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Abstract. We present a numerical algorithm to implement entropy-based (MN ) moment models
in the context of a simple, linear kinetic equation for particles moving through a material slab. The
closure for these models—as is the case for all entropy-based models—is derived through the solution
of constrained, convex optimization problem.

The algorithm has two components. The first component is a discretization of the moment equa-
tions which preserves the set of realizable moments, thereby ensuring that the optimization problem
has a solution (in exact arithmetic). The discretization is a second-order kinetic scheme which
uses MUSCL-type limiting in space and a strong-stability-preserving, Runge-Kutta time integrator.
The second component of the algorithm is a Newton-based solver for the dual optimization problem,
which uses an adaptive quadrature to evaluate integrals in the dual objective and its derivatives. The
accuracy of the numerical solution to the dual problem plays a key role in the time step restriction
for the kinetic scheme.

We study in detail the difficulties in the dual problem that arise near the boundary of realizable
moments, where quadrature formulas are less reliable and the Hessian of the dual objection function
is highly ill-conditioned. Extensive numerical experiments are performed to illustrate these difficul-
ties. In cases where the dual problem becomes “too difficult” to solve numerically, we propose a
regularization technique to artificially move moments away from the realizable boundary in a way
that still preserves local particle concentrations. We present results of numerical simulations for two
challenging test problems in order to quantify the characteristics of the optimization solver and to
investigate when and how frequently the regularization is needed.
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1. Introduction. In transport and kinetic theory, entropy-based closures are
used to derive moment models which retain fundamental properties of the underly-
ing kinetic equations such as hyperbolicity, entropy dissipation, and positivity. The
resulting models have been studied extensively in the areas of extended thermodynam-
ics [18,48], gas dynamics [24,29,32,33,40,42,57], semiconductors [2–5,26,31,34,41,56],
quantum fluids [16, 19], radiative transport [9–12, 20–22, 28, 30, 46, 47, 59, 62], and
phonon transport in solids [19]. In spite of their attractive mathematical properties
and wide application, entropy methods still suffer from several short-comings. Among
these is the issue of whether the closure can generate all physically possible, or realiz-
able, moments. Roughly speaking, a vector is realizable if it is the moment of a kinetic
distribution. In some applications, there are realizable vectors (on the boundary of
the set of realizable moments) for which the defining optimization problem has no
solution [29,32,33,57] and so the closure is not well-defined.
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Even when the closure is well-defined for all realizable moments, as in the appli-
cation considered here, there are significant computational challenges. Entropy-based
closures require the solution to a constrained, convex optimization problem at each
point in a space-time mesh which, in most cases, must be solved numerically (and
is usually done so via the associated dual problem). Indeed, when compared to con-
ventional closures with simple algebraic forms, the local computational cost of the
entropy-based approach can be quite high. However, the approach still has prac-
tical merit for large-scale, massively parallel computations that one might see in a
complex multi-physics application. This is due to the emerging paradigm in parallel
computing in which data transfer—not floating point operations—is the bottleneck to
efficient computation [1, 44, 63]. In particular, though entropy minimization requires
many expensive function evaluations, the solver that updates the moment equations
requires the same amount of data transfer between computational cells as it would
for a conventional, algebraic closure.

The bottleneck to implementing a well-defined entropy-based closure lies in the
solution of the dual problem for moments near the boundary of realizability, where the
condition number of the Hessian of the dual objective function can be arbitrarily large.
The situation is further complicated by the fact that the set of realizable moments
may not be closed under the action of the numerical solver for the moment equations.
Thus realizable moments near the realizable boundary may lead to values at the next
time step which are not realizable.

In the current work, we compute numerical solutions for entropy-based moment
systems that approximate linear transport in slab geometries. Similar calculations for
low-order systems can be found in [9,10,20–22,46,47,62]. Here we present a follow-up
to the simulations of higher-order systems based on the Maxwell-Boltzmann entropy
that were performed in [28]. However in this paper, we focus in much more detail
on the optimization problem near the realizable boundary and on the coupling be-
tween the optimization problem and the numerical method for solving the moment
equations. This includes, on the numerical-solver side, the design of a kinetic scheme
that preserves realizability and, on the optimization side, the use of adaptive quadra-
ture and a regularization technique which keeps moments away from the realizable
boundary.

The remainder of the paper is organized as follows. In Section 2, we introduce the
linear kinetic transport equation, recall the derivation of the entropy-based moment
model, and describe the numerical method for solving the moment equations. In
Section 3, we discuss difficulties in the solution of the optimization problem. In
Section 4, we detail how our implementation addresses these difficulties. In Section 5,
we report numerical results, and in Section 6, we state conclusions and discuss further
work.

2. Linear Kinetic Equations and Entropy-Based Closures.

2.1. Kinetic Equation. As in [27], we consider the migration of particles with
unit speed that are absorbed by or scattered isotropically off of a background material
medium with slab geometry. In a kinetic description, the particle system is charac-
terized by non-negative kinetic density F = F (x, µ, t) that is governed by a kinetic
transport equation of the form

∂tF + µ∂xF + σtF =
σs

2
〈F 〉 . (2.1)
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The independent variables in (2.1) are the scalar coordinate x ∈ (xL, xR) along the
direction perpendicular to the slab, the cosine µ ∈ [−1, 1] of the angle between the x-
axis and the direction of particle travel, and time t. Interactions with the material are
characterized by non-negative variables σs(x), σa(x), and σt(x) := σs(x)+σa(x) which
are the scattering, absorption, and total cross-sections, respectively. For the purposes
of this paper, these cross-sections are assumed to be isotropic, i.e., independent of
µ. The angle brackets denote integration over µ, i.e., for any integrable function
g = g(µ),

〈g〉 :=

∫ 1

−1

g(µ) dµ . (2.2)

Equation (2.1) is supplemented by boundary and initial conditions

F (xL, µ, t) = FL(µ, t) , µ > 0 , t ≥ 0 , (2.3a)

F (xR, µ, t) = FR(µ, t) , µ < 0 , t ≥ 0 , (2.3b)

F (x, µ, 0) = F0(x, µ) , µ ∈ [−1, 1] , x ∈ [xL, xR] , (2.3c)

where F0, FL, and FR are given.

2.2. Entropy-Based Closures. Let PN be the space of polynomials with de-
gree at most N and let m : [−1, 1]→ RN+1 be a vector-valued function whose (linearly
independent) components form a basis for PN . Exact equations for the moments

u(x, t) = [u0, . . . , uN ]T := 〈mF (x, ·, t)〉 (2.4)

are found by multiplying the kinetic equation (2.1) by m and integrating over all
angles. This gives the system

∂tu + ∂x〈µmF 〉+ σtu = σsQu , (2.5)

where the (N+1)×(N+1) matrix Q is such that Q〈mg〉 = 〈m〈g〉〉/2 for all functions
g ∈ L1(dµ).

Entropy-based methods close the system (2.5) by approximating F with an ansatz
F(u(x, t),m(µ)) which, for given (x, t), solves the constrained, strictly convex opti-
mization problem

minimize
g

〈η(g)〉 subject to 〈mg〉 = u . (2.6)

Here the minimization is with respect to f : [−1, 1] → R and η : R → R is strictly
convex. If a minimizer exists, it takes the form (see [40])

F(u,m) = Gα̂(u) , Gα := η′∗
(
α(u)Tm

)
, (2.7)

where η∗ : R → R is the Legendre dual of η, η′∗ is its derivative, and the vector
of Lagrange multipliers (also called “dual variables”) α̂(u) ∈ RN+1 solves the dual
problem

minimize
α∈RN+1

{〈
η′∗(α

Tm)
〉
−αTu

}
. (2.8)

In this paper we focus on the Maxwell-Boltzmann entropy η(z) = z log(z)− z. Thus
η∗(y) = η′∗(y) = ey and

Gα(µ) = exp(αTm(µ)). (2.9)
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Let f be the flux defined by the entropy-based ansatz:

f(u) :=
〈
µmGα̂(u)

〉
. (2.10)

It is straight-forward to verify (following arguments in [20, 40], for example) that,
when written in terms of α̂, the closed moment system

∂tu + ∂xf(u) + σtu = σsQu (2.11)

is symmetric hyperbolic and that, when σa = 0 (corresponding to an isolated physical
system), it dissipates the strictly convex entropy h(u) := 〈η(Gα̂(u))〉. For u ∈ RN+1,
(2.11) is commonly referred to as the MN model.

