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POD GALERKIN SCHEMES FOR NONLINEAR

ELLIPTIC-PARABOLIC SYSTEMS

O. LASS AND S. VOLKWEIN

Abstract. In this paper the authors study a nonlinear elliptic-parabolic sys-

tem, which is motivated by mathematical models for lithium ion batteries. For
the reliable and fast numerical solution of the system a reduced-order approach
based on proper orthogonal decomposition (POD) is applied. The strategy is

justified by an a-priori error estimate for the error between the solution to the
coupled system and its POD approximation. The nonlinear coupling is real-
ized by variants of the empirical interpolation introduced by Barrault et al.
[3] and Chaturantabut et al. [4]. Numerical examples illustrate the efficiency

of the proposed reduced-order modeling.

1. Introduction

Numerical simulation has emerged as an essential tool in industrial, engineer-
ing, and scientific research and development. The tremendous advances in the past
decades have resulted in the availability of numerical simulation methods for in-
creasingly complex systems of partial differential equations (PDEs). However, in
many applications and fields, the complex system in question is essentially a com-
bination of several types of PDEs each (possibly) involving different physics. This
leads to multi component systems involving a variety of parameters, e.g. partly
unknown or control parameters. The determination of unknown parameters (cal-
ibration) or the control, design, and optimization of coupled PDE systems thus
requires repeated simulations of the multi component system with respect to dif-
ferent parameter values or control inputs. Therefore, fast and reliable reduced

computational models are highly needed for such complex systems.
In the present paper we consider an elliptic-parabolic PDE system consisting

of two elliptic and one parabolic equation. These coupled system can be viewed
as a generalization of a mathematical model for lithium ion batteries; see, e.g.,
[10, 22, 25]. The parabolic equation describes the concentration of lithium ions and
the two elliptic PDEs model the potential in the solid and liquid phase, respectively.
These equations are coupled by a strong nonlinearity, which is a catenation of the
square root, the hyperbolic sine and the logarithmic functions.

For the spatial approximation we apply a Galerkin scheme using proper orthog-
onal decomposition (POD); see e.g. [14, 24]. POD is based on projecting the
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dynamical system onto subspaces of basis elements that express characteristics of
the expected solution. This is in contrast to, e.g., finite element techniques, where
the elements are not correlated to the physical properties of the system they approx-
imate. The time integration is done by an implicit Euler method. For the numerical
solution of the nonlinear discrete equations we apply a globalized Newton method
with an appropriate computation of the initial guess.

Since the reduced-order model is a nonlinear system, the problem arises that the
evaluation of the nonlinearity is of high complexity. To avoid this computational
expensive evaluation the empirical interpolation method (EIM) was introduced [3].
This method is often used in the combination with the reduced basis approach; see,
e.g., [12, 21]. The second approach we will investigate here is the discrete empirical
interpolation method (DEIM) as introduced in [4, 6]. The basic concept of both
methods is very similar. While the EIM implementation is based on a greedy
algorithm the DEIM implementation is based on a POD approach combined with
a greedy algorithm. It turns out that the offline computation for the EIM method
is more expensive than for the DEIM method, whereas the online computation for
the EIM method is cheaper than for the DEIM method (since a triangular system
has to be solved instead of a full system).

In the present work an a-priori error estimate is presented for the POD Galerkin
scheme (without the interpolation method for the nonlinearity). Whereas the nu-
merical computations are done for a one-dimensional spatial grid the error analysis
is carried out for the three-dimensional case. The resulting error bounds depend
essentially on the number of POD basis functions and on an approximation prop-
erty for the variable solving the parabolic equation. This result is of the same type
as a-priori error estimates for POD Galerkin scheme derived for elliptic and para-
bolic PDEs; see [16, 17, 18, 23]. We also refer to [15], where the authors present
an a-priori error estimate for a nonlinear heat equation coupled with an ordinary
differential equation. Up to the authors knowledge there are no POD a-priori error
analysis results available for systems with different PDE types.

The paper is organized in the following manner: In Section 2 the nonlinear
elliptic-parabolic system is formulated. Section 3 is devoted to the POD Galerkin
approximation. We discuss briefly the computation of the POD basis and the
reduced-order model. Moreover, the different versions of the empirical interpolation
are studied numerically. The a-priori error estimate is discussed in Section 4. The
proofs are given in the appendix . In Section 5 numerical examples are presented.
Finally, a conclusion is drawn in the last section.

2. The nonlinear elliptic-parabolic system

In this section we formulate the nonlinear elliptic-parabolic system. Suppose
that Ω = (a, b) ⊂ R, a < b, is the spatial domain with boundary Γ = {a, b}. We set
H = L2(Ω), V = H1(Ω) and

Va = {ϕ ∈ H1(Ω) |ϕ(a) = 0}, Vb = {ϕ ∈ H1(Ω) |ϕ(b) = 0}.

For the definition of Sobolev spaces we refer, e.g., to [1, 11]. For the terminal time
T > 0 let Q = (0, T ) × Ω and Σ = (0, T ) × Γ. The space L2(0, T ;V ) stands for
the space of (equivalence classes) of measurable abstract functions ϕ : [0, T ] → V ,
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which are square integrable, i.e.,
∫ T

0

‖ϕ(t)‖2
V dt < ∞.

When t is fixed, the expression ϕ(t) stands for the function ϕ(t, ·) considered as a
function in Ω only. Recall that

W (0, T ;V ) =
{

ϕ ∈ L2(0, T ;V )
∣

∣ ϕt ∈ L2(0, T ;V )
}

is a Hilbert space supplied with its common inner product; see [7].
For a given parameter µ = (µ1, µ2) ∈ Pad ⊂ R

2 the triple (y, p, q) : Q → R

satisfies the elliptic-parabolic systems

yt(t, x) −
(

c1(x)yx(t, x)
)

x
+ N (y(t, x), p(t, x), q(t, x);µ) = 0,(2.1a)

−
(

c2(x)px(t, x)
)

x
+ N (y(t, x), p(t, x), q(t, x);µ) = 0,(2.1b)

−
(

c3(x)qx(t, x)
)

x
−N (y(t, x), p(t, x), q(t, x);µ) = 0(2.1c)

for almost all (f.a.a.) (t, x) in Q together with the homogeneous mixed boundary
conditions

(2.1d) yx(t, a) = yx(t, b) = p(t, a) = px(t, b) = qx(t, a) = q(t, b) = 0

f.a.a. t ∈ (0, T ) and the initial condition

(2.1e) y(0, x) = y◦(x)

f.a.a. x ∈ Ω. The diffusion coefficients c1, c2, c3 are supposed to be piecewise
constant and positive. Moreover, y◦ : Ω → R is a given bounded initial condition.
The nonlinearity N : Zad × Pad → R is given by

(2.2) N (z;µ) = µ2
√

y sinh
(

µ1(q − p − ln y)
)

for z = (y, p, q) ∈ Zad and µ = (µ1, µ2) ∈ Pad, where

Zad =
{

(y, p, q) ∈ R
3
∣

∣ y ≥ ymin

}

, Pad =
{

(µ1, µ2) ∈ R
2
∣

∣ µ1 > 0 and µ2 < 0
}

and ymin > 0 hold. With these choices (2.1) can be seen as a generalization of a
mathematical model for lithium ion batteries; see, e.g., [10, 22, 25]. ♦

Remark 2.1. 1) The positivity of the y component is needed to evaluate the
terms

√
y and ln y in the nonlinearity.

