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DOMAIN DECOMPOSITION APPROACHES FOR MESH
GENERATION VIA THE EQUIDISTRIBUTION PRINCIPLE

MARTIN J. GANDER AND RONALD D. HAYNES

Abstract. Moving mesh methods based on the equidistribution principle are powerful techniques
for the space–time adaptive solution of evolution problems. Solving the resulting coupled system of
equations, namely the original PDE and the mesh PDE, however, is challenging in parallel. We
propose in this paper several Schwarz domain decomposition algorithms for this task. We then
study in detail the convergence properties of these algorithms applied to the nonlinear mesh PDE in
one spatial dimension. We prove convergence for classical transmission conditions, and optimal and
optimized variants for the generation of steady equidistributing grids. A classical, parallel, Schwarz
algorithm is presented and analysed for the generation of time dependent (moving) equidistributing
grids. We conclude our study with numerical experiments.
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1. Introduction. The computation of solutions of partial differential equations
(PDEs) which vary over disparate space and time scales often benefit from the use of
non–uniform meshes chosen to adapt to the local solution structures. There are three
broad categories of adaptive methods for PDEs. Static refinement techniques, such as
h–refinement, locally coarsen or refine the mesh according to some a posteriori error
estimate. In the finite element setting, the order of the basis polynomials is varied
resulting in p–refinement methods. These techniques have been combined to give
hp adaptive finite element methods, see [13] for a recent review. In this article, we
consider a class of r–refinement or moving mesh methods. As the solution evolves this
approach adapts an initial (typically uniform) grid by relocating the mesh nodes while
keeping the number of mesh nodes and mesh topology fixed. The mesh is determined
by solving a so–called moving mesh PDE (MMPDE) which is coupled to the physical
PDE of interest.

A standard way to perform mesh adaptation in space is to use the equidistribu-
tion principle (EP), see [12]. Given some positive measure M(t, x, u) of the error or
difficulty in the solution u(t, x), where x ∈ Ωp, the physical domain, and t ∈ [0, T ], the
EP in one spatial dimension requires that the mesh points, xi, i = 0, . . . , N , satisfy∫ xi

xi−1

M(t, x̃, u) dx̃ ≡ 1

N

∫ 1

0

M(t, x̃, u)dx̃.

Equivalently, we seek a continuous time dependent mesh transformation between an
underlying computational coordinate ξ ∈ Ωc, the computational domain, and the
physical coordinate, x ∈ Ωp, so that∫ x(ξi,t)

0

M(t, x̃, u) dx̃ =
i

N
θ(t) ≡ ξiθ(t), (EP)

where θ(t) ≡
∫ 1

0
M(t, x̃, u) dx̃ is the total error in the solution. The function M is

referred to as the monitor or mesh density function; typically it is chosen so that M
is large where we expect the error in the computed solution to be large. Enforcing
(EP) concentrates mesh points in regions where the error is large. It follows directly,
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by differentiating the continuous form of (EP), that the required mesh transformation
satisfies, for all t, the nonlinear differential equation

∂

∂ξ

{
M(t, x(ξ, t), u)

∂

∂ξ
x(ξ, t)

}
= 0. (1.1)

As discussed in [33], it is possible to derive a linear grid generation formulation.
However, in general, the nonlinear description is more robust — less prone to mesh
singularities for example. For time dependent problems, (1.1) coupled with a phys-
ical parabolic PDE results in a challenging numerical problem. Semi–discretizing in
space, or applying the (moving) method of lines, results in an index–2 DAE system
which is stiff and ill–conditioned [1]. As a result, (1.1) is often relaxed to require
equidistribution at time t + τ , resulting in a number of parabolic MMPDEs [32], for
example, the mesh may be found by solving

∂x

∂t
=

1

τ

∂

∂ξ

(
M(t, x(ξ, t), u)

∂x

∂ξ

)
. (MMPDE5)

The relaxation parameter τ is chosen in practice (see [30]) so that the mesh evolves
at a rate commensurate with that of the solution u(t, x).

In practice, the MMPDE is coupled through the monitor function to the physical
PDE, ut = L(u), for example, where L is a spatial differential operator. Moving
mesh methods have been developed and analyzed by numerous groups; see for ex-
ample [14, 45] for CFD problems, [48, 47] for flow and magnetohydrodynamics and
[38, 39] for discontinuous Galerkin formulations and 1D stability and convergence
analysis. Thorough recent reviews of grid generation by the equidistribution principle
and moving mesh methods for partial differential equations can be found in [8, 33].

Numerically, there have been numerous suggestions as to how to solve the coupled
system of PDEs

∂u

∂t
= L(u),

∂x

∂t
=

1

τ

∂

∂ξ

(
M(t, x(ξ, t), u)

∂x

∂ξ

)
, (1.2)

for x ∈ Ωp, t ∈ (0, T ]. In [31], Huang and Russell describe the solver MOVCOL in
which (1.2) is semidiscretized in space using a collocation approach and the system
of ordinary differential equations is solved in time using DASSL [43]. The mesh
xk and solution uk at time tk are integrated forward to the new time level tk+1

simultaneously by solving a single nonlinear system for xk+1 and uk+1. In two or
more space dimensions this approach may be cost prohibitive. Indeed Babuska and
Rheinboldt [2] note that it may not be necessary to solve for the mesh and solution
to the same level of accuracy. Motivated by this idea, Mackenzie et al. [4] suggest an
iterative approach. To move forward in time from tk to tk+1, the mesh and physical
solution are solved alternately until the meshes agree to some tolerance.

Here, our ultimate goal is the parallel solution of PDEs on (moving) equidistribut-
ing grids, ie. the parallel solution of (1.2). We propose introducing spatial parallelism
by solving (1.2) through a domain decomposition (DD) approach. The DD approach
attempts to solve a PDE by a divide and conquer philosophy – partitioning the spatial
domain Ω into overlapping or non–overlapping subdomains and thus reformulating the
original PDE into an equivalent coupled system of PDEs. The coupling is provided
by transmission conditions which are designed to appropriately match solutions on
neighboring subdomains. The matching is imposed in such a way as to maintain

2



as much coarse grain granularity in the computation as possible, lending itself to
implementation on distributed memory architecture using MPI (for example).

The literature involving DD approaches for elliptic problems is vast, see the books
[46, 40]. We focus in this paper on Schwarz methods, since these methods have been
studied for time dependent problems in two fundamentally different approaches: the
more classical approach, applying the alternating or parallel Schwarz method to the
sequence of elliptic problems which result upon semi–discretization (in time) of the
PDE [9, 10], or the more recent approach, decomposing the space–time domain and
applying the Schwarz waveform relaxation algorithm [6, 24, 25]. For both approaches,
optimized variants have been developed, see [18] and the references therein for the
first, and [21, 19, 20, 5] for the second approach. Even if the physical PDE is linear,
the coupled system (1.2) will be highly nonlinear. Comparably, much less has been
written about DD applied to nonlinear PDEs, see [11, 37, 36, 35, 15, 7, 44] for the
steady case, and [17, 23] for evolution problems.

There are several natural ways to couple DD and r–refinement strategies to design
an effective solver. Indeed this work follows the experimental papers [29, 28, 27]. The
attempts thus far can be roughly differentiated by the choice of spatial variable in
which to apply DD: the physical coordinate x ∈ Ωp or the computational coordinate
ξ ∈ Ωc. In [29], the overlapping classical Schwarz waveform relaxation algorithm,
using Dirichlet transmission conditions, is applied to the coupled system of mesh and
physical PDEs (1.2) in the physical coordinates. The partitioning of the physical
coordinate is fixed but mesh points are given freedom to move within the subdomain
and the overlap region. The fixed subdomain boundary prevents mesh points from
moving from the subdomain into the overlap region or vice–versa. The more recent
papers [28, 27] were primarily interested in the mesh generation problem only. That
is, the solution u was assumed to be known. Again working in the physical coordinate
system, [28] fixed the boundary of the extended subdomain (subdomain plus overlap),
allowing mesh points to move in and out of the overlap region. More recently, [27],
introduced an overlapping decomposition of the computational coordinate ξ, ie. sub-
domains were specified by a fixed number of mesh points and not a particular region
of physical space. In a time dependent scenario this gives rise to moving subdomains.
It is this later approach, DD in the computational coordinate, we will adopt here.

