F3(t,z,w, %%, Dyw, D2w) = 0.
From the polynomial growth condition on u* and v*, there exists some p > 0 such that

A A
t + t
Sup |u ( 7x)| |U ( 7x)|
[0,T] xR 1+ |zfP

Define y(z) := 1 + |2|? and set ¢(t,x) := e *y(z). From the linear growth condition (Z3) on
b and o, a direct calculation shows that |b(t,z,a) - Dyy + 3Tr[00’(t,2,a) D24]| < Cy(z) for some
C > 0. It follows that

dp . 1 / 2
(c(t,z) + N Y +a1é1]\f;[{ b(t,z,a)Dyp 2TT[UU (t,m,a)ngp]}

1
— M <[c(t, z) + 2]y + inf {—b(t, 7,0) Doy — STrloo’(t, @, a)Diﬂ}> (6.5)
> e Me(t,z) + 20— Cly >0, if A > %

Now, take A > % and define v} := v + gp for all ¢ > 0. By definition, v is lower semi-
continuous. Given any h € CH2([0,T) x R%) and (to,z9) € [0,T) x R? such that v} — h at-
tains a local minimum, which equals 0, at (tg, zg), the supersolution property of v* implies either
Fi (- h(e), %(-),th(-),Dgh(')) (to,z0) > 0 or Fy (-, h(:)) (to,z0) > 0. If the former holds true, we
see from (6.0 that
Ay 002 A 2, A
Py (0200, G0 D). D220 ) (to.0) 2 0

if the latter holds true, then F (-, v2(-)) (to,z0) = v2(to,20) — eMog(wo) = Fs (-,v*(+)) (to, z0) +
ep(to, zo) = Fo (-, h(-)) (to, o) + ep(to, x0) > 0. Therefore, v is a lower semicontinuous viscosity
supersolution to (6.4)).

We would like to show u* < vg‘ on [0,T) x R? for all € > 0; then by sending € to 0, we can

conclude u < v on [0,T) x R?, as desired. We will argue by contradiction, and thus assume that

N:= sup (u*—ovM)(t,z) >0
[0,T] x R4

From the polynomial growth condition on u* and v* and the definition of ¢, we have

lim sup(u® —v2)(t, ) = —oo0.
x| =00 [0, 77

It follows that there exists some bounded open set @ C R such that the maximum N is attained

at some point contained in [0,7] x O. For each § > 0, define the functions

. 1
@5(t,8,$,y) = u)\(t7$) - U?(Svy) - 775(t787$7y)7 with 775(t787$7y) = 2_5[|t - 8|2 + |$ - y|2]
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Since ¥y is upper semicontinuous, it attains its maximum, denoted by Ny, on the compact set
[0,T]% x O at some point (ts, 85,25,ys). Then, the upper semicontinuity of u(¢,z) — v2(s,y)

implies that (u?(ts,zs) — v2(s5,s)) 5 is bounded above; moreover, it is also bounded below as
N < Ns = uMts, 5) — 02 (s5,y5) — 055, 56, 25, y5) < u(t5,25) — v2(55,95). (6.6)

Then we see from (6.6) and the boundedness of (u(ts,zs) — vg\(s(;,y(;))(s that (ns5(ts, s, 25,Ys))s
is also bounded. Now, note that the bounded sequence (ts, S5, 25, ys)s converges, up to a subse-
quence, to some point (£, 3, %,7) € [0,7]? x O°. Then the definition of ns and the boundedness of
(ns(ts, ss,7s,ys))s imply that t = § and Z = 7. Then, by sending J to 0 in (6.6), we see that the

last expression becomes (u* — v2)(£,#) < N, which implies that
Ns — N and n5(ts, 55,25, ys5) — 0. (6.7)

In view of Ishii’s Lemma (see e.g. [29, Lemma 4.4.6]) and [29, Remark 4.4.9], for each § > 0,
there exist As, Bs € M such that