Correct boundary conditions for the moment system (which involve integration
of (2.3) over the entire µ space) are not easily determined because kinetic data is
only given for values of µ which correspond to incoming data. Indeed, the issue of
proper boundary conditions remains an open question, although some progress has
been made for linear systems [36, 37, 39, 55]. We discuss our implementation of the
boundaries in Section 2.4.

2.3. Realizability. One of the most challenging aspects of entropy-based clo-
sures is the issue of realizability.

Definition 2.1. Let the vector-valued function m be given and let L1
+(dµ) be

the set of all non-negative Lebesgue integrable functions g such that 〈g〉 > 0. A vector
v is said to be realizable (with respect to m) if there exists a g ∈ L1

+(dµ), such that
〈mg〉 = v. The set of all realizable vectors is denoted by Rm.

The following theorem characterizes the set Rm when the components of m are
monomials. It is a classical result in the theory of reduced moments; see, for example,
[58] and references therein.

Theorem 2.2. Let p = [1, µ, . . . , µN ]T . A necessary and sufficient condition for
a vector v to be realizable with respect to p is that

1. in the case that N is odd, the (N + 1)/2× (N + 1)/2 matrices B±, defined by

B±kl := vk+l ± vk+l+1 , k, l ∈ {0, . . . , (N − 1)/2} , (2.12)

are positive definite;
2. in the case that N is even, the (N + 2)/2 × (N + 2)/2 matrix B0 and the

N/2×N/2 matrix B1, defined by

B0
kl := vk+l , k, l ∈ {0, . . . , N/2} ,

B1
kl := vk+l − vk+l+2 , k, l ∈ {0, . . . , (N − 2)/2} ,

are positive definite.
The realizability of moments with respect to any vector-valued function m whose

components form a basis for PN can be determined by simply applying a change of
basis from m to p and then invoking Theorem 2.2. The next theorem characterizes
the geometry of Rm.

Theorem 2.3. The set Rm is a convex cone, i.e., for any moments v1,v2 ∈
Rm and nonnegative constraints c1 and c2, with c1 + c2 > 0, c1v1 + c2v2 ∈ Rm.
Furthermore, it is open.

Proof. The fact that Rm is a convex cone follows from the fact that L1
+(dµ) is

also a convex cone. Openness is an corollary of Theorem 2.4 below.
The issue of realizability raises three questions:
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1. Does a solution to (2.6) exist for all u ∈ Rm?
2. If solutions do exist, is the set Rm invariant under the dynamics of (2.11)?
3. If such an invariance property holds, can it be preserved at the numerical

level?
In general the answer to the first question is “no.” The lack of existence is related
to the fact that the constraints in (2.6) are not always continuous in the L1 norm
[29, 32, 33, 57]. However, for the case under consideration, the domain of integration
is bounded and the components of m are bounded on that domain. These properties
ensure that L1 continuity holds and a solution exists, leading to the following theorem.

Theorem 2.4 ( [33]). The function α̂ which maps moments u to dual variables
α via the solution of (2.8) is a smooth bijection from Rm onto RN+1. Its inverse is
the moment map v̂ given by

v̂(α) = 〈mGα〉 . (2.13)

Proof. See [33] and also [7, 32,45] for similar results.
Notwithstanding Theorem 2.4, realizability presents significant numerical chal-

lenges. Indeed, near the boundary of Rm, the Hessian of the dual objective (2.8) is
ill-conditioned at the solution. This is a consequence of the fact that, on the bound-
ary itself, the constraint equations are uniquely solved by atomic measure—that is,
an ansatz made up of delta functions [14].

The question of whether Rm is invariant under the dynamics of (2.11) remains
open, although partial results can be found in [13]. However, one may at a numerical
level enforce the invariance property. We do so below using an appropriate kinetic
scheme.

For the remainder of the paper, we will follow the common convention and as-
sume that the components of m are the first N + 1 Legendre polynomials, which are
orthogonal on [−1, 1] with respect to L2. With this choice of basis, the entries of Q
are given by

Qlm = δlmδl0 , (2.14)

δlm being the Kronecker δ, so that Qu = [u0, . . . , 0]T .

2.4. Numerical Integration of the Moment System. We implement a nu-
merical solution to (2.11) using a kinetic scheme [17, 19, 25, 53, 54] which is second-
order in both space and time. In the context of entropy-based closures, the main
benefit of this scheme is that it preserves realizability. In addition, it avoids the di-
rect computation of eigenvalues and (approximate) Riemann solvers [61] which, for
most entropy-based moment systems, is expensive due to the complicated relationship
between u and f in (2.10).

Let ∆x = (xR−xL)/Nx and ∆t > 0 be given mesh parameters, and let {xj}Nx+2
j=−1×

{tn}Nt
n=0 be a uniform space-time mesh defined by xj := xL + (j − 0.5)∆x and tn :=

n∆t. The values xj define the centers of contiguous spatial cells Ij := (xj−1/2, xj+1/2),
where xj±1/2 := xj ± ∆x/2. The cells with indices j ∈ {−1, 0, Nx + 1, Nx + 2} are
“ghost cells”, which are not part of the physical domain but are used to implement
boundary conditions.

We approximate u numerically via its the cell averages, letting

1

∆x

∫
Ij

u(x, t) dx ' uj(t) , j ∈ {−1, . . . , Nx + 2} . (2.15)
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The semi-discrete, numerical scheme for (2.11) which defines uj on the interior of the
domain is

∂tuj +
fj+1/2 − fj−1/2

∆x
+ σtuj = σsQuj , j ∈ {1, . . . , Nx} , (2.16)

the numerical flux fj+1/2 being given by

fj+1/2 := 〈µmĜj+1/2〉 , j ∈ {0, . . . , Nx} , (2.17)

and Ĝj+1/2 is an approximation of the entropy ansatz at the cell edge. These edge
values are defined based on the sign of µ, via up-winding:

Ĝj+1/2(µ, t) :=

{
Ĝj(µ, t) + ∆x

2 ŝj(µ, t) , µ > 0

Ĝj+1(µ, t)− ∆x
2 ŝj+1(µ, t) , µ < 0

, j ∈ {0, . . . , Nx} , (2.18)

where Ĝj is the entropy ansatz associated to uj via (2.7):

Ĝj(µ, t) := Gα̂(uj(t))(µ) , j ∈ {−1, . . . , Nx + 2} . (2.19)

For j ∈ {0, . . . , Nx + 1}, the quantity ŝj is an approximation of the spatial derivative

of Ĝ in cell Ij :

ŝj = minmod

{
θ
Ĝj − Ĝj−1

∆x
,
Ĝj+1 − Ĝj−1

2∆x
, θ
Ĝj+1 − Ĝj

∆x

}
, (2.20)

where 1 ≤ θ ≤ 2 [38, 49].(1) The minmod function selects the real number with
smallest absolute value in the convex hull of its arguments. (Note that, in (2.20), Ĝj
is needed for j ∈ {−1, 0, . . . , Nx + 2}, which shows the need for four ghost cells, two
on each side of (xL, xR).)

