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Abstract

We study the stabilizability, via the method of energy shaping, of a given La-
grangian system with two degrees of underactuation and with n ≥ 4 degrees of free-
dom. By making use of the formal theory of PDEs, we derive an involutive system
of PDEs which governs energy shapability, and thus deduce, for the first time, easily
verifiable conditions under which energy shaping is guaranteed. We illustrate our
results with an example of a three-cart-one-inverted pendulum system.

1 Introduction

In this paper we study the stabilizability, via the method of energy shaping, of a given
Lagrangian system with two degrees of underactuation and with n ≥ 4 degree of freedom.
The energy shaping method employs a feedback control so that the transformed system
has a positive definite energy and a dissipative external force. The resulting closed loop
system can then be stabilized by a further feedback using dissipative force. Historically the
full use of the concept of energy shaping appears in [2, 3, 4, 5, 11]. The equivalence of the
Lagrangian approach and Hamiltonian approach to energy shaping has been established
in [8]. General matching conditions for energy shaping are derived in [1, 6, 7], but it is in
[7] where the general setting of using gyroscopic force is considered, and where the idea
of local force shaping is first introduced.

The results to date only focus on energy shaping problems with underactuation degree
at most one, with a systematic treatment for any higher degree of underactuation still
lacking. In this paper we focus on the case where we have two degrees of underactuation.
To find out a control force under the framework of energy shaping one has to solve a system
of nonlinear partial differential equations (PDEs), also known as matching conditions in
this context. When the degree of underactuation is one the matching conditions give a
system of two independent PDEs whose existence of solution was proved in [7]. However,
higher degrees of underactuation result in more complex systems of PDEs, and hence it
is not obvious if solutions exist for those systems. The complexity is not only due to the
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higher number of PDEs involved, but also due to the possibility of having integrability
conditions within the system of PDEs. These integrability conditions arise when we take
it into account that mixed partials of a dependent variable are the same. Generally
speaking, each given PDE is differentiated (or “prolonged”) a number of times, so that
the integrability conditions are obtained by “projections”, in which the higher order
derivatives are eliminated through a process similar to Gaussian elimination, producing
new lower order PDEs. These new PDEs are called integrability conditions. This process
is repeated a number of times until no more integrability conditions arise. In this case the
resulting system of PDEs is called involutive. This whole process of prolongations and
projections can be done systematically through the formal theory of PDEs, as summarized
in [12, 13, 14, 15]. A formal approach using the formal theory has been taken in [9]
to study the energy shaping problem, However, their method centered on setting up
intrinsic formalism rather than finding solutions. On the contrary, our work follows a
more concrete direction and applies a coordinate-dependent version of the formal theory
of PDEs to the set of matching conditions. This lets us derive an equivalent, involutive
system of PDEs, in which we can directly obtain a solution to the energy shaping problem
using the Cartan-Kähler theorem. From this we can, for the first time, derive a set of
verifiable criteria under which energy shaping is possible for a given mechanical system.

The remainder of this paper is organized as follows. In the next section we review the
basic background for energy shaping and results when the degree of underactuation is
one. Higher degrees of underactuation requires some tools in the formal theory of PDEs,
and these are reviewed in Section 3. In the next section we apply this formal theory to
derive conditions under which we can obtain a solution from the matching conditions,
starting with the case where the degree of freedom n is 4 and then generalize this to n > 4.
Section 5 includes an example of three-cart-one-inverted pendulum system, a system of
underactuation degree two.

2 Preliminaries

In this section we give the basic setting of energy shaping of control systems. We also
state the so-called matching conditions and briefly mention results when the degree of
underactuation is one.

2.1 Controlled Lagrangian Systems

We first review the basic scenario for the energy shaping problem. We view a configuration
space Q as a n-dimensional differentiable manifold, on which we have the tangent bundle
TQ and the cotangent bundle T ∗Q.

Definition 2.1 ([7]). A (simple) controlled Lagrangian system on TQ is a triple (L,F,W ),
in which

(a) The Lagrangian L(q, q̇) = 1
2m(q̇, q̇) − V (q) on TQ, where m ∈ Γ(S2(T ∗Q)) 1 is the

positive definite, non-degenerate mass matrix, and where 1
2m(q̇, q̇) and V (q) are the

kinetic and potential energy, respectively, of the system;

(b) F ∶ TQ→ T ∗Q is an external force;

(c) W is a control bundle, which is a sub-bundle of T ∗Q.

1m ∈ Γ(S2(T ∗Q)) means it is a section of the symmetric (0, 2)-tensor fields, i.e. m(x, y) =m(y, x) for
all x, y ∈ TQ.

2



In what follows, we call n ∶= dim Q the degree of freedom, n2 ∶= dim W the degree of
actuation and n1 ∶= n − n2 the degree of underactuation.

