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DISCRETE AND CONTINUUM RELAXATION DYNAMICS OF
FACETED CRYSTAL SURFACE IN EVAPORATION MODELS∗

KANNA NAKAMURA† AND DIONISIOS MARGETIS‡

Abstract. We study linkages of two scales in the relaxation of an axisymmetric crystal with
a facet in evaporation-condensation kinetics. The macroscale evolution is driven by the motion of
concentric circular, repulsively interacting line defects (steps) which exchange atoms with the vapor.
At the microscale, the step velocity is proportional to the variation of the total step free energy,
leading to large systems of differential equations for the step radii. We focus on two step flow
models. In one model (called M1) the discrete mobility is simply proportional to the upper-terrace
width; in another model (M2) the mobility is altered by an extra geometric factor. By invoking
self-similarity at long time, we numerically demonstrate that (i) in M1, discrete slopes follow closely
a continuum thermodynamics approach with “natural boundary conditions” at the facet edge; (ii)
in contrast, predictions of M2 deviate from results of the above continuum approach; and (iii) this
discrepancy can be eliminated via a continuum boundary condition with a geometry-induced jump
for top-step collapses. At the macroscale, both step models give rise to free-boundary problems for a
second-order, parabolic partial differential equation, which we study via the subgradient formalism.
We discuss the interpretation of the facet height as shock and prove convergence of the solution of
each discrete scheme to the (weak) entropy solution of a conservation law if steps do not interact.

Key words. crystal surface, evaporation, facet, Burton–Cabrera–Frank model, subgradient
formalism, free-boundary problem, shock
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1. Introduction. Crystal surface structures may relax to become flat in the
absence of external material deposition, so that the large-scale height profile evolves
by the variation of thermodynamics-based free energies [4, 21, 27, 39, 51]. Below the
roughening transition, this evolution must be driven by the motion of atomic line
defects (steps) separated by nanoscale terraces [5, 26]. Presently, the relation of step
motion to surface morphological relaxation is inadequately understood.

In particular, crystals develop macroscopic plateaus—facets. Away from facets,
surface relaxation can be described by partial differential equations (PDEs) for the
height or slope profiles consistent with steps and subject to variational and conserva-
tion principles; for derivations of PDEs from step flow, see, e.g., [9, 35, 41, 43, 46, 51].
This description in principle breaks down near facets; extremal-step collapses can
affect the surface profile macroscopically, as pointed out in [6, 24, 34, 50]. The in-
corporation of facets into computationally appealing continuum theories in realistic
geometries is a challenging and rich problem.

In this article, we study via numerics the relation of step flow to its contin-
uum limit in a radial geometry with a facet under evaporation-condensation kinetics,
where circular, descending steps move by exchange of atoms with the vapor. At the
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EVAPORATION DYNAMICS OF FACETED CRYSTAL 245

macroscale outside the facet, we invoke a second-order parabolic PDE proposed by
Spohn [51]. This PDE has a conservation form and a simple variational characteriza-
tion: the height flow equals the first variation of a convex, singular free energy. We
treat the facet as a free boundary. One choice is to apply “natural boundary condi-
tions” from the subgradient formalism which is intimately connected to continuum
thermodynamics [27].1 At the microscale, we propose two step flow models, called
M1 and M2, each of which formally reduces to Spohn’s PDE away from the facet.
In both models, the step velocity is driven by the step chemical potential, the varia-
tion of the total step free energy. In M1 the step mobility is simply proportional to
the upper-terrace width, whereas in M2 the mobility is modified by an extra discrete
geometry-induced factor. Our numerics under conical initial data indicate that the
discrete slopes become self-similar at long time. In this regime, we mainly find that

(i) discrete slopes by M1 are in agreement with predictions of the subgradient
theory;

(ii) discrete slopes by M2 deviate from results of the subgradient formalism; and
(iii) the above discrepancy is eliminated by introduction of a jump at the facet edge

of a (properly defined) continuum flux function, which replaces the natural
boundary condition that this flux be continuous.

The modification of the natural boundary condition in (iii) aims to account for the
facet microstructure. The discontinuity is expressed in terms of the extra, discrete
geometric factor of step mobility evaluated for a pair of extremal steps at times of
top-step collapses; data for this factor is extracted from discrete simulations. In the
special case with noninteracting steps in M2, we verify that this factor has a value
close to an exact result from the convergence of the discrete scheme.

These results indicate that, depending on step kinetics, facets may be incorpo-
rated into a continuum theory by adjusting a coefficient in a known (natural) bound-
ary condition of the subgradient formalism. This finding essentially justifies the use
of this formalism as our starting point. For nonzero step-step interactions, the nat-
ural boundary conditions include continuity of height, slope, and the flux entering
the conservation form of the PDE outside the facet. Retaining these variables, we
point out that adjusting the flux at the facet edge in correspondence to collapses
of atomic layers suffices to yield continuum predictions in agreement with discrete
simulations.

This viewpoint of ours is different from previous studies [24, 34], which focus on
facet evolution under (the more complicated) surface diffusion in radial geometries,
where the step velocity is determined by mass fluxes of adsorbed atoms (adatoms) im-
pinging on each step. In these studies [24, 34], one of the natural boundary conditions,
the continuity of the large-scale step chemical potential, is replaced by a statement
for the facet speed accounting for individual step collapses on the facet. This mod-
ification is puzzling: it seems unrelated to continuum thermodynamics, cannot be
clearly transferred to non-self-similar settings, and is expressed by high derivatives of
the height which render surface profiles sensitive to any error in the collapse times.

Seeking an alternate approach, we focus on evaporation kinetics under self-
similarity of slopes. This restriction enables us to single out the effect of key parame-
ters with relative computational ease. We deem that our proposal for a discontinuity
in a natural boundary condition has advantages over [24, 34] such as (a) the condition
can plausibly be extended to all times (when self-similarity may not hold) and (b)
the jump depends only on the first derivative of height (slope) and a suitable factor.

1The subgradient theory will also be called the “continuum thermodynamics approach” here.
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246 KANNA NAKAMURA AND DIONISIOS MARGETIS

However, our modification of the natural boundary condition is phenomenological.
The derivation of the jump directly from step flow is largely unexplored.

Our broader goal is to shed light on the linkage of continuum thermodynamics to
underlying discrete schemes when the number of steps is not preserved, e.g., if step
collapses occur on top of facets. It is tempting to expect that this feature should always
imply lack of consistency of the discrete system with the continuum thermodynamics
approach [24, 25]. We numerically show that this connection depends critically on the
step kinetics (particularly the step velocity law); for example, the subgradient theory
is in agreement with step flow in the context of M1.

Notably, most but by no means all [28, 51] previous studies of facet evolution in
one-dimensional (1D) or radial geometries focus on surface diffusion in the absence of
evaporation; see, e.g., [1, 2, 24, 25, 34]. In [28], the authors point out the significant
influence of kinetics, especially nucleation, on the connection of continuum laws (i.e.,
the Hamilton–Jacobi equation for the height) to step motion near facets.

Physically, evaporation coexists with surface diffusion; the latter process, in which
adatoms diffuse on terraces and attach or detach at steps from or to terraces [5, 26],
becomes dominant for very small structures [20, 45]. To capture key elements in the
relation of discrete step flow and continuum dynamics, we consider evaporation models
(M1 and M2) that are rich enough to include step curvature, elastic-dipole step-step
repulsions [32, 40], and a terrace-width-dependent step mobility. For M2, we construct
the geometry-induced step mobility with recourse to a special limit of a Burton–
Cabrera–Frank-(BCF-) type model for circular steps under the combined effects of
desorption, diffusion of adatoms on terraces, and attachment/detachment of atoms
at steps with negative (“inverse”) Ehrlich–Schwoebel (ES) barrier [10, 44, 47, 49] by
which the sticking kinetic rate at down-steps is larger than that for up-steps.

Our work has limitations. We assume that the continuum limit exists for inter-
acting steps and submit a proof for such a limit only for noninteracting steps (see
section 7). We only provide numerical evidence that solutions of the discrete schemes
for M1 and M2 under self-similarity may converge to certain continuum-scale solu-
tions, with the exception of the special case with zero step interactions, which we
discuss analytically. The numerically observed self-similar behavior of discrete and
continuum slopes is not explored rigorously. Our jump condition for interacting steps
requires input from discrete simulations; it is an open problem to formulate alter-
nate conditions without use of step collapse times. The full time-dependent problem
(in absence of self similarity) is not studied. Our step models should be enriched to
include more realistic effects such as terrace diffusion and nonradial geometries; the
effect of terrace diffusion is outlined in Appendix A.

We assume that the reader is familiar with the fundamentals of epitaxial growth.
For broad reviews on the subject, see, e.g., [26, 37, 38].

1.1. Microscopic models. Three features of our evaporation models, which
partly motivate their use here, are (i) compatibility with Spohn’s PDE outside facets [27,
51]; (ii) well-posedness of the ensuing discrete dynamics even for zero step-step in-
teraction where M1 and M2 become simple backward difference schemes; and (iii)
numerically observed self-similar behavior of the discrete slopes at long time.

We start with a step velocity law of the form

(1.1)
dri
dt

= ṙi = −νi(μi − μ0) , i = 0, 1 . . . , N ,

which captures the effect of adatoms being exchanged between concentric circular step
edges and the surrounding vapor; N � 1. In (1.1), ri(t) is the ith-step radius, νi is
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a (positive) discrete mobility (specified below), μ0 is the constant chemical potential
of the surrounding vapor, and μi is the step chemical potential; this μi incorporates
step curvature (stiffness) and elastic-dipole step-step interactions [26] and depends on
(ri−1, ri, ri+1) (see section 2). We then obtain a large system of ordinary differential
equations (ODEs) for the step radii. This system describes successive annihilations
of the top (extremal) layers of an axisymmetric structure; each collapse time tn is
defined as the earliest time at which rn(t) = 0 (n ≥ 0). We take ri(t) ≡ 0 if i ≤ n
and t ≥ tn. Because of these annihilations, the surface height is expected to decrease
with time. For definiteness, set μ0 = 0 in (1.1).

A few comments on the physical origin of (1.1) are in order. The guiding principle
is that atoms on step edges move from higher to lower chemical potential. For example,
when the top circular step is small enough, its chemical potential (μi) is dominated
by the step line tension and tends to become large; thus, atoms leave the step edge
and this in turn retreats (and shrinks). This behavior is consistent with (1.1).

The associated step mobility reads

(1.2) νi = ν Gi
ri − ri−1

a
; Gi = Gi(t) =

⎧⎨⎩1 for M1 ,
ri + ri−1

2ri
for M2 ,

where a is the step height and ν is a positive constant (ν > 0). In section 3, we show
that if steps are ordered with ri(0) > ri−1(0) for all i, then the ordering is preserved
by the flow; thus, νi > 0 for all times ti > t > 0. The position-dependent formula
for Gi in M2 can be derived with recourse to a special limit of the BCF model with
desorption [5, 45], as outlined in Appendix A.

The quantity Gi forms a crucial geometric factor in M2. Note that step velocity
law (1.1) for M2 reduces to the one for M1 away from the facet where we expect that
ri+1 − ri � ri, ri+1, a necessary condition for the (formal) continuum limit to make
sense. This condition should break down at extremal steps, near the facet.

1.2. Continuum limit. In our axisymmetric setting, the facet is a macroscopic
surface region of spatially constant height (zero slope) and growing radius, rf(t). In
the limit of a large number of steps, ODE system (1.1) with (1.2) formally reduces to
Spohn’s evolution PDE [51] for the height profile away from the facet. This PDE has
the conservation form

(1.3) ∂th+ cdivξ = 0 , r > rf(t) ,

where h(r, t) is the height profile, ξ(r, t) is a vector-valued flux (defined in section 4)
in the radial direction, r is the polar coordinate, and c is a positive constant. In the
case of evaporation-condensation, ξ expresses mass exchange between the surface and
its surrounding vapor and divξ is the continuum-scale step chemical potential.

By (1.3), the height flow outside the facet reads ∂th ∝ −δE/δh, the first variation
(in the L2-metric) of the convex, singular free energy [18, 51]

(1.4) E(h) =

∫ ∫ (
g1|∇h|+

g3
3
|∇h|3
)

dA ,

where g1 is the step line tension and g3 is the step-step interaction strength (g1 > 0,
g3 ≥ 0), and integration is carried out on the crystal reference (xy-) plane. Notably,
δE/δh is ill-defined (in the usual local sense) on the facet (∇h = 0).

Rigorous study of the continuum limit yielding (1.3) for arbitrary g3/g1 > 0 lies
beyond our scope. This limit is brought about by taking a→ 0 with fixed slope. We
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248 KANNA NAKAMURA AND DIONISIOS MARGETIS

assume that the width of each terrace is much smaller than the radii of its bounding
steps and varies slowly with the polar coordinate [35].

1.2.1. Subgradient formalism and free-boundary conditions. Our choice
to use the subgradient formalism as a starting point at the continuum level is almost
compelling: this theory is well-studied and incorporates facets into the continuum by
treating the height flow as a dynamical system, without the need of input from the
microscale [27]. Remarkably, the subgradient theory includes the facet in evolution by
dictating that everywhere ∂th is an appropriate element of the L2-subdifferential (a
nonempty set) of E(h) [27]. Accordingly, PDE (1.3) is replaced by a similar statement
valid for all r ≥ 0; see section 5.1. The associated flux ξ is thus continuously extended
onto the facet. In addition, the height is continuous across the facet edge, and for
nonzero step interactions (g3 > 0) the surface slope is continuous.

Alternatively, the facet can be treated as a free boundary by enforcement of
Spohn’s PDE away from the facet [51]. This view is equivalent with the subgradient
theory if the above three continuity relations, natural boundary conditions, are ap-
plied.2 The emerging recipe is simple: apply (1.3) and impose the three continuity
conditions at the facet edge. This view, which reconciles continuum thermodynamics
with the free-boundary approach, lies at the heart of our study.