As mentioned in Section 2.2, boundary conditions for moment systems remain an
open question. In our implementation, we prescribe boundary conditions by specifying
moments on the four ghost cells. For periodic boundaries used in some test problems,
we simply set

u−1(t) = uNx−1(t) , u0(t) = uNx(t) , uNx+1(t) = u1(t) , uNx+2(t) = u2(t) .
(2.21)

For physical boundary conditions, moments in ghost cells are defined by extending
the definitions of FL(µ, t) and FR(µ, t) to all µ and then taking moments:

u−1(t) = u0(t) = 〈mFL(µ, t)〉 , uNx+1(t) = uNx+2(t) = 〈mFR(µ, t)〉 . (2.22)

While reasonable, this is clearly not the only option. Further discussion of this issue
is given in [27,60].

To integrate (2.16) in time, we use the optimal, second-order strong-stability-
preserving Runge-Kutta (SSP-RK2) method [23], also known as Heun’s method or
the improved Euler method. We approximate uj(t

n) ' unj and let un denote the

1Any value of θ ∈ [1, 2] will yield a second-order scheme and, roughly speaking, larger values of
θ decrease numerical diffusion in the scheme. When θ = 1, monotonic cell averages yield monotonic
reconstructions Gj(µ, t) + sj(µ, t)(x−xj). When θ = 2, edge values are bounded by neighboring cell
averages.
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array containing {unj }Nx+1
j=−1 . For (2.16) with (2.21) or (2.22) in the abstract form

∂tu = L(u), the SSP-RK2 method with initial stage u(0) := un is given by

u(1) := u(0)+∆tL(un), u(2) := u(1)+∆tL(u(1)), un+1 :=
1

2

(
u(0) + u(2)

)
(2.23)

for all n ∈ {0, . . . , Nt − 1}.
As discussed in [27], kinetic scheme (2.16)–(2.23) is very inefficient in diffusive

regimes, where σt is large. In such regimes, accuracy requirements dictate that the
spatial and temporal mesh depends inversely on σt, even though the solution profile
varies on an O(1) scale. However, for the test cases considered later in this paper, σt

is an O(1) quantity.

2.5. Maintaining realizability. The kinetic scheme (2.16)–(2.23) invokes a so-
lution of the dual problem (2.8) in (2.18) and (2.20), via (2.19). The fact that the
dual problem can only be solved approximately must be take into consideration when
attempting to maintain realizability of the moments in the numerical solution. We
let ᾱ(u) denote the approximate solution and introduce the associated notation

Ḡj(µ, t) := Gᾱ(uj(t))(µ, t). (2.24)

The use of this approximate solution to the optimization problem means replacing
the definition for the numerical flux in (2.17) by

fj+1/2 :=
〈
µmḠj+1/2

〉
, (2.25)

where Ḡj+1/2 is computed just as Ĝj+1/2 in (2.18), but replacing Ĝj by Ḡj . The
corresponding slopes (see (2.20)) are denoted by s̄j .

We now prove that with an appropriate time-step restriction and appropriate
boundary conditions, the resulting kinetic scheme preserves realizable moments. It
turns out that with an inexact solution to the dual problem (2.8), the ratios between
the ansatzes Gᾱ and Gα̂ at each stage of the Runge-Kutta scheme play a key role.
We therefore define at each time step tn

γ
(m)
j :=

(
Ḡ

(m)
j

Ĝ
(m)
j

)
, m ∈ {0, 1} , and γmax := max

m∈{0,1}
j∈{−1,...,Nx+2}

µ∈[−1,1]

{γ(m)
j (µ)} , (2.26)

where Ĝ
(m)
j := G

α̂(u
(m)
j )

and Ḡ
(m)
j := G

ᾱ(u
(m)
j )

, u
(m)
j being the jth subvector of u(m),

defined in (2.23).(2)

Theorem 2.5. Suppose that unj ∈ Rm for j ∈ {−1, . . . , Nx + 2}. If un+1 is
defined via the kinetic scheme (2.16),(2.25),(2.18)–(2.23) with bars replacing hats in
(23)-(25) and with time-step restriction

γmax
∆t

∆x

2 + θ

2
+ σt∆t < 1 (2.27)

and if the moments in the ghost cells are realizable at each stage of the Runge-Kutta
scheme (2.23), then un+1

j ∈ Rm for j ∈ {1, . . . , Nx}.

2Here we suppress the dependence on n for clarity.
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Proof. We show for m ∈ {1, 2} that u
(m−1)
j ∈ Rm for j ∈ {−1, . . . , Nx + 2}

implies u
(m)
j ∈ Rm for j ∈ {1, . . . , Nx}. Realizability for the subvectors of un+1 then

follows from (2.23) and Theorem 2.3 (convexity of Rm). The key point is to observe
that

u
(m)
j = 〈mΦ

(m)
j 〉 , j ∈ {1, . . . Nx} , m ∈ {1, 2} , (2.28)

where

Φ
(m)
j := Ĝ

(m−1)
j − µ∆t

∆x

(
Ḡ

(m−1)
j+1/2 − Ḡ

(m−1)
j−1/2

)
+ ∆t

(
−σtĜ

(m−1)
j +

σs

2

〈
Ĝ

(m−1)
j

〉)
.

(2.29)

Thus one need only show that Φ
(m)
j ≥ 0. Stripping away positive terms on the right-

hand side of (2.29) gives

Φ
(m)
j ≥ Ĝ(m−1)

j − µ∆t

∆x
Ḡ

(m−1)
j+1/2 −∆tσtĜ

(m−1)
j . (2.30)

Assume µ ≥ 0. (The case µ < 0 follows from an analogous argument.) If s̄j > 0 (so
all arguments of the minmod in (2.20) are non-negative), we have (with bars instead
of hats)

s̄
(m−1)
j ≤ θ

Ḡ
(m−1)
j − Ḡ(m−1)

j−1

∆x
(2.31)

so that, using (2.18),

Ḡ
(m−1)
j+1/2 ≤

(
1 +

θ

2

)
Ḡ

(m−1)
j − θ

2
Ḡ

(m−1)
j−1 ≤ 2 + θ

2
Ḡ

(m−1)
j . (2.32)

Substituting (2.32) into (2.30) and invoking the definition of γ
(m−1)
j from (2.26) gives

Φ
(m)
j ≥

(
1− µγ(m−1)

j

∆t

∆x

2 + θ

2
−∆tσt

)
Ĝ

(m−1)
j . (2.33)

From (2.33), it is clear that (2.27) implies non-negativity of Φ
(m)
j . On the other hand,

if s̄j ≤ 0, we obtain

Φ
(m)
j ≥

(
1− µγ(m−1)

j

∆t

∆x
−∆tσt

)
Ĝ

(m−1)
j . (2.34)

The positivity of the left-hand side of (2.34) is guaranteed by the condition

µγ
(m−1)
j

∆t

∆x
+ ∆tσt < 1 , (2.35)

which is weaker than (2.27). This concludes the proof.
Remark 1. The reader should note the following:
1. The proof of Theorem 2.5 does not depend on the specific form of Ĝj or Ḡj,

only on the fact that they are positive. Thus the theorem applies to different
types of closures and different types of numerical error, so long as positivity
of the two approximations is maintained.
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2. Setting γmax = 1 recovers the time-step restriction for the case when there is
no error in approximating the ansatz. If further σt = 0, then the correspond-
ing time step restriction is exactly what is required to maintain positivity for
a single Euler step applied to a semi-discrete MUSCL scheme [51] for a linear
advection equation with speed one (the maximum value of |µ|). This is not
by accident; in this case, the kinetic scheme (2.16)–(2.23) is equivalent to the
moments of a semi-discrete MUSCL scheme for the transport equation (2.1)
with initial condition Ĝ.

3. The quantity γmax depends on the solution values at the intermediate Runge-
Kutta stage u(1). This leaves a user with two options: either (i) set an
upper bound for γmax to determine a suitable ∆t and then require that the
optimization error for every cell and every stage is below that bound or (ii)
check the error at the intermediate stage and, if it is too high, exit the Runge-
Kutta algorithm, go back to the previous time step, and choose a smaller value
for ∆t. In our implementation, we take the former approach.

4. Equation (2.33) shows that the less conservative definition of γmax given by

γ′max := maxm,j,µ{µγ(m)
j (µ)} is sufficient to guarantee nonnegativity. This

definition was not used in our implementation.