By adopting the Einstein summation convention, the equations of motion in local
coordinates are given by

d

dt

∂L

∂q̇i
− ∂L
∂qi

= Fi + ui,

⇒ mij q̈
j + [jk, i]q̇j q̇k + ∂V

∂qi
= Fi + ui, (1)

where i = 1, . . . , n and [ij, l] are the Christoffel symbols of the first kind such that

[ij, l] = 1

2
(∂mil

∂qj
+ ∂mjl

∂qi
− ∂mij

∂ql
),

while Fi is the i-th component of the external force F , and ui is the i-th component of
the control force, where i = 1, . . . , n.

As in [7], we shape the energy function with the introduction of external force into the
system. As such, we include a review of some notions with regard to forces. In particular,
we only consider forces which can be decomposed into a sum of homogenous forces.

Definition 2.2. A homogeneous force F ∶ TQ → T ∗Q of degree r on Q is a map defined
as follows:

F (v) = v ⌟ v ⌟⋯v⌟
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r times

F̃

for some section F̃ of Sr(T ∗Q) ⊗ T ∗Q, where ⌟ denotes the interior product. With an
abuse of notation, we sometimes identify F with F̃ such that we write F (v, . . . , v,w) =
⟨F (v),w⟩ for any w ∈ TQ, where ⟨, ⟩ is the canonical pairing between T ∗Q and TQ.

Definition 2.3. A force F ∶ TQ → T ∗Q is said to be dissipative if ⟨F (v), v⟩ ≤ 0 for all
v ∈ TQ. It is gyroscopic if ⟨F (v), v⟩ = 0 for all v ∈ TQ.

In this paper, we will only consider forces which depend on velocity up to degree two.

Theorem 2.4 ([7]). Suppose F has a homogeneous force decomposition: F = F1 + F2,
where Fi is of degree i. Then F is dissipative if and only if F1 is dissipative and F2 is
gyroscopic.

2.2 Matching Conditions

Two controlled Lagrangian systems (L,F,W ) and (L̂, F̂ , Ŵ ), where

L(q, q̇) = 1

2
m(q̇, q̇) − V (q) and L̂(q, q̇) = 1

2
m̂(q̇, q̇) − V̂ (q),

are feedback equivalent if for any control u ∈W , there exists û ∈ Ŵ such that the closed
loop dynamics are the same, and conversely. In this sense it can be proved [7] that this
is equivalent to the following matching conditions.

Definition 2.5 ([7]). Two controlled Lagrangian systems (L,F,W ) and (L̂, F̂ , Ŵ ) are
feedback equivalent if and only if

ELM1 m−1W = m̂−1Ŵ ;

ELM2 ⟨EL(L) − F −mm̂−1(EL(L̂) − F̂ ),W ○⟩ = 0,
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where W ○ = {X ∈ TQ ∣ ⟨α,X⟩ = 0,∀α ∈W} and (EL)i ∶= d
dt

∂
∂q̇i

− ∂
∂qi

is the i-th component
of the Euler-Lagrange operator.

Suppose we now have two feedback equivalent systems (L,F,W ) and (L̂, F̂ , Ŵ ), where
F = F1 + F2 and F̂ = F̂1 + F̂2 are their homogeneous force decompositions up to second
degree. Then, by collecting terms of equal orders in q̇ in ELM2 of Definition 2.5, we can
obtain the following matching conditions:

Theorem 2.6 (Matching Conditions [7]). (L,F,W ) and (L̂, F̂ , Ŵ ) are feedback equiva-
lent systems if and only if the following equations are satisfied:

(dV −mm̂−1dV̂ )∣W ○ = 0

F̂1(X,m̂−1mZ) = F1(X,Z)
F̂2(X,Y, m̂−1mZ) = K̂(X,Y, m̂−1mZ) + F2(X,Y,Z)

Ŵ = m̂m−1W

for all X,Y ∈ TQ, Z ∈ W ○. Here K̂ ∈ Γ(S2(T ∗Q) ⊗ T ∗Q) is a T ∗Q-valued map defined
using mass matrices m and m̂ and their associated connections ∇, ∇̂ by:

K̂(X,Y,T ) = m̂(∇̂XY −∇XY,T ),

for all X,Y,T ∈ TQ.

In what follows, we will always assume W is integrable, that is, there exists local
coordinates q1, . . . , qn so that we can write

W ○ = Span { ∂

∂qα
∣ α = 1, . . . , n1} , W = Span {dqa ∣ a = n1 + 1, . . . , n}.

With the only exception in section 3 where the notions of formal theory of PDEs are
reviewed, we will consistently use Greek and Roman alphabetical indices in the following
manner:

1,⋯, n1
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
α,β,γ,⋯

; n1 + 1,⋯, n
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

a,b,c,⋯

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i,j,k,⋯

To simplify our discussion, we will assume F = 0 for the given system. Then by some
algebraic manipulations [7], we have the following matching conditions in local coordi-
nates.