By invoking self-similarity of the slope (see below), we numerically show that
the above familiar viewpoint is consistent with the dynamics of M1 but needs to be
amended for M2. For consistency with M2, we impose the condition that the flux ξ be
discontinuous across the facet boundary; a novelty is to introduce a jump in terms of
values of Gi(t), given in (1.2), at times t 
 tn of step collapses (when rn(t) = 0) for the
first two (extremal) steps of radii rn+1 and rn+2 (for i = n+ 2 in Gi); see section 5.2.
The ensuing continuum slope is found in excellent agreement with step simulations.

1.2.2. Self-similarity and boundary layer theory. For noninteracting steps
(g3 = 0) and an initial linear cone, the continuum-scale slope, m(r, t), and facet radius
are determined exactly in closed form and have a self-similar structure. In addition,
our step simulations for g3 ≥ 0 suggest that the discrete slopes become self-similar at
long time. Motivated by these observations and the need to circumvent complications
of solving the full PDE, we apply a self-similarity ansatz tom(r, t) away from the facet.
This hypothesis is compatible with the structure of the evolution PDE for m and the
free-boundary conditions. In particular, for large t we assume that m(r, t) ∼ m(η),
where η = r/

√
t > ηf = rf/

√
t; formally reduce the PDE to an ODE for m(η); and

solve this ODE numerically (see section 6).
To gain some analytical insight into continuum solutions, we apply boundary layer

theory to the PDE for m if step interactions are weak, 0 < g3/g1 � 1; see section 6.3.
Our approximation for m indicates how the zero slope of the facet can be connected
smoothly to the constant slope (for conical initial data) far from the facet and serves
as a basis for some of our numerical computations.

Our study of self-similar solutions has limitations. First, we have not shown rigor-
ously that the discrete slopes become self-similar, and the stability is not investigated.
Second, the reduction of the PDE to a similarity ODE is only postulated. Third, we
have not studied initial data other than a linear cone.

1.2.3. Facet as shock and convergence of discrete schemes. In light of
our findings, we discuss the connection of our discrete schemes for M1 and M2 to

2In [51], Spohn derives these boundary conditions via a nonlinear transformation, by analogy
with PDE theory for porous media and nonlinear filtration, without direct use of the subgradient.
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continuum-scale shocks particularly for zero step interactions (g3 = 0). For this
purpose, we write the evolution PDE outside the facet in Lagrangian variables; the
step position, R, is viewed as a function of height, h, and time [12]. First, we posit
that the facet is related to a shock wave in the context of distinct conservation laws
for functions of R if g3 = 0 (see section 7.1); the shock speed and strength are directly
related to the facet speed and radius, respectively.

We then consider M1 and M2 as discretizations of respective weak formulations
for distinct conservation laws. In fact, we prove that the discrete solution of each
model converges to the entropy solution of a conservation law (see section 7.2); this
limit must be the above shock wave. In this context, the boundary condition for the
flux ξ is viewed as a Rankine–Hugoniot-type condition from the corresponding weak
formulation; R is zero on the one side of the shock, as implied by the initial data for
step radii. In this vein, we exactly evaluate the jump of ξ for M2.

This is not the first time facets are connected to shocks; see [12, 13, 14, 15, 16, 52]
where PDE solutions are recognized as shocks. We adopt the shock notion with a
different perspective: to link this picture to step schemes. We are able to establish
indirectly a connection of the subgradient theory to schemes for noninteracting steps.
However, our discussion (section 7) is incomplete at the moment since it does not
rigorously address step interactions.

1.3. On past works. The connection of step flow to continuum theories has
been studied analytically for semi-infinite 1D facets at fixed heights in surface dif-
fusion [1, 2, 36]; however, only the attachment-detachment limited (ADL) regime
has been addressed rigorously [1, 2]. In this setting, the surface height is a conve-
nient independent variable by which there is no need to use a free boundary for the
facet; furthermore, step collapses do not occur and thus the total number of steps
is preserved. The analysis becomes more involved for periodic 1D surface corruga-
tions [25, 42] and radial geometries [24, 34] such as the one in the present study,
where the facet height changes with time. For such geometries, boundary conditions
consistent with step flow are in principle expected to involve microscale parameters,
e.g., step collapse times, which result from solving discrete schemes for steps [24, 34].
Note, however, that there is a fundamental difference between the 1D periodic setting
and radial geometries: in the former, steps on facets can be of opposite sign, which
in turn may affect the nature of their interactions [25].

1.4. Notation and terminology. Writing f = O(g) implies that f/g is bounded
as a variable approaches a limit; similarly, f ∼ g means that (f − g)/f approaches
zero when a variable tends to a given limit. The symbols N, R, and (xi)i∈I denote
the set of natural and real numbers and a vector indexed by the set I, and Bd(r, δ)
is the open ball of radius δ > 0 centered at point r in the Euclidean space R

d, where
boldface symbols denote finite-dimensional vectors. The dot on top of a symbol de-
notes time derivative. The terms “continuum limit” and “macroscopic limit” are used
interchangeably; ditto for “subgradient” and “extended gradient.” We use the term
“shock-like” loosely for solutions with a jump discontinuity not necessarily complying
with the definition of a shock wave in hyperbolic laws. We use dimensional variables
in sections 2, 4–5.3, and (partly) 7, and we use nondimensional ones in sections 3 and
5.4–6.3.

1.5. Article outline. The remainder of this article is organized as follows. In
section 2, we describe the geometry and formulate the discrete equations of motion.
In section 3, we give a proof for the existence of a unique solution to the ODE systems
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Fig. 2.1. Schematic of axisymmetric surface structure with a facet. At the macroscale, the
height, h(r, t), is continuous; the facet height and radius are hf(t) and rf(t). At the microscale,
circular steps of atomic size a are evident so that the surface height is uniformly discretized; tn is
the nth step collapse time, where n enumerates steps in the initial configuration.

for M1 and M2 and thus prove the noncrossing property for steps. In section 4, we
review the formal continuum limit away from the facet. In section 5, starting with the
subgradient theory, we introduce boundary conditions at the facet edge and describe
explicit PDE solutions in the case without step interactions (g3 = 0). In section 6,
we numerically solve the free-boundary problems under self-similarity of the slope
and compare continuum solutions to discrete simulations. In section 7, we discuss an
interpretation of the facet height as shock and discuss the convergence of the discrete
schemes for g3 = 0. In section 8, we summarize our results and outline a few open
problems. The appendices provide technical derivations needed in the main text.

2. Formulation. In this section we introduce the geometry of the problem and
the governing equations (ODEs) of step motion. A key element of our modeling is
the use of step mobilities that give rise to discrete dynamics prohibiting step crossing
even for zero step interactions in M1 and M2.

2.1. Geometry. The geometry is shown in Figure 2.1. At the macroscale, the
crystal surface is described by a continuous height profile, h(r, t), with respect to a
fixed (xy-) plane of reference. The (circular) facet has zero-slope orientation, height
hf(t), and radius rf(t). We expect that ḣf(t) is nonpositive and ṙf(t) is nonnegative,
i.e., the facet loses height and expands, as in the surface diffusion case [33].

At the microscale, this configuration consists of concentric circular, descending
steps of constant atomic height, a. The ith step has radius ri(t), where initially (at
t = 0) ri is nonzero for 0 ≤ i ≤ N with N � 1; by convention, ri(t) ≡ 0 if i < 0
and i > N for all t ≥ 0. We take N to be large yet finite, so that the structure can
be considered as semi-infinite for all practical purposes (but not in sections 3.2 and
7.2). Steps are expected to shrink and collapse on top of the facet; only steps with
n ≤ i ≤ N are present at times tn ≤ t < tn+1, where tn is the collapse time of the nth
step of the initial configuration; by convention, set rn(t) ≡ 0 if t ≥ tn (n ≥ 0). Thus,
i in nonzero ri is a variable index enumerating steps of the initial configuration that
remain on the structure.

We assume that ri+1(0) > ri(0) for all i; then, ri+1(t) > ri(t) for all later times
(see section 3). Accordingly, the discrete slopes defined by

(2.1) Mi =
a

ri+1 − ri

are positive (Mi > 0) and bounded, Mi ≤ O(1). Near the top step, ri+1 − ri can be
much larger than a and, thus, Mi is small (as we verify numerically).

Let htop(t) denote the height of the top layer at time t (see Figure 2.1). Because of
step collapses on top of the facet, htop(t) must decay; evidently, 0 < htop−hf = O(a) ↓
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0 in the macroscopic limit. The everywhere-continuous surface height, h(r, t), is the
continuum limit of the discrete (piecewise constant) height hd(r, t) which satisfies

(2.2) htop(t)− hd(r, t) = (i− n)a

for ri−1 < r < ri and tn−1 ≤ t < tn. In the continuum limit, where a ↓ 0 and
ia = O(1), we assert that

(2.3) ia→ hf(0)− h(r, t) .

The right-hand side is used as a continuum Lagrangian variable in section 7.

2.2. Discrete equations of motion. Next, we address the specifics of M1 and
M2. The (radial) velocity of the ith step stems from (1.1) and (1.2) with μ0 = 0:

(2.4) ṙi = −ν Gi
ri − ri−1

a
μi ; Gi =

⎧⎨⎩1 for M1 ,
ri + ri−1

2ri
for M2 ,

for n ≤ i ≤ N and any n ≥ 0, where ν has units of length/energy/time; recall that
ri−1(t) ≡ 0 if i ≤ n, tn−1 ≤ t < tn. We claim that in M2 the above formula for Gi is
compatible with the radial geometry; for a derivation of Gi from the BCF model with
desorption and negative ES barrier, see Appendix A.

Note in passing that in the limit a ↓ 0 with ri − ri−1 = O(a), Gi → 1 and
ODEs (2.4) become ∂th = −νμ, where μ is the macroscopic limit of μi. This outcome
is in agreement with Spohn’s evaporation model [51]; see section 4 for details.

To determine μi, we first describe the total step free energy, Ea, which accounts
for step line tension as well as entropic and elastic-dipole step repulsive interactions:

(2.5) Ea(t) =
N∑
i=n

2πri(t)
[
g1a+ Va(ri(t), ri+1(t))

]
,

where the pairwise interaction energy between steps of radii r and ρ is [24]

(2.6) 2πr Va(r, ρ) := 2πǧ3
rρ

ρ+ r

(
a

ρ− r

)2
.

In (2.5) and (2.6), g1a is the step line tension (energy/length) and ǧ3 expresses the
strength of step-step repulsion per unit length of a step; for later algebraic convenience,
replace ǧ3 by the (macroscopic) parameter [33]

(2.7) g3 =
3

2

ǧ3
a
.

The step chemical potential is defined through the variational formula [35]

(2.8)
∑
i

a

∮
Li

μivi ds = ΩĖa(t) ,

where Li is the ith step curve and vi is the step velocity. Relation (2.8) implies

μi =
Ω

a

1

2πri

∂Ea

∂ri

=
Ωg1
ri

+
Ω

ri a

∂{ri[Va(ri, ri+1) + Va(ri, ri−1)]}
∂ri

=
Ωg1
ri

+
2

3
Ω
g3a

2

ri

{
ψ(ri, ri+1)− ψ(ri−1, ri) +

1

r2i

[
φ(ri, ri+1) + φ(ri−1, ri)

]}
,(2.9)
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where Ω is the atomic volume, Ω ≈ a3, and

ψ(r, ρ) =
2rρ

ρ+ r

1

(ρ− r)3
,(2.10)

φ(r, ρ) =

(
ρr

ρ+ r

)2
1

(ρ− r)2
.(2.11)

Accordingly, we obtain the step velocity law

ṙi = −Ωνg1
ri

ri − ri−1

a
Gi

{
1 +

2ga2

3

[
ψ(ri, ri+1)− ψ(ri−1, ri)

+
φ(ri, ri+1) + φ(ri−1, ri)

r2i

]}
, g =

g3
g1

,(2.12)

where n ≤ i ≤ N for tn−1 < t < tn and rN+1(t) ≡ 0; Gi is defined in (2.4). The
parameter g is the relative strength of step line tension and step-step repulsion.

Equation (2.12) can be nondimensionalized by use of the variables r̃i = ri/a and
t̃ = (νg1Ω/a

2)t or, alternatively, via units with a = 1 = νg1. We follow this route
in sections 3 and 5.4–6.3. In sections 4–5.3 and (partly) 7, we retain the dimensional
variables so as to indicate transparently the passage to the continuum limit.

3. Existence of unique discrete solution. In this section, we prove that, in
contrast to diffusion limited (DL) kinetics [11], steps do not collide in M1 and M2
even for zero step interactions. We give separate proofs for g = 0 and g > 0. For
g = 0, our proof is uniform in the initial number, N , of steps, whereas this uniformity
is lost for g > 0. Thus, for g = 0 we can consider a semi-infinite surface structure.

3.1. Case with g = 0. The absence of step collisions can be loosely explained
by inspection of (2.12) for g = 0. Suppose two steps tend to coalesce at some time;
then, the innermost step moves faster, whereas the other step is slowed down (because
of the governing backward scheme), and step collision is thus avoided. Note that the
assumed backward scheme is deemed natural in our setting, given that the preferred
direction of motion of each step (with a minus sign in (2.4)) is toward the origin.

The main result of this subsection is the following.
Theorem 3.1. Let N ∈ N be the initial number of steps and I = {0, 1, . . . , N}.