In this paper we focus on the theoretical analysis of solving for grids via the
equidistribution principle by various parallel DD strategies. Suppose u(t, x) is a
specified function on Ωp × (0, T ) with Ωp := (0, 1). From (MMPDE5) a moving
(equidistributing) grid may be found by solving the nonlinear diffusion equation on
Ωc := (0, 1),

∂x

∂t
=

∂

∂ξ

(
M(x, t)

∂x

∂ξ

)
, x(ξ, 0) = x0(ξ), x(0, t) = 0, x(1, t) = 1. (1.3)

If u is a time independent function on Ωp = (0, 1), then from (1.1) an equidistributing
mesh transformation is found by solving the nonlinear two–point boundary value
problem (BVP)

d

dξ

(
M(x)

dx

dξ

)
= 0, x(0) = 0, x(1) = 1, (1.4)

for the mesh transformation x(ξ) : Ωc → Ωp. The analysis of various DD approaches
to solve (1.3) and (1.4) will be the focus of this paper.
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In the next section we state and prove results concerning the well–posedness of the
subdomain problems defined in Sections 3, 4, 5 and 7. Section 3 proposes nonlinear
and linearized classical Schwarz iterations for (1.4) and corresponding convergence
results. In Section 4 an optimal Schwarz algorithm, providing convergence in a finite
number of iterations, is presented. An optimized Schwarz variant, which approximates
the optimal Schwarz algorithm, is discussed in Section 5. The extension of the classical
Schwarz method to an arbitrary (finite) number of subdomains is given in Section 6.
Section 7 provides a first look at the Schwarz algorithms for mesh generation in the
time–dependent case. Numerical results are given to support our analysis in Section 8
and we conclude in Section 9 with a summary and plans for future work.

2. Mathematical Preliminaries. The DD methods presented in Sections 3,
4, 5 and 7 require the solution of (1.4) and (1.3) subject to Dirichlet and Robin
type boundary conditions. We now collect various results which establish the well–
posedness and implicit representations of the solutions of these subdomain problems.

We begin by considering (1.4) on an arbitrary subdomain ξ ∈ (a, b) ⊂ Ωc = (0, 1)
subject to Dirichlet boundary conditions

d

dξ

(
M(x)

dx

dξ

)
= 0, x(a) = γa, x(b) = γb. (2.1)

This will be the subdomain problem of interest for the nonlinear Schwarz algorithms
of Sections 3 and 6.

Lemma 2.1. If M is differentiable and bounded away from zero and infinity, ie.
there exists m̌ and m̂ such that 0 < m̌ ≤ M(x) ≤ m̂ < ∞ for all x, then the BVP
(2.1) has a unique solution given implicitly by∫ x(ξ)

γa

M(x̃) dx̃ =
ξ − a
b− a

∫ γb

γa

M(x̃) dx̃, for ξ ∈ (a, b). (2.2)

Proof. The differential equation and boundary condition at ξ = a is satisfied

by
∫ x(ξ)

γa
M(x̃) dx̃ = C(ξ − a), where C is chosen to satisfy the Dirichlet boundary

condition at ξ = b. Direct calculation forces C = 1
b−a

∫ γb
γa
M(x̃) dx̃, and we arrive at

the implicit representation (2.2).
We now consider the existence and uniqueness of x(ξ) which satisfies (2.2). The

mesh transformation x(ξ) is the solution θ of

G(θ) =
ξ − a
b− a

∫ γb

γa

M(x̃) dx̃, (2.3)

where G(θ) is defined as G(θ) ≡
∫ θ
γa
M(x̃) dx̃. Under the assumptions of Lemma 2.1, G

is continuous. Moreover, G is uniformly monotonic, ie. dG
dθ = M(θ) ≥ m̌ > 0. Hence,

by the implicit function theorem, a unique, continuously differentiable solution to
(2.3) and (2.2) results.

The analysis of the optimized Schwarz methods in Section 5 will require the
solution of boundary value problems of the form

d

dξ

(
M(x)

dx

dξ

)
= 0, x(0) = 0, M(x)xξ + px

∣∣∣
b

= γb, (2.4)

where p and γb are constants and b ∈ (0, 1) is fixed.
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Lemma 2.2. Under the assumptions of Lemma 2.1 the BVP (2.4) has a unique
solution for all p > 0 given implicitly by∫ x(ξ)

0

M(x̃) dx̃ = (γb − px(b))ξ, for ξ ∈ (0, b). (2.5)

Proof. The differential equation and boundary condition at ξ = 0 is satisfied by∫ x(ξ)

0
M(x̃) dx̃ = Cξ, where C needs to be chosen to satisfy the Robin type boundary

condition at ξ = b. Direct calculation forces C = γb − px(b), from which the implicit
representation (2.5) results.

We now consider the existence and uniqueness of x(ξ) which satisfies (2.5). If
ξ = b then the boundary value x(b) is the solution θ of

G(θ) = bγb, (2.6)

where G(θ) is defined as G(θ) ≡
∫ θ

0
M(x̃) dx̃+ bpθ.

Under the assumptions of Lemma 2.1, G is continuous. Moreover G is uniformly
monotonic, ie. there exists a constant Gp > 0 such that dG

dθ = M(θ) + bp ≥ Gp >
0. Hence (2.6) has a unique solution x(b). The unique, continuously differentiable
solution x(ξ), for ξ ∈ (0, b), follows by considering (2.5) for the now specified x(B)

and noting that the map G̃(θ) =
∫ θ

0
M(x̃) dx̃ is continuous and uniformly monotonic

and hence has a continuously differentiable inverse.
We will also be interested in solutions of Robin problems of the form

d

dξ

(
M(x)

dx

dξ

)
= 0, M(x)xξ − px

∣∣∣
b

= γb, x(1) = 1, (2.7)

where p and γb are constants and B ∈ (0, 1) is fixed. Notice the change of sign in the
boundary condition at ξ = b.

Lemma 2.3. Under the assumptions of Lemma 2.1 the BVP (2.7) has a unique
solution for all p > 0 given implicitly as∫ 1

x(ξ)

M(x̃) dx̃ = (γb + px(b))(1− ξ), for ξ ∈ (b, 1). (2.8)

Proof. The representation (2.8) is found by a calculation similar to that in
Lemma 2.2. Existence and uniqueness follows as in the previous Lemma by con-
sidering the monotonicity of the maps

G(θ) =

∫ 1

θ

M(x̃) dx̃− (1− b)(γb + θp) and G̃(θ) =

∫ 1

θ

M(x̃) dx̃.

In Section 7 the time discretized subdomain problems require the solution of
nonlinear BVPs of the form

x− q d
dξ

(
M(x)

dx

dξ

)
= f, x(ξ, 0) = x0(ξ), x(a) = γa, x(b) = γb, (2.9)

where q is a given constant and f = f(ξ) a given source function. Under the as-
sumptions of Lemma 2.1 the well–posedness of (2.9) can be found, for example, in
[26].
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3. Parallel Schwarz Methods. In this section, we propose the solution of (1.4)
by various classical, parallel Schwarz iterations and consider the convergence of the
resulting iterations. Because of the nonlinear nature of (1.4), convergence does not
immediately follow from classical analysis of the Schwarz method. In addition, we are
interested in precise estimates of the contraction factors of each method.

3.1. A Parallel Nonlinear Schwarz Method. We decompose the domain
Ωc = (0, 1) into two overlapping subdomains Ω1 = (0, β) and Ω2 = (α, 1) with α < β,
and consider for n = 1, 2, . . . the iteration

(M(xn1 )xn1,ξ)ξ = 0, ξ ∈ Ω1, (M(xn2 )xn2,ξ)ξ = 0, ξ ∈ Ω2,

xn1 (0) = 0, xn2 (α) = xn−1
1 (α), (3.1)

xn1 (β) = xn−1
2 (β), xn2 (1) = 1.

We first construct implicit solutions on the subdomains using Lemma 2.1.
Lemma 3.1. Under the assumptions of Lemma 2.1, the subdomain solutions on

Ω1 and Ω2 of (3.1) are given implicitly by the formulas∫ xn1 (ξ)

0

M(x̃) dx̃ =
ξ

β

∫ xn−1
2 (β)

0

M(x̃) dx̃ (3.2)

and ∫ 1

xn2 (ξ)

M(x̃) dx̃ =
1− ξ
1− α

∫ 1

xn−1
1 (α)

M(x̃) dx̃. (3.3)

Proof. Simply compare the subdomain problems in (3.1) with (2.1) and use the
implicit representation of the solution in (2.2).

Using these representations of the subdomain solutions, we are now in a position to
relate xn1,2 to xn−2

1,2 at the subdomain interfaces and hence prove a precise convergence
estimate for the nonlinear parallel Schwarz method (3.1). We will use the infinity
norm defined for any function f : (a, b)→ R by ||f ||∞ := supx∈(a,b) |f(x)|.