Theorem 2.7 ([7]). (L,0,W ) is feedback equivalent to (L̂, F̂ , Ŵ ) with a gyroscopic force
F̂ of degree 2 if and only if there exists a non-degenerate mass matrix m̂ and a potential
function V̂ such that the following equations are satisfied:

∂V

∂qα
− T̂jαmij ∂V̂

∂qi
= 0 (2)

Ĵαβγ + Ĵβγα + Ĵγαβ = 0 (3)

where mij (resp. mij) is the (i, j)-entry of m (resp. m−1), T̂ =mm̂−1m,2 Γrij are Christof-

fel symbols of the second kind,3 and

Ĵαβγ =
1

2
T̂γsm

sk (∂T̂αβ
∂qk

− ΓrβkT̂αr − ΓrαkT̂βr) .

2We choose to use T̂ instead of m̂ so as to reduce the number of unknowns to be solved, [7].

3These are defined by Γrij =mrl[ij, l] = 1

2
mrl (∂mil

∂qj
+ ∂mjl

∂qi
− ∂mij

∂ql
).

4



2.3 Construction of Control Forces u and û

Suppose we have obtained a feasible solution T̂ (and hence m̂, since m̂ =mT̂m−1) and V̂
for the matching conditions. Then we can write down the Lagrangian L̂ for the feedback
equivalent system, and also, by ELM1, the corresponding control bundle Ŵ which is
given by

Ŵ = m̂m−1W.

In order to compute the gyroscopic force F̂ , we need to find Ĉijk such that the k-th
components F̂k of F̂ are given by F̂k = Ĉijkq̇iq̇j with

Ĉijk = Ĉjik; Ĉijk + Ĉjki + Ĉkij = 0. (4)

Following [6], we introduce

Ŝijk =mipmjqm̂
plm̂qs(mkrm̂

rt[̂ls, t] − [ls, k]), (5)

Âijk =mipmjqmkrm̂
plm̂qsm̂rtĈlst. (6)

Notice that Ŝijk = Ŝjik and Âijk = Âjik for all i, j, k.
Once m̂ is determined, we can compute Ŝijk. Then, we can determine Âijk in terms

of Ŝijk using the following scheme:

(a) Âijα = Ŝijα.

(b) Âβγa = −Ŝaβγ − Ŝγaβ.

(c) Âγab = Âbγa = −1
2 Ŝabγ .

(d) Finally, we choose any Âabc such that Âabc + Âbca + Âcab = 0. For simplicity, we can
take Âabc = 0.

Notice that under this scheme, Âijk satisfy the properties in (4). Once Âijk are deter-
mined, we can obtain the gyroscopic force terms Ĉijk by (6), or equivalently,

Ĉijk = m̂xim̂yjm̂zkm
xrmysmztÂrst. (7)

Procedure for solving energy shaping problems. We can now summarize the
general procedure for getting a nonlinear control force for a given controlled Lagrangian
system with degree of underactuation equal to n1 ≥ 1:

S1. Check that the linearization of the given controlled Lagrangian is controllable or
its uncontrollable subsystem is oscillatory.4 If neither holds, then stop; otherwise,
proceed to the next step. [7]

S2. Get a solution for V̂ and the (α, i) entries of T̂ which solve the matching PDEs (2)
and (3), keeping in mind that the n1 × n1 matrix [Tαβ] is positive definite around
q = 0 and V̂ has a non-degenerate minimum at 0.

S3. Choose the rest of the entries T̂ab of T̂ so that T̂ is positive definite, at least at
q = 0.

4A linear system ẋ = Ax is oscillatory if A is diagonalizable and all eigenvalues of A are nonzero and
purely imaginary.
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S4. Obtain the mass matrix m̂ of the feedback equivalent system, through the equation:
m̂ =mT̂−1m.

S5. Compute the gyroscopic force F̂ by computing Ŝijk, Âijk and then Ĉijk by (5), (7)
and steps (a) – (d) between (6) and (7).

S6. Compute the control bundle Ŵ , which is given by

Ŵ = Span

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

maim̂i1

⋯
maim̂in

⎤⎥⎥⎥⎥⎥⎥⎥⎦

RRRRRRRRRRRRRRRRRR

a = n1 + 1,⋯, n

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

S7. Choose a dissipative, Ŵ -valued linear control force û. In particular, for systems
with degree of underactuation equal to n1, one may choose

û = −KTDKq̇, (8)

where D is any symmetric positive definite (n − n1) × (n − n1) matrix and K is the
(n − n1) × n matrix defined by

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

mn1+1im̂i1 ⋯ mn1+1im̂in

⋮ ⋱ ⋮
mnim̂i1 ⋯ mnim̂in

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

S8. Compute the corresponding control force u:

ua = [jk, a]q̇j q̇k + ∂V

∂qa
−marm̂

rs ([̂jk, s]q̇j q̇k + ∂V
∂qs

− Ĉjksq̇j q̇k − ûs) (9)

where a = n1 + 1,⋯, n. Note that when α = 1, . . . , n1, uα, are then zero.