2) Notice that N (· ;µ) : Zad → R is continuously differentiable for any µ ∈
Pad. Furthermore,

∂N
∂p

(z;µ) = −µ1µ2
√

y cosh
(

µ1(q − p − ln y)
)

= −∂N
∂q

(z;µ) > 0

for z = (y, p, q) ∈ Zad and µ = (µ1, µ2) ∈ Pad. In the proof of the a-priori
error estimate (see Section 4) we essentially utilize

(2.3)
∂N
∂p

(z;µ) = −∂N
∂q

(z;µ) > 0

for z = (y, p, q) ∈ Zad and µ = (µ1, µ2) ∈ Pad. Thus, Pad could be replaced
by

P̃ad =
{

(µ1, µ2) ∈ R
2
∣

∣ µ1 < 0 and µ2 > 0
}

without any changes in the proofs. ♦
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We introduce the function space

Z =
(

W (0, T ;V ) × L2(0, T ;Va) × L2(0, T ;Vb)
)

∩ L∞(Q)3

and call the triple (y, p, q) a weak solution to (2.1) if z = (y, p, q) ∈ Z, y(0) = y◦ in
H and

∫

Ω

yt(t)ϕ + c1yx(t)ϕ′ + N (y(t), p(t), q(t);µ)ϕdx = 0 for all ϕ ∈ V,(2.4a)

∫

Ω

c2px(t)ϕ′ + N (y(t), p(t), q(t);µ)ϕdx = 0 for all ϕ ∈ Va,(2.4b)

∫

Ω

c3qx(t)ϕ′ −N (y(t), p(t), q(t);µ)ϕdx = 0 for all ϕ ∈ Vb.(2.4c)

It follows from [25] that (2.4) admits a unique weak solution. Therefore, the non-
linear solution operator S : Pad → Z is well-defined, where z = S(µ) is the weak
solution to (2.1) for the parameter value µ.

3. The POD Galerkin approximation

In this section we introduce the POD method and develop the POD Galerkin
scheme for (2.1). To evaluate the nonlinearity efficiently in our reduced-order ap-
proach we here use two techniques, the empirical interpolation method (EIM) and
the discrete empirical interpolation method (DEIM).

3.1. The POD method. Suppose that z = (y, p, q) = S(µ) is the weak solution
to (2.1) for a chosen parameter µ ∈ Pad. We explain the computation of the POD
basis for the first solution component y. Suppose that H denotes either the space H
or the space V . Notice that for p and q we choose H or Va and Vb, respectively. The
goal is to construct a low dimensional basis by solving the optimization problem

(3.1)















min
{ψy

i
}ℓy

i=1

∫ T

0

∥

∥

∥
y(t) −

ℓy

∑

i=1

〈y(t), ψy
i 〉H ψy

i

∥

∥

∥

2

H

dt

subject to 〈ψy
i , ψy

j 〉H = δij .

To solve (3.1) let us define the integral operator R. For y ∈ L2(0, T ;H) let R :
H → H be given by

Rψy =

∫ T

0

〈y(t), ψy〉
H

y(t) dt for ψy ∈ H.

Clearly, R is a linear bounded, nonnegative, self-adjoint operator which can be
expressed as R = YY∗, where Y : L2(0, T ) → H is defined by

Yv =

∫ T

0

υ(t) y(t) dt for v ∈ L2(0, T ),

and the adjoint Y∗ : H → L2(0, T ) is given by

(Y∗ψy)(t) = 〈y(t), ψy〉
H

for ψy ∈ H.

We shall also utilize the operator K : L2(0, T ) → L2(0, T ) defined by

K = Y∗Y
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or explicitly

(Kv)(t) =

∫ T

0

〈y(t), y(s)〉
H

v(s) ds for v ∈ L2(0, T ).

For a proof of the following proposition we refer to [14] or [19, Proposition 2.1].

Proposition 3.1. Except for possibly 0, K and R possess the same eigenvalues

which are positive with identical multiplicities. Moreover, ψy is an eigenfunction of

R if and only if Y∗ψy = 〈y(·), ψy〉H ∈ L2(0, T ) is an eigenfunction of K.

The solution to (3.1) is given by the eigenfunctions corresponding to the ℓy

largest eigenvalues λy
i of the eigenvalue problem

Rψy
i =

∫ T

0

〈y(t), ψy
i 〉H y(t) dt = λy

i ψy
i for i = 1, . . . , ℓy,(3.2a)

〈ψy
i , ψy

j 〉H = δij for i, j = 1, . . . , ℓy.(3.2b)

We shall utilize the POD basis {ψy
i }ℓ

i=1 with respect to H = H or H = V satisfying
λy

1 ≥ . . . ≥ λy
ℓy > 0,

(3.3) (Kvi)(t) =

∫ T

0

〈y(t), y(s)〉
H

vi(s) ds = λy
i vi(t) for i = 1, . . . , ℓy

and

ψy
i =

1
√

λy
i

∫ T

0

vi(t)y(t) dt ∈ H for i = 1, . . . , ℓy.

The POD-subspace for the variable y is then denoted by

V ℓy

= span {ψy
1 , . . . , ψy

ℓy}.

Note that ψy
i ∈ V holds also for H = H. This follows from (3.2a) using that

y ∈ L2(0, T ;V ). In addition, we have the approximation error

∫ T

0

∥

∥

∥
y(t) −

ℓy

∑

i=1

〈y(t), ψy
i 〉H ψy

i

∥

∥

∥

2

H

dt =
∞
∑

i=ℓy+1

λy
i .

An analogous result holds for the POD bases {ψp
i }∞i=1 and {ψq

i }∞i=1.
For the solution components p and q we follow the same approach as for y.

Hence we obtain POD bases {ψp
i }ℓp

i=1 and {ψq
i }ℓq

i=1, respectively. We introduce
super-indices y, p and q for ℓ and ψ to emphasize that the bases for the three
solution components are computed independently and ℓ may be different for each
of the components.

3.2. The reduced order model (ROM). To obtain the POD Galerkin scheme
for (2.1) we make the ansatz

yℓ(t) =

ℓy

∑

i=1

ŷi(t)ψ
y
i , pℓ(t) =

ℓp

∑

i=1

p̂i(t)ψ
p
i , qℓ(t) =

ℓq

∑

i=1

q̂i(t)ψ
q
i ,
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and replace z = (y, p, q) by zℓ = (yℓ, pℓ, qℓ) in (2.4) and choose the POD basis
functions as test functions. Hence, the POD Galerkin scheme is given by

∫

Ω

yℓ
t (t)ψ

y
i + c1y

ℓ
x(t)(ψy

i )′ + N (zℓ(t);µ)ψy
i dx = 0, 1 ≤ i ≤ ℓy,(3.4a)

∫

Ω

c2p
ℓ
x(t)(ψp

i )′ + N (zℓ(t);µ)ψp
i dx = 0, 1 ≤ i ≤ ℓp,(3.4b)

∫

Ω

c3q
ℓ
x(t)(ψq

i )′ −N (zℓ(t);µ)ψq
i dx = 0, 1 ≤ i ≤ ℓq,(3.4c)

and

(3.4d) 〈yℓ(0), ψy
i 〉H = 〈y◦, ψy

i 〉H for 1 ≤ i ≤ ℓy.

Assumption 1. For any µ ∈ Pad the reduced-order model (3.4) admits a unique

weak solution denoted by zℓ(µ) = (yℓ(µ), pℓ(µ), qℓ(µ)).