3. A Study of the Optimization Problem. Solving the dual problem (2.8)
is by far the most computationally intensive part of implementing the entropy-based
closure. At the outset, we note the following:

1. The optimization routine is always applied to moments which are normalized
by dividing by the zeroth-order moment u0 (the local particle concentration),
noting that,

α̂(u) = α̂(u/u0) + [log(u0), 0, . . . , 0]T . (3.1)

This normalization makes it simpler to specify tolerances and analyze perfor-
mance.

2. All calculations are performed in double precision arithmetic, where machine
precision—that is, the maximum possible relative error in representing a num-
ber as a floating point is 2−53 ≈ 1.11×10−16. However, the analysis presented
in the remainder of the paper can be easily applied to any floating point sys-
tem.

3.1. Basics of the optimization. We denote the objective function in (2.8)
and its gradient and Hessian, respectively, by

f(α) := 〈Gα〉 −αTu , g(α) := 〈mGα〉 − u , H(α) :=
〈
mmTGα

〉
. (3.2)

Note that f is smooth and strictly convex and H is positive definite for all α and
independent of u.

We approach α̂(u) using Newton’s method with an Armijo backtracking line
search [6] to guarantee global convergence and fast (quadratic) local convergence.
Given an initial guess α0, the iterates α1, α2, . . . are constructed by

αk+1 = αk + βid(αk), k ∈ {0, 1, 2, . . .} , (3.3)

where d(αk) := −H−1(αk)g(αk) is the Newton direction at αk, β ∈ (0, 1) is the
step-size parameter, i is the smallest non-negative integer such that

f(αk + βid(αk)) ≤ f(αk) + βiξg(αk)Td(αk) , (3.4)
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and ξ ∈ (0, 1/2). At t = 0, we set the initial condition α0 so that Gα0
is the

isotropic distribution with moment u0. Assuming the normalization u0 = 1, this
means α0 = [− log(2), 0, . . . , 0]

T
. For t > 0, the multipliers ᾱ from the previous time

step are the natural choice for the initial condition.

There are two conditions in the stopping criterion. Given parameters τ > 0 and
εγ > 0, we terminate the optimization process at αk when

‖g(αk)‖ ≤ τ and exp (5ζ‖d(αk)‖) ≤ 1 + εγ . (3.5)

Here ζ := maxµ ‖m(µ)‖, and ‖·‖ is the Euclidean norm. The first condition measures
the difference between the moments u and those of a candidate ansatz Gαk

(see (3.2)).
The second condition is related to realizability of the moments generated by the kinetic
scheme (2.16),(2.25),(2.18)-(2.23). Due to (2.27) in Theorem 2.5, an upper bound on
γmax is needed to ensure realizability with a reasonable time step ∆t = O(∆x). We
conservatively bound γk := Gαk

/Gα̂ using the inequality

max
µ∈[−1,1]

γk(µ) = max
µ∈[−1,1]

exp((αk − α̂)Tm(µ)) ≤ exp (ζ‖αk − α̂‖) . (3.6)

The exact minimizer α̂ is unknown, but we can approximate ‖αk − α̂‖ ≈ ‖d(αk)‖,
which is a good asymptotic estimate because Newton’s method locally converges
quadratically. For our implementation, we further insert a factor of five inside the ex-
ponential in the right-hand side of (3.6) to increase our confidence in our upper bound
of γk. This gives the second condition in (3.5). With this conservative estimate of γk,
we are typically able to use time steps of at least 90% of the maximum theoretical
value for ∆t—that is the value of ∆t which corresponds to an exact solution of the
dual problem and is computed from (2.27) with γmax = 1.

3.2. Difficulties Near the Realizable Boundary. Problem (2.8) becomes
difficult to solve when the moments u lie near the boundary ∂Rm of the set of realiz-
able momentsRm. Such moments are associated with highly anisotropic distributions
and/or vacuum states (F (x, ·, t) ≡ 0) and often occur in the presence of strong sources
or when particles enter a void. Refining the spatial mesh in the PDE solver tends to
exacerbate the problem since then the sharp dynamics are more fully resolved.

The presence of “near-boundary” moments is challenging for two reasons. First,
as mentioned in the introduction, small discretization errors in the PDE solver may
generate unrealizable moments. This can be overcome with a solver under which Rm

is invariant. The scheme in Section 2.4 is one such solver (assuming the left-hand side
of the second condition in (3.5) is indeed an upper bound on γmax in (2.26)). The
second issue is that problem (2.8) becomes highly ill-conditioned near the boundary
of Rm. We next present two examples to illustrate this second point.

Example 1: The M1 Model. The M1 model is the simplest example of an entropy-
based moment system. It uses only the first two Legendre polynomials: m = [m0,m1]T =
[1, µ]T . The model was first introduced in [46] in the context of photon radiation
and later analyzed in much greater detail in [9]. Unlike the case for most entropy-
based models, the relationship between the moments and the multipliers in M1 can
be expressed without the use of integral formulas. This makes M1 a useful tool for
understanding the challenges of solving the dual problem (2.8).

First consider the first-order necessary condition for optimality of the M1 dual
problem. Let u = [u0, u1]T and α̂(u) = [α̂0(u), α̂1(u)]T . By solving g(α̂(u)) = 0

10



with g given in (3.2), one can show that the optimal multipliers satisfy (see [9])

u0 =
2eα̂0(u)

α̂1(u)
sinh(α̂1(u)) and

u1

u0
= coth(α̂1(u))− 1

α̂1(u)
. (3.7)

A plot of the second relation is given in Figure 3.1(a). The fact that µ is restricted
to [−1, 1] implies that |u1| < u0 for any realizable u. Appropriately, the range of
coth(α1)− 1/α1 is (−1, 1). From (3.7), one can show that

α̂0(u)→ −∞ and
α̂1(u)

α̂0(u)
→ sign(u1) (3.8)

as |u1|/u0 → 1, while u0 is held constant. The unbounded growth in the components
of α causes numerical overflow and underflow because of the exponential involving α
in the objective function and its derivatives (see expression (2.9) for Gα).

It is also straight-forward to see for M1 that as u approaches ∂Rm the Hessian
of the dual problem at α̂(u) becomes singular. Indeed, let P := 〈µ2Gα̂(u)〉. Then a
standard calculation shows that the eigenvalues of H are

λ± =
1

2
(u0 + P )± |u1|

√
1 +

(
u0 − P

2u1

)2

(3.9)

and that the bound

|u0 − P | = |〈(1− µ2)Gα̂(u)〉| ≤ 2|〈(1± µ)Gα̂(u)〉| = 2|u0 ± u1| (3.10)

holds, so that P → u0 as u1 → ±u0. Thus the ratio λ+/λ− tends to ∞ as u1 → ±u0.
The numerical difficulties above are compounded by the fact that, in general, the

integrals in the objective, gradient, and Hessian must be approximated by quadrature.
Given a set of quadrature points Q, the approximation fQ has the form

fQ(α) =
∑
µi∈Q

wiGα(µi)−αTu, (3.11)

where wi > 0 and µi ∈ Q are the quadrature weights and nodes, respectively. For
M1, the first-order necessary conditions for fQ yield an analog to the second equation
of (3.7):

u1

u0
=

∑
wiµi exp(α̂Q,1µi)∑
wi exp(α̂Q,1µi)

, (3.12)

where α̂Q = [α̂Q,0, α̂Q,1]T denotes the minimizer of fQ. Assuming the quadrature
contains at least one node µi < 0 and at least one node µi > 0, consideration of
the range of the right-hand side of (3.12) (with respect to α̂Q,1) shows that (3.12) is
solvable if and only if

min
µi∈Q
{µi} <

u1

u0
< max
µi∈Q
{µi}. (3.13)

Thus the existence of a minimizer of fQ depends on Q and on how close u is to the
realizable boundary.
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Fig. 3.1. Illustrating difficulties in the optimization.