Consider r(t) = (r0(t), r1(t), . . . , rN (t)) and f(r) = (f0(r), f1(r), . . . , fN (r)), where

(3.1) fi(r) =

{
−Gi

ri − ri−1

ri
, ri �= 0 ,

0 , ri = 0 ,

and r−1(t) ≡ 0 in the definition of f0; the factor Gi is defined in (2.4).
Then, there exists a unique global solution to the initial value problem (IVP)

(3.2) ṙ = f(r), r(0) = rin, rin ∈W =
{
x ∈ R

N |0 < x0 < · · · < xN
}

in the domain Ω = {x = (xi)i∈I |xi �= 0, i ∈ I}. Furthermore, this solution stays in
W for t ∈ [0, t0) and in Wi =

{
x ∈ R

N |0 = x0 = · · · = xi, xi+1 < · · · < xN
}
for t ∈

[ti, ti+1), where ti is the time when ri reaches 0; here, 0 < t0 < t1 < · · · < tN < ∞.
ri(t) is continuous for all t and smooth on (tj−1, tj) for j = 0, . . . , N (here, take
t−1 = 0).
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Proof. It suffices to give a proof for M1, i.e., if Gi = 1 for all i. Because in M2 the
factor Gi is bounded for all i, the proof for M2 is almost identical; hence, we omit it.

First, we prove the existence of a unique local solution to problem (3.2). Observe
that each fi is smooth on W with ∇fi = (0, . . . , 0, 1

ri
,− ri−1

r2i
, 0, . . . , 0). So, for every

r ∈ W , let 0 < δ < mini∈I{ri}. Then, for any y ∈ BN (r, δ) we have

(3.3) |∇fi(y)|2 =
1

y2i
+
y2i−1

y4i
≤
(

1

ri − δ

)2
+

(ri−1 + δ)2

(ri+1 − δ)4
<∞

for each i. Hence, f is locally Lipschitz; by the Picard–Lindelöf theorem [19], IVP (3.2)
has a unique local solution in Ω. This local solution is smooth since f is smooth.

Let rin ∈ W and suppose that [0, T ) is a maximal interval on which the problem
ṙ = f(r), r(0) = rin has a solution in W . Since r0(t) = rin0 − t, we establish an upper
bound for T :

(3.4) T ≤ rin0 <∞ .

We will show that r(t) approaches ∂W as t ↑ T . Suppose by contradiction that r(t)
does not approach ∂W as t ↑ T . Then, in particular, we have mini inft∈[0,T ) ri(t) > 0
and f is uniformly bounded on the image r([0, T )). Thus, r(t) is Cauchy-continuous.
Therefore, the (classical) solution can be extended to [0, T +b) by a standard theorem
in the theory of ODE [7] that states that an extension of the solution exists at T
if limt↑T r(t) exists in W . This assertion contradicts the maximality of T . We thus
conclude that r(t) approaches ∂W as t ↑ T .

Now, partition ∂W into V1 = {x ∈ R
N | ∃ i ∈ I \ {0} such that xi = xi−1} and

V2 = ∂W \ V1. Suppose by contradiction that r(T ) ∈ V1. Let {rj}j∈J be a set
consisting of all components of r such that rj(T ) = rj−1(T ). In particular, J is not
empty. So let j0 ∈ J be the smallest index. Then, given any ε > 0, there exists some
interval (T − c, T ) on which ṙj0 = − rj0−rj0−1

rj0
> −ε. By taking ε = sup[0,T ) |ṙj0−1|,

we see that d
dt (rj0 − rj0−1) = ṙj0 − ṙj0−1 > −ε + ε = 0 on (T − c, T ). Hence,

limt↑T [rj0(t)−rj0−1(t)] �= 0 and j0 cannot be in J . By this contradiction, we conclude
that (3.2) has a unique global solution whose trajectory meets the subset {r0 = 0}\V1
of a hyperplane {r0 = 0} at some finite time T . Define t0 := T ; by the definition
of f0, r0(t) ≡ 0 for t ∈ [t0,∞). Next, proceed as in the above argument with the
dimension of the solution reduced by 1. Repeat this procedure until r = 0.

Remark 3.2. In the above proof, tn are the step collapse times. For g = 0
and conical initial data (i.e., ri(0) linear with i), we will obtain explicit solutions for
the top two steps of ODEs (3.2) with indices i = n, n + 1, and t ∈ (tn−1, tn). For
this special case, the explicit solution indicates that steps do not collide, as verified
through our numerics (section 6).

Remark 3.3. A consequence of Theorem 3.1 is that the discrete slope Mi is
positive and bounded for any i and N ; the step mobility νi is also positive.

Remark 3.4. The proof of Theorem 3.1 holds as N → ∞ (for semi-infinite
structures).

Corollary 3.5. If the continuum limit of the solution to IVP (3.2) exists, this
limit yields a monotone continuum-scale height for all time t > 0 provided the height
profile is strictly monotone at t = 0.

In fact, we will verify the last statement for the case of conical initial data through
an exact closed-form solution of the evolution PDE for the slope (see section 5.4).
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3.2. Case with g > 0. For positive g, the proof for the existence of a unique so-
lution to ODE system (2.12) and the noncrossing property of steps for such a solution
is in the spirit of the proof for g = 0. However, for g > 0, ṙ(t) becomes unbounded
as rj → rj−1 for some j in the step interaction terms of μi. Hence, the proof that we
provide below holds only when N is finite.

The core result of this subsection is the following.
Theorem 3.6. Let N ∈ N be the initial number of steps and I = {0, 1, . . . , N}.

Consider r(t) = (r0(t), r1(t), . . . , rN (t)) and f(r) = (f0(r), f1(r), . . . , fN (r)), where

fi(r) = −Gi
ri − ri−1

ri

{
1 +

2g

3

[
ψ(ri, ri+1)− ψ(ri−1, ri)

+
φ(ri, ri+1) + φ(ri−1, ri)

r2i

]}
if ri �= 0 ,(3.5a)

(3.5b) fi(r) = 0 if ri = 0 .

Here, ψ and φ are defined by (2.10) and (2.11), respectively; r−1(t) ≡ 0 in the defini-
tion of f0 while rN+1(t) ≡ 0 in the definition of fN ; and Gi is defined in (2.4).

Then, there exists a unique global solution to the IVP

(3.6) ṙ = f(r), r(0) = rin , rin ∈W =
{
x ∈ R

N |0 < x0 < · · · < xN
}

in the domain Ω = {x = (xi)i∈I |xi �= 0, i ∈ I}. Furthermore, this solution stays in
W for t ∈ [0, t0) and in Wi =

{
x ∈ R

N |0 = x0 = · · · = xi, xi+1 < · · · < xN
}
for t ∈

[ti, ti+1), where ti is the time when ri reaches 0. Here, 0 < t0 < t1 < · · · < tN < ∞;
and ri(t) is continuous for all t and is smooth on (tj−1, tj) for j = 0, . . . , N .

Proof. Again, we provide a proof only for M1, where Gi = 1; the proof for M2 is
very similar and thus omitted.

In the spirit of the proof for g = 0, we first prove the existence of a unique local
solution to problem (3.6). Observe that each fi is smooth on W . For each vector
r ∈ W , let 0 < δ < mini∈I{ri, (ri − ri−1)/4}. Then, by recourse to ODEs (2.12), for
all y ∈ BN (r, δ) we note the following bound in regard to partial derivatives of fi:∣∣∣∣ ∂∂yi

(
yi − yi−1

yi
ψ(yi, yi+1)

)∣∣∣∣2
=

∣∣∣∣ 2yiyi+1

yi(yi + yi+1)

1

(yi+1 − yi)3
−
(
1− yi−1

yi

)
2yiyi+1

(yi + yi+1)2
1

(yi+1 − yi)3
(3.7)

+ 3

(
1− yi−1

yi

)
2yiyi+1

yi + yi+1

1

(yi+1 − yi)4

∣∣∣∣2 ≤ K(δ) ,

where K(δ) = O(1/δ3) for small δ. In (3.7), we used an inverse triangle inequal-
ity, |yi − yi−1| ≥ |ri − ri−1| − |yi − ri| − |yi+1 − ri+1| ≥ 2δ, in order to obtain a
bound for each term; for example, the first term in the right-hand side is bounded

by (ri+δ)(ri+1+δ)
(ri−δ)(ri+ri+1−2δ)

1
4δ3 . We omit the details on the rest of partial derivatives for

fi, since the procedure is similar to the one for (3.7). Thus, every |∇fi| is bounded
from above. Therefore, f is locally Lipschitz; by the Picard–Lindelöf theorem [19], we
assert the existence of a unique local solution to problem (3.6).

Now, as before, let rin ∈W and [0, T ) be a maximal interval on which the problem

(3.8) ṙ = f(r), r(0) = rin

D
ow

nl
oa

de
d 

02
/2

6/
13

 to
 1

29
.2

.5
7.

67
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EVAPORATION DYNAMICS OF FACETED CRYSTAL 255

has a (classical) solution in W . Notice that on W , ṙ0(t) < ṙ
(0)
0 (t), where r

(0)
0 (t)

denotes the first component of the solution for IVP (3.2) with (3.1). Thus, r0(t) <

r
(0)
0 (t) = rin0 − t and we obtain an upper bound for T :

(3.9) T ≤ rin0 <∞ .

By neglecting the negative terms in (3.5) for each i, we obtain the inequality

(3.10) ṙi(t) ≤
4g

3

1

(ri − ri−1)2
.

We now show that r(t) approaches ∂W as t ↑ T . Suppose by contradiction that
this statement is false. Then, ri � ri−1 and the right-hand side of (3.10) is clearly
bounded above on [0, T ). Hence, f(r) is uniformly bounded on the image r([0, T ))
and, by recourse to the argument given in the proof for Theorem 3.1, we conclude
that r(t) approaches ∂W as t ↑ T .

As in the proof of Theorem 3.1, now partition ∂W into V1 and V2 = ∂W \ V1.
Next, we prove that r(t) → V2 as t→ T . Let {rj}j∈J be a set consisting components
of r such that rj(T ) = rj−1(T ). Suppose by contradiction that r reaches V1 at time
T ; this implies that the set J is nonempty. If for some j ∈ J , ṙj grows unbounded
in the positive direction near time T yet ṙj−1 is bounded above, then ṙj − ṙj−1 > 0
on some interval (T − c, T ), which contradicts the definitions of T and J . Thus, the
desired result follows: r does not reach V1 by time T .

Because J is nonempty, there exists the smallest index j0 ∈ J and the largest
index j∗ ∈ J such that the sequence j0, j0 + 1, . . . , j∗ − 1, j∗ is contained in J . Since
j0 − 1 /∈ J , we have that rj0−1 − rj0−2 � 0 and ψ(rj0−2, rj0−1) is bounded. Thus, the
only positive term in fj0−1(r) is bounded near time T , so ṙj0−1 = fj0−1(r) is bounded
from above in some interval (T − c̃, T ). On the other hand, j∗ + 1 /∈ J implies that
ψ(rj∗ , rj∗+1), φ(rj∗ , rj∗+1) are both bounded. Also, since j∗ ∈ J , we deduce that
φ(rj∗−1, rj∗) grows as (rj∗ − rj∗−1)

−2, whereas ψ(rj∗−1, rj∗) grows as (rj∗ − rj∗−1)
−3.

Thus, ṙj∗(t) must grow unbounded in the positive direction as t→ T .
Hence, the properties that rj0−1 is bounded and rj∗ is unbounded warrant that

there exists some j ∈ J for which ṙj grows unbounded above for times near T yet ṙj−1

is bounded above. We conclude that IVP (3.6) has a unique global solution r(t) that
ends when the trajectory meets the subset {r0 = 0}\V1 of the hyperplane {r0 = 0} at
some finite time T . Define t0 := T ; by definition (3.5) of f0, r0(t) ≡ 0 for t ∈ [t0,∞).
Now proceed as above with a new IVP in which the dimension of solution is reduced
by 1. Repeat this procedure until r = 0.

Remark 3.7. The above proof relies on the fact that J is a finite set and there
exists the largest index in J (i.e., J is bounded); in particular, it is necessary that N
be finite. Thus, we may not use our proof for g > 0 in order to assert positivity of
the discrete slope for a semi-infinite structure (as N → ∞).

Remark 3.8. For g > 0, one can state a result analogous to Corollary 3.5.

4. Continuum limit away from facet. In this section, we derive Spohn’s
PDE [51] for the surface height outside the facet from step velocity law (2.12). Our
computations are formal, invoking notions of pointwise convergence (with the ex-
ception of (4.6) for μ); similar, yet more detailed, heuristic derivations are presented
in [33, 35] as parts of the (technically more involved) case with surface diffusion, where
the step velocity is the difference of adatom fluxes each of which is expressed in terms
of differences of step chemical potentials at neighboring steps. We emphasize that the
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derived continuum laws are valid for r > rf(t). The facet position, rf(t), should be
determined as part of the solution of a free-boundary problem (see section 5).

Consider steps i with 1 � n� i� N and ia = O(1) in view of (2.3). We assume
that the discrete slopes, Mi, are fixed; cf. (2.1). On each terrace, ri−1 < r < ri, we
have hd(r, t) = const. For the continuum-scale height function h(r, t), slope m(r, t),
and chemical potential μ(r, t) to make sense from limits of ai,Mi, and μi, respectively,
we assume that the terrace width varies slowly in i and ri+1 − ri � ri, ri+1. When
these conditions are not met, discrete effects are expected to become important.

As r ↑ ri(t), differentiation of hd(r, t) with respect to time yields [35]

(4.1) ṙi → ∂th(r, t)/m(r, t)|r=ri(t) as a→ 0 ,

where m(r, t) = −∂rh(r, t) and r > rf(t). Equation (4.1) unveils the limit of the
right-hand side of (2.12).

On the other hand, the discrete mobility, νi = νGi(ri − ri−1)/a, approaches

(4.2) νi → ν/m(r, t)
∣∣
r=ri(t)

, r > rf(t) ,

for both M1 and M2 (since Gi → 1). Thus, if μi(t) → μ(r, t), (4.1) and (4.2) yield

(4.3) ∂th(r, t) = −νμ(r, t) , r > rf(t) .

There are at least two routes to obtaining a formula for μ. One way is to directly
take the limit of (2.9) under the condition O(a) = ri − ri−1 � ri for large i. For
this purpose, the right-hand side of (2.9) is expressed in terms of discrete slopes, Mi,
with the main substitution

ri±1 ∼ r ± a

m(r, t)
, r = ri .