3.3. The discrete POD method. Let us next introduce the discretized system.
Here Nx and Nt will denote the number of discretization points in space and time,
respectively. We utilize a finite element discretization and for this we define the
discrete space

V h = span{ϕ1, . . . , ϕNx
} ⊂ V,

where the ϕi’s denote the Nx nodal basis functions. In the case of piecewise linear
finite element discretization we get the typical hat functions. For the readers con-
venience we do not distinguish between the finite element spaces for V , Va and Vb.
Any discretization scheme can be used, in particular there is no restriction to the
finite element discretization. Using the standard Galerkin ansatz of the form

yh(t, x) =

Nx
∑

i=1

ȳi(t)ϕi(x), ph(t, x) =

Nx
∑

i=1

p̄i(t)ϕi(x), qh(t, x) =

Nx
∑

i=1

q̄i(t)ϕi(x),

and applying this to (2.4) we get the discrete nonlinear system

Mȳt(t) + Sc1
ȳ(t) + N̄ (ȳ(t), p̄(t), q̄(t);µ) = 0,

Sc2
p̄(t) + N̄ (ȳ(t), p̄(t), q̄(t);µ) = 0,

Sc3
q̄(t) − N̄ (ȳ(t), p̄(t), q̄(t);µ) = 0,

with

Mij =

∫

Ω

ϕi(x)ϕj(x) dx, (Sf )ij =

∫

Ω

f(x)ϕ′
i(x)ϕ′

j(x) dx,

(N̄ (ȳ(t), p̄(t), q̄(t);µ))i =

∫

Ω

N (y(t, x), p(t, x), q(t, x);µ)ϕi(x) dx

and

ȳ(t) = (ȳi(t))1≤i≤Nx
, p̄(t) = (p̄i(t))1≤i≤Nx

, q̄(t) = (q̄i(t))1≤i≤Nx
.

This system can then be solved by using an appropriate method for the time dis-
cretization. In the numerical results presented we will use an implicit Euler method
with equidistant time steps. To solve the arising nonlinear system a Newton method
can be used. The convergence is ensured by applying a damping strategy; see [8, 9].
As snapshots for the POD computation we utilize the solutions to the nonlinear
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system for the Nt discrete time instance. For that purpose we reformulate (3.1) in
the discrete form:

(3.5)















min
{ψy

i
}ℓy

i=1

Nt
∑

j=0

∥

∥

∥
y(tj) −

ℓy

∑

i=1

〈y(tj), ψ
y
i 〉H ψy

i

∥

∥

∥

2

H

subject to 〈ψy
i , ψi

j〉H = δij for 1 ≤ i, j ≤ ℓ.

Remark 3.2. In contrast to [18] we do not include temporal weighting coefficients
αj > 0 in the sum. Therefore, our eigenvalues are scaled by approximately 1/∆t.
However, this is not a problem in the present work, since we do not study the
asymptotic convergence for ∆t → 0. Moreover, our choice of the number of POD

bases functions is based on the decay of the normalized eigenvalues λi/
∑Nt

j=1 λj .♦

In our application we have Nt ≪ Nx. Therefore, we determine the POD basis
by using the Nt × Nt correlation matrix

Kij = 〈y(tj), y(ti)〉H.

We assume the ℓy largest eigenvalues of K are given in the form λy
1 ≥ . . . ≥ λy

ℓy > 0
and hence the POD basis is given by

ψy
i (x) =

1
√

λy
i

Nt
∑

j=0

(vy
i )jy(tj , x),

where vy
k ∈ R

Nt are the eigenvectors of K to the corresponding eigenvalues λy
k.

Note that σy
i =

√

λy
i corresponds to the singular values of the snapshot matrix

Y = [y(t0, ·), . . . , y(tNt
, ·)] with respect to the H inner product and the vectors ψy

i

are computed from the left singular vectors. Note that the decay of the eigenvalues
is essential since the approximation error for this approach is given by

(3.6)

Nt
∑

j=0

∥

∥

∥
y(tj) −

ℓy

∑

i=1

〈y(tj), ψ
y
i 〉Hψy

i

∥

∥

∥

2

H

=

Nt
∑

i=ℓy+1

λy
i ;

compare Section 4. Hence if the decay is too slow the resulting ROM will be of
large dimension or one will obtain large approximation errors. In Figure 3.1 the
decay of the singular values for all three variables is shown (left plot) together with
the decay of the eigenvalues of the correlation matrix K (right plot). The approach
using the eigenvalues is preferred since the computational costs are cheaper. When
computing the singular value decomposition one has to first discretize the inner
product 〈· , ·〉H which is usually done in the form 〈u, v〉W = u⊤Wv where W is a
symmetric positive definite matrix. Note that since W is symmetric and positive
definite, W possesses an eigenvalue decomposition of the form W = V DV ⊤, where
D is a diagonal matrix containing the eigenvalues η1 ≥ . . . ≥ ηNx

> 0 and V ∈
R

Nx×Nx is an orthogonal matrix. Hence we can define Wα = V DαV ⊤ and Dα =
diag(ηα

1 , . . . , ηα
Nx

). Thus the singular value decomposition with H inner product is

computed by the singular value decomposition of the matrix Ỹ = W 1/2Y . Further
to get the basis vectors ψy

i the matrix W−1/2 is needed. The computation of

the matrices W 1/2 and W−1/2 is very expensive. In Figure 3.1 (right plot) the

eigenvalues of K and the squared singular values of Ỹ are shown. It can be seen
that the first values are the same. The arising difference after approximately 20
values is a numerical issue since both methods work to the same accuracy. The
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Figure 3.1. Decay of the singular values for the POD basis for y,
p and q (left) and a comparison of the decay of the singular values
and eigenvalues for y (right).

difference only occurs since the singular values are squared for comparison. The
increase of the eigenvalues after 60 computed values is also a numerical issue when
the accuracy of the algorithm is exceeded. This issue is not influencing the POD
method since we are only interested in the largest eigenvalues with an ℓy smaller
than 60. It can be seen that the kink in the eigenvalues can be used as a guess for
the number of needed basis functions. This also coincides with the approximation
error (3.6). In Figure 3.2 we compare the first six POD bases for the variable y
obtained by the singular value decomposition and the eigenvalue decomposition. It
can be seen that they are the same, the only difference is the sign of four of the six
basis function, i.e., the second, third, fourth and fifth basis function. The settings
for this numerical result are described in detail in Section 5, Run 1. Let us next
introduce the reduced order model. For this purpose we look at (3.4). By using the
POD Galerkin ansatz earlier introduced we can now write the ROM in the discrete
form as

Ψ⊤
y MΨy ŷt(t) + Ψ⊤

y Sc1
Ψy ŷ(t) + Ψ⊤

y N̄ (yℓ(t), pℓ(t), qℓ(t);µ) = 0,(3.7a)

Ψ⊤
p Sc2

Ψpp̂(t) + Ψ⊤
p N̄ (yℓ(t), pℓ(t), qℓ(t);µ) = 0,(3.7b)

Ψ⊤
q Sc3

Ψq q̂(t) − Ψ⊤
q N̄ (yℓ(t), pℓ(t), qℓ(t);µ) = 0,(3.7c)

where Ψf = [ψf
1 , . . . , ψf

ℓf ] for f = {y, p, q}. To solve the ROM we can again apply
the same strategy for the time discretization and the same solver as for the original
problem. Let us remark that the dimension of the system to solve has decreased
significantly since we assume that ℓy + ℓp + ℓq ≪ 3Nx.

3.4. Empirical interpolation methods. The ROM introduced in (3.7) is a non-
linear system. Hence the problem with the POD Galerkin approach is the com-
plexity of the evaluation of the nonlinearity. To illustrate this we have a look at
the nonlinearity in (3.7a). We can write this as

N ℓ(yℓ(t), pℓ(t), qℓ(t);µ) = Ψ⊤
y N̄ (Ψy ŷ(t),Ψpp̂(t),Ψq q̂(t);µ).