Theorem 3.2. Under the assumptions of Lemma 2.1 the overlapping (β > α)
parallel Schwarz iteration (3.1) converges for any starting values x0

1(α), x0
2(β). More-

over, we have the linear convergence estimates

||x− x2n+1
1 ||∞ ≤ ρn

m̂

m̌
|x(β)− x0

2(β)|, ||x− x2n+1
2 ||∞ ≤ ρn

m̂

m̌
|x(α)− x0

2(α)|, (3.4)

with contraction factor ρ := α
β

1−β
1−α < 1.

Proof. Using Lemma 3.1 and defining C :=
∫ 1

0
M(x̃) dx̃, the sequence xn1 (α)

satisfies∫ xn1 (α)

0

M(x̃) dx̃ =
α

β

∫ xn−1
2 (β)

0

M(x̃) dx̃ =
α

β

(
C −

∫ 1

xn−1
2 (β)

M(x̃) dx̃

)

=
α

β

(
C − 1− β

1− α

∫ 1

xn−2
1 (α)

M(x̃) dx̃

)
=
α

β

1− β
1− α

∫ xn−2
1 (α)

0

M(x̃) dx̃+
α

β

β − α
1− α

C,

(3.5)

where the second and fourth equalities above follow from
∫ x

0
M(x̃) dx̃ = C−

∫ 1

x
M(x̃) dx̃,

and the third equality follows from (3.3) evaluated at ξ = β with n replaced by n− 1.
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Defining the quantity Kn
1 =

∫ xn1 (α)

0
M(x̃) dx̃, relation (3.5) yields the linear fixed point

iteration

Kn
1 =

α

β

1− β
1− α

Kn−2
1 +

α

β

β − α
1− α

C. (3.6)

Since the contraction factor of this iteration ρ := α
β

1−β
1−α , is strictly less than one, the

iteration converges to a limit K∗1 satisfying

K∗1 =
α

β

1− β
1− α

K∗1 +
α

β

β − α
1− α

C =⇒ K∗1 = αC. (3.7)

We have therefore shown limn→∞
∫ xn1 (α)

0
M(x̃) dx̃ = α

∫ 1

0
M(x̃) dx̃. In order to prove

convergence to the correct limit, we note the monodomain solution x also satisfies

α
∫ 1

0
M(x̃) dx̃ =

∫ x(α)

0
M(x̃) dx̃. Hence we have convergence to the correct limit, i.e.

lim
n→∞

∫ xn1 (α)

0

M(x̃) dx̃ =

∫ x(α)

0

M(x̃) dx̃.

It remains to prove the convergence estimate in the L∞ norm. Subtracting equation
(3.6) from (3.7), we obtain by induction∫ x(α)

x2n
1 (α)

M(x̃) dx̃ = ρn
∫ x(α)

x0
1(α)

M(x̃) dx̃. (3.8)

For any a, b ∈ R we have, by the boundedness of M ,

m̌|a− b| ≤

∣∣∣∣∣
∫ b

a

M(x̃) dx̃

∣∣∣∣∣ ≤ m̂|a− b|. (3.9)

Subtracting (3.3) from the equivalent expression for the exact, monodomain so-
lution x(ξ) we obtain∫ x(ξ)

x2n+1
2 (ξ)

M(x̃) dx̃ =
1− ξ
1− α

∫ x(α)

x2n
1 (α)

M(x̃) dx̃.

Using (3.8) we have∫ x(ξ)

x2n+1
2 (ξ)

M(x̃) dx̃ =
1− ξ
1− α

ρn
∫ x(α)

x0
1(α)

M(x̃) dx̃.

Convergence in the interior is obtained by taking the modulus and using the bound-
edness of M (3.9). For all ξ ∈ [α, 1]

|x(ξ)− x2n+1
2 (ξ)| ≤ 1− ξ

1− α
ρn
m̂

m̌
|x(α)− x0

1(α)|.

Taking the supremum gives the second estimate in (3.4). The estimate on subdomain
one is obtained similarly.
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3.2. A Parallel Linearized Schwarz Method. We may avoid the nonlinear
solves on each subdomain in (3.1) by replacing xn1 and xn2 in the arguments of the
nonlinear function M by the functions obtained from the previous iteration. Consider
a linearized, parallel Schwarz iteration: for n = 1, 2, . . .

(M(xn−1
1 )xn1,ξ)ξ = 0, ξ ∈ Ω1, (M(xn−1

2 )xn2,ξ)ξ = 0, ξ ∈ Ω2,

xn1 (0) = 0, xn2 (α) = xn−1
1 (α), (3.10)

xn1 (β) = xn−1
2 (β), xn2 (1) = 1.

Each Schwarz iteration now involves the solution of a linear BVP on each sub-
domain. A simple calculation yields the following representation of the subdomain
solutions.

Lemma 3.3. The subdomain solutions of (3.10) are unique and given by

xn1 (ξ) = xn−1
2 (β)

∫ ξ
0

dξ̃

M(xn−1
1 (ξ̃))∫ β

0
dξ̃

M(xn−1
1 (ξ̃))

, (3.11)

and

xn2 (ξ) = xn−1
1 (α) + (1− xn−1

1 (α))

∫ ξ
α

dξ̃

M(xn−1
2 (ξ̃))∫ 1

α
dξ̃

M(xn−1
2 (ξ̃))

. (3.12)

Theorem 3.4. Under the assumptions of Lemma 2.1, the overlapping (β > α)
linearized, parallel Schwarz iteration (3.10) converges for any continuously differen-
tiable initial guesses x0

1(ξ) and x0
2(ξ).

Proof. We first note that in this linearized iteration, one gains regularity: if the
initial guess is continuously differentiable, the explicit solution formulas (3.11) and
(3.12) show that after one iteration the iterates are already twice continuously differ-
entiable, and hence the algorithm produces a unique sequence of classical solutions.
We now demonstrate convergence on subdomain one only, the argument on subdo-
main two is similar. Evaluating xn−1

2 (β) from (3.12) and substituting into (3.11) we
have, for any ξ ∈ (0, β]

xn1 (ξ) = Cnξ xn−2
1 (α) +Dnξ , (3.13)

where

Cnξ =

∫ 1

β
dξ̃

M(xn−2
2 (ξ̃))∫ 1

α
dξ̃

M(xn−2
2 (ξ̃))

∫ ξ
0

dξ̃

M(xn−1
1 (ξ̃))∫ β

0
dξ̃

M(xn−1
1 (ξ̃))

, Dnξ =

∫ β
α

dξ̃

M(xn−2
2 (ξ̃))∫ 1

α
dξ̃

M(xn−2
2 (ξ̃))

∫ ξ
0

dξ̃

M(xn−1
1 (ξ̃))∫ β

0
dξ̃

M(xn−1
1 (ξ̃))

.

The quantities Cnξ and Dnξ satisfy 0 < Cnξ ≤ ρξ < 1 and 0 < Dnξ ≤ γξ < 1, where

ρξ :=
1

1 + m̌
m̂
β−α
1−β

1

1 + m̌
m̂
β−ξ
ξ

and γξ :=
1

1 + m̌
m̂
β−ξ
ξ

1

1 + m̌
m̂

1−β
β−α

.

Furthermore, these quantities are uniformly bounded:

ρξ ≤
1

1 + m̌
m̂
β−α
1−β

:= ρ̃ < 1 and γξ ≤
1

1 + m̌
m̂

1−β
β−α

:= γ̃ < 1.
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To establish these bounds let F (x) := 1/M(x). The assumptions on M imply 1
m̂ ≤

F (x) ≤ 1
m̌ . As an example, the upper and lower bounds on F then imply∫ ξ

0
F (x(ξ̃)) dξ̃∫ β

0
F (x(ξ̃)) dξ̃

=

∫ ξ
0
F (x(ξ̃)) dξ̃∫ ξ

0
F (x(ξ̃)) dξ̃ +

∫ β
ξ
F (x(ξ̃)) dξ̃

=
1

1 +
∫ β
ξ
F (x(ξ̃)) dξ̃∫ ξ

0
F (x(ξ̃)) dξ̃

≤ 1

1 + m̌
m̂
β−ξ
ξ

.

Using (3.13) recursively, assuming n is even, we have

xn1 (ξ) = Cnξ

n−2
2∏

k=1

C2k
α x0

1(α) +Dnξ + Cnξ

n−2
2∑

k=1

D2k
α

 n−2
2∏

l=k+1

C2l
α

 ,

where the product in the k–th term of the sum is assumed to be one if the lower index
of the product exceeds the upper index. Since ρ̃ < 1, the product multiplying x0

1(α)
must go to zero as n → ∞. The infinite series converges by direct comparison with∑∞
k=1 γ̃ρ̃

k−1. Indeed by the Weierstrass M–test [3], {xn1 (ξ)} converges uniformly to
some limiting function x̃1. Likewise {xn2 (ξ)} converges uniformly to some limiting
function x̃2. Since x̃1(α) = x̃2(α) and x̃1(β) = x̃2(β), both x̃1 and x̃2 satisfy the
same PDE in the overlap with the same two boundary conditions, and by uniqueness,
x̃1 and x̃2 must coincide in the overlap. One can therefore simply glue these two
solutions together in order to obtain a function which satisfies the PDE in all of Ωc,
and also the two original boundary conditions at 0 and 1. Again by uniqueness, this
must now be the desired solution.