Notice that in the above procedure, we require F̂ to be gyroscopic and û dissipative. This
implies ⟨F̂ , q̇⟩ = 0 and ⟨û, q̇⟩ ≤ 0 for each (q, q̇). Hence the time derivative of the total
energy Ê of the feedback equivalent system is

dÊ

dt
= ⟨F̂ + û, q̇⟩ = 0 + ⟨û, q̇⟩ ≤ 0.

As a result, Lyapunov stability of the equilibrium (q, q̇) = (0,0) is guaranteed.

2.4 Systems with One Degree of Underactuation

When a given system has only one degree of underactuation, the matching conditions in
Theorem 2.7 reduce to two PDEs, one for V̂ and the other for T̂ :

∂V

∂q1
− T̂j1mij ∂V̂

∂qj
= 0

T̂1sm
sk (∂T̂11

∂qk
− 2Γr1kT̂1r) = 0.

From the Frobenius theorem solutions to these 2 PDEs are known to always exist, and
the shapability problem can be summarized as follows [7]:
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Theorem 2.8 ([7]). Given (L,0,W ) with one degree of underactuation, let (L`,0,W `) be
its linearized system at equilibrium (q, q̇) = (0,0). Then there exists a feedback equivalent
(L̂, F̂ , Ŵ ) with F̂ gyroscopic of degree 2 and V̂ having a non-degenerate minimum at
(0,0) if and only if the uncontrollable dynamics, if any, of (L`,0,W `) is oscillatory.5 In
addition if (L`,0,W `) is controllable, then (L̂, F̂ , Ŵ ) can be exponentially stabilized by
any linear dissipative feedback onto Ŵ .

This theorem characterizes the energy shapability of a given system with one degree
of underactuation.

3 The Formal Theory of PDEs

Unfortunately, the shapability problem becomes considerably more difficult when we have
underactuation degree greater than one. In particular, integrability conditions arise when
we equate the mixed partials for V̂ and T̂ij . We need to solve the given system of PDEs
together with its underlying integrability conditions. The latter can be systematically
obtained by applying the formal theory of PDEs.

We will follow closely the approach introduced by Pommaret [12, 13]. First we start
from a bundle π ∶ E → Q with independent variables q1, . . . , qn as coordinates of the base
space and the dependent variables u1, . . . , um as fiber coordinates. Then we construct
the r-th jet bundle JrE for r ≥ 1 in which the fiber coordinates consist of u1, . . . , um

together with their derivatives up to order r. The canonical projection is denoted as
πr+sr ∶ Jr+sE → JrE .

Over each bundle we can define a section and its prolongation. A section is a map
σ ∶ Q→ E such that π ○ σ = idQ. The r-th prolongation of a section σ can be done locally
by adding derivatives up to order r, that is,

jr(σ) ∶ q → (q, f(q), ∂ ∣µ∣f(q)
(∂q1)µ1⋯(∂qn)µn ) ,

where µ = (µ1, . . . , µn),1 ≤ ∣µ∣ ∶= µ1 + . . . + µn ≤ r.

Definition 3.1. A system of PDEs of order r is a fibered submanifold Rr of JrE. A
solution to Rr is a section σ such that jr(σ) lies in Rr.

The differential equations are usually defined as a map Φ ∶ JrE → E ′ where Φ =
Φτ(qi, uα, pαµ), where

pαµ =
∂ ∣µ∣uα

(∂q1)µ1⋯(∂qn)µn ,

and E ′ is another bundle over Q. For each differential equation we can have two basic
operations:

Prolongation: Imitating the usual chain rule of differentiation, we define the formal
derivative DiΦ for Φ by

DiΦ(qi, uα, pαµ) =
∂Φτ

∂qi
+∑

α

∂Φτ

∂uα
pαi + ∑

α,µ

∂Φτ

∂pαµ
pαµ+1i ,

5One can show that any second order system ẍ = Ax is oscillatory if and only if A is diagonalizable
and has only negative real eigenvalues [7].
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where µ+1i = (µ1, . . . , µi−1, µi+1, µi+1, . . . , µn).6 We define the prolongation Rr+1 ⊆
Jr+1E for Rr as the set of equations Φτ = 0,DiΦ

τ = 0, i = 1, . . . , n. Rr+1 is not
necessarily a fibered submanifold. For s ≥ 2, we can define Rr+s in a similar manner.

Projection: We can also project higher order differential equations into lower order ones.
This is done by Gaussian elimination of higher order derivatives by the lower order
ones in the equation.