Tr(CC'As — DD'B;) < gyc — DJ? for all C, D € M, (6.8)
and
1 1 52,4, A 1 L 52—, A
g(ta — 55), 5(1’5 —ys), As | € P=TulMts, x5), g(ta — 55), 5(1’5 —ys5),Bs | € P27 vl (s5,95),

where P2t w(t, z) (resp. P>~ w(t,z)) denotes the superjet (resp. subjet) of an upper semicontin-
uous (resp. a lower semicontinuous) function w at (t,z) € [0,T] x R? for the definition of these
notions, see e.g. [10] and [29]. Since the function F3 = max{F}, F»} is continuous, we may apply
[29, Lemma 4.4.5] and obtain that

1 1
max {(C(t&x&) + A utts, x5) — g(t(s — s5) + Hy(ts, zs, 5(905 —ys), As), u(ts, ws) — 6”‘59(965)} <0,

1 1
max {(C(Sg,y(;) + N) v2 (56, Ys) — g(ta —s5) + Hx(s5,ys, g(iﬂa —ys), Bs), v2(ss,Ys) — eAsag(ya)} > 0.

Noting that max{a, b} — max{c,d} > min{a — ¢,b — d} for any a,b,c,d € R, we then have

. 1
min { (c(ts, x5) + N) uP (ts, x5) — (c(s6,y5) + N) v (s5,ys) + Ha(ts, x5, g(wé —Ys), As)

(6.9)
— 1 — A _ A )\3(5 _ )\t(;
H) (ss,Ys, 5(905 Ys), Bs), u’(ts, x5) — v2(s5,ys) + €0 g(ys) — e g(xs5) ¢ <O.

Since u(ts, x5) — v2(s5,ys) + e 0 g(ys) — eNo g(ws) = No+1s(ts, 6.5, 95) + € g(ys) — X0 g(xs) —
N > 0, we conclude from (6.9]) that as § small enough, we must have

(clts, zs) + A) u(ts, xs) — (c(ss,ys) + A) v2 (55, )

1 1 3
< H)(s5,¥s, g(wé —¥s), Bs) — Hx(ts, vs, 5(1175 —us), As) < u(lts — ss| + |xs — ys| + 5|$6 —ysl%),

for some function p such that pu(z) — 0 as z — 0; note that the second inequality follows from

@I), 6.2), and (6.8). Finally, by sending & to 0 and using (6.7)), we get (c¢(f,%) + A)N < 0, a
contradiction. O



27

Now, we turn to the behavior of V., the lower semicontinuous envelope of V' defined as in (L3]),

at terminal time 7.
Lemma 6.1. For all z € R, V,(T,z) > g(x).

Proof. Fix a € A. Take an arbitrary sequence (ty,, zy,) — (T, x) with t,, < T for all m € N. By

the definition of V', we can choose for each m € N a stopping time 7,,, € 71’1”71 such that

r
V(tm’ xm) 2 inf E |:/ thyx7n717af(87 Xt7n7x7ﬂ7a7 Oés)dS + ijvxmﬂyag(X‘f_m,xmya)}

tm
7—67—tm , T tm

Tm 1
Z E |:/ thyx’!ny]waf(s’ Xtmyxmya’ Oés)dS + Yé:7xm71’ag(X—f-:z’xm’a):| _ E
t

m

Note that 7,,, — T as 7, € 7?77’771 and t,, — T. Then it follows from Fatou’s lemma that
liminf,, o0 V(tm, Tm) > g(z). Since (tm, ) is arbitrarily chosen, we conclude Vi (T, z) > g(z). O

Theorem 6.1. Assume (6.1) and 62). Then U* =V on [0,T] x R In particular, U =V on

[0,T] xR, i.e. the game has a value, which is the unique viscosity solution to @IIL) with terminal
condition w(T,x) = g(x) for v € RL.