Alternating Schwarz versions of the algorithms presented in Sections 3.1 and
3.2 are given in [22]. These alternating algorithms obtain faster convergence by us-
ing the most recently computed boundary information at the subdomain interfaces.
As an example, the second transmission condition in (3.10) would be changed to
xn2 (α) = xn1 (α). The improved convergence is obtained at the cost of losing obvious
parallelization.

4. An Optimal Schwarz Method. The classical Schwarz methods in Section
3 converge slowly — linear convergence with a convergence rate depending on the
size of the overlap. Increasing the overlap improves the rate of contraction but at a
cost of more expensive subdomain solves. Moreover, in many physical situations it is
not possible to allow subdomains to overlap. Without overlap the classical Schwarz
methods developed in Section 3 would not converge.

Another strategy to improve convergence, and possibly avoid overlap altogether,
is to consider alternate transmission conditions at the subdomain interfaces. In this
section we consider non–overlapping optimal Schwarz methods which guarantee con-
vergence in two iterations on two subdomains. These methods can also be used with
overlap (and will be presented elsewhere), but this does not change their performance
— even with overlap convergence can not be achieved in less than two iterations.

We consider the development of optimal Schwarz methods for boundary value
problems of the form (1.4). We decompose Ωc = (0, 1) into two non–overlapping
subdomains Ω1 = (0, α) and Ω2 = (α, 1) and consider the iteration

(M(xn1 )xn1,ξ)ξ = 0, ξ ∈ Ω1, (M(xn2 )xn2,ξ)ξ = 0, ξ ∈ Ω2,

xn1 (0) = 0, B2(xn2 (α)) = B2(xn−1
1 (α)), (4.1)

B1(xn1 (α)) = B1(xn−1
2 (α)), xn2 (1) = 1,

9



where the transmission operators B1 and B2 are given by

B1(·) ≡M(·)∂ξ(·)− S1(·), B2(·) ≡M(·)∂ξ(·)− S2(·) (4.2)

and

S1(·) =
1

1− α

∫ 1

(·)
M(x̃) dx̃, and S2(·) =

1

α

∫ (·)

0

M(x̃) dx̃. (4.3)

The subdomain solutions are given by (2.2) where xn1 (α) and xn2 (α) are determined
by the transmission conditions.

Theorem 4.1. Under the assumptions of Lemma 2.1, the iteration (4.1) with
transmission conditions specified by (4.2–4.3) is optimal, ie. convergence is achieved
in two iterations.

Proof. The derivatives of each subdomain solution satisfy

M(xn1 (ξ))∂ξx
n
1 (ξ) =

1

α

∫ xn1 (α)

0

M(x̃) dx̃ and M(xn2 (ξ))∂ξx
n
2 (ξ) =

1

1− α

∫ 1

xn2 (α)

M(x̃) dx̃.

Suppose xn−1
1 (ξ) and xn−1

2 (ξ) are given iterates on subdomain one and two. The
transmission condition on subdomain one requires

1

α

∫ xn1 (α)

0

M(x̃) dx̃− 1

1− α

∫ 1

xn1 (α)

M(x̃) dx̃

=
1

1− α

∫ 1

xn−1
2 (α)

M(x̃) dx̃− 1

1− α

∫ 1

xn−1
2 (α)

M(x̃) dx̃ = 0,

which implies

1

α

∫ xn1 (α)

0

M(x̃) dx̃− 1

1− α

∫ 1

xn1 (α)

M(x̃) dx̃ = 0.

Using the fact that
∫ 1

xn1 (α)
M(x̃) dx̃ =

∫ 1

0
M(x̃) dx̃−

∫ xn1 (α)

0
M(x̃) dx̃, we have∫ xn1 (α)

0

M(x̃) dx̃ = α

∫ 1

0

M(x̃) dx̃.

As mentioned previously, the exact solution also satisfies
∫ x(α)

0
M(x̃) dx̃ = α

∫ 1

0
M(x̃) dx̃.

Since M is strictly positive and integrable then xn1 (α) = x(α), that is we have conver-
gence in two iterations at the boundary. Convergence in the interior of the domain
follows from well–posedness of the BVP. A similar calculation holds on subdomain
two.

5. Optimized Schwarz Methods. As mentioned, the slow convergence of clas-
sical Schwarz can often be improved by using transmission conditions which are differ-
ent from the classical Dirichlet conditions at the subdomain interfaces. The optimal
conditions derived in Section 4 are non–local and are expensive to use: they require
the evaluation of an integral. In this section we approximate the optimal conditions
by developing a Robin type transmission condition. We will only consider the non–
overlapping case, the overlapping case can be handled in a similar manner and will
be presented elsewhere.

10



On subdomain one the optimal transmission condition is

M(xn1 (α))∂ξx
n
1 (α)−

∫ 1

xn1 (α)
M(x̃) dx̃

1− α
= M(xn−1

2 (α))∂ξx
n−1
2 (α)−

∫ 1

xn−1
2 (α)

M(x̃) dx̃

1− α
.

Using
∫ 1

x
M(x̃) dx̃ = C−

∫ x
0
M(x̃) dx̃, where, as before, C =

∫ 1

0
M(x̃) dx̃, the boundary

condition may be rewritten as

M(xn1 (α))∂ξx
n
1 (α)−

C −
∫ xn1 (α)

0
M(x̃) dx̃

1− α
= M(xn−1

2 (α))∂ξx
n−1
2 (α)−

C −
∫ xn−1

2 (α)

0
M(x̃) dx̃

1− α
.

Canceling the (1 − α)−1C terms and using the mean value theorem for integrals we
can rewrite this expression as

M(xn1 (α))∂ξx
n
1 (α)+

1

1− α
M(x∗1)xn1 (α) = M(xn−1

2 (α))∂ξx
n−1
2 (α)+

1

1− α
M(x∗2)xn−1

2 (α),

or

M(xn1 (α))∂ξx
n
1 (α) + p̄n1x

n
1 (α) = M(xn−1

2 (α))∂ξx
n−1
2 (α) + p̂n1x

n−1
2 (α), (5.1)

where p̄n1 , p̂
n
1 > 0 (since M is strictly positive).

Likewise, on subdomain two we can obtain

M(xn2 (α))∂ξx
n
2 (α)− p̄n2xn2 (α) = M(xn−1

1 (α))∂ξx
n−1
1 (α)− p̂n2xn−1

1 (α), (5.2)

where p̄n2 , p̂
n
2 > 0.

This suggests approximating the optimal transmission conditions (5.1) and (5.2)
as in the following algorithm. Decompose Ωc = (0, 1) into two non–overlapping sub-
domains Ω1 = (0, α) and Ω2 = (α, 1), and consider the iteration: for n = 1, 2, . . .

(M(xn1 )xn1,ξ)ξ = 0, ξ ∈ Ω1, (M(xn2 )xn2,ξ)ξ = 0, ξ ∈ Ω2,

xn1 (0) = 0, B̃2(xn2 (α)) = B̃2(xn−1
1 (α)),

B̃1(xn1 (α)) = B̃1(xn−1
2 (α)) xn2 (1) = 1, (5.3)

where the transmission operators B̃i, i = 1, 2 are given by

B̃1(·) ≡M(·)∂ξ(·) + pI(·), B̃2(·) ≡M(·)∂ξ(·)− pI(·),

with I(·) the identity operator and p a constant to be chosen to improve the conver-
gence rate. By comparing with the optimal transmission conditions given in (4.2), we
see that if one knew the values of the integrals computed by the operators Si, i = 1, 2
for a given situation, one could actually choose four corresponding values and obtain
an optimal algorithm in this one dimensional setting. In general however, especially in
higher dimensions, such a precise choice is not practical, and we will see in Section 8
that already with one parameter p one can obtain a substantially improved algorithm.

We now analyze the optimized Schwarz algorithm (5.3). The well–posedness of
the subdomain problems was established in Lemma 2.2 and 2.3. The subdomain
solutions are represented implicitly in the following Lemma.