The resulting system of PDEs arising from prolongations of Rr up to order s followed

by projections into Rr, that is, πr+sr (Rr+s), is usually denoted as R(s)r . The process of
prolongations followed by projections does not necessarily retrieve the original system,

that is, R(s)r ⫋ Rr. The extra independent equations derived from these manipulations are
known as integrability conditions. We have to obtain all possible integrability conditions
of lower orders before we determine each coefficient of a formal series solution. In this
regard, we introduce the idea of formal integrable equations:

Definition 3.2 ([12]). A system Rr of order r is formally integrable if Rr+s is a fibered
manifold for all s ≥ 0 and πr+s+tr+s ∶ Rr+s+t →Rr+s are epimorphisms for all s, t ≥ 0.

3.1 Symbols and Involutive Symbols

A direct verification of formal integrability as defined in Definition 3.2 is difficult com-
putationally, as we have to check infinitely many times whether the projections are epi-
morphisms. It turns out that, nevertheless, simpler criteria for formal integrability exist
and are partly related to an algebraic property of the highest order derivatives involved
in the system, known as involutivity. We first construct the symbol for a system of PDEs
which consists of the highest order derivatives only.

Definition 3.3. The symbol Gr of a system Rr is defined to be a family of vector spaces
whose local representation 7 is

Gr ∶ ∑
∣µ∣=r

∂Φτ

∂pαµ
(qi, uβ, pγµ)vαµ = 0,

where τ = 1, . . . , p; α,β, γ = 1, . . . ,m, when Rr is locally represented as Φτ(qi, uβ, pγµ) = 0.

By definition, the symbol Gr+s for the prolonged system Rr+s is given by

∑
∣µ∣=r, ∣ν∣=s

∂Φτ

∂pαµ
(qi, uβ, pγµ)vαµ+ν = 0,

with (qi, uβ, pγµ) ∈ Rr.

The symbol Gr provides a simple criterion to check whether extra integrability condi-
tion(s) will occur:

Theorem 3.4 ([15]). If Gr+1 is a vector bundle, then dimR(1)r = dimRr+1 − dimGr+1.

6For the sake of brevity, we will denote pα1i by pαi . This also conforms with the usual shorthand
notations for first order partials.

7Here we resort to a local representation as definition to avoid much technicality using bundle formal-
ism.
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This is an important theorem in our later computations which we will frequently refer
to. It can be rephrased as follows: if Gr+1 is of full rank, then we do not have any
integrability conditions. otherwise the difference between dimGr+1 and the number of
prolonged equations in Rr+1 is the number of integrability conditions (and can be figured
out by Gaussian eliminations).

We now define an involutive symbol in a coordinate-based fashion. Notice that in-
volutivity, on the contrary, is independent of the choice of coordinates [12]. The use of
coordinates make actual computations easier.

We need a specific way of categorizing and prioritizing derivatives. First, we fix a set of
local coordinates q1, . . . , qn on Q. In what follows, T ∗Q is abbreviated as T ∗ for simplicity.

Definition 3.5. With local coordinates q1, . . . , qn, we can define the following:

1. A jet coordinate vkµ is said to be of class 1 if µ1 ≠ 0. In general, it is of class i if
µ1 = . . . = µi−1 = 0 but µi ≠ 0.

2. Given a symbol Gr, we define for any 1 ≤ i ≤ n, (Gr)i to be the set of elements of
Gq with zero components of class 1,⋯, i.

Now, we can solve the linear system defining Gr pointwise in a manner similar to
finding the row reduced echelon form for a linear algebraic system via row operations.
We first solve Gr with respect to the maximum number of components of class n, and
replace these in the remaining equations. By so doing, only components of class i, where
i is at most n − 1 are left. Then we solve the remaining equations with respect to the
maximum number of components of class n − 1, leaving only components of class i with
i ≤ n−2. We repeat the above steps until we come to class 1 components. We say that the
linear system for Gr is solved. In each class i equation in its solved form, where 1 ≤ i ≤ n,
the component of class i which is a linear combination of other components of class ≤ i,
is called the principal derivative, and the rest of other components are called parametric:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

principal

component

of class i

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+A(qi, uβ, pγµ)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

parametric

components

of class ≤ i

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= 0.

We can then easily determine the size of (Gr)i:

dim(Gr)i = dim(SrT ∗ ⊗E)i − (βi+1
r + . . . + βnr ), 1 ≤ i ≤ n,

where βir is the number of equations of class i.

Theorem 3.6. For any fixed local coordinates, we have

dimGr+1 ≤ α1
r + 2α2

r + . . . + nαnr , (10)

where αir = dim(Gr)i−1 − dim(Gr)i. We say that Gr is involutive if there exist local
coordinates such that the equality holds. Such local coordinates are called δ-regular.

When Gr is in its solved form, we can define the multiplicative variables for each
equation of class i to be q1, . . . , qi, and the non-multiplicative variables, or the dots, to
be qi+1, . . . , qn.