The algebraic manipulations are detailed in [33]. As a result, we obtain

(4.4) μ(r, t) =
Ωg1
r

+Ωg3
1

r

∂

∂r
(rm2) , r > rf(t) .

Alternatively, by (2.5) and (2.8) one can write μ(r, t) as the first variation of the
continuum limit of Ea. In view of the coarea formula

∑
i a
∮
Li

· ds →
∫
|∇h| · dA,

where Li denotes a step curve [35], the limit of Ea is the known surface free energy [18]

(4.5) Ea −−−→
a→0

E(h) =

∫ ∫
γ(∇h) dA , γ(∇h) =

(
g1|∇h|+

g3
3
|∇h|3
)
,

where dA = dxdy. Now, μ is obtained through [33, 35]

(4.6) 〈μ, ∂th〉 = ΩĖ ⇒ μ(r, t) ≡ Ω
δE

δh
, r > rf(t) ,

where 〈μ, ϕ〉 =
∫∫

μ(x, y)ϕ(x, y) dA denotes the L2-inner product, and δE/δh is the
variational derivative of E(h). Equation (4.6) is consistent with continuum thermo-
dynamics and is valid outside the facet. The computation of δE/δh leads to (4.4).

Equations (4.3) and (4.4) yield a PDE for the height, h(r, t),

(4.7) ∂th = −νΩg1divξ , r > rf(t) ,
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where

(4.8) ξ = ξ er, ξ(r, t) = 1 + gm(r, t)2, r > rf(t) ,

and er is the unit radial vector. The PDE for the positive slope, m = −∂rh, reads

(4.9) ∂tm = −νΩg1
{
r−2 − g∂r

[
r−1∂r

(
rm2
)]}

, r > rf(t) .

Note that (4.7) has a mass conservation form, where ξ is a vector-valued flux
associated with the flow ∂th (and h plays the role of a “density”).

We emphasize that both M1 and M2 reduce to the same (parabolic) PDE (4.7)
outside the facet. However, as we discuss in section 5, the facet boundary conditions
for (4.7) must be adjusted in correspondence to the particulars of M1 or M2 so that
the continuum slope is in agreement with step simulations in each case.

5. Subgradient formalism and free-boundary conditions. In this section,
we start with the subgradient formalism in order to extract the natural boundary
conditions at the facet edge; these conditions form our starting point for the compari-
son of continuum solutions to step simulations. Our numerical simulations (section 6)
indicate that the natural boundary conditions yield a continuum slope in agreement
with predictions of M1 but not M2. In anticipation of this discrepancy, in section 5.2
we propose a set of modified boundary conditions by incorporating the discrete ge-
ometric factor on top of the facet into one of the conditions in terms of a jump of
the flux. (See section 6 for numerical studies of this replacement.) In section 5.3, we
prescribe linear initial data. In section 5.4, we analytically solve the free-boundary
problems for g = 0 (noninteracting steps) to single out differences between the two
continuum solutions, without and with a flux jump.

5.1. Subgradient formalism. A guiding principle in the analysis of PDE (4.7)
with (4.8) is that the height profile evolves by the most rapid decrease of the free
energy, E(h). Qualitatively speaking, this principle is consistent with step motion
law (2.4) in view of (2.9); clearly, the trajectory of (r0(t), r1(t), . . . , rN (t)) is driven
by the decrease of the total step free energy, Ea(t). At the moment, we lack a more
precise energy-based connection of the subgradient theory with steps.3

By the extended gradient formalism, the evolution law for h is stated as [27]

(5.1) ∂th(r, t) = −νΩg1divξ(r, t) for all r ≥ 0 ,

where divξ is proportional to δE/δh outside the facet, |ξ| ≤ 1 on the facet, and ξ =
ξer. The flux ξ is uniquely determined from (5.1) under the assumption of sufficient
regularity. Physically, (5.1) expresses global mass conservation for the height, h, if
ξ is interpreted as a mass flux comprising atoms exchanged with the vapor. Some
elements of the subgradient theory are reviewed in Appendix B.

5.1.1. Natural boundary conditions. Next, we write explicit boundary con-
ditions for (4.7) with (4.8). Note that four (three) conditions are needed, since the
PDE for h is of second (first) order for g > 0 (g = 0), and rf(t) and hf(t) are parts of
the solution. If r < rf(t), then h = hf(t). By continuity of the height, h(·, t), we write

(5.2) hf(t) = h(r, t) as r ↓ rf(t) .

3To the best of our knowledge, so far such a connection has been established rigorously for a 1D
finite step train connecting semi-infinite facets in ADL kinetics [1, 2].
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This condition is natural on physical grounds but is also inferred from the functional
space for solutions to (5.1) (see Appendix B). Equation (5.1) on the facet reads
ḣf = −νΩg1r−1∂r(rξ), by which νΩg1ξ(r, t) = −(r/2)ḣf + C(t)/r if r < rf(t); set
C(t) ≡ 0 so that ξ(·, t) is bounded. Thus, continuity of ξ(·, t) entails

(5.3) −rf(t)
2

ḣf = νΩg1[1 + gm(r, t)2] as r ↓ rf(t) .

For large r, the solution must be compatible with the prescribed initial data:

(5.4) h(r, t) ∼ h(r, 0); or m(r, t) ∼ −∂rh(r, 0) as r → ∞ ,

which is a “far field” condition.
For g > 0, one more condition must be imposed. Recall that |ξ| ≤ 1 on the facet,

ξ = 1+ gm2 > 1 outside the facet, and ξ is continuous. Thus, the slope is continuous:

(5.5) lim
r↓rf (t)

m(r, t) = 0 .

Equations (5.2)–(5.5) form the set of natural boundary conditions for PDE (4.7)
outside the facet. In view of (5.5), the differentiation of (5.2) with respect to t can
be used to replace (5.2) and (5.3) by a single condition via elimination of ḣf .

5.2. Alternate condition: Flux jump at facet edge. Next, we modify con-
dition (5.3) by introducing an ad hoc jump of the flux ξ(·, t). Our goal is to describe
the effect on the macroscopic limit of individual steps collapsing on top of the facet
by retaining the variables (height, slope, flux) of the natural boundary conditions.

Physically, the main idea can be outlined as follows. In the continuum limit, tn is
treated as the continuous time, t [34]. A reasonable boundary condition that captures
the events of collapsing top layers must express via some effective averaging in time
the mass exchange between top (annihilated) steps and vapor in the time intervals
[tn, tn+1]. We propose an ad hoc possible remedy for the underlying averaging process:
a, in principle time-dependent, jump of the flux ξ(·, t). In the case with self-similarity
of slopes, which we focus on, this jump is expressed by a time-independent factor due
to a scaling property of tn with large n. More generally, it is hoped that this approach
can be applied to full time-dependent settings without restriction to self-similarity.

For the step dynamics of M2, in particular, we specify the jump in terms of values
of Gi(t) for pairs of extremal steps at t = tn. This factor encapsulates, in a simple
geometric form, information about the facet microstructure. At the moment, this
choice is essentially empirical (see Remarks 5.2 and 5.3): the only firm justification
that we can provide is the observed agreement of the ensuing continuum slope with
step simulations for M2 (section 6).

Our proposal is to keep evolution law (5.1) for 0 ≤ r < rf(t) and r > rf(t),
along with height continuity and (for g > 0) slope continuity, but replace (5.3) by the
generalized condition

(5.6) −rf(t)
2

ḣf = νΩg1G̃(t; g)[1 + gm(r, t)2] as r ↓ rf(t) ,

where G̃(t; g) is allowed to differ from unity; we henceforth suppress the g-dependence

of G̃. The function G̃(t) should be compatible with the vanishing of individual, atomic
layers on top of the facet. In particular, for M2 we propose the definition

(5.7) G̃(t) ≡ Gi(tn)
∣∣
i=n+2

=
rn+2(tn) + rn+1(tn)

2rn+2(tn)

for tn ≤ t < tn+1, accounting for the two extremal steps; recall that rn(tn) = 0.
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Remark 5.1. In section 6.2, we numerically test (5.6) and (5.7). First, for M1

we show that for large t, the replacement of G̃(t) by unity produces continuum slopes
in excellent agreement with our step simulations. For M2, we demonstrate that if n
(and t) is large, (i) (5.7) yields G̃(t; g) ∼ c(g), where c is a constant computed from
data for tn; and (ii) the resulting continuum slopes closely follow step simulations. In
the subgradient formalism, c = 1.

Remark 5.2. Notably, some other choices which are almost as simple as (5.7) fail
to yield equally satisfying numerical results for g > 0. For example, suppose we set
G̃(t) ≡ Gn+2+k(tn) for k+1 ∈ N and tn ≤ t < tn+1, viewing the jump as a function of
k for every fixed n. We numerically observe that the value k = 0 is best for agreement
of the continuum prediction with step simulations for M2; in fact, the factor G̃ is
found to be monotonically increasing with k in this scenario.

Remark 5.3. Especially for noninteracting steps, g = 0, we can claim that the
continuum theory consistent with M2 has a flux jump yet does not require input
from discrete simulations. Suppose we employ (5.7) in this case; then, we find that

G̃(t) becomes approximately equal to 0.766 for large n. See Appendix C for related
computations. This value produces a continuum slope in agreement with discrete
simulations (see section 6.1.2). On the other hand, by interpreting the facet height as
shock, we can evaluate the flux jump from a Rankine–Hugoniot condition; then, we
find G̃(t) = 3/4 (section 7.1), which also yields a continuum slope in excellent agree-
ment with step simulations (section 6.1.2). This observation indicates the empirical
nature of (5.7). A detailed discussion on the shock picture is provided in section 7.

An emerging question is whether our generalized boundary condition (5.6) for the
flux should require input from discrete simulation data, as suggested by (5.7), or, in a
more appealing scenario, it can be expressed within a full (tn-independent) continuum
framework for g > 0. This issue is the subject of current research.

5.3. Initial data. In the remainder of this article, we consider an initial conical
profile of unit slope. Hence, we impose the initial height profile

(5.8) h(r, 0) ≡ h0(r) =

{
hf0 , r < rf0 ,
hf0 − (r − rf0) , r > rf0 ,

where rf0 = rf(0) and hf0 = hf(0). This profile corresponds to the initial step train

(5.9) ri(0) = rf0 + ia , i = 0, 1, . . . , N ,

where the top layer is located at height hf0.

5.4. Exactly solved case: Zero step interaction (g = 0). In this subsec-
tion, we analytically solve the free-boundary problems of sections 5.1 and 5.2 in the
absence of step-step interaction. In this case, the continuity of slope, condition (5.5),

is not applicable. First, we restrict attention to a continuous flux for G̃(t) = 1; the
resulting formula for m(r, t) exhibits self-similar behavior. Second, we extend our

computation to G̃(t) �= 1. Detailed derivations are presented in Appendix D. In the
remainder of this section, we employ units with νΩg1 = 1 = a.

For g = 0, PDE (4.7) reduces to

(5.10) ∂th = −1

r
, r > rf(t) ,

which leads to the solution

(5.11) h(r, t) = h0(r) −
t

r
, r > rf(t) ; h(r, t) = hf(t) , r < rf(t) .
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Hence, the slope profile is

(5.12) m(r, t) = 1− t

r2
, r > rf(t) ; m(r, t) = 0 , r < rf(t) .

It remains to compute the facet radius, rf(t), by applying initial data (5.8). The
height continuity, hf(t) = hf0 + rf0 − rf − t/rf along with generalized condition (5.6)
on ξ(·, t) yield an ODE for rf(t). We now distinguish two cases for the flux ξ.

5.4.1. Continuous flux ξ. In the special case without flux jump, G̃(t) ≡ 1,
rf(t) is computed in simple closed form for all t ≥ 0 (see Appendix D); in particular,

(5.13) rf(t) ∼
√
3t as t→ ∞ .

Accordingly, we compute the facet height:

(5.14) hf(t) ∼ hf0 + rf0 −
4√
3

√
t as t→ ∞ .

The slope has the form m(r, t) = m(η) with η = r/
√
t, where η ∼ const at the

facet edge for large t. By (5.12) and (5.13), note that

(5.15) m(r, t) → mf := m(
√
3) = 2/3 as r ↓ rf(t), t→ ∞ .

5.4.2. Discontinuous flux ξ. A similar procedure is applied for G̃(t) = c �= 1;
we find an exact expression for t = T (rf), yet rf is no longer computable in simple
closed form (see Appendix D). By this computation, we find

rf(t) ∼
√
(4c− 1)t ,(5.16)

hf(t) ∼ hf0 + rf0 −
4c√
4c− 1

√
t as t→ ∞ ,(5.17)

where c > 1/2. The height and slope profiles are computed from (5.11); evidently,
m(r, t) = m(η), where η ∼ const at the facet edge as t→ ∞. Note that

(5.18) m(r, t) → mf = 1− 1

4c− 1
as r ↓ rf(t) , t→ ∞ ;

in particular, mf = 1/2 if c = 3/4 (see Remark 5.3 and section 7.1).

6. Numerical simulations. In this section, we provide numerical simulations to
compare the discrete dynamics for M1 and M2 (without and with a geometry-induced
step mobility) to continuum theories (with and without natural boundary conditions).
The cases with g = 0 and g > 0 are presented separately since for g = 0 we invoke
exact continuum solutions, while for g > 0, in the context of M2, we make use of
numerically computed discrete data (collapse times tn) in our modified boundary
condition for the flux ξ. Especially for g > 0, we solve numerically PDE (4.9) for the
slope profile by assuming self-similarity. In part of our numerics, we use as a starting
point an approximate solution for the continuum slope that we extract heuristically
via boundary layer theory if 0 < g � 1 [33]. We apply units with νΩg1 = 1 = a.