The Hessian of the approximate objective function, used in calculating the Newton
direction, is given by the following sum of rank-one matrices:

HQ(α) =
∑
µi∈Q

wiGα(µi)m(µi)m
T (µi). (3.14)

Suppose that u is near ∂Rm and α→ α̂(u). Then as a consequence of (3.8), Gα(µ)
may vary by (arbitrarily) many orders of magnitude over the interval [−1, 1], in an
effort to approximate the ansatz for u, which is nearly a delta-function. In such cases,
the limits of finite precision arithmetic mean that many of the terms in (3.14) are
effectively zero, making it difficult for HQ(α) to build rank.

In numerical experimentation, we encountered the (non-normalized) moments

[u0, u1]T = [1.19788813813286,−1.15179519716325]T × 10−5 (3.15)

which occurred as particles entered the vacuum surrounding an initial impulse. Here
|u1|/u0 ≈ 0.962. Figure 3.1(b) shows contours of the objective function for this prob-
lem and the effect of the quadrature approximation on the Newton direction. The
minimizer of the true objective function, which is marked with a star in the upper
right of the figure, is α̂(u) ≈ [−34.1,−26.0]T . A particular iterate αk is marked
with a dot in the lower right of the figure along with the approximate Newton direc-
tion computed with an eight-point Gauss-Legendre quadrature. For this particular
quadrature mini{µi} ≈ −0.9603, and thus according to (3.13), (3.12) is not solvable,
i.e., fQ does not have a minimizer. Not surprisingly, the figure shows that the Newton
direction points in the wrong direction. However, as seen in Figure 3.1(b), increasing
nQ by only one suffices to orient the approximation Newton direction correctly. For
the nine-point Gauss-Legendre quadrature mini{µi} ≈ −0.9682 so that (3.12) is then
solvable.

Example 2: A Higher-Order Model. Numerical difficulties also arise in higher-
order models. Consider the following M15 example with the (normalized) moments
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and multipliers

u = [ 1.0, 0.837872568, 0.572819692, 0.294071376,
0.079519254, -0.034894762, -0.060428124, -0.037077987,

-0.006145576, 0.009337451, 0.007920869, 0.000075451,
-0.004350212, -0.002832808, 0.001074657, 0.003022835]T

(3.16a)

α = [ -196.5928920, 230.2769882, 139.8256880, -201.8699700,
-183.7928851, 351.6791766, -10.2198926, -278.4913086,

58.7675482, 304.0819552, -258.7624346, -112.8547686,
341.8135033, -269.7545794, 104.3082746, -17.0933354]T

(3.16b)

which we encountered in the course of solving the two-beam instability problem dis-
cussed in Section 5.3. (Note that α is not α̂(u); rather it is an iterate of the opti-
mization algorithm when attempting to find α̂(u).)

To get a sense of how close a moment is to ∂Rm, one may calculate the minimum
eigenvalues of B+ and B− from (2.12) in Theorem 2.2. (Recall, one first has to map
to the monomial moments to compute these matrices.) For u in (3.16), the minimum
eigenvalues of B+ and B− are approximately 2.3×10−10 and 2.1×10−10, respectively.
For the moment v̂(α), the minimum eigenvalues are approximately 9.3 × 10−10 and
1.3×10−10, respectively. As a reference, the minimum eigenvalues for the normalized
“isotropic” moment [1, 0, . . . , 0]T are approximately 1.3× 10−5.

From Figure 3.2(a), it is clear that all the structure in the polynomial p :=
αTm is on the left-hand side of the interval. However, because the pointwise values
of p are large and negative there, this structure is essentially destroyed when the
exponential is applied (Figure 3.2(b)). Even though the functionGα appears relatively
benign—nothing close to the delta functions which generate the moments on ∂Rm—
the condition number of the numerical Hessian (cf. (3.14)) is quite large. Using a
very fine 800-point Gauss-Legendre quadrature on each of the subintervals [−1, 0] and
[0, 1] to compute HQ, we find that λmin(HQ) ≈ 4.98 × 10−12 and λmax(HQ) ≈ 2.21
so that the condition number of HQ is approximately 4.44× 1011.

Associated with λmin(HQ) is the unit-length eigenvector cQ, soHQcQ = λmin(HQ)cQ.
We evaluate the integrand of the quadratic form

U(c,α) := cTH(α)c ≡ 〈|cTm|2Gα〉 (3.17)

at c = cQ. (Note that U(cQ,α) = λmin(HQ(α)) when quadrature Q is used to
evaluate the integral.) The results, given in Figure 3.2(c), show a combination of
two effects. First, on the right-hand side of the interval, the polynomial |cTm|2 is
very small, but due to the orthogonality relation 〈mkml〉 = 2δkl/(2k+ 1), this cannot
hold everywhere on the interval; indeed, on the left-hand side |cTm|2 becomes O(1).
However, on the left-hand side, Gα is so small that any contribution to the integral
in (3.17) is strongly damped.

Over the entire interval, the most significant contribution to the integral comes
from the three peaks in Gα on the left-hand hand side. (One of these is at the bound-
ary µ = −1.0.) It is interesting to note that the value of |cTm|2 dips significantly
at these peaks so that the product |cTm|2Gα is O(10−10). When Q is coarsened,
the number of quadrature points contained in the support of these peaks decreases,
eventually causing the integral (3.17) to decrease and the condition number of HQ
to increase. This effect is displayed in Figure 3.2(d), where we plot the condition
number versus the number of quadrature points. In each case, the points are evenly
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divided into two Gauss-Legendre quadrature sets on the right and left sides. This
result illustrates the need for a highly accurate quadrature set when u is close to
∂Rm.
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Fig. 3.2. Examining the multipliers given in (3.16).

4. Implementation of the Optimization Algorithm. In this section, we
discuss implementation of the optimization algorithm with an adaptive quadrature.
We then present a regularization technique to handle moments near the boundary of
the realizable set that addresses the difficulties discussed in Section 3.

4.1. Adaptive Quadrature. Most integrals encountered during the optimiza-
tion process are accurately approximated with just a few Gauss-Legendre quadrature
points, but some require many more. Thus a sensible solution is a quadrature adapted
to each ansatz Gα, i.e., a function of α. However, as the optimization algorithm iter-
ates through different values of α, we must make sure that our changing quadratures
do not jeopardize the algorithm’s convergence.

4.1.1. Designing the adaptive quadrature. We choose a quadrature sepa-
rately for [−1, 0] and [0, 1] in order to better capture “one-sided” distributions (as
in Example 2 of Section 3.2) and because the integrand in the flux term (2.25) takes
different forms for µ < 0 and µ > 0 (see (2.18)). On each half-interval, we use a Gauss-
Legendre quadrature and select its order adaptively. To do so, we begin each instance
of the optimization process with an initial number of quadrature points nQ = N + 5
on each half interval. Whenever the optimization routine requires an accuracy test
of the current quadrature, we actually compute two different quadratures of Gα over
the half-interval of interest: one with the nQ-point Gauss-Legendre rule and one with
the associated (2nQ + 1)-point Gauss-Kronrod rule [15]. The Gauss-Legendre rule is
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accepted if the relative difference in the two quadratures is less than the value of a
tolerance parameter τQ. Otherwise, the value of nQ is incremented by one and the
test is repeated—unless nQ has already reach a prescribed hard upper bound nMAX

Q .
Roughly speaking, this value is chosen to be several orders of magnitude greater than
machine precision, while still giving highly accurate approximations for f , g, and H.

4.1.2. Using adaptive quadrature in the optimization algorithm. As
mentioned in Section 3.1, we use Newton’s method stabilized by a backtracking line
search. During the solution of an optimization problem, we never decrease the number
of quadrature nQ points for either half interval, but we do enforce the bound nMAX

Q
on nQ. This ensures that the global convergence properties of Newton’s method with
backtracking line search (see, e.g., [8]) are not jeopardized: in exact arithmetic (and
assuming the stopping criterion is turned off), the constructed sequence will converge
to the unique global minimizer of fQfinal

, where Qfinal is the final quadrature.