Proof. Since by definition U(t,z) < g(z) on [0,7] x RY, we have U*(t,r) < g(z) on [0,7] x R?
by the continuity of g. Then by Lemma [6.1] and the fact that U* > U > V, we have U*(T,x) =
V(T,z) = g(z) for all z € R%. Recall that under (6.1) and (6.2)), the function H is continuous, and
H = H = H,. Now, in view of Propositions 3] and 5.2} and the fact that U*(T,-) = V(T,-) and
H = H = H,, we conclude from Proposition that U* =V on [0,T] x R?, which in particular
implies U = V on [0,T] x R%. O

APPENDIX A. PROOFS FOR SECTIONS [2] AND [3]

This Appendix is devoted to rigorous proofs of Propositions 2.1] 2.2, 2.3] and Lemma To
this end, we will first derive several auxiliary results.
Recall the definitions introduced in Subsection 21l Fix ¢ € [0,7]. For any A C Q, A C Qf, and

z € R, we set

Ay ={oeAl|d =z},
and define
A = {oeQ weiwe A}, AW .= A"),, weyd={wew|we A}

Given a random time 7 : Q — [0,00], whenever w € Q is fixed, we simplify our notation as

AT = AT@)w  We also consider
HL =G0 C G s e [t,T). (A1)

Note that the inclusion follows from the Borel measurability of ;. Finally, while E denotes the

expectation taken under P, in this appendix we also consider Ep, the expectation taken under P.

Lemma A.1. Fizt € [0,T] and w € Q. For anyr € [t,T], A€ G,, Ac G, and ¢ € L°(Q,G,),
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(i) AR = ALY + 2 and A € Gi°, Yo € R%
(il) AP = LALY € HE C GL and PHAMY) = PEo(ALY) = PH(AMY), Vo € RY.
(iii) ¢, 1A“’ € ¢; 1Ht C G, and P(¢p; A) = PH(AL®).
(iv) w @y Awt € G.. Hence, w ®y Afjf € G,.
(v) For any Borel subset € of R, (€)~1(&) € ¢ "H! C G,. Hence, €% € L°(Q,G,).

Proof. (i) Fix z € R% Since @ € A & w@; 0 € Aand & = 0 & (w @ (0 + 7). = w1 q(-) +
(@ +z) = (@ +2) +w)len() = (werw). € Aand (O +2) =2 & O+ € A% we conclude
AR = AR+ a.
Set A :={A C Q| A € G-"}. Note that Q € A since Q¥ = {0 € Q' |w @& € V@ = a} =
(Q t) € GL". Given A € A, we have (A9)5Y = (O, \{@ € Qf |w@ @ € A, @ = 2} = (), \ ALY €
»%, which shows A° € A. Given {A;}ien C A, we have ({J;cy Ai )t’w =Uenfo e ¥ |werw e
Ai, @ = o} = Ujen(As )49 € G, which shows Uien 4i € A. Thus, we conclude A is a o-algebra
of Q. For any z € Q% and A € Q,, the set of positive rationals, let Oy(x) denote the open ball
in R? centered at z with radius \. Note from [I8, p.307] that for each s € [0,T], G2 is countably
generated by

Cﬁ = { m(Wtsl)_l(O)\z($Z)) ' meN, t, €Q, s<t1 <---<t, <r x; € Qd, A € Q+} (AZ)
i=1

Given C = N, (W) 1Oy, (xi)) in Cp = CO, if tyy, > t, set k = min{i = 1,--- ,m | t; > t};

otherwise, set k = m+ 1. Then, if wy, ¢ Oy, (z;) for some i =1,--- ,k — 1, we have CL¥ =0 e g™,

if k=m+1and wy, € Oy,(z;) Vi=1,---,m, we have chv = QY € GE™: for all other cases,
Co =W} =} 0 (VW) (O, (@i — wi + 7)) € GI™. (A.3)
i=k

Thus, C, C A, which implies G, = o(C,) C A. Now, for any A € G,, AL* e gb* C Gt.