Lemma 5.1. Under the assumptions of Lemmas 2.2 and 2.3, the subdomain
solutions on Ω1 and Ω2 of (5.3) are given implicitly by the formulas∫ xn1 (ξ)

0

M(x̃) dx̃ = R1(xn1 (α))ξ and

∫ 1

xn2 (ξ)

M(x̃) dx̃ = R2(xn2 (α))(1− ξ),

11



where the operators R1 and R2 are given by

R1(x) =
1

α

∫ x

0

M(x̃) dx̃ and R2(x) =
1

1− α

∫ 1

x

M(x̃) dx̃. (5.4)

The Robin conditions at the interface force the operator values to satisfy the recurrence
relations:

R1(xn+1
1 (α)) + pxn+1

1 (α) = R2(xn2 (α)) + pxn2 (α) (5.5)

and

R2(xn2 (α))− pxn2 (α) = R1(xn−1
1 (α))− pxn−1

1 (α). (5.6)

Proof. The representation of the subdomain solutions follows from Lemmas 2.2
and 2.3. The recurrence relations (5.5) and (5.6) are a consequence of the transmission
conditions at ξ = α.

The iteration (5.5–5.6) is of the Peaceman–Rachford type [42], and our con-
vergence proof follows the discussion of nonlinear Peaceman–Rachford iterations in
[34, 41].

Theorem 5.2. Under the assumptions of Lemma 2.1 the iteration (5.5–5.6)
converges globally to the exact solution x(α) for all p > 0. Moreover, we have the
linear convergence estimate

||x−x2n+1
1 ||∞ ≤

m̂

m̌
·
p+ 1

αm̂

p+ 1
αm̌

ρnrobin|x(α)−x0
2(α)|, ||x−x2n+1

2 ||∞ ≤
m̂

m̌
·
p+ 1

1−αm̂

p+ 1
1−αm̌

ρnrobin|x(α)−x0
2(α)|,

where an estimate on the contraction factor is

ρrobin =

√√√√p2 + m̂2

(1−α)2 − 2p m̌
1−α

p2 + m̂2

(1−α)2 + 2p m̌
1−α

·

√
p2 + m̂2

α2 − 2p m̌α
p2 + m̂2

α2 + 2p m̌α
. (5.7)

Proof. We rewrite (5.5) and (5.6) as

(pI −R2)xn2 (α) = (pI −R1)xn−1
1 (α), and (pI +R1)xn+1

1 (α) = (pI +R2)xn2 (α).

The operators R1 and −R2 defined in (5.4) are continuous and uniformly monotonic
(increasing) since

R′1(x) =
1

α
M(x) ≥ 1

α
m̌ > 0 and −R′2(x) =

1

1− α
M(x) ≥ 1

1− α
m̌ > 0.

Since p > 0, pI − R2 and pI + R1 are also continuous and uniformly monotonic and
hence invertible. This implies that xn2 (α) and xn+1

1 (α) are well–defined. Eliminating
xn2 (α) we obtain the recursion xn+1

1 (α) = Gxn−1
1 (α), where

G ≡ (pI +R1)−1(pI +R2)(pI −R2)−1(pI −R1).

The operators R1 and −R2 are uniformly monotone and Lipschitz, thus

G1 = (pI +R2)(pI −R2)−1 and G2 = (pI −R1)(pI +R1)−1

12



α1 = 0

α2

α3

αi

αi+1

αI−1

αIβ1

β2

βi−1 βi−2
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x

1

Fig. 6.1. Decomposition into many subdomains.

are strict contractions for all p > 0, see p. 388 of [41] for details. Therefore, the
iteration zn(α) = G1G2z

n−2(α), with z0(α) = (pI + R1)x0
1(α), will converge. Since

G = (pI + R1)−1G1G2(pI + R1) and z2n(α) = (pI + R1)x2n
1 (α) then x2n

1 (α) will
also converge for any x0

1(α) to some limit x∗1(α). A similar argument is possible to
show the odd iterates x2n+1

1 (α) converge to the same limit. Likewise, the sequence
xn2 (α) converges to a limit point x∗2(α). The points x∗1(α) and x∗2(α) must satisfy
(5.5) and (5.6) in the limit. Adding the limits of (5.5) and (5.6) we obtain x∗1(α) =
x∗2(α) =: x∗(α). And taking the difference we find the limit point x∗(α) satisfies
R1(x∗(α)) = R2(x∗(α)) or

1

α

∫ x∗(α)

0

M(x̃) dx̃ =
1

α− 1

(∫ x∗(α)

0

M(x̃) dx̃− C

)
.

An argument similar to that in Theorems 3.2 and 4.1 shows that x∗(α) = x(α).
The contraction factor, ρrobin, for the sequence zn(α), given by (5.7), is found by

computing the Lipschitz constant of the operator G1G2 as the product of the Lipschitz
constants of G1 and G2, see [41] for details. The convergence factor of xn1 (α) is related
to ρrobin. In fact,

|x∗(α)−x2n
1 (α)| ≤ L|z∗(α)−z2n(α)| ≤ Lρnrobin|z∗(α)−z0(α)| ≤ LL̃ρnrobin|x∗(α)−x0

1(α)|,

where L and L̃ are the Lipschitz constants for (pI+R1)−1 and (pI+R1) respectively.
Inspection of these two operators yields L = (p+ 1

αm̌)−1 and L̃ = p+ 1
αm̂. Together

with the familiar interior estimate |x2n
1 (ξ)− x(ξ)| ≤ m̂

m̌ |x(α)− x2n
1 (α)|, we have

|x2n
1 (ξ)− x(ξ)| ≤ m̂

m̌
·
p+ 1

αm̂

p+ 1
αm̌

ρnrobin|x(α)− x0
1(α)|.

A similar analysis gives the interior estimate on subdomain two.

6. Multidomains. In practice, we would like to take advantage of today’s mul-
ticore, multiprocessor environments for grid generation. To this end, we now consider
the extension of the parallel, nonlinear, classical Schwarz algorithm presented in Sec-
tion 3.1, to I > 2 subdomains, see Figure 6.1. The solution, xi(ξ), on the i–th
subdomain, Ωi = (αiL, βiL), i = 1, 2, . . . , I is found by solving

(M(xi)xi,ξ)ξ = 0, xi(αi) = xi−1(αi), xi(βi) = xi+1(βi), (6.1)

where α1 = 0, x0(α1) = 0, βI = 1 and xI+1(βI) = 1. We assume that βi ≤ αi+2

for i = 1, . . . , J − 2 so that there is no overlap between non–adjacent subdomains.
We obtain the solution on the whole domain by composing the subdomain solutions
xi(ξ).

The subdomain solutions xi(ξ) are found by the classical parallel Schwarz itera-
tion: for n = 1, 2, . . .

(M(xni )xni,ξ)ξ = 0, xni (αi) = xn−1
i−1 (αi), xni (βi) = xn−1

i+1 (βi), (6.2)
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for i = 1, . . . , I, where we have defined for convenience, xn0 (α1) ≡ 0 and xnI+1(βI) ≡ 1.
Our proof follows the general idea given in [16] for the Schwarz waveform relax-

ation algorithm applied to the linear heat equation, but with a couple of important
alterations due to the nonlinearity of the problem (6.1). Furthermore, we provide an
alternative, simpler analysis of the linear matrix inequalities required to obtain the
contraction.

We define the error on the ith subdomain, at iteration n, as

eni (ξ) =

∫ xni (ξ)

xi(ξ)

M(x̃) dx̃, for i = 1, . . . , I. (6.3)

Convergence is demonstrated by showing this measure of the error contracts to zero
on all subdomains. As in Section 3.1, it is easy to see that if M is bounded away from
zero then limn→∞ eni (ξ) = 0 implies limn→∞ |xi(ξ)− xni (ξ)| = 0.

The error on each subdomain is given explicitly in the following Lemma. For
notational convenience we introduce en0 (α1) ≡ 0 and enI+1(βI) ≡ 0.

Lemma 6.1. The error on each subdomain satisfies

en+2
i (ξ) =

1

βi − αi
[
(ξ − αi)en+1

i+1 (βi) + (βi − ξ)en+1
i−1 (αi)

]
, for ξ ∈ [αi, βi], (6.4)

and for each i = 1, . . . , I.
Proof. Subtracting (6.1) from (6.2) and differentiating the error expression (6.3)

twice, we see the error en+2
i (ξ) satisfies the linear BVP

d2en+2
i

dξ2
= 0, en+2

i (αi) = en+1
i−1 (αi), en+2

i (βi) = en+1
i+1 (βi),

for i = 1, . . . , I. Direct integration and enforcing the boundary conditions gives the
result.