This can be interpreted in the way that the variables ŷ, p̂ and q̂ are first expanded
to a vector of dimension Nx, then the nonlinearity N̄ is evaluated and at last the
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Figure 3.2. The first six POD basis functions for y computed
using the correlation matrix K (left) and the singular value de-
composition (right).

result is reduced back to the low dimension ℓy of the ROM. This is computation-
ally expensive. Further this means that our ROM is not independent of the full
dimension Nx. Note that when applying a Newton method to the system (3.7) the
Jacobian of the nonlinearity is also needed. This can be expressed in the form

Jℓ
y(N ℓ(yℓ(t), pℓ(t), qℓ(t);µ)) = Ψ⊤

y Jy(N̄ (Ψy ŷ(t),Ψpp̂(t),Ψq q̂(t);µ))Ψy,

where Jy(N̄ ) denotes the Jacobian with respect to y of N̄ . Again the same problem
can be observed. Note that here the computation expenses are larger since the
matrix Jy is of dimension Nx × Nx. Hence not only a vector is transformed but
a matrix of full dimension. To avoid this computational expensive evaluation the
empirical interpolation method (EIM) was introduced [3]. This method is often
used in the combination with the reduced basis approach [12]. The second approach
we will investigate here is the discrete empirical interpolation method (DEIM) as
introduced in [4, 6]. The basic concept of both methods is very similar. While the
EIM implementation is based on a greedy algorithm the DEIM implementation is
based on a POD approach combined with a greedy algorithm. We will now discuss
both methods. We define

n(t, µ) = N (yℓ(t), pℓ(t), qℓ(t);µ).

Now n(t, µ) is approximated by projecting on φi ∈ R
Nx for i = 1, . . . , ℓEIM , i.e.

n(t, µ) ≈ Φc(t, µ), with Φ = [φ1, . . . , φℓEIM ]. Hence we can write the approximation
of N ℓ as

N ℓ(yℓ(t), pℓ(t), qℓ(t);µ) ≈ Ψ⊤
y Φc(t, µ).

Here ℓEIM denotes the number of basis functions chosen for the interpolation as
well as the number of interpolation points. The question arising is how to compute

Φ and c(t, µ). Let p
EIM be an index vector and Φ ∈ R

Nx×ℓEIM

a matrix. Then
by Φ{pEIM} we denote the submatrix consisting of the rows of Φ corresponding to

the indices in p
EIM . Obviously, if we choose ℓEIM indices then the overdetermined

system n(t, µ) = Φc(t, µ) can be solved by choosing ℓEIM rows of n(t, µ) and Φ.
Here it is assumed that Φ{pEIM} is invertible.
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Assuming we have computed Φ and p
EIM by an algorithm. Then we proceed

as follows. For simplicity we introduce here the matrix P = [epEIM
1

, . . . , epEIM

ℓEIM
],

where epEIM
i

= [0, . . . , 0, 1, 0, . . . , 0]⊤ ∈ R
Nx is a vector with all zeros and at the

p
EIM
i -th row a one. Note that Φ{pEIM} = P⊤Φ holds. To evaluate the approximate

nonlinearity we need c(t, µ). Since we know Φ and the index vector p
EIM we can

compute

c(t, µ) = (P⊤Φ)−1P⊤n(t, µ).

The nonlinearity on which we focus in this work can be evaluated pointwise and
they only depend on the variables y, p, q and the parameter µ. Hence the matrix
P can be moved into the nonlinearity and we obtain

P⊤n(t, µ) = P⊤N̄ (yℓ(t), pℓ(t), qℓ(t);µ)

= N̄ (P⊤Ψy ŷ(t), P⊤Ψpp̂(t), P⊤Ψq q̂(t);µ).

An extension for general nonlinearities is shown in [6]. Let us now have a look at

the computational expenses. The matrices Ψ⊤
f Φ ∈ R

ℓf×ℓEIM

, P⊤Ψf ∈ R
ℓEIM×ℓf

for f = {y, p, q} and (P⊤Φ)−1 ∈ R
ℓEIM×ℓEIM

can be precomputed and are all in-
dependent of the full dimension Nx. Further, during the iterations the nonlinearity
only has to be evaluated at the interpolation points, i.e. only at ℓEIM points. This
allows the ROM to be completely independent of the full dimension. Note that the
used method is an interpolation and therefore is exact at the interpolation points.
For the Jacobian the approach is similar. To summarize the results we now state
the computation procedure for the evaluation of the nonlinearity

N ℓ(yℓ(t), pℓ(t), qℓ(t);µ) = Ψ⊤
y Φ(P⊤Φ)−1N̄ (P⊤Ψy ŷ(t), P⊤Ψpp̂(t), P⊤Ψq q̂(t);µ)

and the Jacobian

Jℓ
y(N ℓ(yℓ(t), pℓ(t), qℓ(t);µ)) =

Ψ⊤
y Φ(P⊤Φ)−1Jy(N̄ (P⊤Ψy ŷ(t), P⊤Ψpp̂(t), P⊤Ψq q̂(t);µ))P⊤Ψy

for the ROM. For the variables pℓ and qℓ the results are very similar. Note that Φ
is independent of the three variables and hence only has to be computed once.

Let us now turn to the EIM and DEIM algorithms. When (2.4) is solved the
nonlinearity N is being evaluated for each time step. If these evaluations are stored
the procedure to determine Φ and the index vector pEIM does not involve any
further evaluations of the nonlinearity. We denote by E the matrix with columns
N (y(ti), p(ti), q(ti), µ) ∈ R

Nx for i = 1, . . . , Nt. Next let us have a look at the
two algorithms of interest and let us present some numerical results. The detailed
settings can be found in Section 5, Run 1.

In the algorithms ‖ ·‖∞ stands for the maximum norm in R
Nx and the operation

‘arg max’ returns the index, where the maximum entry occurs. In Algorithm 1 we
state the EIM using a greedy algorithm. Here the basis φi, i = 1, . . . , ℓEIM is chosen
from the provided snapshots of N by scaling and shifting. The obtained basis is not
orthonormal. The advantage of this method is that the submatrix Φ{pEIM} is an
upper triangular matrix. Hence solving for c(t, µ) is computationally cheap. The
drawback of this method is that the computation of the basis is more expensive than
the DEIM algorithm presented in Algorithm 2. The DEIM algorithm on the other
hand generates the basis using the POD approach. Here the previously introduced
POD approach is applied to the snapshots of the nonlinearity N to compute Φ.
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Algorithm 1 (The empirical interpolation method (EIM))

Require: ℓEIM and snapshots E
1: k ← arg maxj=0,...,Nt

‖N̄ (y(tj), p(tj), q(tj), µ)‖∞
2: ξ ← N̄ (y(tk), p(tk), q(tk), µ)
3: idx ← arg maxj=1,...,Nx

|ξj |
4: φ1 ← ξ/ξ{idx}

5: Φ = [φ1] and p
EIM = idx

6: for i = 2 to ℓEIM do
7: Solve Φ{pEIM}cj = N̄ (y(tj), p(tj), q(tj), µ){pEIM} for j = 0, . . . , Nt

8: k ← arg maxj=0,...,Nt
‖N̄ (y(tj), p(tj), q(tj), µ) − Φcj‖∞

9: ξ ← N̄ (y(tk), p(tk), q(tk), µ)
10: idx← arg maxj=1,...,Nx

|(ξ − Φck){j}|
11: φi ← (ξ − Φck)/(ξ − Φck){idx}

12: Φ ← [Φ, φi] and p
EIM ← [pEIM , idx ]

13: end for
14: return Φ and p

EIM

In Figure 3.3 the decay of the singular values and a comparison to the eigenvalues
are given. The observations are the same as previously described for the POD
method. For a comparison the first six basis functions and interpolation points
obtained by each of the two methods are shown in Figure 3.4. It can be seen that
they are quite different which is due to their different properties. The selection
for the interpolation points in both algorithms is similar and is based on a greedy
algorithm. The idea is to successively select spatial points to limit the growth of
an error bound. The indices are constructed inductively from the input data. For
more details we refer the reader to [3, 4]. When looking at Figure 3.4 one can see
that both methods select very similar interpolation points although they are not
the same.