Given an iterate αk, we compute quadrature weights and nodes according to
the criteria outlined in Section 4.1.1. The computed quadrature Q is then used
to determine the Newton step and the step size. Upon exiting the line search, we
compute a new quadrature Qnew and check that the line search criterion (3.4) still
holds when using Qnew to evaluate all the requisite integrals. If it does, we update the
iterate according to (3.3), using Qnew to compute the Newton step, and perform the
linesearch for the next iteration. If (3.4) is not satisfied with the quadrature Qnew,
we continue the line search using Qnew until (3.4) is satisfied again, and so on until
an integer i is arrived at for which (3.4) holds.

We have observed cases where, after switching to a finer quadrature during the line
search, the previous estimate of the value of the objective function was evidently very
poor. This happened, for example, when new quadrature nodes revealed structure
in the ansatz that was not visible to the previous quadrature nodes. If the two
estimates of the initial value of the objective function differ greatly, the line search
may backtrack all the way back to the previous iterate (that is, i in (3.4) is large
enough that βi underflows). In this case, we recompute the Newton direction using
the new quadrature.

Further complicating matters, it may happen that with the new quadrature, the
Hessian is so poorly conditioned that the search direction cannot be computed with
sufficient accuracy. This suggests that the Newton iteration has strayed off course
because of a previous quadrature that was too coarse. Accordingly, given a pre-
scribed large value κmax > 0, if cond (HQnew

(αk)) > κmax at some iteration k, we
successively consider previous iterates αk−1,αk−2, . . . to determine the largest pos-
itive non-negative integer i < k such that cond (HQnew

(αi)) ≤ κmax. We then set
αk+1 := αi and continue the optimization, still with the new quadrature.

4.1.3. Coupling to the Flux Terms in the PDE Solver. As mentioned
in Section 4.1.2, the number of quadrature points nQ used to evaluate integrals is
never decreased during the execution of the optimization algorithm. Consequently,
upon exiting the optimization process, the final quadrature may be much finer than
needed to accurately approximate the flux fj+1/2 in (2.25). Therefore, upon exiting
the optimization algorithm, we generate (according to the criteria in Section 4.1.1)
new quadrature sets for ᾱ(uj); that is, a new quadrature is generated “from scratch,”
starting with nQ = N + 5 points on each half interval so that the tolerance τQ is
satisfied and also cond(HQ(ᾱ)) ≤ κmax. For this quadrature, let Q+

j and Q−j denote
positive and negative values of µ respectively in each cell Ij . Then the flux is computed
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by

fj+1/2 ≡
〈
µmḠj+1/2

〉
'
∑
µ∈Q+

j

µm(µ)Ḡj+1/2,l +
∑

µ∈Q−
j+1

µm(µ)Ḡj+1/2,r (4.1)

The evaluation of the edge values requires the computation of slopes s̄j for each
cell Ij , as given in (2.20) (with hats replaced by bars). Computation of the slopes is
implemented by passing the values ᾱj±1 (the computed multipliers from cells Ij±1) to
the cell Ij , evaluating Ḡj±1 for every µ ∈ Qj := Q−j ∪Q+

j , and then using these ansatz
values to compute s̄j for every µ ∈ Qj . There are two reasons for this approach: First,
while the quadrature sets may vary from cell to cell, evaluation of the slopes must
occur on a common set of values for µ. Second, passing multipliers rather than kinetic
data significantly reduces the communication between cells.

4.1.4. Computational Limits. With an adaptive quadrature and its careful
implementation in the optimization algorithm, we have been able to solve challenging
problems on fine spatial meshes. (See Section 5.) However, for any given quadrature
set Q, there are almost always moments for which the approximate gradient gQ
remains bounded away from zero, i.e., there is a constant C which depends on the
quadrature, such that ||gQ(α)|| ≥ C > 0 for all α ∈ RN+1 (cf. (3.13) for the
case of the M1 model). This is a consequence of the fact that the moments on the
boundary of Rm can only be generated by a unique atomic distribution—that is, a
linear combination of delta functions [14].

If {u(l)} is a sequence of moments such that u(l) → ubndry ∈ ∂Rm, then as l
increases, Gα̂(u(l)) more closely approximates the unique atomic distribution which
generates ubndry. In particular, the effective support of Gα̂(u(l)) (i.e., the set of µ
on which Gα̂(u(l)) is large enough to affect the numerical evaluation of the moment
integral) begins to shrink. If Q is not co-located with the limiting atomic distribution,
then for l sufficiently large, the effective support of Gα̂(u(l)) will eventually fail to
contain any points of Q. For the M1 case, where the boundary moments are generated
by a single delta function at µ = ±1, a quadrature set such as Gauss-Lobatto can
be chosen to contain these endpoints, and for such a quadrature, the approximate
M1 problem is always solvable (cf. (3.13)). However, when N > 1, the moments on
the boundary may be generated by delta functions located anywhere on the interval
[−1, 1], making it is impossible to co-locate a single quadrature set with all these
possibilities. Hence, near the boundary, the quadrature must depend on u and, in
addition, it must be locally adaptive so that it can track the support of Gαk

during
the course of the optimization process.(3) In doing so, the quadrature routine must
carefully select and deselect points in order to maintain a practical bound on nQ and
still guarantee convergence of the optimization algorithm. We have yet to design such
a quadrature.

Further, the true Hessian H(α̂(u)) at the dual solution approaches singularity as
u approaches the realizable boundary, and thus an accurate approximation HQ(α)
will also be poorly conditioned for α sufficiently close to α̂(u). Consequently, even if
the norm of the gradient is very small, the norm of the Newton step dQ := −H−1

Q gQ
may be too big to satisfy the second condition in (3.5), which is used to guaran-
tee realizability. Indeed, numerical experiments show that this stopping criteria is
more difficult to satisfy than the small gradient condition and that, for higher-order

3An entirely different closure approach based on choosing a quadrature set from the moments is
the Quadrature Method of Moments (QMOM). See [52] and references therein.
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M1 M2

PPPPPPPnMAX
Q

u(l)
(

1

1− 2−l

)  1

1/
√
3− 2−l

0

  1

1− 2−l

1− 2−l

  1
0

1− 2−l


50 11 19 10 10
100 13 15 12 12
200 15 17 14 14
400 17 19 16 16
600 18 21 17 17
800 19 23 18 18
1000 20 24 18 16

Table 4.1
The maximum value of l for which we were able to close u(l) using no more than the specified

number of quadrature points nMAX
Q over either µ ∈ [−1, 0] or µ ∈ [0, 1] to achieve the tolerance

τQ = 0.5× 10−12, as explained in Section 4.1.1. For reference, 2−10 ≈ 1× 10−3, 2−15 ≈ 3× 10−5,
and 2−20 ≈ 1× 10−6.

models, the singularity of the Hessian usually causes the optimization to fail before
inaccuracies in the quadrature come into play.

Example 1: The M1 and M2 Models. To get a sense of how close the moments u
can get to ∂Rm before our optimization algorithm fails to produce a point that satisfies
the stopping criterion, we experimented with several static M1 and M2 problems
(where the realizable sets are easy to calculate explicitly). In the case of M1, Rm =
{(u0, u1) : |u1| < u0} while for M2, Rm = {(u0, u1, u2) ∈ R3 : 0 < u0 , 3u2

1 < 2u0u2 +
u2

0 , u2 < u0} (see Figure 4.1).