6.1. Numerics for g = 0. Next, we solve (2.12) for g = 0 under initial
data (5.9) and compute the corresponding slopes Mi = 1/(ri+1−ri). In Appendix C,
we derive exact solutions for the two top-step positions for validation of our nu-
merics. We consider separately M1, where Gi(t) ≡ 1 for an idealized step mobility
(Appendix C.1), and M2 for a geometry-induced step mobility (Appendix C.2).
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Fig. 6.1. Continuum slope m(r, t) (solid line) and discrete slopes Mi(t) (symbols) as functions
of r/

√
t (where r = ri) in the context of M1 for g = 0 and initial cone of unit slope with N = 9×103

steps. The slope m(r, t) is computed from (5.12) with natural boundary conditions, and Mi(t) are
obtained at t = tn by numerically solving (2.12) with Gi(t) ≡ 1. The vertical line indicates the facet
position, ηf = rf(t)/

√
t � √

3. Inset: Respective simulation data for Mi versus ri at collapse times
t = tn (n = 200, 250, 300), indicating self-similar behavior of Mi(t) for n � 1; the simulation data
collapse to the graph of main figure.

6.1.1. Nongeometric step mobility (M1). In regard to the continuum slope,
we invoke the natural boundary conditions (with a continuous flux ξ). In Figure 6.1,
we plot simulation data for Mi versus ri at different times t = tn and observe that
the data collapse to a single graph if ri is scaled by

√
t. Figure 6.1 also shows that

the numerically computed Mi(t) follow closely the predicted m(r, t); in particular,
the step simulations verify the predicted slope discontinuity at the facet edge where
m→ 2/3 as r ↓ rf by (5.15).

The self-similar behavior of the slope profile implies a scaling law for the step
collapse times, tn, for n � 1. We now give a heuristic argument (in the context of
M1) for this scaling by combining the facet height drop due to step collapses with the
natural boundary conditions.4 Requiring that the facet height decrease by multiples
of the step size, a = 1, we impose the relation hf(tn−1) − hf(tn) = 1 [24, 34], which
we replace by −(tn− tn−1)ḣf ∼ 1 assuming (tn− tn−1)|ḧf | � |ḣf |. By (5.3) and (5.5),
we obtain that, for large t, δt(t) ∼ 1

2 rf(t), where δt(t) = tn − tn−1 is the continuum
version of the step collapse time difference and tn = t � 1. From (5.13) we obtain
δt(t) ∼

√
3t/2, by which tn ∼ (3/16)n2. This scaling law including the prefactor

of 3/16 is verified by our numerics; see Figure 6.2, where the collapse times tn are
plotted versus n. This observation provides additional evidence that for g = 0, the
natural boundary conditions are consistent with step flow in M1.

6.1.2. Geometry-induced step mobility (M2). Now set g = 0 and Gi =
(ri + ri−1)/(2ri) in (2.12) for the discrete dynamics. At the continuum scale, we

invoke the slope from generalized boundary condition (5.6) with G̃(t) = c �= 1. We
consider two cases for c. First, we use the value of c (c 
 0.766) extracted from

4For M2, a similar argument can be sketched but we do not pursue it here.
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Fig. 6.2. Log-log plot of step collapse times tn versus n for g = 0 (asterisks) and g = 1 (circles)
in the context of M1, numerically computed from (2.12) for Gi(t) ≡ 1 and initial cone of unit slope
with N = 400 steps. The dot-dashed (straight) line indicates the numerically computed large-n
asymptotic behavior of tn for g = 0. The scaling law tn ∼ cnß is verified for n � 1 with ß ≈ 2
for g = 0, 1. For g = 0, we graphically find c = 0.1879 ≈ 3/16, in agreement with the analytical
prediction via natural boundary conditions.

formula (5.7) combined with exact solutions for the two top-step ODEs, as shown
in Appendix C.2. Alternatively, we use c = 3/4, which we compute analytically by
interpreting the facet height as shock and applying a Rankine–Hugoniot condition
corresponding to a particular hyperbolic conservation law; see section 7.1.

Figures 6.3 and 6.4 show the comparison of continuum solutions to step simula-
tions in the above two cases; the produced continuum slopes are practically indistin-
guishable, as expected. In particular, our step simulations predict that the slope at
the facet edge approaches approximately the value 1/2 as r ↓ rf , consistent with (5.18)
for c = 3/4. Note that the continuum theory under natural boundary conditions fails
to produce a slope consistent with step flow (see inset of Figure 6.3).

6.2. Numerics for g > 0. In this subsection, we study PDE (4.9) via numerics
for g > 0 by assuming that the continuum slope is self-similar at long time. We are
motivated by (i) the exact solution of section 5.4, where we found that m(r, t) = m(η)
with η = r/

√
t and rf(t) = O(

√
t) for t � 1; and (ii) our step simulations for Mi(t).

Accordingly, we formally reduce the evolution PDE for m(r, t) to an ODE for m(η),
solve this ODE numerically for g > 0 under a boundary condition with a flux jump,
and compare the continuum predictions to step simulations for n� 1.

First, we provide some numerical evidence that the discrete slopes have an ap-
parently self-similar structure for large enough time. In Figure 6.5 (inset), we plot
the discrete slopes, Mi(t), versus ri for g = 1 at different collapse times, t = tn, in
the context of M1. We observe the data collapse once ri is scaled with

√
t, which

indicates self-similarity of Mi(t). This observation is also made for other values of g
and for M2 via step simulations.

Next, we introduce similarity variables by writing m(r, t) ∼ tωm(η) for η = rt−λ

and large t; the real exponents λ and ω are yet to be determined. By substitution
into PDE (4.9) for g > 0, elimination of t from the coefficients yields (ω, λ) = (0, 1/2),
which is consistent with the discrete simulations. In particular, the value λ = 1/2
implies the facet radius growth rf(t) = O(

√
t); in this regime, the facet height should
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m

r/t1/2

Fig. 6.3. Continuum slope m(r, t) (solid line) and discrete slopes Mi(t) (symbols) as functions
of r/

√
t in the context of M2 for long times (n � 1), g = 0, and an initial cone of unit slope

with N = 15 × 103 steps. The discrete slopes Mi(t) are determined from numerically solving at
t = tn ODEs (2.12) with Gi = (ri + ri−1)/(2ri). In the main figure, the slope m(r, t) is computed
from (5.12) under jump condition (5.6) with (5.7) using an exact result for step collapse times
(Appendix C.2). Inset: The same step simulation data for Mi in comparison to exact continuum
slope (5.12) under natural boundary conditions.

m

r/t1/2

Fig. 6.4. Continuum slope m(r, t) (solid line) and discrete slopes Mi(t) (symbols) as functions
of r/

√
t in the context of M2 for long times (n � 1), g = 0, and an initial cone of unit slope with

N = 15×103 steps. The continuum slope m(r, t) is now computed from (5.12) under jump condition

(5.6) with ˜G(t) = 3/4 on the basis of a Rankine–Hugoniot condition for a hyperbolic conservation
law (section 7.1). The discrete slopes Mi(t) are determined from numerically solving at t = tn
ODEs (2.12) with Gi = (ri + ri−1)/(2ri), as in Figure 6.3.
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Fig. 6.5. Continuum slope m(r, t) (solid line) and discrete slopes Mi(t) (symbols) for M1 as
functions of r/

√
t for initial cone of unit slope with N = 9×103 steps; g = 0.1 (triangles) and g = 1

(squares). The slope m(r, t) is computed from numerically solving (6.1)–(6.4) with c = 1 (̆c = 1)
stemming from natural boundary conditions, and Mi(t) are determined from (2.12) with Gi(t) = 1.
Inset: Discrete slopes Mi versus position r = ri at distinct collapse times t = tn (n = 50, 100, 150)
for g = 0.1; the simulation data collapse to the graph of the main figure.

decay with −ḣf(t) = O(t−1/2). By condition (5.6), the factor G̃(t) should become

time independent; thus, we set G̃(t) = c = const.
We proceed to describe the free-boundary problem for m(η) in detail. PDE (4.9)

away for the facet is converted to the ODE

(6.1) − 1
2ηm

′(η) = −η−2 + g[η−1(ηm2)′]′ , η > ηf := rf(t)/
√
t ;

here, ηf is unknown and the prime denotes differentiation with respect to η. Now we
turn attention to boundary conditions for (6.1) by resorting to (5.2) and (5.4)–(5.6)

with G̃(t) = c. By elimination of ḣf , we find that m(η) satisfies

g
(
ηm2
)′

= c̆, η ↓ ηf ,(6.2)

m(η) → 1, η → ∞,(6.3)

m(η) = 0, η ↓ ηf ; c̆ := 2c− 1 .(6.4)

Note that there are three boundary conditions for a second-order ODE because ηf
forms part of the solution. We have not been able to analytically integrate out (6.1)–
(6.4); hence, we proceed to find a solution numerically. We assume (but do not prove)
that the self-similar slope is positive, m(η) > 0 if η > ηf .

To solve the (free-) boundary value problem of (6.1)–(6.4), we first apply a trans-
formation of (η,m) that (i) maps (ηf ,∞) to a finite interval and (ii) renders linear
the highest-order derivative in ODE (6.1) [11, 13]. Simply apply a simple translation,
s = η− ηf . This maps (ηf , E) to (0, Ĕ = E− ηf), where E (E � ηf) is a large number
(which replaces infinity). In addition, we convert ODE (6.1) to a system of first-order
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ODEs for the variables Y1(s) = m2(η) and Y2(s) = (m2)′(η), s ∈ (0, Ĕ),

Y ′
1(s) = Y2(s) ,

Y ′
2(s) =

1

g

[
(s+ ηf)

−2 − 1

4
(s+ ηf)Y

−1/2
1 Y2

]
+ (s+ ηf)

−2Y1 − (s+ ηf)
−1Y2 ,

along with boundary conditions at s = 0 (facet edge) and s = Ĕ, obtained from (6.2)–
(6.4); in particular, Y1(Ĕ) = 1. It is of interest to seek the power series expansion5

(6.5) m(η) = Y1(s)
1/2 ∼

k∑
l=1

cls
l/2 =: Sk(s) ,

which satisfies condition (6.4). By (6.2), we compute c21 = (gηf/c̆)
−1. The remaining

coefficients, cl = cl(ηf , g, č) for l = 2, . . . , k, are found via dominant balance in (6.1).
In our numerics for m(η), we apply an iterative algorithm (e.g., the bvp4c

MATLAB routine [23]) based on a suitable initial guess for Y1(s) that aims to satisfy
Y1(Ĕ) = 1 [48]. In this vein, we can make use of (6.5) as we evaluate Y1(s) at a
fixed point s0 near 0 in terms of ηf ; then we choose k = 13. A satisfactory approx-
imate initial guess for Y1(s) for 0 < g < 1, which apparently causes our numerical
scheme to converge to a reasonable slope profile, is constructed through boundary
layer theory [22, 33]; see section 6.3 for related formulas.

6.2.1. Numerics for M1. In Figure 6.5, we plot the discrete slopes Mi for M1
and the continuum slope m under natural boundary conditions versus r/

√
t for the

values g = 0.1 and 1. Our numerical comparison shows that step flow is consistent
with the predictions of the extended-gradient formalism.

In particular, we verify that the facet size decreases with g = g3/g1 at fixed time
t. Physically, this effect can be attributed to the tendency of steps to cover a larger
part of the surface if their repulsion (g3) increases or their self-energy (line tension,
g1) decreases; as a result, in principle any microscale event on top of the facet, i.e.,
collapse of a step, is expected to have a more pronounced effect on the macroscopic
profile as g becomes smaller (see, e.g., [34] for a model of DL kinetics).

We now derive a scaling law for the step collapse times, tn, by combining the
natural boundary conditions with the discrete facet height drop (see section 6.1.1).
By δt(t) ∼ 1

2 rf(t), where δt(t) = tn−tn−1 and tn = t� 1, we find tn−tn−1 ∼ C(g)
√
t;

thus, tn ∼ C2n2/4 for n� 1 (cf. Figure 6.2 for g = 1). This C(g) should decrease with
g since stronger step repulsions cause steps to shrink faster on top of the facet [34];
this monotone behavior is verified by our numerics.

6.2.2. Numerics for M2. In Figures 6.6 and 6.7, we compare step simulations
for M2 to predictions of continuum theories for distinct values of g (g = 0.1 and
1). Evidently, the generated discrete slopes are in agreement with the macroscopic
slope coming from a flux jump, condition (5.6) with (5.7), where the requisite tn
are computed from simulations. By contrast, the continuum slope stemming from
natural boundary conditions (including flux continuity) deviates from step simulation
data (see inset of Figure 6.6).

5Expansion (6.5) is only postulated. This expansion is consistent with the structure of the
evolution PDE. A similar expansion is derived formally in [36] by direct reduction of discrete schemes
to an integral equation for m and subsequent iteration for the setting of evaporation dynamics of a
1D step train connecting two semi-infinite facets. We do not pursue a rigorous justification for (6.5).
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Fig. 6.6. Continuum slope m(r, t) (solid line) and discrete slopes Mi (symbols) for M2 as
functions of r/

√
t for long times, g = 0.1, and initial cone of unit slope with N = 7 × 103 steps.

The discrete slopes Mi(t) are determined from numerically solving ODEs (2.12) with Gi = (ri +
ri−1)/(2ri). Main figure: The continuum-scale slope, m(r, t), is computed from numerically solving
(6.1)–(6.4) with c̆ from (5.7), accounting for flux jump. Inset: With the same step simulation data,
the continuum-scale slope m(r, t) is computed from flux continuity for c̆ = 1.

Fig. 6.7. Continuum slope m(r, t) (solid line) and discrete slopes Mi (symbols) for M2 as
functions of r/

√
t for long times, g = 1, and initial cone of unit slope with N = 104 steps. The

discrete slopes Mi(t) are determined from ODEs (2.12) with Gi = (ri+ri−1)/(2ri). The continuum-
scale slope, m(r, t), is computed from numerically solving (6.1)–(6.4) with c̃ from (5.7), accounting
for a flux jump at the facet edge.