Theorem 3.7. The symbol Gr is involutive if and only if there exists a system of local
coordinates under which any prolongation with respect to the non-multiplicative variables
does not introduce any new equations.
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3.2 Involutive Systems and Cartan-Kuranishi Theorem

With all these preparations we can now come to

Definition 3.8. A system Rr ⊆ Jr(E) of order r on E is involutive if it is formally
integrable and its symbol Gr is involutive.

Further analysis8 of the action of prolongations and projections leads to the following
important and useful theorem:

Theorem 3.9 (Criterion of involutivity [12, 13]). Let Rr ⊆ Jr(E) be a system of order r
over E such that Rr+1 is a fibered submanifold of Jr+1(E). If Gr is involutive and if the
map πr+1

r ∶ Rr+1 →Rr is an epimorphism, then Rr is involutive.

In other words, it is easier to obtain an involutive system if we start with an involutive
symbol. We now state the following crucial theorem:

Theorem 3.10 (Cartan-Kuranishi theorem,[10, 12, 13, 15]). For every strongly regular

system9 Rr of order r, there exist two integers s and t such that R(t)r+s is involutive and
has the same solution space as Rr.

The general procedure for constructing this R(t)r+s works as follows: We begin with
the symbol Gr of Rr. We assume Gr is involutive, or else we prolong Gr finitely many

times to get an involutive symbol.10 Then we compare Rr with R(1)r . If they are not

the same, replace R1 by R(1)r and repeat the above procedure by checking involutivity

of R
(1)
r . Notice that at any projection step, it might be possible to obtain inconsistent

integrability conditions, in which we will not obtain an equivalent involutive system of
PDEs. When an involutive system is obtained, we can conclude the existence of solution
by the following theorem:

Theorem 3.11 (Cartan-Kähler theorem,[12]). If Rr is an involutive and analytic system
of order r, then there exists one and only one analytic solution uk = fk(q) such that

1. (q0, ∂µf
k(q0)) with ∣µ∣ ≤ r − 1 is a point of πrr−1(Rr);

2. For i = 1,⋯, n, the αir parametric derivatives ∂µf
k(q) of class i are equal for qi+1 =

qi+1
0 ,⋯, qn = qn0 given analytic functions of q1,⋯, qi.

4 Energy Shaping with Two Degrees of Underactuation

In the previous section we described the set of tools that we will need to solve the PDEs
for our energy shaping problem. In this section we describe a method for solving the
resulting PDEs that occur when we have two degrees of underactuation. We first look at
the case when of dimension n = 4 with the general case following in a similar fashion.

8For details, see [12].
9A system Rr is called strongly regular if R(t)r+s is a fibered manifold and the symbol G

(t)
r+s of R(t)r+s is

a vector bundle over Q for all s, t ≥ 0 [13].
10The fact that we can obtain an involutive symbol by finitely many times of prolongations is highly

nontrivial. A proof of this can be found in [16].
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When the degree of underactuation n1 = 2, the matching conditions result in 2 PDEs
for V̂ and 4 for T̂ :

T̂1sm
sk ∂V̂
∂qk

= ∂V
∂q1

T̂2sm
sk ∂V̂
∂qk

= ∂V
∂q2

T̂1sm
sk (∂T̂11

∂qk
− 2Γr1kT̂1r) = 0

T̂2sm
sk (∂T̂11

∂qk
− 2Γr1kT̂1r) +2T̂1sm

sk (∂T̂12
∂qk

− Γr1kT̂2r − Γr2kT̂1r) = 0

T̂1sm
sk (∂T̂22

∂qk
− 2Γr2kT̂2r) +2T̂2sm

sk (∂T̂12
∂qk

− Γr1kT̂2r − Γr2kT̂1r) = 0

T̂2sm
sk (∂T̂22

∂qk
− 2Γr2kT̂2r) = 0.

To simplify our argument, we introduce two auxiliary functions g1 and g2 so that the
above system of PDEs is equivalent to

R1 ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ1 ∶ T̂1sm
sk ∂V̂
∂qk

= ∂V
∂q1

Φ2 ∶ T̂2sm
sk ∂V̂
∂qk

= ∂V
∂q2

Φ3 ∶ T̂1sm
sk (∂T̂11

∂qk
− 2Γr1kT̂1r) = 0

Φ4 ∶ T̂2sm
sk (∂T̂11

∂qk
− 2Γr1kT̂1r) = −2g1

Φ5 ∶ T̂1sm
sk (∂T̂12

∂qk
− Γr1kT̂2r − Γr2kT̂1r) = g1

Φ6 ∶ T̂2sm
sk (∂T̂12

∂qk
− Γr1kT̂2r − Γr2kT̂1r) = g2

Φ7 ∶ T̂1sm
sk (∂T̂22

∂qk
− 2Γr2kT̂2r) = −2g2

Φ8 ∶ T̂2sm
sk (∂T̂22

∂qk
− 2Γr2kT̂2r) = 0 .