(ii) Observe from part (i) that © € AW < @ € A &0 —w € A ie. (o) € Aé’w S we
W (AGY). Thus, A% = o7 (AR € ;71 (Gr 0) = ’Hﬁ C G!, thanks to part (i) and (AJ). Then,
using part (i) again, P{(A"9) = PHALY) = PH2 (ALY + z) = PH(ALY) = PH#(AMY), Vo € RY.

(iii) By part (ii) and the Borel measurability of ¢; : (2,G,) — (9F,GL), we immediately have
(bt_lAt"" € qﬁt_l’Hﬁ C G,. Now, by property (¢”) in [I8] p.84] and part (ii),

Plp; LA | Gy (W) = Ph(ABY) = PHAY) for P-ae. w' €,

which implies P[¢; ' Ab] = PH(AM).
(iv) Set A == {A C Q' | w®y Ay, € G,}. Let C! be given as in (A2). For any C =
Nty (W) 71Oy, (%)) in CL, we deduce from the continuity of paths in  that

w® Cp, ={w' € Q| w, =ws Vs € QN [0,t) and w;, € Oy, (z;) for i =1,--- ,m}

B ( N (Ws)_l(”s)> n <ﬁ(Wti)_l(0Ai($i))> €G.

s€QN[0,t) i=1
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Thus, we have C! C A. Given {4;}ien C A, we have w ®; (U;ey Ai)wr = Usen(@ @t (4i)wr) € Gr,
which shows | J;cy A; € A; this in particular implies Qf = Unen(W)™1(0,(0)) € A. Given Ac A,
we have w ®; (A%, = (W@ (), \ (w®¢ Ay,) € Gy, which shows A° € A. Hence, A is a o-algebra
of Qf, which implies G = (C%) C A. Now, by part (i), we must have w ®; Al € G,.

(v) Since £71(E) € Gy, (€%)7H(E) = {w' € Q| E(w @ gu(W)) € E} = {W' € Q| w B, Pe(w') €
E1E)} = o7 (EHE))™ € ¢ "HL C Gy, thanks to part (iii). O

In light of Theorem 1.3.4 and equation (1.3.15) in [31], for any G-stopping time 7, there ex-
ists a family {Q%¥}uecq of probability measures on (€2, Gr), called a regular conditional probability
distribution (r.c.p.d.) of P given G,, such that

(i) for each A € Gp, the mapping w — Q¥(A) is G,-measurable.
(i) for each A € G, it holds for P-a.e. w € Q that P[4 | G;](w) = Q¥(A).
(ii) for each w € Q, Q¥ (w @, (A7), ) = 1.

By property (iii) above and Lemma [A]] (iv), for any fixed w € Q, we can define a probability
measure Q™% on (QT(“),Q;(W)) by

Q™(A) = Q¥(w®, Ay,), VA e G\,
Then, combining properties (ii) and (iii) above, we have: for A € Gp, it holds for P-a.e. w € Q) that
PA] G](w) = Q2 ((wer (@),) N A) = Q2we, AT) = QT(A™).  (A4)

Note that the r.c.p.d. {Q“},ecq is generally not unique. For each (t,z) € [0,T] x R, observe
that the shifted Wiener measure P“* can be characterized as the unique solution to the martingale
problem for the operator L := %Z?g:l %;mj starting from time ¢ with initial value z (see [30]
Remark 7.1.23] and [31], Exercise 6.7.3]). Then, thanks to the strong Markov property of solutions
to the martingale problem (see e.g. [3I, Theorem 6.2.2]), there exists a particular r.c.p.d. {Q%}ueq
such that Q™% = PT@)¥r), Now, by (A.4) and Lemma [A]] (ii), we have: for A € G,

P[A | G,](w) = PT@@r) (A7) = PT@) (A7) P-a.s. (A.5)

So far, we have restricted ourselves to G-stopping times. We say a random variable 7 :  — [0, 00]
is a G-optional time if {r < t} € G, for all ¢t € [0,T]. In the following, we obtain a generalized
version of ([A.D]) for G-optional times.