Algorithm 2 (The discrete empirical interpolation method (DEIM))

Require: ℓEIM and snapshots E
1: Compute POD basis Φ = [φ1, . . . , φEIM ] for E
2: idx← arg maxj=1,...,Nx

|(φ1){j}|
3: U = [φ1] and p

EIM = idx
4: for i = 2 to ℓEIM do
5: u ← φi

6: Solve U{pEIM}c = u{pEIM}

7: r ← u − Uc
8: idx← arg maxj=1,...,Nx

|(r){j}|
9: U ← [U, u] and p

EIM ← [pEIM , idx ]
10: end for
11: return Φ and p

EIM
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Figure 3.3. Decay of the singular values for the POD in DEIM
(left) and comparison of the decay of singular and eigen values
(right).
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the greedy approach (left) and the POD approach (right) together
with the associated interpolation points.

4. A-priori error estimates

In this section we present an a-priori error estimate for the difference between
the solution to (2.4) and the solution to (3.4). The proof depends essentially on
properties of the nonlinear function N .

For an arbitrary chosen µ ∈ Pad let z = S(µ) denote the unique solution to
(2.4). In the context of Section 3 we choose H = V , H = Va, H = Vb to compute
POD bases for the y, p and q variables, respectively. We assume that Assumption 1
holds, i.e., there exists a unique solution zℓ = zℓ(µ) to (3.4). In addition, we make
use of the following hypothesis.

Assumption 2. There exists a positive constant ymin such that z(t, x) and zℓ(t, x)
belong to Zad f.a.a. (t, x) ∈ Q. Moreover, ‖zℓ‖L∞(Q)3 ≤ C for a constant C > 0
independent of ℓ.
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We want to estimate the error
∫ T

0

‖y(t) − yℓ(t)‖2

V + ‖p(t) − pℓ(t)‖2

V + ‖q(t) − qℓ(t)‖2

V dt.

Remark 4.1. The proof of the a-priori error estimate works also for Ω ⊂ R
d,

d ∈ {1, 2, 3}. For that reason we use a notation which is appropriate also for the
three-dimensional case. ♦

To introduce appropriate Ritz projections we define the symmetric, bounded,
coercive bilinear forms

ay(ϕ,ψ) =

∫

Ω

c1∇ϕ · ∇ψ + ϕψ dx for ϕ,ψ ∈ V,

ap(ϕ,ψ) =

∫

Ω

c2∇ϕ · ∇ψ dx for ϕ,ψ ∈ Va,

aq(ϕ,ψ) =

∫

Ω

c3∇ϕ · ∇ψ dx for ϕ,ψ ∈ Vb.

Recall that

〈ϕ,ψ〉Va,b
=

∫

Ω

∇ϕ · ∇ψ dx for ϕ,ψ ∈ V

is an inner product on Va and Vb. Moreover, the piecewise constant coefficient
functions ci are strictly positive. Hence, there exists a constant cV ≥ 1 such that

(4.1)
ay(ϕ,ϕ) ≥ cV ‖ϕ‖2

V for all ϕ ∈ V, ap(ϕ,ϕ) ≥ cV ‖ϕ‖2
V for all ϕ ∈ Va,

aq(ϕ,ϕ) ≥ cV ‖ϕ‖2
V for all ϕ ∈ Vb,

Let us define the Ritz projection Pℓy

: V → V ℓp

by

(4.2) ay(Pℓy

ϕ,ψ) = ay(ϕ,ψ) for all ψ ∈ V ℓy

.

Analogously, we introduce the mapping Pℓp

: Va → V ℓp

and Pℓq

: Vb → V ℓq

. Using
the Ritz projections we decompose the error in the y component as

(4.3a) y(t) − yℓ(t) = y(t) − Pℓy

y(t) + Pℓy

y(t) − yℓ(t) = ̺ℓy

(t) + ϑℓy

(t)

where ̺ℓy

(t) = y(t) − Pℓy

y(t) and ϑℓy

(t) = Pℓy

y(t) − yℓ(t). Analogously, let

p(t) − pℓ(t) =
(

p(t) − Pℓp

p(t)
)

+
(

Pℓp

p(t) − pℓ(t)
)

= ̺ℓp

(t) + ϑℓp

(t),(4.3b)

q(t) − qℓ(t) =
(

q(t) − Pℓq

q(t)
)

+
(

Pℓq

q(t) − qℓ(t)
)

= ̺ℓq

(t) + ϑℓq

(t).(4.3c)

The following result for the projection error follows from [17, Lemma 3].

Lemma 4.2. The approximation error terms ̺ℓy

, ̺ℓp

and ̺ℓp

satisfy
∫ T

0

‖̺ℓy

(t)‖2

V dt =

∫ T

0

‖y(t) − Pℓy

y(t)‖2

V dt ≤ C

∞
∑

i=ℓy+1

λy
i ,

∫ T

0

‖̺ℓp

(t)‖2

V dt =

∫ T

0

‖p(t) − Pℓp

p(t)‖2

V dt ≤ C

∞
∑

i=ℓp+1

λp
i ,

∫ T

0

‖̺ℓq

(t)‖2

V dt =

∫ T

0

‖q(t) − Pℓq

q(t)‖2

V dt ≤ C
∞
∑

i=ℓq+1

λq
i

with C = max(1, ‖c1‖L∞(Ω), ‖c2‖L∞(Ω), ‖c3‖L∞(Ω))/cV .
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In the following lemma we present an error estimate for the discretization error
terms ϑℓp

(t) and ϑℓq

(t). The proof is based on (2.4), (3.4) and the properties of
the Ritz projections Pℓp

, Pℓq

. For a proof we refer the reader to the appendix.

Lemma 4.3. Suppose that Assumptions 1 and 2 hold. Then there exists a constant

C > 0 independent of ℓ and t ∈ [0, T ] so that

(4.4) ‖ϑℓp

(t)‖2

V + ‖ϑℓq

(t)‖2

V ≤ C
(

‖̺ℓy

(t)‖2

V + ‖̺ℓp

(t)‖2

V + ‖̺ℓq

(t)‖2

V + ‖ϑℓy

(t)‖2

H

)

f.a.a. t ∈ [0, T ].

The first three terms on the right-hand side of (4.4) shall be bounded by us-
ing Lemma 4.2. From the parabolic equation an estimate is derived for the term

‖ϑℓy

(t)‖2

H . Let us mention that it is essential that ϑℓy

(t) occurs in the H- and not
in the V -norm.

Now we turn to an estimate for the difference ϑℓy

(t) = Pℓy

y(t) − yℓ(t). The
proof is also given in the appendix.