As in the two subdomain case, we now use (6.4) to relate the error on subdomain
i at iteration n + 2 to the error on subdomain i and its neighbors at iteration n.
Following [16], we introduce the following quantities:

ri =
βi−1 − αi
βi − αi

, pi =
βi − βi−1

βi − αi
, qi =

αi+1 − αi
βi − αi

, and si =
βi − αi+1

βi − αi
. (6.5)

Lemma 6.2. The error at the interface ξ = βi−1, i = 2, . . . , N satisfies

|en+2
i (βi−1)| ≤ riri+1|eni+2(βi+1)|+ripi+1|eni (αi+1)|+piqi−1|eni (βi−1)|+pisi−1|eni−2(αi−1)|,

(6.6)
while at ξ = αi+1, i = 1, . . . , N − 1 we have

|en+2
i (αi+1)| ≤ qiri+1|eni+2(βi+1)|+qipi+1|eni (αi+1)|+siqi−1|eni (βi−1)|+sisi−1|eni−2(αi−1)|.

(6.7)

Proof. Inequality (6.6) is obtained by evaluating (6.4) at βi−1 and once again
using (6.4) twice more to write en+1

i+1 (βi) in terms of eni+2 and eni and en+1
i−1 (αi) in

terms of eni and eni−2. Taking absolute values, using the triangle inequality and noting
ri, pi, qi and si are non–negative gives the result. Inequality (6.7) is obtained in a
similar way.
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Assuming an even number of subdomains (the odd case can be handled in a
similar manner), the relations in (6.2) may be written as matrix inequalities

en+2 ≤Mee
n and ên+2 ≤Mêê

n, (6.8)

where

en = (|en1 (α2)|, |en3 (β2)|, |en3 (α4)|, . . . , |enI−1(βI−2)|, |enI−1(αI)|)T ,
ên = (|e2(β1)|, |en2 (α3)|, |en4 (β3)|, . . . , |enI−2(αI−1)|, |enI (βI−1)|)T ,

and the (I − 1)× (I − 1) matrices Me and Mê are given as

Me =



q1p2 q1r2
p3s2 p3q2 r3p4 r3r4
s3s2 s3q2 q3p4 q3r4

p5s4 p5q4 r5p6 r5r6
. . .

. . .

pI−1sI−2 pI−1qI−2 rI−1pI
sI−1sI−2 sI−1qI−2 qI−1pI


,

and

Mê =



p2q1 r2q3 r2r3
s2q1 q2p3 q2r3

p4s3 p4q3 r4p5 r4r5
s4s3 s4q3 q4p5 q4r5

. . .
. . .

pI−2sI−3 pI−2qI−3 rI−2pI−1 rI−2rI−1

sI−2sI−3 sI−2qI−3 qI−2pI−1 qI−2rI−1

pIsI−1 pIqI−1


.

Inspecting (6.5), we see that ‖Me‖∞ = ‖Mê‖∞ = 1; hence it is not obvious that
the inequalities (6.8) converge to zero as n → ∞. In [16], the authors use a delicate
analysis to show that there exists some ñ > 0 for which ‖M ñ

e ‖∞ < 1 and ‖M ñ
ê ‖∞ < 1

from which convergence follows. Here we demonstrate another technique using the
recent work [49]. Suppose A is a real m ×m matrix and a a positive real number.
Then Ψa(A) is the matrix obtained by deleting all rows, and corresponding columns,
for which the row sum

∑m
j=1 |aij | < a. For example, if

A =

 1
2

1
8

1
8

1
2

1
4

1
4

1
4 0 3

4

 =⇒ Ψ1(A) =

0 0 0
0 1

4
1
4

0 0 3
4

 and Ψ2
1(A) = Ψ1(Ψ1(A)) =

0 0 0
0 0 0
0 0 0

 .

The following result, which we state as a Lemma, was given in [49].
Lemma 6.3. Suppose a m×m real matrix A is element–wise non–negative, then

ρ(A) < ‖A‖∞ if and only if Ψm
‖A‖∞(A) = 0. Here 0 is the m×m zero matrix.

For the matrix A above, ‖A‖∞ = 1 and Ψ2
1(A) = 0 hence Lemma 6.3 guarantees

ρ(A) < 1. Direct calculation of the eigenvalues shows ρ(A) ≈ 0.8953.
Using this Lemma, we arrive at our main result.
Theorem 6.4. Under the assumptions of Lemma 2.1 and the restrictions on

the partitioning of Ωc detailed above, the classical Schwarz iteration (6.2) converges
globally on an arbitrary number of subdomains.
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Proof. We will use Lemma 6.3 to show that ρ(Me) < 1. The assumptions on
the choice of the subdomains ensure the quantities (6.5) are non–negative, hence the
matrix Me is non–negative and, as mentioned previously, ‖Me‖∞ = 1. The first,
second last and last rows of Me sum to a value less than one. Hence Ψ1(Me) would
zero rows and columns one, I − 2 and I − 1 of Me. Then rows two, three, I − 4 and
I − 3 of Ψ1(Me) would have sums less than one, and hence Ψ2

1(Me) would have zeros
in rows and columns one to three and I−4 to I−1. It is easy to see that Ψñ

1 (Me) = 0
for some ñ < I − 1. Therefore, by Lemma 6.3, ρ(Me) < 1. A similar argument shows
ρ(Mê) < 1.

This very general partitioning does not admit an explicit bound for the rate
of convergence. An explicit contraction rate estimate is possible if we assume the
overlaps are all of the same size. Analogous to Theorem 3.10 in [16] and Theorem 3.2
in Section 3, we assume that ri = si = r and pi = qi = p, and obtain the following
explicit error estimate on I subdomains.

Theorem 6.5. The Schwarz iteration (6.2) on I subdomains with a common
overlap ratio r ∈ (0, 0.5] converges in the infinity norm and the iterates satisfy

max
1≤2i≤I

‖xn2i(ξ)− x(ξ)‖∞ ≤
(

1− 4r(1− r) sin2 π

2(I + 1)

)n
1

m̌
‖e0‖2,

max
1≤2i+1≤I

‖xn2i+1(ξ)− x(ξ)‖∞ ≤
(

1− 4r(1− r) sin2 π

2(I + 1)

)n
1

m̌
‖ê0‖2.

Proof. The proof is essentially given in [16] once we relate the point–wise error
to the error measure (6.3) as in Theorem 3.2.

From the boundedness of M and (3.9), we have for each i and all ξ that |x2n+1
2i (ξ)−

x(ξ)| ≤ 1
m̌ |e

2n+1
2i (ξ)|. Now |e2n+1

2i | is linear and hence is bounded by the maximum of
its boundary values. Therefore we have the sequence of inequalities:

|x2n+1
2i (ξ)− x(ξ)| ≤ 1

m̌
|e2n+1

2i (ξ)| ≤ 1

m̌
max {|e2n

2i+1(β2i)|, |e2n
2i−1(α2i)|}

≤ 1

m̌
‖e2n‖∞ ≤

1

m̌
‖e2n‖2 ≤

1

m̌

(
1− 4r(1− r) sin2 π

2(I + 1)

)n
‖e0‖2.

The last inequality, giving a bound on the 2–norm of e2n is given in [16]. Likewise we
also obtain

|x2n+1
2i+1 (ξ)− x(ξ)| ≤ 1

m̌
|e2n+1

2i+1 (ξ)| ≤ 1

m̌
max {|e2n

2i+2(β2i+1)|, |e2n
2i (α2i+1)|}

≤ 1

m̌
‖ê2n‖∞ ≤

1

m̌
‖ê2n}2 ≤

1

m̌

(
1− 4r(1− r) sin2 π

2(I + 1)

)n
‖ê0‖2.

We see that the convergence rate deteriorates as the number of subdomains in-
creases. The typical fix for this effect is the introduction of a coarse grid correction,
like in the two level Schwarz methods, see for example [46].

7. Time Dependent Case. As mentioned in the Introduction, for a given time
dependent function u(t, x) a time dependent mesh transformation may be found by
solving a nonlinear parabolic equation subject to appropriate initial and boundary
conditions, see system (1.3). In this section, we consider the solution of (1.3) by
first discretizing in time using an implicit method (backward Euler) and then solv-
ing the sequence of elliptic problems using a domain decomposition approach in the
computational coordinate ξ ∈ Ωc.
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Given the solution xk−1(ξ) at tk−1, the backward Euler solution at time step k
satisfies

xk − ∆t

τ
(M(xk)xkξ )ξ = xk−1, xk(0, tk) = 0, xk(1, tk) = 1. (7.1)

For each time step (k = 1, 2, . . .) we solve (7.1) by the following classical, parallel,
Schwarz iteration on two subdomains Ω1 = (0, β) and Ω2 = (α, 1) with α < β. For
n = 1, 2, . . .

xk,n1 − ∆t

τ
(M(xk,n1 )xk,n1,ξ )ξ = xk−1, in Ω1, xk,n2 − ∆t

τ
(M(xk,n2 )xk,n2,ξ )ξ = xk−1, in Ω2,

xk,n1 (0, tk) = 0, xk,n2 (α, tk) = xk,n−1
1 (α, tk),

xk,n1 (β, tk) = xk,n−1
2 (β, tk), xk,n2 (1, tk) = 1. (7.2)

The essential ingredient to show convergence of (7.2) is the classical maximum
principle. A contraction rate is obtained by the method of supersolutions and the
comparison principle [26] which we quote in the following Lemma.