We consider four different sequences of moments {u(l)} that approach the bound-
ary of realizability as l → ∞. For each sequence, we find the largest value of l for
which the optimization algorithm can close the moment u(l) without exceeding a given
value of nMAX

Q when attempting to satisfy the quadrature tolerance τQ = 0.5× 10−12

(as explained in Section 4.1.1). Table 4.1 shows the results for these experiments. The
results show that even with 1000 quadrature points, it is difficult to get within 10−6

units of the boundary with this particular value of τQ. Further, we can see that if we
limit our algorithm to using at most 200 quadrature points on each side (µ ∈ [−1, 0]
and µ ∈ [0, 1]), we can still get about 5× 10−5 units away from the boundary.

u1

u
2
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−0.5

0
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1

Fig. 4.1. The set of normalized realizable moments Rm|u0=1 in M2 and the paths we take to
the boundary in Table 4.1.
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Example 2: A Higher-Order Model. We revisit the M15 model with a small per-
turbation of the multiplier from the example in (3.16):(4)

α = [-1.9930449, 2.3573737, 1.3695484, -2.0424320,
-1.7877058, 3.4897586, -0.1169555, -2.7645420,
0.6175618, 2.9482952, -2.4912231, -1.1399532,
3.3044482, -2.5119482, 0.8977758, -0.1487460]T × 102

(4.2)

For this value of α , the minimum eigenvalues of B+ and B− associated with the
moment v̂(α) are approximately 1.3 × 10−14 and 3.3 × 10−15, respectively. By this
measure, the v̂(α) is significantly closer to the ∂Rm than is the moment generated
by the multiplier in (3.16).

Figure 4.2 contains the same results as Figure 3.2, except that multipliers in
(3.16) are replaced by those in (4.2). It is interesting to note that the profile of Gα

in Figure 4.2(b) is beginning to look like an atomic distribution, although it is still
fairly smooth.

We again compute HQ using a very fine 800-point Gauss-Legendre quadrature on
each half interval, which is accurate enough to resolve the structure in Gα, and find
that λmin(HQ) ' −1.30× 10−16 and λmax(HQ) ' 2.89. (The fact that the computed
value of λmin(HQ) is negative is a result of roundoff error from double precision
arithmetic.) Thus the condition number of HQ is at least O(1016). It may in fact
be larger, but no further conclusions can be drawn without increasing the working
precision. Moreover, the large condition number means that the relative error in the
computed Newton step may be O(1) or greater. Figure 4.2(d) shows that refining the
quadrature over two orders of magnitude has little effect on the calculated condition
number. (This is not the case for the multiplier in (3.16), where increasing the number
of quadrature points from O(10) to O(103) eventually improves the condition number
(see Figure 3.2(d)). Because Gα is still relatively smooth, we again conclude that the
limitations in the optimization algorithm are not due to the quadrature in the case,
but rather to the conditioning of the Hessian.

4.2. Regularization at the Boundary of Realizability. Given the limita-
tions in the optimization algorithm discussed in Section 4.1, we propose here a regular-
ization procedure to modify moments u for which α̂(u) is “too difficult” to compute.
Based on the experiments in Section 4.1.4, the closure problem for u is deemed too
difficult to solve when the number of quadrature points needed during the optimiza-
tion process exceeds a soft upper bound nmax

Q (typically chosen to be a few hundred).
In such cases we replace the normalized moment u by a regularized moment

v(r) := (1− r)u + rQu, (4.3)

where Q is defined in (2.14) and r ∈ (0, 1) is a regularization factor that should
be chosen as small as possible (see below). The regularization (4.3) exploits the
convexity of Rm (Theorem 2.3): It produces a new moment v(r) ∈ Rm that is closer
to the “isotropic” moment Qu with multiplier α̂(Qu) = [log(u0/2), 0, . . . , 0]T without
changing the number of particles u0. Note that Gα̂(Qu)(µ) ≡ u0/2 and the condition
number of the Hessian H(α̂(Qu)) is O(N).

In order to maintain realizability in the PDE algorithm (i.e, to apply Theorem
2.5), we must also replace each subvector of u(m), m ∈ {0, 1}, by its regularized version

4The relative difference between the multipliers in (3.16) and (4.2) is roughly 5.3% when measured
in the `∞ norm
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Fig. 4.2. Examining the multipliers given in (4.2).

at each Runge-Kutta stage (cf. (2.23)) of the kinetic scheme for (2.11). The result is
a modified set of moment equations. In a single forward Euler step this modification
takes the form

un+1
j − unj

∆t
+
[
f((1− r)unj + rQu)

]
x

+ σ̃tu
n
j =

[
σ̃(0)

s Q+ σ̃(1)
s (I −Q)

]
unj (4.4)

where, for the purpose of exposition, the x variable is held continuous and

σ̃t := σt +
r

∆t
, σ̃(0)

s := σs +
r

∆t
, σ̃(1)

s := rσt . (4.5)

Thus the effect of the regularization is (i) to introduce a modification of the flux; (ii)

to increase isotropic scattering from σs to σ̃
(0)
s ; and (iii) to introduce non-isotropic

scattering via σ̃
(1)
s . However, since σ̃t − σ̃(0)

s = σt − σs = σa, the number of particles
absorbed during the time step is not affected by the regularization. Note that all
of these modifications are spatially and temporally dependent since r varies between
spatial cells and time steps.

The use of “numerical” scattering to regularize moment problems has been re-
ported before in [43,50]. The regularization acts as barrier that prevents the entropy-
ansatz from getting too close to the delta-type distributions which characterize the
boundary ∂Rm. In this sense, it can be viewed as numerical dissipation in µ-space.
More detailed analysis of the modified moment system that is generated by the reg-
ularization will be the subject of future work.

To select a value for r in the regularization, we first choose an initial small
value r0 > 0 and then generate a sequence {r`} with the recursion formula r`+1 :=
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min(2r`, rmax). We choose the smallest value of ` for which the optimization stopping
criterion can be satisfied without using more than nmax

Q quadrature points. If we reach
the maximum value rmax, we solve the dual problem with r = rmax no matter how
many quadrature points it takes (up to nMAX

Q ).
The selection of the parameter rmax must strike a balance between the number

of quadrature points and the error introduced by the regularization. To ensure a
completely robust scheme, the value of rmax should be set to 1. Indeed if rmax is
smaller, then there is no simple way to ensure that the number of quadrature points
or the condition number of the Hessian (exact or approximate) remains bounded.
However, we have found that for nmax

Q = 200, a value of rmax between 10−4 and 10−5

gives satisfactory results in almost all cases. In simulations presented in the next
section, the maximum number of quadrature points used is 255, and the number 200
is exceeded in less than 1.2% of the optimization problems solved.

Remark 2. In some cases, the regularization can be used to solve the dual problem
for a non-regularized moment u when a direct application of Newton’s method fails.
This is done as follows. Define a decreasing sequence r` ↘ 0 and successively solve the
dual problem to find α̂(v(r`)), using α̂(v(r`−1)) as an initial condition. This defines
a new path in α-space to the minimizer α̂(u) of the original problem. In practice,
we were indeed able to solve some M15 problems for which Newton’s method either
failed or needed thousands of quadrature points. However, the fraction of moments
for which this method worked when the Newton method did not was relatively small,
and hence we did not include it in our implementation.

5. Results. We first test the convergence of the kinetic scheme from Section
2.4 in space and time, and then, closely following [27], we test our algorithm on two
benchmark problems for which the closure is challenging to compute. We consider
the steady-state solution for the two-beam instability problem and transient solutions
for a plane source problem. In all cases, we use the following parameter values.

τ = 10−8, upper bound for ‖g(ᾱ)‖
εγ = 0.01, upper bound on γmax − 1 to maintain realizability
τQ = 0.5× 10−12, quadrature tolerance
r0 = 10−8, initial regularization factor

rmax = 10−4, maximum regularization factor
nmax
Q = 200, ‘soft’ maximum nQ for regularization

nMAX
Q = 1000, ‘hard’ maximum nQ for regularization
κmax = 1/eps, the largest allowable value of cond (HQ(α))

β = 1/2, line search stepsize decrease parameter
ξ = 0.001, line search sufficient decrease parameter
θ = 2.0, slope limiting parameter

Here eps = 2−52 is twice the machine precision in double precision arithmetic. Note
also that the value nMAX

Q was never attained during any of the simulations.