Lemma 4.4. Suppose that Assumptions 1 and 2 hold. Then there exists a constant

C > 0 independent of ℓ and t ∈ [0, T ] so that

(4.5)

‖ϑℓy‖2

L∞(0,T ;H) + ‖ϑℓy‖2

L2(0,T ;V )

≤ C
(

‖ϑℓy

(0)‖2

H + ‖Pℓy

yt − yt‖
2

L2(0,T ;H)

)

+ C

( ∞
∑

i=ℓy+1

λy
i +

∞
∑

i=ℓp+1

λp
i +

∞
∑

i=ℓq+1

λq
i

)

.

From Lemmas 4.2, 4.3 and 4.4 we infer the existence of a constant C > 0 such
that

∫ T

0

‖y(t) − yℓ(t)‖2

V + ‖p(t) − pℓ(t)‖2

V + ‖q(t) − qℓ(t)‖2

V dt

≤ C
(

‖Pℓy

y◦ − yℓ(0)‖2

H + ‖Pℓy

yt − yt‖
2

L2(0,T ;H)

)

+ C

( ∞
∑

i=ℓy+1

λy
i +

∞
∑

i=ℓp+1

λp
i +

∞
∑

i=ℓq+1

λq
i

)

.

Remark 4.5. (1) The term ‖Pℓy

y◦ − yℓ(0)‖2
H expresses how well the initial

condition is approximated by the POD basis. It follows from [13, Re-
mark 3.3] that

‖Pℓy

y◦ − yℓ(0)‖2

H ≤ ‖(Pℓy − T ℓy

)y◦‖
2

H
ℓ→∞−→ 0,

where T ℓy

ϕ =
∑ℓy

i=1 〈ϕ,ψy
i 〉Hψy

i for ϕ ∈ H.
(2) Note that the error depends on the L2(0, T ;H) norm of the difference yt −

Pℓy

yt. To avoid this dependence we have to include time derivatives into
our snapshot set; see [17, 18]. ♦

5. Numerical experiments

In this section we present numerical results to the methods introduced in the
previous sections. We choose here two settings. In the first run we demonstrate
the effectiveness of the POD Galerkin scheme to solve the nonlinear elliptic para-
bolic system. In the second run we demonstrate a possible extension so that this
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advantage can also be utilized in multiple solving of the PDE which can occur for
example in the course of an optimization strategy.

5.1. Run 1. Let us start with setting up the problem. The nonlinearity has been
introduced in (2.2). For this run the parameter µ is set to (1,−1). With this
setting the PDE is very similar with the model to simulate lithium ion batteries
introduced in [10, 25]. As an initial value for the parabolic equation we choose
y◦(x) = 2 + sin(x). The diffusion coefficients c1, c2 and c3 are set to 1. For
the domain Ω the one dimensional interval [0, 2π] is chosen. The time interval
[0, T ], T = 1, is discretized in 100 equidistant steps. It is also possible to use
an adaptive method for the time steps or even incorporate an optimal snapshot
location algorithm to improve the quality of the generated snapshots [20]. For the
discretization in space we choose 1000 discretization points and second order finite
elements. This results in 1999 degrees of freedom. For the time an implicit Euler
method is used for the full system of PDEs. To solve the full system a Newton
method is utilized. It is important to solve the full system at once to obtain the
most accurate results. When splitting the system into an elliptic and a parabolic
part and solving them alternately the achieved results are less accurate and the
variables y, p and q may not satisfy the original problem to desired accuracy.

Next we discuss the settings for the simulation utilizing the POD method. We
will report on the performance of the simulation using POD with and without
the use of the EIM or DEIM method. Let us start with giving the dimension of
the basis for the POD. Looking at Figure 3.1 we can see that the singular values
decrease rapidly. Here we choose ℓy = 12, ℓp = 10 and ℓq = 10. Further we
choose ℓEIM = 25. Comparing to Figure 3.3 this choice is reasonable for the DEIM
method. For the EIM method we choose the same value for ℓEIM as for the DEIM
method in order to compare the computational performance.

To measure the accuracy of the POD method with respect to the finite element
method the average relative error is introduced in the form

(5.1) εy =
1

Nt + 1

Nt
∑

i=0

‖yh(ti) − yℓ(ti)‖L2(Ω)

‖yh(ti)‖L2(Ω)
,

where Nt is the number of time steps and ti the discretization points in time.
Note that we can define the average relative error in this way since we choose an
equidistant discretization in time for our test. The average relative error of the
variables p and q are introduced analogously. In Table 5.1 we compare the average
relative errors. It can be observed that the empirical interpolation methods perform
very well and there is no difference in accuracy when comparing EIM and DEIM.

ROM ROM-EIM ROM-DEIM
εy 1.6765 × 10−7 1.6763 × 10−7 1.6762 × 10−7

εp 2.8723 × 10−7 2.7560 × 10−7 2.7467 × 10−7

εq 9.7545 × 10−8 9.4332 × 10−8 9.1929 × 10−8

Table 5.1. Comparison of the average relative errors when solving
the ROM with and without EIM or DEIM.
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Figure 5.1. Absolut error between the finite element solution and
the POD solution using DEIM for y (left), p (center) and q (right).

Further in Figure 5.1 the absolute error between the solution obtained by the
finite element method and the POD method is shown. It can be seen that the POD
method delivers nearly the same results as the finite element method and the error
is distributed equally over the whole space-time domain.

The computational performance of POD method compared to the finite element
method is summarized in Table 5.2. The speed up when using one of the two
interpolation methods is significant. The achieved results are very similar as can
be seen in Table 5.1. What should be noted is that the computation of the EIM
is more expensive but leads to a more efficient ROM due to the properties of the
interpolation matrix. So in case of multiple evaluations the EIM has a performance
advantage for our particular problem.

FEM POD EIM DEIM ROM ROM-EIM ROM-DEIM
CPU time 18.20 0.20 0.19 0.03 6.03 0.24 0.48

Table 5.2. Summary of the performance for the finite element
and POD method measured in seconds.

Additionally to the average relative error over the whole domain Ω we have
a look at the average relative boundary error. This is in particular interesting
in the application where one can only measure certain quantities at the boundary.
Therefore it is important that the POD approximation is accurate on the boundary.
Let us define the average relative error for the boundary as

(5.2) ε̄p(b) =
1

Nt + 1

N−t
∑

i=0

|ph(ti, b) − pℓ(ti, b)|
|ph(ti, b)|

.

This error is interesting for the variables p(t, b) and q(t, a). When comparing to the
modeling of lithium ion batteries these two variables correspond to the potentials
which can only be measured at the boundaries. In Table 5.3 we summarize the
results. It can be seen that the POD approach delivers good results also when only
looking at one particular point of the domain Ω, in our case the boundary.
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ROM ROM-EIM ROM-DEIM
ε̄p(b) 3.3426 × 10−7 3.2678 × 10−7 3.3285 × 10−7

ε̄q(a) 6.6072 × 10−8 9.0798 × 10−8 7.4682 × 10−8

Table 5.3. Comparison of the average relative errors on the
boundary when solving the ROM with and without EIM or DEIM.

5.2. Run 2. In this run we focus on the case that the parameter µ is changed. This
is the case when using the POD method for optimization or parameter estimation.
For this experiment we introduce two sets, one sample set on which finite element
method is used and one test set to evaluate the reliability of the simulation using
the POD method. The settings for the finite element discretization and solver are
as described in Run 1. For the POD method we increase the number of basis
functions to ℓy = 18, ℓp = 22 and ℓq = 20. For the empirical interpolation method
we use ℓEIM = 40 interpolation points. Next we introduce the sample and test set.
We choose the two disjoint sets

Msample = {1, 2} × {−2,−1}
and

Mtest = {0.5, 1.5, 2.5, 3} × {−3,−2.5,−1.5,−0.5}.
This gives us 4 possible combinations for the sample set on which the PDE will be
solved using the finite element discretization. The test set will give us 16 possible
combinations on which the reduced order model will be solved using the POD
method together with EIM or DEIM.