Lemma A.2. Fiz a G-optional time 7 <T. For any A € Gr,
PA | G- ](w) = PT@(A™) for P-a.e. w € Q.

Proof. Step 1: By [I8], Problem 1.2.24], we can take a sequence {7, }nen of G-stopping times such
that 7,(w) | 7(w) for all w € Q. Fix A € Gp. For each n € N, (A.5]) implies that for any B € G, ,

Ep[lalp] = Bp[P™()(A™*)1p). (A.6)
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Then, for any B € G, , we must have (A.6)) for all n € N, since G- = (e Gr,.- Now, by taking

the limit in » and assuming that for each w € Q2

lim P(@)(ATw) = PT) (AT, (A7)
we obtain from the dominated convergence theorem that Ep[l41p] = Ep[P™@) (A™*)1p]. Since

B € G, is arbitrary, we conclude P[A | G,4](w) = PT@)(A™¥) for P-a.e. w € Q.

Step 2: It remains to prove (A7). Fix w € Q and set A := {A C Q | (A7) holds}. Since
Q5 = QF, Vs € [0, T], (AD) holds for Q and thus Q € A. Given A € A, we have P™(@)[(A¢)™¥] =
P@[(AT9)] = 1 — P@)(A™w) — 1 — PT@) (A7) = PTW[(A™%)°] = PTW[(A°)™], which
shows A° € A. Given a sequence {4, };en of disjoint sets in A, observe that {A;“};cn is a sequence
of disjoint sets in Q¢ for any s € [0,7]. Then we have P™ @) [({J, oy 4i)™¢] = P, oy AT =
D ieN PT”(W)(AZMW) — D ieN PT(W)(AZM) =P Uien AT°] = PT(“’)[(UZ-GN A;)™%], which shows
Uien Ai € A. Thus, we conclude that A is a o-algebra of Q.

As mentioned in the proof of Lemmal[AJ] (i), Gr is countably generated by Cz = C% given in (A.2)).
Given C = NZ,(We,) YOy, () in Cp, if ty, > 7(w) we set k:=min{i = 1,--- ,m | t; > 7(w)};
otherwise, set k := m+ 1. We see that: 1. If wy, ¢ O, (x;) for some i =1,--- ,k—1, then C** = ()
Vs € [7(w),T] and thus (A7) holds for C. 2. If k = m+ 1 and wy, € O(x;) for all i = 1,--- ;m,
we have C*% = Q° Vs € [1(w),T] and thus (A7) still holds for C. 3. For all other cases, C° is of
the form in (A3) Vs € [r(w),T]. Let B be a d-dimensional Brownian motion defined on any given
filtered probability space (E,Z,{Zs}s>0, P). Then by Lemma [A.T] (ii),

P (w) [C™%] = P (@), (w) (O] = P[Bti—q—n(w) € Oy, (z; — an(w))7z‘ =k, m]
5 PIBy—r() € Ox, (@ — )i = k- ,m] = P&era[(7#] = P [0m)
Hence, we conclude that Cr C A and therefore Gr = o(Cr) C A. O

Now, we want to generalize Lemma [A.T] to incorporate F-stopping times.

Lemma A.3. Fix 0 € 7. We have
(i) For any N € N, N e /T/G(w) and ¢0_1N0,w e N for P-a.e. we .
(ii) For any r € [0,T] and A € F,, it holds for P-a.e. w € Q) that

ifow)<r, A" eHIOUN' cGIY and ¢;tA% e FIW.
(iii) For any r € [0,T] and &€ € LY(Q, F,.), it holds for P-a.e. w € Q that
if0(w) <r, & e LQFW).