Lemma 7.1. Suppose Lu = au′′+ bu′+ cu is a linear, elliptic operator with c ≤ 0
in a bounded domain Ω. Suppose that in Ω, Lu ≥ 0 (≤ 0) with u ∈ C2(Ω) ∪ C0(Ω̄).
Then sup

Ω
u ≤ sup

∂Ω
max (u, 0) and (inf

Ω
u ≥ inf

∂Ω
min (u, 0)).

Theorem 7.2. Under the assumptions of Lemma 2.1, the iteration (7.2) con-
verges for any time step ∆t > 0 and for any mesh relaxation parameter τ > 0. The
convergence factor at the interfaces can be bounded by

ρtime =
sinh(

√
θα)

sinh(
√
θβ)

sinh(
√
θ(1− β))

sinh(
√
θ(1− α))

< 1, θ =
τ

∆t

1

m̂
. (7.3)

Proof. The separation of variables technique used in the proof of Theorem 3.2 is
not possible. Instead we we proceed as in Section 6 and define an error measure

ek,n1,2 (ξ) =

∫ xk(ξ)

xk,n1,2 (ξ)

M dx̃.

With this definition, we obtain the derivative

dek,n1,2

dξ
= M(xk)

dxk

dξ
−M(xk,n1,2 )

dxk,n1,2

dξ
, (7.4)

and the mean value theorem for integrals implies

ek,n1,2 = M(x∗1,2)(xk − xk,n1,2 ), (7.5)

for some x∗1,2 between xk and xk,n1,2 .

Subtracting the equation for xk,n1 from the equation for xk we obtain

xk − xk,n1 − ∆t

τ

(
M(xk)xkξ −M(xk,n1 )xk,n1,ξ

)
ξ

= 0,
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and using the relations (7.4) and (7.5), the error functions are seen to satisfy

d2ek,n1

dξ2
− τ

∆t

1

M(x∗1)
ek,n1 = 0, in Ω1,

d2ek,n2

dξ2
− τ

∆t

1

M(x∗2)
ek,n2 = 0, in Ω2,

ek,n1 (0, tk) = 0, ek,n2 (α, tk)) = ek,n−1
1 (α, tk),

ek,n1 (β, tk) = ek,n−1
2 (β, tk), ek,n2 (1, tk) = 0.

Since M, τ,∆t are strictly positive, the error equations satisfy a maximum principle
[26], and the required contraction results.

We obtain a contraction rate for the iteration (7.2) by construction of a superso-

lution for the errors on the subdomains. Assume ẽk,n1 solves the BVP

d2ẽk,n1

dξ2
− τ

∆t

1

m̂
ẽk,n1 = 0, ẽk,n1 (0) = 0, ẽk,n1 (β) = |ek,n−1

2 (β)|,

where we recall m̂ denotes the upper bound on the nonlinear functionM . The function
ẽk,n1 may be found explicitly as

ẽk,n1 (ξ) = |ek,n−1
2 (β)| sinh(

√
θξ)

sinh(
√
θβ)

, where θ =
τ

∆t

1

m̂
.

We now show ẽk,n1 is a supersolution for ek,n1 . To this end we define dk,n1 = ek,n1 − ẽk,n1 ,

and routine manipulation shows dk,n1 satisfies

d2dk,n1

dξ2
− τ

∆t

1

M(x∗1)
ek,n1 +

τ

∆t

1

m̂
ẽk,n1 = 0, dk,n1 (0) = 0, dk,n1 (β) = ek,n−1

2 (β)−|ek,n−1
2 (β)|.

(7.6)

Adding and subtracting τ
∆t

1
M(x∗1) ẽ

k,n
1 from (7.6) we see the dk,n1 satisfies the equation

d2dk,n1

dξ2
− τ

∆t

1

M(x∗1)
dk,n1 =

τ

∆t

(
1

M(x∗1)
− 1

m̂

)
ẽk,n1 .

Since m̂ is an upper bound for M(x) the right hand side of the differential equation
is greater than or equal to zero. The boundary value at ξ = β is less than or equal
to zero and the coefficient of ẽk,n1 in the differential equation is negative. Hence,

Lemma 7.1 shows dk,n1 ≤ 0 or ek,n1 ≤ ẽk,n1 for all ξ ∈ [0, β].

Now, the quantity d̃k,n1 = ek,n1 + ẽk,n1 satisfies

d2d̃k,n1

dξ2
− τ

∆t

1

M(x∗1)
ek,n1 −

τ

∆t

1

m̂
ẽk,n1 = 0, d̃k,n1 (0) = 0, d̃k,n1 (β) = ek,n−1

2 (β)+|ek,n−1
2 (β)|.

Again we add and subtract τ
∆t

1
M(x∗1) ẽ

k,n
1 to show that d̃k,n1 satisfies the equation

d2d̃k,n1

dξ2
− τ

∆t

1

M(x∗1)
d̃k,n1 =

τ

∆t

(
1

m̂
− 1

M(x∗1)

)
ẽk,n1 . (7.7)

The right hand side of the differential equation (7.7) is less than or equal to zero
and the boundary conditions are greater than or equal to zero. Furthermore, the

18



0 5 10 15 20 25 30 35 40 45 50

10
−8

10
−6

10
−4

10
−2

10
0

Iterations

E
rr
or

in
N
u
m
er
ic
al

S
ol
u
ti
on

s

 

 

Overlap: 2 Points
Overlap: 5 Points
Overlap: 10 Points
Overlap: 15 Points
Overlap: 20 Points

0 5 10 15 20 25 30 35 40 45 50

10
−8

10
−6

10
−4

10
−2

10
0

Iterations

E
rr
or

in
N
u
m
er
ic
al

S
ol
u
ti
on

s

 

 

Overlap: 2 Points
Overlap: 5 Points
Overlap: 10 Points
Overlap: 15 Points
Overlap: 20 Points

Fig. 8.1. Convergence of classical Schwarz with varying overlap for M(x) = x2 + 1 on the left,

and for M(x) =
√

1 + u2
x with u(x) = (1 − exp(20x))/(1 − exp(20)) on the right.

coefficient of d̃k,n1 is negative. The classical comparison principle then guarantees that

d̃k,n1 (ξ) ≥ 0 or ek,n1 (ξ) ≥ −ẽk,n1 (ξ) for all ξ ∈ [0, β]. Hence, we have shown

|ek,n1 (ξ)| ≤ ẽk,n1 (ξ) = |ek,n−1
2 (β)| sinh(

√
θξ)

sinh(
√
θβ)

, for ξ ∈ Ω1.

Likewise, it possible to show

|ek,n2 (ξ)| ≤ |ek,n−1
1 (α)| sinh(

√
θ(1− ξ))

sinh(
√
θ(1− α))

, for ξ ∈ Ω2.

Combining these relations we have

|ek,n+1
1 (α)| ≤ |ek,n−1

1 (α)| sinh(
√
θα)

sinh(
√
θβ)

sinh(
√
θ(1− β))

sinh(
√
θ(1− α))

.

If α < β then the contraction rate is bounded as shown in (7.3).
From the contraction estimate (7.3), we see that the algorithm slows down as

the overlap becomes small, i.e. when α → β, we have ρ → 1. We also see that the
convergence of the DD iteration will improve as ∆t → 0, m̂ → 0, or τ → ∞, since
limθ→∞ ρ = 0. Finally, the steady contraction rate is obtained in the opposite limit,
since limθ→0 ρ = α

β
1−β
1−α .

8. Numerical Results. As a first example, we consider the solution of (1.4)
with M(x) = x2 + 1 using the classical parallel Schwarz algorithm (3.1) with two
subdomains. In Figure 8.1 on the left, we illustrate the convergence history on subdo-
main one (in the maximum norm) versus the Schwarz iteration number – for varying
amounts of overlap. The error is the difference between the discrete single domain
solution and the discrete subdomain solutions. We see the convergence rate improve
as the overlap increases. A more realistic example of grid generation is provided in
Figure 8.1 on the right. We solve (1.4) with M(x) chosen as the arclength monitor
function M(x) =

√
1 + u2

x where

u(x) =
1− e20x

1− e20
. (8.1)
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Fig. 8.2. Comparison of classical, optimized and optimal Schwarz algorithms with M(x) =

x2 + 1 on the left, and M(x) =
√

1 + u2
x with u(x) = (1 − exp(20x))/(1 − exp(20)) on the right.