We use the average relative error introduced in (5.1) to measure the accuracy
of the POD method with respect to the finite element method. In Figure 5.2 the
results for the relative errors are summarized. In the right plot the average relative
errors for the three variables is shown for the four parameters in the sample set.
It can be seen that the POD method manages to approximate the solutions very
well. In the left plot we report on the 16 parameters of the test set. Also for
parameters which were not used to generate the POD basis we are able to achieve
a sufficient accuracy. In Table 5.4 we summarize the performance of the POD
method with respect to the computational time. Here we again get similar results
as in the previous run. We can compute the time saved by using the POD method.
Since we used the generated basis 16 times we saved approximately 17.5 seconds
for each time we solved the system of nonlinear elliptic-parabolic PDEs using the
POD method. On the other hand we have the time needed to generate the POD
basis and four times solving the system using the finite element method. Further
the basis for our interpolation method has to be computed. We observe for our
test examples that for multiple evaluations of the system we were able to speed up
the simulation with a factor of 35 when using EIM or DEIM. Without using an
interpolation method only a factor of two can be achieved.

In Figure 5.3 we compare the average relative boundary error given in (5.2) for
the different parameters µ. Also here we see that the POD solution approximates
the boundary points very accurate. As motivated previously this is important for
certain applications.



18 O. LASS AND S. VOLKWEIN

1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5
x 10

−7

Average relative L2 error
        (sample set)      

Parameter sample

ε

 

 

ε
Y

ε
P

ε
Q

2 4 6 8 10 12 14 16
0

2

4

6

8
x 10

−7

Average relative L2 error
        (test set)        

Parameter sample

ε

 

 

ε
Y

ε
P

ε
Q

Figure 5.2. Average relative L2 error for the sample (left) and
the test (right) set.

FEM POD EIM DEIM ROM ROM-EIM ROM-DEIM

CPU time ∼ 18
(∗)

0.54 0.74 0.09 ∼ 7.50
(∗∗)

∼ 0.30
(∗∗)

∼ 0.60
(∗∗)

Table 5.4. Summary of the performance for the finite element
and POD method measured in seconds ((*) for each sample pair,
(**) for each test pair).
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Figure 5.3. Average relative boundary error for the sample (left)
and the test (right) set.

6. Conclusions

In the present paper a coupled semilinear elliptic-parabolic system is approxi-
mated by a POD Galerkin scheme. It turns out that the combination of the POD
scheme with an interpolation of the nonlinearity leads to a fast and reliable reduced-
order model. Theoretically, the POD Galerkin scheme can be proved to satisfy an
a-priori error estimate, whereas the discretization error depends on the decay of
the POD eigenvalues. The error estimate is based on the expensive evaluation of
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the nonlinear term in the reduced-order model. However, by using the techniques
from [5] we plan the extend the a-priori analysis to the case, where the discrete
interpolation method is applied.

Appendix

Proof of Lemma 4.3. Recall that the mapping N is continuously differentiable
on Zad×Pad. Applying (4.3b), the property of the Ritz mapping Pℓp

, (2.4b), (3.4b)
and the integral form of the mean value theorem we obtain that

ap(ϑℓp

(t), ψ) = ap(Pℓp

p(t), ψ) − ap(pℓ(t), ψ) = ap(p(t), ψ) − ap(pℓ(t), ψ)

= 〈N (zℓ(t);µ) −N (z(t);µ), ψ〉H

=

∫ 1

0

〈∂N
∂y

(ζℓ(t, s);µ)(yℓ(t) − y(t)) +
∂N
∂p

(ζℓ(t, s));µ)(pℓ(t) − p(t)), ψ
〉

H
ds

+

∫ 1

0

〈∂N
∂q

(ζℓ(t, s));µ)(qℓ(t) − q(t)), ψ
〉

H
ds

for all ψ ∈ V ℓp

and f.a.a. t ∈ [0, T ], where ζℓ(t, s) = z(t) + s(zℓ(t) − z(t)), (t, s) ∈
[0, T ] × [0, 1], parametrizes the straight line between z(t) and zℓ(t). Choosing ψ =
ϑℓp

(t) and using (4.1), (2.3) we find that

(A.1)

cV ‖ϑℓp

(t)‖2

V ≤ −
∫ 1

0

〈∂N
∂y

(ζℓ(t, s);µ)(̺ℓy

(t) + ϑℓy

(t)), ϑℓp

(t)
〉

H
ds

−
∫ 1

0

〈∂N
∂p

(ζℓ(t, s));µ)(̺ℓp

(t) + ϑℓp

(t)), ϑℓp

(t)
〉

H
ds

+

∫ 1

0

〈∂N
∂p

(ζℓ(t, s));µ)(̺ℓq

(t) + ϑℓq

(t)), ϑℓp

(t)
〉

H
ds

f.a.a. t ∈ [0, T ]. Analogously, we proceed for ϑℓq

(t). From (4.3c), (2.1c), (3.4c) and
(2.3) we deduce that

aq(ϑℓq

(t), ϕ) = 〈N (z(t);µ) −N (zℓ(t);µ), ϕ〉H

=

∫ 1

0

〈∂N
∂y

(ζℓ(t, s);µ)(y(t) − yℓ(t)) +
∂N
∂p

(ζℓ(t, s));µ)(p(t) − pℓ(t)), ϕ
〉

H
ds

−
∫ 1

0

〈∂N
∂p

(ζℓ(t, s));µ)(q(t) − qℓ(t)), ϕ
〉

H
ds

for all ϕ ∈ V ℓq

and f.a.a. t ∈ [0, 1]. Taking ϕ = ϑℓq

and using (4.1) it follows that

(A.2)

cV ‖ϑℓq

(t)‖2

V ≤
∫ 1

0

〈∂N
∂y

(ζℓ(t, s);µ)(̺ℓy

(t) + ϑℓy

(t)), ϑℓq

(t)
〉

H
ds

+

∫ 1

0

〈∂N
∂p

(ζℓ(t, s));µ)(̺ℓp

(t) + ϑℓp

(t)), ϑℓq

(t)
〉

H
ds

−
∫ 1

0

〈∂N
∂p

(ζℓ(t, s));µ)(̺ℓq

(t) + ϑℓq

(t)), ϑℓq

(t)
〉

H
ds

f.a.a. t ∈ [0, 1]. Due to Assumption 2 we have ζℓ(t, x) ∈ Zad f.a.a. (t, x) ∈ Q
and ‖ζℓ‖L∞(Q)3 ≤ C with a constant independent of ℓ. Therefore, there exists a
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constant cN > 0 independent of ℓ such that

esssup
t∈[0,T ]

(

max

{
∫ 1

0

∥

∥

∥

∂N
∂y

(ζℓ(t, s))
∥

∥

∥

L∞(Ω)
ds,

∫ 1

0

∥

∥

∥

∂N
∂p

(ζℓ(t, s))
∥

∥

∥

L∞(Ω)
ds

} )

≤ cN .