Proof. (i) Take N € N such that N C N. By [I8, Exercise 2.7.11], there exists a G-optional
time 7 such that Ny := {# # 7} € N. By Lemma [A2] there exists No € N' C N such that
0 = PIN | Gry](w) = PT@(NT) for w € Q\ No. Thus, for w € Q\ (N; UNy), we have
0 =P W(N™w) = PVW(NIw) ie. NP e N, Since N N%< we have N e NP Pas.
On the other hand, from Lemma [A] (iii), P(¢, ' N0«) = P/@)(N9«) = 0 for w € Q\ (N1 UN>),
which shows qﬁglN‘)’“ € N P-a.s. Since (ﬁe_lﬁg’w - (ﬁe_lN‘)’“, we conclude qﬁglﬁe’w €N P-as.
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(ii) By [I8, Problem 2.7.3], there exist A € G, and N € N such that A = A UW and ANN =0.
From Lemma [A1] (i), we know that for any w € Q, if (w) < 7 then A% ¢ HoW ¢ gl Also,
from part (i) we have N e A7) Bas. We therefore conclude that for P-a.e. w € Q,if(w) <,
then A% = A% U N ¢ ’Hf(w) U Ne( - Qe(w Then, thanks to part (i) and Definition 211 it
holds P-a.s. that ¢ 'A% = g1 A% U ¢y 'N™ € ¢, HIW UN € FI@ if f(w) < r

(iii) Let € be a Borel subset of R. Since {~(€) € F,, we see from part (i) that, for P-a.e. w € €,
(%) (6) = {' € 2| & B0 d0(w)) € E} = {u' € U w0 d0(!) € £HEN} = 671671 (E)" e

9w i O(w) <r. O

Now, we generalize Lemma [A.2] to incorporate F-stopping times.

G(w)

Lemma A.4. Fiz 0 € T. For any A € Fr, P[A | Fy](w) = (A9, for P-a.e. w € Q.

Proof. Thanks again to [I8, Exercise 2.7.11], we may take a G-optional time 7 such that N; :=
{0 # 7} € N and F, = Fy. Moreover, we have A = AUN for some A € Gy and N € N with
ANN = 0, by using [I8, Exercise 2.7.3]. Then, in view of Lemma [A1] (ii), Lemma A3 (i), and
Lemma [A2] we can take some No € N such that for w € Q\ (N1 U Ny),

pP@ (A% = @ (A7) = T(W)(AT O 7(w )(NT’w) — P (A7) )

= PIAI6,4](0) = PlA | Gr1)e) =14 |G- )(0) |
For any B € F,, B=BU N’ for some B € G, C G-+ and N e N with BN N’ = 0, thanks agam
to [I8, Exercise 2.7.3]. We then deduce from (A.8) that E[1 ;15] =E[1;1 [@ (A9%) =
E ﬁg(w)(Ae’“)lB] . Hence, we conclude @g(w)(Ae’“) = PlA | F(w) = [ | Fol(w), for w € Q\
(N1UNy). O

Finally, we are able to generalize Lemma [AT] (iii) to incorporate F-stopping times.

Proposition A.1. Fiz 0 € T. We have
(i) for any A € Fr, P[A | Fpl(w) = _[¢_1A97w], for P-a.e. w € Q.
(ii) for any & € LY(Q, Fr,P), E[¢ | Fpl(w) = E [¢9%] for P-a.e. w € Q.

Proof. (i) By Lemma[A3] (i) and Lemma [A] (iii), it holds P-a.s. that
™[ A= w m[4—1 A0,w 1 — 1770w -1 40,w w)[ A0,w B (w)r 76,w w0 (w w
Plg; " A7) = Plg; 'A% + Bloy 'N"*] = Blg, A7) = P [A0%) = B*[40%] = P [40).