6.3. Approximation by boundary layer theory. In this subsection, we for-
mally construct an approximate solution to the free-boundary problem described by
PDE (4.9) with conditions (5.2) and (5.4)–(5.6) if 0 < g � 1. The assumption of
self-similarity is not necessary in principle. The main observation is that by setting
g = 0 in the evolution PDE (4.9) it is impossible to obey the continuity of slope,
(5.5). So, we split the domain outside the facet into two regions: an“outer” region, in
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which the step self-energy (line tension) dominates over the step interaction energy,
and the “inner” region (boundary layer), in which the step interaction energy is sig-
nificant [33]. The width of the boundary layer should scale with a positive power of
g. Inside the boundary layer, the slope m varies smoothly from its zero value (m = 0)
at the facet edge to the behavior predicted for g = 0 in the outer region; cf. (5.12).
In general, the outer solution should be compatible with the continuity of height, flux
jump, and far field condition. Hence, we only need to compute the inner solution
by imposing zero slope at the facet edge. Here, we provide only the final formulas;
details of our boundary layer analysis are given in Appendix E.

We start by defining the inner variable

ζ =
r − rf(t)

gαw(t)
,

where gαw(t) measures the (a priori unknown) width of the boundary layer, α is a
positive exponent (to be determined), and rf(t) = rf(t; g = 0) denotes the facet radius
for g = 0; ζ = O(1) inside the layer. After some algebra, we find (see Appendix E)

(6.6) α = 1 , w(t) = ṙf(t)
−1

[
1− t

rf(t)2

]
,

where formulas for rf(t) are provided in section 5.4 and Appendix D. A composite
formula for the slope away from the facet reads

(6.7) m(r, t) ∼ 1− t

r2
+ a0(t)[f0(ζ) − 1] r > rf(t) , a0(t) = 1− t

rf(t)2
,

which encompasses both outer and inner solutions. The function a0(t) is the limiting
value of the outer slope at the facet edge, while f0(ζ) for the inner solution satisfies

(6.8) f0(ζ) = 1− e−ζ/2e−f0(ζ) , ζ > 0 .

Note that 1 − f0(ζ) decays exponentially as ζ → ∞; thus, (6.7) properly reduces to
the continuum solution for g = 0 outside the boundary layer. Formulas (6.6) and (6.7)
can be simplified for t� 1 by use of asymptotic formula (5.13), under flux continuity,
or, more generally, formula (5.16), which includes a flux jump.

7. Discussion. In this section, we discuss the interpretation of the facet height
as a type of shock. This perspective is promising for showing convergence of discrete
schemes with collapsing layers but remains largely unexplored. Our starting point
is to view the continuum step position, R, as a function of height and time. In
section 7.1, we apply speculation and heuristics: We point out for g ≥ 0 that the
flux (ξ) continuity, which is consistent with step flow in M1, can be read as a certain
Rankine–Hugoniot-type condition. Our discussion becomes more concrete for non-
interacting steps (g = 0): We present a family of hyperbolic conservation laws and
identify the shock accordingly. In section 7.2, we prove that for g = 0 the solutions to
M1 and M2 converge to entropy solutions of conservation laws from the above family.

7.1. Facet height as shock. Consider PDE (4.7) away from the facet. Using
Lagrangian variables [12, 13], we view the step radius, R, as a function of height, h,
and t. Let χ = hf(0) − h, which measures the height relative to the initial surface
structure in the (physical) domain with h < hf(t), and set R = R(χ, t) in this domain.
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By the level set motion law ∂tR = ∂th/m, where m = (∂χR)
−1, PDE (4.7) reads

(7.1) ∂t(R
2) + 2Ωνg1∂χ

[
R

(
1 + g(∂χR)

−2

)]
= 0 , χ > χf(t) := hf(0)− hf(t) ,

assuming monotone increasing R(·, t). It should be stressed that this PDE holds and
is consistent with step flow away from the facet, and in principle it breaks down as χ
approaches χf from above because of discrete effects.

Suppose a continuum theory that is consistent with steps is formulated every-
where. Intuitively, in our models such a theory would have to be compatible with an
extension of the domain of R(·, t) via R(χ, t) ≡ 0 for χ < χf ; R(·, t) would acquire a
jump at χ = χf . We expect this property to emerge from the discrete schemes since
the initial data and solutions of ODEs for M1 and M2, where step radii are set to
zero after their collapse times, appear consistent with this prescription. A difficulty is
that this jump in principle cannot be derived from existing fully continuum principles.
We view this speculated discontinuity, and any related jump of functions of R, as a
shock-like wave in (χ, t); the shock speed is χ̇f(t) = −ḣf(t), the speed of the facet,
which decays with time.

It is now tempting to claim that the boundary condition for the flux ξ(r, t) at the
facet edge corresponds to a Rankine–Hugoniot-type condition for the shock speed.
Specifically, for M1 we write PDE (7.1) as the conservation statement ∂t� + ∂χJ =
0 with “density” � = πR2 (step area) and associated “flux” J = (2πR)νΩg1[1 +
g(∂χR)

−2] for χ > χf and define � = πR2 ≡ 0 and J ≡ 0 for χ < χf . Then ξ-continuity
(5.3) is equivalent to χ̇f = [J]/[�] at χ = χf(t), where [�] denotes the jump of �; the
strength of the shock is proportional to the facet area, which grows with time.6

These considerations become more concrete for g = 0, as shown in section 7.2.
In this case, for smooth R(χ, t) we can generate a family of hyperbolic conservation
laws via multiplication of (7.1) by Rς−1 with ς > 0:

(7.2) ∂t(R
ς+1) + Ωνg1

(
ς + 1

ς

)
∂χ(R

ς) = 0 , χ > χf(t) .

The definition of the facet height as shock follows naturally: Extend R(χ, t) to all real
χ by replacing (7.2) by its weak formulation, assuming initial data with R(χ, 0) ≡ 0
for χ < χf(0) = 0. In other words, we artificially extend the evolution PDE to the
vapor (h > hf) by stating that no steps exist there. It turns out that, among all
possible weak solutions of (7.2) compatible with the given initial data [29], step flow
is consistent with a shock wave with R ≡ 0 for χ < χf(t); in particular, the continuum
limit of M1 (M2) corresponds to (7.2) with ς = 1 (ς = 2). The shock-wave strength
is rf(t)

ς+1. The precise statement regarding convergence is deferred to section 7.2.
In particular, we write the Rankine–Hugoniot condition as

(7.3) −ḣf(t) = Ωνg1

(
ς + 1

ς

)
rf(t)

−1 .

The corresponding weak solution, u(χ, t) = R(χ, t)ς+1, satisfies an entropy condition;
thus, it is the unique entropy solution to (7.2) [29]. In particular, for ς = 1, (7.3) is
precisely the continuity of ξ in the subgradient formulation with g = 0. Furthermore,

6The jump of R(·, t), which is present in M1 and M2, should not be confused with the jump of
ξ, which is introduced for M2 and vanishes in M1. The shock-like wave refers to the former jump.
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for ς = 2, (7.3) produces a discontinuous flux ξ at the facet edge; a comparison to

condition (5.6) entails G̃(t) = 3/4. Our simulations (Figures 6.1 and 6.4) indicate that
step flow is consistent with the above shock-wave interpretation.

7.2. Convergence of discrete schemes for g = 0. Next, we show that for
g = 0 and linear initial data for the step radii, ri, the solution to each of M1 and M2
is the entropy solution of (7.2) with ς = 1 and 2, respectively. In the remainder of
this section, we adopt the standard formalism of difference schemes for conservation
laws [30, 31], assuming that the reader has some familiarity with numerical methods.
We apply units with Ωνg1 = 1; the step height a is the mesh size (with a → 0). In
this section and Appendix F, the surface structure is assumed to be finite (i.e., it is
contained in a bounded region) so that a compactness theorem can be invoked. In par-
ticular, we restrict the domain of (7.3) to χ ≤ hf (0). We note in passing that solving
(7.3) does not require any condition at this boundary since we use characteristics.

Consider ODEs (2.12) with g = 0 (and replace i by j). We extend the discrete
dynamics to all integer j by extending the initial data for rj to 0 for j < 0. The ODEs
for both M1 and M2 are recast to the conservative form

(7.4) U̇j = −1

a
[F (U(t); j)− F (U(t); j − 1)] ,

where Uj(t) = Ua(χj , t) is the discrete solution variable, which equals r2j for M1 and

r3j for M2, with χj = ja (mesh in R), χN = Na = hf (0), and U = Ua denotes
the a-dependent, infinite-dimensional vector with components Uj. (The fact that the
finite surface structure ends at χ = hf (0) does not alter the solution of (7.4) because
the ODE for Uj depends only on Ui for i ≤ j.) The numerical flux F is defined by

(7.5) F (U(t); j) =

{
c Uj(t)

b , Uj > 0 ,

0 , Uj ≤ 0 ,

where 0 < b ≤ 1 and c is a positive constant; (b, c) = (1/2, 2) for M1 and (b, c) =
(2/3, 3/2) for M2. In the following analysis, set c = 1 without loss of generality. F is
Hölder-continuous with exponent b. It is also useful to define χj±1/2 = (j ± 1/2)a.

One of our goals is to show that the solution to (7.4) with (7.5) and b = ς/(ς +
1) converges to a weak solution of conservation law (7.2). Specifically, we aim to
prove that, as a → 0, Ua(t) converge (weakly) to u(χ, t) = R(χ, t)ς+1 that is the
entropy solution to (7.2). Equation (7.4) with (7.5) is amenable to known methods
for the convergence of conservative difference schemes [31]. The numerical flux, F ,
is “consistent” with the respective conservation law if we extend the definition of
“consistency” in [31] to include Hölder-continuous functions with exponents in (0, 1].

We can show that for M1 and M2 there exists a convergent sequence in {Ua} as
a→ 0 (see Lemma F.1 in Appendix F). Based on this property, our core result is the
following.

Proposition 7.1. Let U(t) = Ua(t) be a solution of numerical scheme (7.4)
with flux (7.5) and initial data that is compactly supported and monotone increasing
within its support. Then, Ua(t) converges to the unique entropy solution u(χ, t) of the
conservation law ∂tu+ ∂χf(u) = 0 with flux

(7.6) f(u) =

{
ub(t) , u > 0 ,

0 , u ≤ 0 ,

and initial data u(χ, 0) compatible with the discrete initial data.
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The proof of Proposition 7.1 is technical but uses standard techniques [31]; it is
therefore deferred to Appendix F.

In the statement of Proposition 7.1, the term “compatible” is used to mean that
the initial discrete data stems from the cell average of the continuum-scale data [31].
The linear initial data for rj(t) and h(r, t) of section 5.3 satisfy this property: By
setting u(χ, t) = R(χ, t)ς+1 (by the notation of section 7.1) and β = ς + 1, we have

∫ χj+1/2

χj−1/2

u(χ, 0) dχ =

∫ χj+1/2

χj−1/2

χβ dχ =
χβ+1

β + 1

∣∣∣∣χj+
1
2a

χj− 1
2a

= a[χβ
j +O(a)] .

Note that the proof of convergence followed here does not seem applicable to
the case with nonzero step interactions (g > 0). Difficulties include the definition of
numerical flux, apparent unboundedness of the step chemical potential, and the effect
of finite N . The case with nonzero g is the subject of work in progress.

8. Conclusion. We studied the continuum limits of two discrete schemes, M1
and M2, for a train of descending steps with a facet in the radial setting. In these
schemes, the step velocity is driven by the step chemical potential under evaporation-
condensation kinetics. Specifically, in M1 the discrete mobility is simply proportional
to the upper terrace width. In M2, this mobility acquires a multiplicative, geometry-
induced, factor consistent with a limit of the BCF model; this factor accentuates the
influence of extremal steps. Away from the facet, the step ODEs reduce to the same
second-order, quasi-linear parabolic PDE by which the height flow is the first variation
of a singular surface free energy. By assuming initial data for a linear cone, we focused
on the numerical comparison at long time of discrete slopes to the continuum-scale
slope under different sets of boundary conditions at the facet edge.

Our main achievement was to show how geometry and kinetics of extremal steps
play a crucial role in the formulation of continuum limits (PDE and boundary con-
ditions at the facet) consistent with step flow. At the continuum scale, our starting
point was the well-known subgradient theory by which a unique “highly regular” solu-
tion is sought via continuity of height, slope, and a flux expressing mass conservation.
By assuming self-similarity of continuum slopes, we showed that the subgradient for-
malism is compatible with M1 but not M2. Our numerical computations suggest that
for consistency of the continuum theory with M2, one of the natural boundary condi-
tions should be modified; the flux acquires a discontinuity at the facet boundary. This
jump was expressed in terms of values of the geometry-induced factor for extremal
steps at step collapse times. Our work suggests a precise mechanism through which
extremal steps can influence macroscopic profiles; the collapses of such steps can cause
a discrepancy between discrete and thermodynamics-based continuum predictions.

To the best of our knowledge, this is the first time discrete effects on top of facets
are incorporated into existing boundary conditions of the continuum thermodynamics
approach. We believe that this treatment opens up new possibilities; for example, it
is promising for non-self-similar settings and appears less sensitive to errors in the
computation of collapse times than the previous method of injecting discreteness
directly into the facet speed [24, 34]. However, our treatment is so far applied to
two step models of evaporation kinetics in the self-similarity regime. The relevance of
this approach to other step models, especially in surface diffusion where the evolution
PDE is of fourth order, and full time-dependent settings should be explored.

In light of our numerical results, we discussed how the facet may be linked to a
shock-like wave in Lagrangian coordinates; the shock strength and speed are directly
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related to the facet radius and speed, respectively. The idea of viewing facets as
shocks is not new; in [13, 14, 15, 16, 52] PDE solutions are connected to shocks in the
continuum scale. Here, we aim to connect shock-like solutions to step dynamics. In
section 7, we placed the shock notion on a firm basis for noninteracting steps, proving
that the discrete solution to each of M1 and M2 converges to the (unique) entropy
solution of a respective conservation law. Our discussion suggests that a methodology
for continuum limits of step flow, when steps collapse on top of facets, could rely on
generalized (nonsmooth) solutions of evolution PDEs (e.g., conservation laws). In this
approach, the continuum step position, R, as a function of height satisfies a certain
PDE on one side of a discontinuity (away from the facet) and may vanish on the other
side (where the PDE may not hold); a difficulty for interacting steps is to connect the
two values of R via a condition which may include discrete effects. This perspective
allows for boundary conditions broader than the natural ones. However, key questions
are left unresolved, e.g., the convergence of our discrete schemes for interacting steps.