5.1. Convergence Test. To test the convergence in space and time of the ki-
netic scheme from Section 2.4, we devised a simple test problem with an initial con-
dition that is sinusoidal in space and isotropic in angle:

F0(x, µ) =
1

2
(2 + cos(4πx)) , x ∈ [0, 1] . (5.1)

We use periodic boundary conditions as in (2.21).
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We run the tests on the M1 and M15 models, and since we are interested primarily
in the closure of the fluxes, we set σt = 0. We reach a final time tNt =

√
3/5 with a

fixed time step ∆t = 0.45∆x(5), which satisfies (2.27). Since an analytic solution is
unavailable for either model, we perform a high-resolution simulation with Nx = 2560
spatial cells to compute a reference solution uref .

We define L1 and L∞ errors at time tfinal for each moment using the piecewise-
linear spatial reconstruction

u∆x(x) = uNt
j + (x− xj)

uNt
j+1 − uNt

j−1

2∆x
x ∈ Ij , j ∈ {1, . . . , Nx}. (5.2)

The L1 and L∞ errors for simulations of cell-size ∆x are given by

e1
∆x :=

∫ 1

0

|uref − u∆x|dx and e∞∆x := max
x∈[0,1]

|uref − u∆x| , (5.3)

respectively, where the absolute value is defined component-wise. Since the integrand
in (5.3) is just the difference of two piecewise-linear functions, we compute e1

∆x exactly.
For q ∈ {1,∞}, the order of convergence ν between two successive meshes of size ∆x1

and ∆x2 is defined by the equality

eq∆x2
/eq∆x1

= (∆x1/∆x2)
ν
, (5.4)

where all operations are performed component-wise.
The results are shown in Tables 5.1 and 5.2. We only report errors in the zeroth-

and first-order moments. For both M1 and M15 models, these moments exhibit
second-order convergence.

Table 5.1
M1 convergence study with θ = 2.

Number u0 u1

of cells L1 error ν L∞error ν L1 error ν L∞error ν

10 3.34e-01 5.94e-01 9.74e-02 2.07e-01
20 6.41e-02 2.38 1.28e-01 2.21 3.37e-02 1.52 8.02e-02 1.36
40 1.20e-02 2.41 2.87e-02 2.15 8.40e-03 2.00 2.12e-02 1.91
80 3.45e-03 1.79 1.63e-02 0.81 2.35e-03 1.83 5.70e-03 1.89
160 9.08e-04 1.92 5.77e-03 1.49 5.95e-04 1.98 2.11e-03 1.42
320 2.02e-04 2.16 1.32e-03 2.12 1.29e-04 2.20 4.90e-04 2.11
640 4.70e-05 2.10 2.55e-04 2.37 2.74e-05 2.23 9.00e-05 2.44

Table 5.2
M15 convergence study with θ = 2.

Number u0 u1

of cells L1 error ν L∞error ν L1 error ν L∞error ν

10 1.58e-01 2.56e-01 2.48e-02 4.43e-02
20 3.43e-02 2.20 5.08e-02 2.33 1.45e-03 4.09 3.36e-03 3.72
40 4.50e-03 2.92 8.25e-03 2.62 3.01e-03 -1.04 5.62e-03 -0.74
80 6.84e-04 2.71 1.96e-03 2.07 1.35e-03 1.15 2.15e-03 1.38
160 1.48e-04 2.21 4.53e-04 2.11 3.81e-04 1.83 6.71e-04 1.68
320 3.32e-05 2.15 1.21e-04 1.89 9.81e-05 1.95 1.98e-04 1.75
640 6.23e-06 2.41 2.49e-05 2.28 2.38e-05 2.03 4.29e-05 2.20

5Except for the final time step which is chosen to meet the final time exactly.
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Fig. 5.1. A simulation of the M1 model of the plane-source problem with 1000 spatial cells.
We did not need to regularize the moments anywhere in the course of solving the problem.

5.2. Plane Source. In this problem, we model an infinite domain with an
isotropic impulse in µ as initial condition. We choose a purely scattering medium,
σt = σs = 1, and discretize the initial condition

F0(x, µ) = 0.5δ(x) + Ffloor , (5.5)

where Ffloor = 0.5×10−8 is used to keep moments away from the realizable boundary.
Although the problem is posed on an infinite domain, a finite domain is required for
practical computation and boundary conditions must be specified. As in [27], we
approximate the infinite domain by the interval [−L/2, L/2], where L := 2tfinal + 0.2
is chosen so that the boundary has negligible effects on the solution. At the right and
left ends of the boundary, we enforce the boundary conditions

FL(µ, t) = Ffloor , and FR(µ, t) = Ffloor (5.6)

for t ≥ 0 and, following (2.22), set values of u in the ghost cells by taking moments
of (5.6).

The results illustrate characteristics of the optimization, but do not reveal any
new qualitative behavior beyond what was already noted in [27]. The results are
presented in Figures 5.1, 5.2, and 5.3 for N = 1, 7, and 15 respectively. We chose
tfinal = 4 with Nx = 1000 spatial cells and ∆t = 0.45∆x.

5.3. Two-beam Instability. In this problem, particles constantly stream into
the domain from the left at xL = −0.5 and the right at xR = 0.5 into the initially
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Fig. 5.2. A simulation of the M7 model of the plane-source problem with 1000 spatial cells.

(almost) vacuous interior. There is no scattering: σt = σa = 2. The boundary
conditions are ‘forward-peaked,’

FL(µ, t) = max(exp(−10(µ−1)2), Ffloor), FR(µ, t) = max(exp(−10(µ+1)2), Ffloor) ,
(5.7)

with Ffloor := 0.5× 10−8, and the initial condition is F0(x, µ) ≡ Ffloor.
Results for N = 1, 7, and 15 are presented in Figures 5.4, 5.5 and 5.6 respectively,

again with Nx = 1000 and ∆t = 0.45∆x. In each case, the most difficult optimization
problems occur when particles first enter the interior and when particles originating
from right and left boundaries meet in the interior. The lack of scattering in this
problem means that for t < 0.5, almost all of the particles on the left (resp. right)
half of the domain have positive (resp. negative) velocities. As particles starting
from the left boundary cross those starting from the right boundary, the support of
the ansatz eventually grows to the full interval [−1, 1] and the optimization becomes
easier.

6. Conclusions and Discussion. We have considered the entropy-based mo-
ment closure models MN . We presented a kinetic scheme that is formally second-order
in space and time and discussed in detail the challenges in solving the associated op-
timization problem.

First we gave sufficient conditions for an approximation of the true solution to
maintain realizability of the kinetic scheme. We then devised a complete solution to
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Fig. 5.3. A simulation of the M15 model of the plane-source problem with 1000 spatial cells.

the optimization problem up to the limits of finite-precision arithmetic. The quadra-
ture problem turns out to be a key hurdle to finding sufficiently precise multipliers.
With an appropriate adaptive quadrature, we were able to solve a large class of prob-
lems.

For moments that are so close to the boundary of realizability that we could not
compute their closure, we showed how they can be regularized to nearby moments
while preserving the number of particles. For problems which require regularization,
only a small perturbation was required to find solvable moments, and the resulting
solution did not appear to suffer.

Future work must first take advantage of the parallelizability of the problem,
which is one of the primary motivations for our work on the MN models. The meth-
ods presented here also need to be tested in two- and three-dimensional models, where
addressing the quadrature problem will likely take a great deal of effort. In addition,
more advanced numerical methods are required to efficiently simulate problems for
which σt is very large. Such methods are needed to maintain realizability, to allow for
O(∆x) time steps, and to capture the well-known diffusion limit [35]. From an appli-
cations point of view, we plan to examine other physically motivated entropies, such
as Fermi-Dirac and Bose-Einstein. In addition coupling to hydrodynamic equations
will be considered.
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Fig. 5.4. A simulation of the M1 model of the two-beam instability with 1000 spatial cells.
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