The desired result then follows from the above equality and Lemma [A.4l

(ii) Given A € Fr, observe that for any fixed w € Q, (14)?9(W) = 14 (w®g p(w’)) =
1 oy A0 (W'). Then we see immediately from part (i) that part (ii) is true for £ = 14. It fol-
lows that part (ii) also holds true for any JFp-measurable simple function £. For any positive
¢ € LY(Q, Fr,P), we can take a sequence {&,}nen of Fr-measurable simple functions such that
£n(w) T €(w) Yw € Q. By the monotone convergence theorem, there exists N € A such that
E[¢, | Fol(w) T E[€ | Fp](w), for w € Q\ N. For each n € N, since &, is an Fp-measurable simple
function, there exists N,, € N such that E[¢, | Fy](w) = E [(£,)?¢], for w € Q\ N,,. Finally, noting
that there exists N € N such that £%% is Fp-measurable for w € Q\ N (from Lemma A3 (iii))
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and that (&,)%%(w) 1 %9 (w') Vo' € Q (from the everywhere convergence &, 1 £), we obtain from

the monotone convergence theorem again that for w € Q '\ <(Un€N N,)UNU N/),

E[¢ | Fol(w) = lim E[¢, | Fol(w) = lim E[(&,)"] = E[¢"].
The same result holds true for any general ¢ € L'(Q, Fp,P) as € = ¢+ — ¢, O
A.1. Proof of Proposition 2.1l

Proof. (i) Set A := {A C Q| P(ANB) = P(A)P(B) VB € F/}. It can be checked that A is a
o-algebra of 2. Take A € QSt_I’H%p UN. If A € N, it is trivial that A € A; if A = ¢;'C with
C € HY., then for any B € F,

FANB)=FEBn¢'C)=E[F(BN¢'C | F)] =E[FBN ¢ C| F)w)lpw)].

By Proposition [A1] (i), for P-a.e. w € Q, P(BN¢;'C | F)(w) = Plo; L (BN ¢, '0)+] = Plg; 1C) =
P(A) if w € B. We therefore have P(A N B) = P(A)P(B), and conclude A € A. It follows that
¢;1H§~ UN C A, which implies Ff. = a(qﬁt_l’H} UN) C A. Thus, Ft and F; are independent.

(ii) Let A denote the set operation of symmetric difference. Set A := {A C Q| (¢; 1 AY*)AA €
N for P-a.e. w € Q}. Tt can be checked that A is a o-algebra of Q. Take A € ¢; "HLUN. If A € N,
we see from Lemma[A.3] (i) that A € A; if A = qﬁt_lC with C' € H%., then (bt_lAt"" = (ét_lC = A for
all w € Q, and thus A € A. We then conclude that F% = o (¢; "Hb UN) C A.

Take a sequence {&,} of random variables in L%(Q, F%) taking countably many values {r; }ien
such that &, (w) — &(w) for all w € Q. This everywhere convergence implies that for any fixed w € Q,
(&) (W) — £89(W') for all W' € Q. Now, fix n € N. For each i € N, since (&,)"H{r;} € Fi. CA,
there exists N; € N such that for w € Q\ N},

w]—1 _ — — t,w _ =—Mn _ <7
(l&n™] ™" {r}) Al) ™ i = [0 (&) HriD) ™ AlG) i} =TT €N, (A9)
where the first equality follows from the calculation in the proof of LemmalA.3| (iii). Then, we deduce
from (A9) that: for any fixed w € Q \ UzeN N7, (&) (W) = &u(w') for all W' € Q\ Uy M- It

follows that: for any fixed w € Q\ U, ,en Ny (5n)t“( ") = (W) for all W' € Q\ U; pen M and
n € N. Setting N = {J, ,en N; and M = |, , we obtain that for any w € Q\ N,

,ne

W) = nh_)n;o Ea(W) = nh_)ngo(gn) ’w(w') = (W), for W € Q\ M.