Some other open problems deserve attention. The nature of self-similar discrete
and continuum solutions in our radial setting needs to be addressed rigorously. Our
study, so far limited to radial geometries with conical initial data, should be extended
to a richer class of initial data, other step kinetics (e.g., the DL and ADL regimes), and
the full two-dimensional geometry where steps may no longer be circles. A difficulty
in two-dimensional geometries is the possibility of meandering instabilities; to the
best of our knowledge, there is no widely accepted measure of meandering for closed
steps, say, perturbations of circles.

Appendix A. Discrete mobility from limit of BCF-type model. In this
appendix, we discuss a plausible origin of the geometric factor Gi in M2 by recourse
to a special limit of surface diffusion with desorption and negative ES barrier [44, 47]
in the radial geometry. The main guiding principle is offered by the BCF model [5].

Let Ci be the concentration of adatoms on the ith terrace, ri−1 < r < ri, and tds
be a typical desorption time. In juxtaposition to our ad hoc models M1 and M2, here
we adopt the viewpoint that the step velocity is driven by changes in the adatom flux
across terraces. So, we start with a diffusion equation for the concentration, Ci, of
adatoms including desorption under the quasi-steady approximation:

(A.1) ∂rrCi + r−1∂rCi − κ2Ci = 0 , ri−1 < r < ri ,

where κ2 = (Dstds)
−1 (κ > 0). Equation (A.1) has the general solution [53]

(A.2) Ci(r) = AiI0(κr) + BiK0(κr) ,

where I0(z) and K0(z) are modified Bessel fuctions of zeroth order and Ai and Bi are
integration constants to be determined from the boundary conditions at the bounding
step edges. The requisite conditions are

−Ji(r, t) = ku(Ci − Ceq
i ) , r = ri ,(A.3a)

Ji(r, t) = kd(Ci − Ceq
i+1) , r = ri+1 ,(A.3b)

where Ji(r, t) = −Ds∂rCi(r, t) is the adatom flux on the ith terrace, ku (kd) is the
kinetic rate for atom attachment/detachment at an up-step (down-step), and Ceq

i is
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the equilibrium concentration at the ith step edge. By (A.2) and (A.3), we obtain

Ai =
1

Di

{
− ku
Dsκ

Ceq
i

[
K ′

0(κri+1) +
kd
Dsκ

K0(κri+1)

]
− kd
Dsκ

Ceq
i+1

[
K ′

0(κri)−
ku
Dsκ

K0(κri)

]}
,

Bi =
1

Di

{
kd
Dsκ

Ceq
i+1

[
I ′0(κri)−

ku
Dsκ

I0(κri)

]
+

ku
Dsκ

Ceq
i

[
I ′0(κri+1) +

kd
Dsκ

I0(κri+1)

]}
,

where the prime denotes differentiation with respect to the argument and

Di =

[
I ′0(κri)−

ku
Dsκ

I0(κri)

] [
K ′

0(κri+1) +
kd
Dsκ

K0(κri+1)

]
−
[
I ′0(κri+1) +

kd
Dsκ

I0(κri+1)

] [
K ′

0(κri)−
ku
Dsκ

K0(κri)

]
.(A.4)

The step velocity law for surface diffusion reads [5, 26]

(A.5) ṙi =
Ω

a
(Ji−1 − Ji) , r = ri .

By (A.2), the step velocity becomes

(A.6) ṙi = −Ω

a
κDs [Ai−1I

′
0(κri) +Bi−1K

′
0(κri)−AiI

′
0(κri)−BiK

′
0(κri)] .

We now simplify the right-hand side of (A.6) under the conditions

(A.7) kutds � ri, κri � 1, ku � kd, |ri − ri−1| � kdtds .

Note that the second inequality implies that the diffusion length
√
Dstds is large

compared to the step radius. The third inequality expresses an inverse ES effect.
Thus, we obtain the simplified step motion law

(A.8) ṙi = − Ω

tds

ri + ri−1

2ri

ri − ri−1

a
Ceq

i ,

which reveals the (geometric) structure of the discrete mobility if Ceq
i is affine in

the step chemical potential, μi. Now recall the usual Gibbs–Thomson relation [26],
Ceq

i = Csexp(μi/T ) ∼ (Cs/T )(T + μi) for |μi| � T , where T is Boltzmann’s energy
(or absolute temperature in appropriate units); evidently, M2 results from (A.8) by
removal of the constant T [cf. (2.4)].

Appendix B. Elements of subgradient formalism. In this appendix, we
briefly describe elements of the subgradient theory, assuming the reader has some fa-
miliarity with basic functional analysis. The subgradient formalism provides a means
of analyzing evolution laws that have a steepest descent structure with respect to
a convex, singular energy functional [27]. An elementary exposition for the surface
diffusion case can be found in [42].

Formally speaking, the notion of the subgradient extends the concept of conven-
tional gradient (or derivative) to convex functions or functionals that are not necessar-
ily differentiable everywhere. Let H be a Hilbert space and F be a convex functional
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on H. The subdifferential, ∂F (x), of F at the point x of H is the set of all vectors v
in H that satisfy the inequality

(B.1) F (x+ h)− F (x) ≥ 〈v, h〉 for all h in H ,

where 〈v, h〉 denotes the inner product of H. We call such v the subgradient of F (x).
Consider first the classic example of the convex function f(x) = |x|, where −1 ≤

x ≤ 1. In this case, H is the 1D space [−1, 1] equipped (trivially) with the product
of reals. Since f(x) is differentiable at x �= 0, we find ∂f(x) = {sgn(x)}, a singleton,
where sgn(x) = x/|x| is the sign function. The notion of ∂f(x) becomes particularly
useful for x = 0, where f(x) is not differentiable. To compute ∂f(0), one notices that
for any real h, f(h) − f(0) = |h| ≥ |�h| only if |�| ≤ 1. It is easily deduced that
∂f(0) = [−1, 1], the set of all possible slopes of linear graphs bounded above by the
graph of y = |x| in the xy plane. This example can be extended to d space dimensions:
Consider f(x) = |x|, where x is any point in the d-dimensional Euclidean space, Rd;
then, ∂f(x) = {x/|x|} if x �= 0, and ∂f(0) = Bd(0, 1).

The above ideas can be generalized to functionals, i.e., mappings of vectors in
H to real numbers, or more generally to its underlying algebraic field. An abstract
formulation suggests that an evolution with the variational structure can be viewed
as “trajectories” of elements of H, in a way analogous to dynamical systems. The
associated evolution PDE for u is replaced globally by a statement of the form

(B.2)
du(t)

dt
∈ −∂F (u(t)) for all t > 0

with the initial condition u(0) = u0 ∈ H. A known theorem of convex analysis asserts
that there exists a unique (sufficiently smooth) u(t) in H for all t > 0 provided the
functional F satisfies certain conditions such as appropriate convexity [17].

In particular, evolution PDE (4.7) for evaporation-condensation can be recast to
form (B.2), where u = h is of bounded variation and F (h) = νΩE(h) =

∫∫
γ(∇h) dA,

the singular surface free energy (1.4). The subgradient ∂F (h) extends the variational
derivative of F (h) to the facet (∇h = 0). A characterization theorem for subgradient
systems states that for such a functional F , a function f belongs to ∂F (h) if and only
if there is a pair of continuous vector-valued functions ξ1 and ξ2 in R

2 satisfying [17]

(B.3) f = νΩg1div(ξ1 + gξ2) ,

where ξ1 is an element of ∂J1(∇h) and ξ2 is an element of ∂J2(∇h) with J1(p) = |p|
and J2(p) = |p|3/3. This characterization is central in this framework, with direct
implications to boundary conditions at the facet. By virtue of

(B.4) ∂J1(p) =

{
{p/|p|} if p �= 0 ,
B2(0, 1) if p = 0 ,

∂J2(p) = {|p|p} ,

one can assert that |ξ1| ≤ 1 and ξ2 = 0 for p = 0; therefore, |ξ| ≤ 1 on the facet.
In conclusion, by (B.2)–(B.4), there exists a continuous vector-valued ξ such that

(B.5) ∂th = −νΩg1divξ everywhere ,

where g1ξ belongs to ∂γ(p) for p = ∇h. In our radial setting, |ξ| ≤ 1 for r < rf(t)
and ξ2 is zero on the facet. These considerations lead to boundary conditions (5.3)
and (5.5) for g > 0. Since m is continuous for g > 0, so is h. (For g = 0, this argument
needs to be modified since m ceases to be continuous [27].)
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Appendix C. Step collapse times for noninteracting steps (g = 0). In
this appendix, we solve analytically, for both M1 and M2, equations of motion (2.12)
with g = 0 for the two top steps. Our goal is to obtain a recursion relation for the
time differences δn := tn− tn−1 for each choice of the factor Gi. The analytical results
enable us to (i) check the accuracy of our numerics for the step ODEs and (ii) explore
limitations of empirical formula (5.7). We employ units with νΩg1 = 1 = a.

C.1. Case of M1 (Gi(t) ≡ 1). First, consider times tn−1 < t < tn for fixed
collapse number n (n ≥ 1). For g = 0 and Gi ≡ 1, (2.12) reduces to

(C.1) ṙi = −ri − ri−1

ri
, i ≥ n .

In particular, for i = n we have ṙn = −1 by which

(C.2) rn(t) = tn − t, tn−1 < t ≤ tn .

We proceed to determine rn+1(t), which satisfies rn+1ṙn+1 = −rn+1 + tn − t in
view of (C.2). We seek a solution in parametric form by using another independent
variable, say, τ . Let tn − t ≡ σ(τ) and rn+1(t) ≡ σ(τ)p(τ), where σ and p are to be
determined. The ODE for rn+1(t) yields

(C.3)
σ̇

σ
= − ṗp

p2 − p+ 1
,

which can be integrated exactly; σ̇ ≡ dσ/dτ . By setting p(τ) = τ (without loss of
generality), we find σ(τ) and thereby compute t and rn+1 as functions of τ :

rn+1(t(τ)) = C (τ2 − τ + 1)−1/2τ eK(τ) ,

t(τ) = tn − C (τ2 − τ + 1)−1/2 eK(τ) ,(C.4)

where τ > τ∗ = τ∗,n and

(C.5) K(τ) =
1

2
√
3
tan−1

[ √
3(1 − 2τ)

1 + 2τ − 2τ2

]
.

The in principle n-dependent C and τ∗ are determined by the initial conditions t(τ∗) =
tn−1 and rn+1(t(τ∗)) = rn+1(tn−1) ≡ Rn. Thus, we obtain

t(τ) = tn − δn

(
τ2∗ − τ∗ + 1

τ2 − τ + 1

)1/2

eK(τ)−K(τ∗) ,

rn+1(t(τ)) = δn

(
τ2∗ − τ∗ + 1

τ2 − τ + 1

)1/2

τ eK(τ)−K(τ∗) ,(C.6)

where

(C.7) τ∗ = τ∗,n =
Rn

δn
.

As the nth step collapses, t ↑ tn and τ → ∞; the radius rn+1(tn) follows from (C.6).
Now consider times tn < t < tn+1 after the nth step collapses. Then, rn+1(t) =

tn+1 − t. By continuity of rn+1(t) and use of (C.6), we find the recursion relation

(C.8)
δn+1

δn
=
√
τ2∗,n − τ∗,n + 1 e−K(τ∗,n) ,

where τ∗,n ≡ τ∗ = Rn/δn = rn+1(tn−1)/δn.

D
ow

nl
oa

de
d 

02
/2

6/
13

 to
 1

29
.2

.5
7.

67
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EVAPORATION DYNAMICS OF FACETED CRYSTAL 275

It is of interest to discuss implications of (C.8) in the limit n → ∞ under the
assumption that δn+1/δn � 1. By (C.8), τ∗,n cannot approach 0. If, in addition,
δn+1/δn is assumed to be bounded with n, as is presumably the case for an initial
conical profile (where ri(0) in linear in i), we assert that τ∗,n must approach a finite
value: τ∗,n → τ	 as n→ ∞. Thus, this τ	 obeys

(C.9) (τ2	 − τ	 + 1)1/2 e−K(τ�) = 1 .

By numerically solving this transcendental equation, we find τ	 ≈ 1.66, in agreement
with our (independent) numerical simulations for (2.12) with Gi = 1.

C.2. Case of M2. Next, we study (2.12) with g = 0 and Gi ≡ (ri + ri−1)/2ri.
First, consider tn−1 < t < tn and fixed n (n ≥ 1). The step ODEs become

(C.10) ṙi = −ri + ri−1

2ri

ri − ri−1

ri
, i ≥ n .

In particular, for i = n we have ṙn = −1/2, by which

(C.11) rn(t) =
1

2
(tn − t) , tn−1 < t ≤ tn .

We proceed to determine rn+1(t), which satisfies

8r2n+1ṙn+1 = − (2rn+1 + tn − t) [2rn+1 − (tn − t)]

in view of (C.11). Again, we seek a solution in parametric form by using an indepen-
dent variable, τ . By employing definitions of Appendix C.1, we find

t(τ) = tn − δn e
K(τ)−K(τ∗) ,

rn+1(t(τ)) = δnτ e
K(τ)−K(τ∗) ,(C.12)

where τ > τ∗ = τ∗,n (as in Appendix C.1) and

K(τ) = −
∑
si∈I

si
3si − 1

ln(τ − si) , I =
{
s : 8s3 − 4s2 + 1 = 0

}
;(C.13)

cf. (C.5) and recall τ∗ = τ∗,n = Rn/δn. As the nth step collapses, τ → ∞; the radius
rn+1(tn) is obtained from (C.12).