In what follows, we define the following differential operators:

X1 = Xk
1

∂

∂qk
= T̂1sm

sk ∂

∂qk

X2 =Xk
2

∂

∂qk
= T̂2sm

sk ∂

∂qk

X3 = Xk
3

∂

∂qk
= δ3sm

sk ∂

∂qk

X4 = Xk
4

∂

∂qk
= δ4sm

sk ∂

∂qk
.

We assume that these four differential operators are linearly independent, say,

T̂11T̂22 − (T̂12)2 ≠ 0. (11)

Without loss of generality, one can further assume that X3
1X

4
2 −X3

2X
4
1 ≠ 0. The latter

inequation is used in the proof of subsequent lemmas.

4.1 Involutive Distribution Assumption

To minimize the number of integrability conditions at later stages, we further assume that
the distribution spanned by X1 and X2 is involutive, that is, the Lie bracket [X1,X2]
should satisfy

[X1,X2] = f1X1 + f2X2, (12)

for some analytic functions f1 and f2. Rewriting (12) as

[X1,X2] = f1X1 + f2X2 + 0 ⋅X3 + 0 ⋅X4

11



implies that this extra assumption brings about two new equations to the original system
of PDEs, namely

det(X1,X2, [X1,X2],X4) = 0

det(X1,X2,X3, [X1,X2]) = 0.

We first derive some preliminary results for this assumption on X1 and X2.

Lemma 4.1. On the system R1, the functions f1 and f2 in (12) are purely algebraic
expression of T̂ij, g1 and g2.

Proof. By Cramer’s rule, we know that

f1 =
det([X1,X2],X2,X3,X4)

det(X1,X2,X3,X4)
= det(m)det([X1,X2],X2,X3,X4)

det(m)det(X1,X2,X3,X4)

= det(Exprk, T̂2k, δ3k, δ4k)
det(T̂1k, T̂2k, δ3k, δ4k)

= Expr1 T̂22 −Expr2 T̂12

T̂11T̂22 − (T̂12)2
,

where Exprk, k = 1, . . . ,4 are defined by

Exprk =mjk (T̂1sm
si ∂

∂qi
(T̂2tm

tj) − T̂2tm
ti ∂

∂qi
(T̂1sm

sj)) .

Similarly, we have

f2 =
Expr2 T̂11 −Expr1 T̂12

T̂11T̂22 − (T̂12)2
.

It suffices to obtain an explicit formula for Exprk. In this regard we have

Exprk = T̂1sm
si (mjk

∂

∂qi
(T̂2tm

tj)) − T̂2tm
ti (mjk

∂

∂qi
(T̂1sm

sj))

= T̂1sm
si (∂(T̂2tm

tjmjk)
∂qi

− T̂2tm
tj ∂mjk

∂qi
) − T̂2tm

ti (∂(T̂1sm
sjmjk)

∂qi
− T̂1sm

sj ∂mjk

∂qi
)

= T̂1sm
si (∂T̂2k

∂qi
− T̂2tm

tj ∂mjk

∂qi
) − T̂2tm

ti (∂T̂1k

∂qi
− T̂1sm

sj ∂mjk

∂qi
)

= T̂1sm
si∂T̂2k

∂qi
− T̂2tm

ti∂T̂1k

∂qi
− T̂1sT̂2t(msimtj −mtimsj)∂mjk

∂qi

=X1T̂2k −X2T̂1k − T̂1sT̂2tm
simtj (∂mjk

∂qi
− ∂mik

∂qj
) .

Using the definition of Christoffel symbols Γijk, we can further simplify themsimtj (∂mjk
∂qi

− ∂mik
∂qj

)
term to obtain msimtj (∂mjk

∂qi
− ∂mik

∂qj
) =msiΓtik −mtjΓskj and hence

Exprk =X1T̂2k −X2T̂1k − T̂1sT̂2t(msiΓtik −mtjΓskj).

We can conclude our proof by verifying that Expr1 and Expr2, after elimination of
Xγ T̂αβ, are purely algebraic. Such an elimination is possible by using the fact that T̂ij
satisfy the four PDEs (Φ4, Φ5, Φ6, Φ7). Hence

Expr1 =X1T̂12 −X2T̂11 − T̂1sT̂2t(msiΓt1i −mtjΓs1j)
= [g1 + T̂1sm

si(Γt1iT̂2t + Γt2iT̂1t)] − [−2g1 + 2T̂2sm
sjΓt1j T̂1t]

− T̂1sm
siΓt1iT̂2t + T̂2sm

sjΓt1j T̂1t

= 3g1 + T̂1sm
siΓt2iT̂1t − T̂2tm

tiΓs1iT̂1s.
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Similarly, we have

Expr2 = −3g2 + T̂1sm
siΓt2iT̂2t − T̂2sm

siΓt1iT̂2t .