i,neN

A.2. Proof of Proposition

Proof. Take a sequence of stopping times {7; };eny C 7T such that 7; takes values in {m/2! | m € N} for
each i € N and 7;(w) | 7(w) for all w € Q (thanks to [I8, Problem 1.2.24]). Set N := {r < 0} € N.
Since 7;(w) | 7(w) for all w € Q, we have 7, > 6 on Q\ N for all i € N. For each i € N, let
ri :=m/2', m € N. Since {r; <7ri } € F, i for all m € N, we deduce from Lemmalm (ii) and the
countability of {r’ },.en that there exists N € N such that for w € Q\ N,

if O(w) <7l gt {m <ri 30 e .Fe(w) for all m € N. (A.10)
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Fix r € [0,T]. For any w € Q\(Wuﬁi), if O(w) > r, then 7 (w) > O(w) > r and thus <;59_1{7'Z- < =
¢ 0 =10¢ Fe, if (w) < r, there are two cases: 1. I m* E Ns.t. ri. € [0(w),r] and 7.4 > 7.
Then, by (AI0), ¢, {m <7} = ¢, {r; <71l }ewe]ﬁ c F/@. 2. Im* € Nst. i < 0(w)
and 7., > r. Since 7;(w ) = 0(w) > Ty by T < r}‘g“’ gy {m <1l 30 =90 =10 ¢ F)

Thus, for w € 2\ (N UN"), we have ¢, ' {r; <7} ¢ FY) and therefore

{77 <r} = {mi (w g o) <7} =5 {m <} € FI), v re0,7).

This shows that Tf’w € 7:96(5‘;0;)7“ forw e Q\ (NU NZ) Hence, for w € Q\ (WU (Usen Ni)>, we
have TZ-G v e 7;%:‘;)T Vi € N. Finally, since the filtration F?“) is right-continuous, 7%¢(w') =|

lim; o0 Tf “(w’) (this is true since 7; | 7 everywhere) must also be a stopping time in 729(5:‘)))T. O

A.3. Proof of Proposition 2.3l Recall the metric p on A defined in ([2.8]). We say § € A is a
step control if there exists a subdivision 0 =t <t < -+ < t,, = T, m € N, of the interval [0, T]
such that g, = 3, for t € [t;,tiy1) for i =0,1,--- ,m — 1.

Proof. By [24, Lemma 3.2.6], there exist a sequence {a"} of step controls such that o™ — «. For
each n € N, in view of Proposition B (ii), there exist N,, M, € AN such that: for any fixed
w e Q\ Ny, (@) (W) = a®w') for (r,w') € [0,T] x (2\ M,). It follows that: for any fixed
w € Q\Upen Nn, ()9 (w') = all(w’) for all (r,w’) € [0,T] x (2\ U,eny M») and n € N. With the
aid of Proposition [A]] (ii), we obtain
T T
0= lim p(a",a) = lim E [/0 p (ar,ar)dr} = lim E <IE [/0 o (al, a,)dr ]:t] (w)>

n—oo n—o0 n—oo

= [ [ ([ )" @) dEe) @
=i [ [ [ (e @) ) die) de

= lim [ p((a™)", ") dP(w) = lim [ p(a"™,a")dP(w) :/ lim p(a™, o) dP(w),

n—o0 n—o0 n— o0

where the last equality is due to the dominated convergence theorem. This implies that 0 =
lim, 500 p(a™, a*), for P-a.e. w € Q. Recalling that o™ — a, we conclude that p(a*¥,a) = 0 for

P-a.e. w € Q. The second assertion follows immediately from [24, Exercise 3.2.4]. 0
A.4. Proof of Lemma
Proof. By taking £ = F(X) in Proposition [A1] (ii) and using Remark 23] (ii),

E[F(XL%) | Fol(w) =E [F(Xi’x&)"’w} = / F (X2 (w g dp(w'))) dP(w')

t , X, 9,w _ _
_ / F <X9§°j} @) (w/)> dP(w') = J (e(w),xg’xﬁa(w);anW,T"’W) , for P-ae. w € Q.
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