Adding (A.1), (A.2) and utilizing (2.3) we obtain that

cV

(

‖ϑℓp

(t)‖2

V + ‖ϑℓq

(t)‖2

V

)

≤
∫ 1

0

〈∂N
∂y

(ζℓ(t, s);µ), (̺ℓy

(t) + ϑℓy

(t))(ϑℓq

(t) − ϑℓp

(t))
〉

H
ds

+

∫ 1

0

〈

− ∂N
∂p

(ζℓ(t, s);µ), (ϑℓp

(t) − ϑℓq

(t))2
〉

H
ds

+

∫ 1

0

〈∂N
∂p

(ζℓ(t, s);µ), ̺ℓp

(t)ϑℓq

(t) + ̺ℓq

(t)ϑℓp

(t)
〉

H
ds

≤ cN
(

‖̺ℓy

(t)‖H + ‖ϑℓy

(t)‖H

)(

‖ϑℓq

(t)‖H + ‖ϑℓp

(t)‖H

)

+ cN
(

‖̺ℓp

(t)‖H‖ϑℓq

(t)‖H + ‖̺ℓq

(t)‖H‖ϑℓp

(t)‖H

)

.

Since V , Va and Vb are continuously embedded into H, there exists a constant
cH > 0 such that ‖ϕ‖H ≤ cH ‖ϕ‖V for all ϕ ∈ V . Consequently,

cV

(

‖ϑℓp

(t)‖2

V + ‖ϑℓq

(t)‖2

V

)

≤ C1

(

‖̺ℓy

(t)‖V ‖ϑℓq

(t)‖V + ‖ϑℓy

(t)‖H‖ϑℓq

(t)‖V + ‖̺ℓy

(t)‖V ‖ϑℓp

(t)‖V

)

+ C1

(

‖ϑℓy

(t)‖H‖ϑℓp

(t)‖V + ‖̺ℓp

(t)‖V ‖ϑℓq

(t)‖V + ‖̺ℓq

(t)‖V ‖ϑℓp

(t)‖V

)

f.a.a. t ∈ [0, T ] and with C1 = cN max(cH , c2
H). Using Young’s inequality [2, p. 28]

we obtain

cV

(

‖ϑℓp

(t)‖2

V + ‖ϑℓq

(t)‖2

V

)

≤ C2
1

2ε

(

2 ‖̺ℓy

(t)‖2

V + 2 ‖ϑℓy

(t)‖2

H + ‖̺ℓp

(t)‖2

V + ‖̺ℓq

(t)‖2

V

)

+
3ε

2

(

‖ϑℓq

(t)‖2

V + ‖ϑℓp

(t)‖2

V

)

for an arbitrary ε > 0. Choosing ε = cV /3 and setting C2 = 3C2
1/cV we find that

(A.3) ‖ϑℓp

(t)‖2

V +‖ϑℓq

(t)‖2

V ≤ C2

(

‖ϑℓy

(t)‖2

H +‖̺ℓy

(t)‖2

V +‖̺ℓp

(t)‖2

V +‖̺ℓq

(t)‖2

V

)

f.a.a. t ∈ [0, T ]. ¤

Proof of Lemma 4.4. Using (4.3a), (4.2), (2.4a), (3.4a) we find

d

dt
〈ϑℓy (t), ψ〉H + ay(ϑℓy

(t), ψ) = 〈Pℓy

yt(t) − yℓ
t (t), ψ〉H + ay(Pℓy

y(t) − yℓ(t), ψ)

= 〈N (zℓ(t);µ) −N (z(t);µ) + y(t) − yℓ(t) + Pℓy

yt(t) − yt(t), ψ〉H

=

∫ 1

0

〈∂N
∂y

(ζℓ(t, s);µ)(yℓ(t) − y(t)) +
∂N
∂p

(ζℓ(t, s));µ)(pℓ(t) − p(t)), ψ
〉

H
ds

−
∫ 1

0

〈∂N
∂p

(ζℓ(t, s));µ)(qℓ(t) − q(t)) + y(t) − yℓ(t) + Pℓy

yt(t) − yt(t), ψ
〉

H
ds,

where ζℓ(t, s) = z(t)+s(zℓ(t)−z(t)), (t, s) ∈ [0, T ]× [0, 1], parametrizes the straight
line between z(t) and zℓ(t). Recall that we have introduced the constant cN in the
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proof of Lemma 4.3. Choosing ψ = ϑℓy

(t), C1 = max(cN max(1, cH), cH , 1)/2 and
applying (4.1) we find that

1

2

d

dt
‖ϑℓy (t)‖2

H + cV ‖ϑℓy (t)‖2

V

≤ 2C1

(

‖̺ℓy

(t)‖V ‖ϑℓy

(t)‖H + ‖ϑℓy

(t)‖2

H + ‖̺ℓp

(t)‖V ‖ϑℓy

(t)‖H

)

+ 2C1

(

‖̺ℓq

(t)‖V ‖ϑℓy

(t)‖H + ‖ϑℓq

(t)‖V ‖ϑℓy

(t)‖H + ‖ϑℓp

(t)‖V ‖ϑℓy

(t)‖H

)

+ 2C1

(

‖̺ℓy

(t)‖V ‖ϑℓy

(t)‖H + ‖ϑℓy

(t)‖2

H + ‖Pℓy

yt(t) − yt(t)‖H‖ϑℓy

(t)‖H

)

≤ C2
1

(

2 ‖̺ℓy

(t)‖2

V + ‖̺ℓp

(t)‖2

V + ‖ϑℓp

(t)‖2

V + ‖̺ℓq

(t)‖2

V + ‖ϑℓq

(t)‖2

V

)

+ C2
1

(

11 ‖ϑℓy

(t)‖2

H + ‖Pℓy

yt(t) − yt(t)‖
2

H

)

.

From (A.3) we infer that

d

dt
‖ϑℓy (t)‖2

H + 2cV ‖ϑℓy (t)‖2

V

≤ C2

(

‖̺ℓy

(t)‖2

V + ‖̺ℓp

(t)‖2

V + ‖̺ℓq

(t)‖2

V + ‖ϑℓy

(t)‖2

H + ‖Pℓy

yt(t) − yt(t)‖
2

H

)

,

where C2 = 22C2
1 . Integrating over time and using Lemma 4.2 we get

‖ϑℓy (t)‖2

H + 2

∫ t

0

cV ‖ϑℓy (s)‖2

V ds

≤ C2

∫ T

0

‖̺ℓy

(t)‖2

V + ‖̺ℓp

(t)‖2

V + ‖̺ℓq

(t)‖2

V + ‖ϑℓy

(t)‖2

H + ‖Pℓy

yt(t) − yt(t)‖
2

H dt

≤ C2

( ∞
∑

i=ℓy+1

λy
i +

∞
∑

i=ℓp+1

λp
i +

∞
∑

i=ℓq+1

λq
i

)

+ C2

(

‖Pℓy

y◦ − yℓ(0)‖2

H + ‖Pℓy

yt − yt‖
2

L2(0,T ;H)

)

which gives

‖ϑℓy (t)‖2

H ≤ C2

( ∞
∑

i=ℓy+1

λy
i +

∞
∑

i=ℓp+1

λp
i +

∞
∑

i=ℓq+1

λq
i

)

+ C2

(

‖Pℓy

y◦ − yℓ(0)‖2

H + ‖Pℓy

yt − yt‖
2

L2(0,T ;H)

)

f.a.a. t ∈ [0, T ] and

‖ϑℓy (t)‖2

L2(0,T ;V ) ≤ C2

( ∞
∑

i=ℓy+1

λy
i +

∞
∑

i=ℓp+1

λp
i +

∞
∑

i=ℓq+1

λq
i

)

+ C2

(

‖Pℓy

y◦ − yℓ(0)‖2

H + ‖Pℓy

yt − yt‖
2

L2(0,T ;H)

)

.

¤
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