This function is difficult to represent on a uniform grid in the physical coordinate x
due to a boundary layer at x = 1.

In Figure 8.2 on the left, we compare the performance of the classical, optimized
and optimal Schwarz algorithms applied to (1.4) with M(x) = x2 + 1. We plot the
error at every second iteration; this is consistent with the analysis of parallel Schwarz
iterations which gives a contraction after two iterations on two subdomains. An exact
antiderivative of M is used in the optimal transmission conditions (4.2–4.3). Clearly
we see the benefit of the optimized and optimal Schwarz algorithms as compared to
classical Schwarz. The results for optimized Schwarz are sensitive to the value of p
– which may be tuned for performance. Inspecting (5.7) for α = 1/2 we see that
the contraction factor is minimized by choosing p = 2m̂. Since 0 ≤ x(ξ) ≤ 1, an
estimate for the upper bound on M is m̂ = 2 which would give an optimal choice
p = 4. If we were to start relatively close to the limit point x(1/2) ≈ 0.596 then
a good choice of p would be p = 2(0.5962 + 1) = 2.71. These estimates agree, at
least qualitatively, with the results shown. The optimal Schwarz algorithm is seen
to be superior. Note, the optimal transmission conditions do not give convergence
in two iterations for the discretized version of the algorithm. However, the error for
the optimal Schwarz algorithm after two iterations does go to machine precision as
the grid is refined. We repeat these experiments for the grid generation problem for
u(x) from (8.1) in Figure 8.2 on the right and see similar behavior. In this instance,
numerical quadrature is used to approximate the optimal transmission conditions.

Theoretically, we have concentrated on the convergence of various Schwarz it-
erations to generate equidistributing grids. In practice, however, we are typically
interested in the quality of the grids generated. In Table 8.1 we present the interpo-
lation errors obtained when representing the function (8.1) on grids computed using
nonlinear parallel, linearized parallel, optimal and optimized Schwarz algorithms. The
number in brackets indicates the cumulative number of linear solves required by the
end of that Schwarz iteration. The arclength monitor function was used to generate
the grids. All iterations were started with an initial uniform grid. Although the par-
allel classical (nonlinear) Schwarz algorithm is slow to converge, we see that just a few
iterations are needed to produce quality meshes, reducing the interpolation error by
nearly a factor of 100 as compared to a uniform grid of the same size. The linearized
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Iterations 0 2 4 6 8 10 ∞
Nonlinear 0.3625 0.0520(5) 0.0498(10) 0.0478(15) 0.0462(21) 0.0448(27) 0.0366
Linearized 0.3625 0.1291(3) 0.1006(5) 0.0571(7) 0.0479(9) 0.0471(11) 0.0366
Optimized 0.3625 0.0416(9) 0.0367(23) 0.0366(30) 0.0366(36) 0.0366(40) 0.0366
Optimal 0.3625 0.0367(12) 0.0366(19) 0.0366(24) 0.0366(27) 0.0366(29) 0.0366

Table 8.1
Interpolation errors for the grids obtained by the various parallel Schwarz iterations. The

numbers in brackets indicate the cumulative number of linear solves required.
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Fig. 8.3. The function u(x) from (8.1) on the equidistributing mesh (left) and the meshes
obtained during the first 8 classical Schwarz iterations.

Schwarz iteration takes many more DD iterations to reduce the interpolation error
to the same level but is quite competitive if an appropriate work unit (linear solves
for example) is used for comparison. The optimized and optimal algorithms achieve
the best interpolation error possible in many fewer DD iterations as compared to the
classical Schwarz algorithm.

Figure 8.3 illustrates the meshes obtained during the first few parallel Schwarz
iterations. Only a few iterations are required to give a qualitatively correct grid.

In Figure 8.4 on the left, we compare four classical Schwarz variants: the parallel
nonlinear and linearized Schwarz algorithms from Section 3 and the alternating ver-
sions from [22]. We choose the nonlinear function M(x) = x2 + 1. In terms of the
number of DD iterations, the alternating algorithms converge more quickly than the
parallel counterparts. However, the alternating algorithms forgo easy parallelization.
We also see that the nonlinear algorithms take fewer iterations to converge than the
corresponding linearized version. In Figure 8.4 on the right, we again compare the
four classical Schwarz variants mentioned above, but in this case we use M(x) corre-
sponding to the mesh generation problem for u(x) given in (8.1). Here we display the
convergence histories as a function of the number of required linear solves. Again we
see the improved convergence of the alternating algorithms. In this case we see the
utility of the linearized variants – outperforming the nonlinear algorithms.

The analysis of the linearized parallel Schwarz algorithm suggests a dependence
on the shape of M , and in particular the ratio m̂/m̌. To test this, in Figure 8.5 on
the left, we experiment with M(x) = C(x − 1/2)2 + 1. In this case, m̂/m̌ → ∞
as C → ∞. Indeed, we see that the performance of the linearized parallel Schwarz
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Fig. 8.4. Comparison of nonlinear parallel, nonlinear alternating, linearized parallel and lin-
earized alternating Schwarz algorithms for M(x) = x2 + 1 on the left as a function of iteration

numbers, and on the right for M(x) =
√

1 + u2
x with u(x) = (1 − exp(20x))/(1 − exp(20)), as a

function of linear solves.
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Fig. 8.5. Linearized Parallel Schwarz for M(x) = C(x − 1/2)2 + 1 for varying C on the left,
and Nonlinear and Linearized Schwarz for M(x) = C(x− 1/2)2 + 1 on the right.

algorithm degrades as C →∞. In Figure 8.5 on the right, we use the same function M
to see how changes in C affect both the linearized and nonlinear Schwarz algorithms.
The results indicate that the linearized Schwarz algorithms are affected more as the
problem becomes more difficult. Indeed, as the problem becomes more challenging
(C = 300 for example) the nonlinear algorithm outperforms the linearized variant for
small error tolerances.

To illustrate the DD approach for the generation of time dependent meshes we
consider for 0 ≤ x ≤ 1, 0 ≤ t ≤ 0.1 the function

u(x, t) =
1

2
[1− tanh(c(t)(x− t− 0.4))] , c(t) = 1 +

499

2
[1 + tanh(10(t− 0.2))] .

This function has regions of rapid transition in space and time. A hyperbolic tangent
profile develops and moves from left to right, as viewed in the physical coordinate x.
We solve (MMPDE5), with M chosen as the arclength monitor function, using the
Schwarz iteration described in Section 7. In Figure 8.6, we illustrate the subdomains
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Fig. 8.6. Two moving subdomains on the left, and three moving subdomains on the right.

obtained in the physical coordinate using two (left) and three (right) overlapping sub-
domains. The medium grey in each figure denotes the overlap region. The subdomains
and overlap are fixed (in both position and width) in the computational coordinate ξ.
This gives rises to moving (time dependent) subdomains in the physical coordinate.

9. Conclusions. This paper provides a theoretical analysis of domain decom-
position approaches for the parallel generation of equidistributing grids. Classical
(nonlinear and linearized), optimal and optimized Schwarz algorithms were presented
and studied. In the case of classical Schwarz the analysis was presented on an arbi-
trary, finite number of subdomains. Numerical results were presented which confirmed
the theoretical findings. It is worthwhile to note that quality meshes, as determined
by the resulting interpolation error, maybe obtained with a small number of DD iter-
ations; convergence of the DD iteration may not be necessary. This is an interesting
experimental result which requires more investigation in a practical setting where the
mesh generation is coupled with the solution of a physical PDE.

Future work includes the extension of the optimal and optimized Schwarz al-
gorithms for steady mesh generation to an arbitrary number of subdomains. The
development of optimal and optimized algorithms for the generation of time depen-
dent meshes is necessary. The development of a coarse grid correction to facilitate
the parallel generation of equidistributing grids on a large number of cores or proces-
sors will be the subject of future investigations. The nonlinearity present in the grid
generation problem presents some interesting challenges for the analysis of the dis-
crete algorithms. This work is ongoing and will be presented elsewhere. Current work
includes the analysis and implementation of the analogous DD approaches for equidis-
tributing grid generation in two and three spatial dimensions. Although numerically
it is relatively easy to extend to higher dimensions, the prescription of equidistributing
grids in 2D/3D is not simply a trivial extension of the 1D BVP studied here. Hence a
simple extension of the DD analysis presented in this paper will not be possible and
further work is necessary.
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