Now consider times after the nth collapse, tn < t < tn+1; then, rn+1(t) =
1
2 (tn+1 − t). By continuity of rn+1(t) and (C.12), we find the recursion relation

(C.14)
δn+1

δn
= 2
∏
si∈I

(τ∗,n − si)
si

3si−1 ; τ∗,n = rn+1(tn−1)/δn .

By (C.14), τ∗,n cannot approach 0. If δn+1/δn is again assumed to be bounded with
n, we can take τ∗,n → τ	 as n→ ∞, where

(C.15) 2
∏
si∈I

(τ	 − si)
si

3si−1 = 1 ;

cf. (C.9) for Gi ≡ 1. By numerically solving this transcendental equation, we find
τ	 
 0.940, in agreement with our step simulations for (2.12). Using this result with
t ≈ tn → ∞, we find that the jump of the flux ξ entering (5.6) stems from

(C.16) G̃(t) ∼ lim
tn→∞

rn+2(tn) + rn+1(tn)

2rn+2(tn)

 0.766 .
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Appendix D. Continuum solutions for g = 0. In this appendix, we provide
some detailed derivations of formulas needed in section 5.4.

Consider the PDE solution (5.11). The differentiation of height continuity, (5.2),
with respect to t under initial data (5.8) entails

(D.1) ḣf(t) = −ṙf(t)−
1

rf(t)
+

t

rf(t)2
ṙf(t) .

Accordingly, generalized condition (5.6) on ξ(·, t) yields an ODE for rf(t):

(D.2) ṙf(t) =
[2G̃(t)− 1]rf

r2f − t
; rf(0) = rf0 .

Once rf(t) is computed, hf(t) can be found via (5.2) and (5.11).

Next, specify values of G̃(t) by Remark 5.1. For G̃ = 1, rf(t) satisfies

(D.3) ṙf =
rf

r2f − t
; rf(0) = rf0 .

This ODE is solved exactly by inversion, rf �→ T (rf) = t:

(D.4) t = T (rf) = −
(
r3f0/3
)
r−1
f + r2f /3 .

Hence, rf satisfies the cubic polynomial equation r3f − 3trf − r3f0 = 0 and turns out

to be [3] rf(t) = [r3f0/2 + ϑ(t)]1/3 + [r3f0/2− ϑ(t)]1/3, where ϑ(t) =
√
r6f0/4− t3. (The

positive square root is taken for t < 2−2/3r2f0.) For t > 2−2/3r2f0, the solution reads

(D.5) rf(t) = 2
√
t cos

(
1

3
tan−1

√
4t3 − r6f0
r3f0

)
.

Equation (D.5) leads to asymptotic formula (5.13). The facet height is furnished by
height continuity, hf(t) = hf0 + rf0 − rf − t/rf ; in particular, we wind up with (5.14).

Now set G̃(t) = c �= 1. Then, again by inversion, (D.2) is exactly solved by

(D.6) t = T (rf) = (4c− 1)−1 r2f

[
1−
(
rf0
rf

)(4c−1)/(2c−1)
]
.

This equation no longer leads to a polynomial in rf , in contrast to (D.4). We have
been unable to invert (D.6) analytically. Nonetheless, we can obtain an asymptotic
formula for rf in the limit t → ∞. Notably, growth of a real, nonnegative rf(t) as
t → ∞ implies c > 1/2. For these values of c, the first term on the right-hand
side of (D.6) dominates for large enough t. A more precise argument to deduce the
growth of rf(t) can be sketched as follows. As t → ∞, we have either rf → +∞ or
rf ↓ 0 (since rf ≥ 0). Suppose that rf(t) decays as t → ∞. Consider large t. For

c < 1/4, (D.6) would entail (1 − 4c)t ∼ r
(4c−1)/(2c−1)
f0 r

1/(1−2c)
f , a contradiction. A

similar contradiction is encountered if 1/4 ≤ c < 1/2. For c > 1/2, by (D.6) rf(t)
would not be compatible with a real solution. Therefore, rf(t) → +∞ as t → ∞,
which implies (5.16) with c > 1/2. In the exceptional case with c = 1/2, by (D.2)
rf(t) ≡ rf0 for all t ≥ 0; there is no facet evolution.
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Appendix E. Formal boundary layer analysis. In this appendix, we provide
heuristic derivations of formulas presented in section 6.3 by invoking elements of
singular perturbation theory [22]. Self-similarity is not needed for our main arguments.

First, m(r, t) is recast to a form that manifests the boundary layer width. Inside
the boundary layer (inner region), write

(E.1) m(r, t) = a0(t)f0(ζ, t) , ζ =
r − rf(t)

gαw(t)
= O(1) .

The substitution of (E.1) into PDE (4.9) yields

ȧ0f0 + a0∂tf0 − g−α a0
w
(ṙf + gαẇζ) ∂ζf0

= − 1

(rf + gαwζ)2

+ g1−2α a
2
0

w2
∂ζ
{
(rf + gαwζ)−1∂ζ [(rf + gαwζ)f2

0 ]
}
.

By treating ζ as well as a0, f0, w, rf , and their derivatives as O(1) quantities for
0 < g � 1, we observe that the O(g−α) term on the left-hand side of the last equation
must be balanced by the O(g1−2α) term; thus, α = 1, as claimed in (6.6).

The resulting equation for f0 reads

(E.2) ∂ζζ(f
2
0 ) = −�∂ζf0 ζ > 0 ; � := wṙf/a0 .

Now let us match a0(t)f0(ζ, t) as ζ → ∞ with the outer solution for m given by (5.12)
as r ↓ rf(t), assuming there is a region where the two solutions overlap. Accordingly,
we choose to set a0(t) equal to 1− t/r2f , as displayed in (6.7), while we take

(E.3) f0 → 1 as ζ → ∞ .

By integrating (E.2), in view of (E.3), we obtain

(E.4) (f2
0 )ζ = �(1− f0) , ζ > 0 ; f0 = 0 as ζ ↓ 0 .

Here, we impose the condition of slope continuity at the facet edge. We henceforth
consider ∂tf0 ≡ 0 and set � = const. By (E.4), we obtain 2f0 + ln(1 − f0) = −�ζ,
which must be reconciled with (E.3). Thus, � > 0; without loss of generality, set
� = 1. This value leads to formula (6.8). It is of some interest to note that f0(ζ) =
1 +W (−e−1−ζ/2), where W (x) is the Lambert function [8].

By definition of � in (E.2), we extract a formula for the boundary layer width in
accord with (6.6). This finding concludes our computation of the inner solution for
m. As usual, a composite formula can be constructed by adding the outer solution
(5.12) to the inner solution, a0(t)f0(ζ), and subtracting their common limit (valid in
the overlap region where ζ → ∞) [22]; cf. (6.7).

Appendix F. Proof of convergence of step schemes for g = 0. In this
appendix, we provide a proof of Proposition 7.1 by invoking the formalism of the Lax–
Wendroff theorem [30]. For ease of notation, we suppress dependencies that are not
explicitly used, i.e., let Ua(t) = (Uj(t))j∈{i∈Z|i≤N} and Fj(t) = F (Ua(t); j) (where Z:
the set of integers). Below, ‖u− Ua‖X means the error, by the metric of space X , in
the approximation of u(χ, t) by the piecewise constant function with values Uj(t) for
χ ∈ (χj−1/2, χj+1/2); also, ϕz means ∂zϕ for z = χ, t. We use the notions of total
variation (TV) and TV-stability, defined in [31].
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Before we proceed to the main proof of Proposition 7.1, it is advisable to address
the sense by which solutions of our discrete schemes may converge.

Lemma F.1. For a compactly supported initial condition (i.e., a finite height
profile) that is monotone increasing within its support, the discrete dynamics for M 1
and M 2 are TV diminishing with time. In particular, the Ua is TV-stable.

Proof. From section 3, if the initial data is monotone increasing in j, the dynamical
system preserves the step ordering; in fact, steps do not collide. Therefore, for a class
of dynamics with appropriate initial conditions including linear rj(0), U̇j(t) ≤ 0 and
Uj(t) is always nonincreasing with respect to time for all j. This fact together with
the monotonicity of {Uj} implies TV (U(t)) ≤ TV (U(0)) <∞ (by telescoping).

As a consequence, the family {Ua(t)} is L1-compact for any a → 0, t ∈ [0, T ]
and fixed T [31]. Thus, there exists an L1-convergent sequence in {Ua}, which we
denote by (Ua) with a slight abuse of notation, for each of M1 and M2 (b = 1/2, 2/3).
Without proof, we claim that this property is true for 0 < b ≤ 1 in (7.5) and use it
in the proof of Proposition 7.1. We improve the above convergence result by showing
that all convergent sequences approach the same entropy solution of a specific (b-
dependent) conservation law.

Proof of Proposition 7.1. First, we show that every convergent sequence in {Ua(t)}
L1-converges to a weak solution of conservation law (7.2). Our proof is similar to the
ones for the Lax–Wendroff theorem [30, 31], except that for M1 and M2, we proved
above (not simply assumed) existence of convergent sequences in {Ua}. Fix T ∈ [0,∞)
and consider a sequence in {Ua} that converges to some u ∈ L1((−∞, hf (0)]× [0, T ]).
With a slight abuse of notation, we denote elements of this sequence by Ua with
components Ua

j = Uj . Let ϕ ∈ C∞
0 ((−∞, hf (0)] × [0, T )) be a test function. We

assert that

a

∫ T

0

∑
j

ϕt(χj , t)Uj dt− a
∑
j

ϕ(χj , 0)Uj(0)

= −a
∫ T

0

∑
j

ϕ(χj , t)U̇j(t) dt

= a

∫ T

0

∑
j

1

a
ϕ(χj , t)[Fj(t)− Fj−1(t)] dt

= −a
∫ T

0

∑
j

ϕ(χj+1, t)− ϕ(χj , t)

a
Fj(t) dt(F.1)

via summation by parts; boundary terms vanish since ϕ is compactly supported.

The leftmost side (top line) of (F.1) converges to
∫ T
0

∫∞
−∞ ϕt(χ, t)u(χ, t) dχdt −∫∞

−∞ ϕ(χ, 0)u(χ, 0) dχ in view of boundedness of ϕ (and ϕt). Below, we show that the

right-hand side (bottom line) of (F.1) converges to −
∫ T
0

∫∞
−∞ ϕχ(χ, t)f(u(χ, t)) dχdt:

∫ T

0

⎡⎣∫ ∞

−∞
ϕχ(χ, t)f(u(χ, t)) dχ− a

∑
j

ϕ(χj+1)− ϕ(χj)

a
Fj(t)

⎤⎦ dt

=
∑
j

∫ T

0

∫ χj+1

χj

[
ϕχ(χ, t)f(u(χ, t))−

ϕ(χj+1)− ϕ(χj)

a
Fj(t)

]
dχ dt ;(F.2)
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the terms on the right-hand side are rearranged to yield

∑
j

∫ T

0

∫ χj+1

χj

ϕχ [f(u(χ, t))− Fj(t)] dχ dt

+
∑
j

∫ T

0

∫ χj+1

χj

[
ϕχ(χ, t)−

ϕ(χj+1)− ϕ(χj)

a

]
Fj(t) dχ dt ,(F.3)

recalling that f coincides with F . Since Fj is bounded in supp(ϕ), the second term
in (F.3) converges to 0. The first term is bounded by

‖∂χφ‖L∞
∑
j

∫ T

0

∫ χj+1

χj

|f(u(χ, t))− Fj(t)| dχdt

≤ C

∫ T

0

‖u− Ua‖Lb
χ
dt ≤ C̃ ‖u− Ua‖L1(R×[0,T ]) ,(F.4)

where C̃ is a constant depending on the Hölder exponent, b, of F ; also, the embedding
Lb ⊂ L1 on a compact set was used. Because ‖u−Ua‖L1 → 0, we conclude that u is
a weak solution of (7.2) with b = ς/(ς + 1).

Next, we show that {Ua} satisfies a (semidiscrete) entropy condition [31]. Let
η(·) ∈ C∞((−∞, hf (0)]) be any convex function7 and ψ(·) be its entropy flux function,
i.e., ψ′(u) = η′(u)f ′(u) [31], where the prime denotes differentiation in u and f ′ ∈
L1((−∞, hf (0)]) is interpreted as a weak derivative. Accordingly, we have

−1

a
[ψ(Uj)− ψ(Uj−1)] = −1

a

∫ Uj

Uj−1

ψ′(u) du = −1

a

∫ Uj

Uj−1

η′(u)f ′(u) du

≥ −η
′(Uj)

a

∫ Uj

Uj−1

f ′(u) du = η′(Uj)U̇j(t) = ∂tη(Uj) .(F.5)

The application of a procedure similar to the one applied to show the weak con-
vergence of the solution leads to the entropy inequality ∂tη(u) + ∂χψ(u) ≤ 0 in the
weak sense [31]. Because all convergent sequences in the family {Ua} approach the
same limit, we conclude that {Ua} weakly converges to the entropy solution.

It is worth noting that the finite support of the initial data does not affect our
proof, because each discrete scheme is backward in j for g = 0. This property ceases
to hold for g > 0.

Acknowledgments. This article is dedicated to the memory of the late Profes-
sor John E. Osborn for his valuable advice on numerical methods at initial stages of
this work. We are indebted to Professors Yoshikazu Giga, Robert V. Kohn, Ricardo
Nochetto, and Olivier Pierre-Louis for stimulating discussions and to two anony-
mous reviewers for their constructive remarks. Special thanks are due to Mr. Joshua
Schneider for help with the numerics, particularly for Figure 6.7. The first author
(K. Nakamura) is grateful to the University of Maryland for a Graduate Student
Summer Research Fellowship during the summer of 2011, when part of this work was
completed.

7This function η(u) should not be confused with the similarity variable η = r/
√
t of section 6.
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