With the extra assumption of involutive distribution, we now need to consider the
solution for the following system of PDEs:

R1 ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ1 ∶ T̂1sm
sk ∂V̂
∂qk

= ∂V
∂q1

Φ2 ∶ T̂2sm
sk ∂V̂
∂qk

= ∂V
∂q2

Φ3 ∶ T̂1sm
sk (∂T̂11

∂qk
− 2Γr1kT̂1r) = 0

Φ4 ∶ T̂2sm
sk (∂T̂11

∂qk
− 2Γr1kT̂1r) = −2g1

Φ5 ∶ T̂1sm
sk (∂T̂12

∂qk
− Γr1kT̂2r − Γr2kT̂1r) = g1

Φ6 ∶ T̂2sm
sk (∂T̂12

∂qk
− Γr1kT̂2r − Γr2kT̂1r) = g2

Φ7 ∶ T̂1sm
sk (∂T̂22

∂qk
− 2Γr2kT̂2r) = −2g2

Φ8 ∶ T̂2sm
sk (∂T̂22

∂qk
− 2Γr2kT̂2r) = 0

Φ9 ∶ det(X1,X2, [X1,X2],X4) = 0

Φ10 ∶ det(X1,X2,X3, [X1,X2]) = 0 .

We first observe that Φ1 to Φ8 in R1 can be grouped into four decoupled pairs (Φ1 with
Φ2; Φ3 with Φ4, etc.), in which the differential operator, either X1 or X2, acts on V̂ and
T̂αβ. Such pairs are convenient in terms of symbol involutivity,

Lemma 4.2. The system

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Xk
1

∂Ĥ

∂qk
= h1

Xk
2

∂Ĥ

∂qk
= h2

where Ĥ = Ĥ(q) is the unknown to be found, and h1, h2 are analytic functions which do
not appear in the equations of the symbol of the system, has an involutive symbol. This
system has an integrability condition given by [X1,X2]Ĥ =X1h2 −X2h1.

Proof. The proof of this lemma is given in the Appendix.

Corollary 4.3. The symbol G1 for the system R1 (the one defined by Φ1 to Φ8 only) is
involutive.

Proof. By Lemma 4.2, each decoupled pair of PDEs forms an involutive system. Each
pair is exclusively for the partials of one of the unknowns: V̂ , T̂11, T̂12 or T̂22. Hence, the
whole system R1 defined by these four pairs has an involutive symbol.

Lemma 4.2 states that we should have one integrability condition for each of V̂ , T̂11,
T̂12 and T̂22. In particular, we can exploit some properties of the integrability condition
for V̂ .

13



Lemma 4.4. The integrability condition for V̂ is purely algebraic in R1. We can use
this equation to define T̂13 algebraically provided that

ms3 ∂2V

∂qs∂q2
≠ 0. (13)

In particular, T̂13 can be algebraically defined only if (13) holds at q = 0.

Proof. By Lemma 4.2, the integrability condition for V̂ is given by

[X1,X2]V̂ =X1 (
∂V

∂q2
) −X2 (

∂V

∂q1
) .

Since [X1,X2] = f1X1 + f2X2, we have

f1
∂V

∂q1
+ f2

∂V

∂q2
=X1 (

∂V

∂q2
) −X2 (

∂V

∂q1
) . (14)

The left hand side of (14) is purely algebraic, since we know f1 and f2 are purely algebraic
from Lemma 4.1. The right hand side of (14) also does not contain any derivatives of
unknown variables, since V is given. Hence, (14) is purely algebraic. We now show that
this can algebraically define T̂13. First, we note that the left hand side of (14) is equal to

1

T̂11T̂22 − (T̂12)2
[ ∂V
∂q1

(Expr1T̂22 −Expr2T̂12) +
∂V

∂q2
(Expr2T̂11 −Expr1T̂12)]

= 1

T̂11T̂22 − (T̂12)2
[( ∂V
∂q1

T̂22 −
∂V

∂q2
T̂12)Expr1 + ( ∂V

∂q2
T̂11 −

∂V

∂q1
T̂12)Expr2]

= 1

T̂11T̂22 − (T̂12)2
[( ∂V
∂q1

T̂22 −
∂V

∂q2
T̂12) (3g1 + T̂1sm

siΓt2iT̂1t − T̂2tm
tiΓs1iT̂1s)

+ ( ∂V
∂q2

T̂11 −
∂V

∂q1
T̂12) (−3g2 + T̂1sm

siΓt2iT̂2t − T̂2sm
siΓt1iT̂2t)] ,

while the right hand side of (14) is equal to

T̂1sm
sk ∂2V

∂qk∂q2
− T̂2sm

sk ∂2V

∂qk∂q1
.

Now notice that g1 first appears in Φ4 and Φ5. If we replace g1 by

g1 = g1 −
1

3
m3iΓ3

2i(T̂13)2

and trace down the calculations, we conclude that all results obtained so far do not change
by such replacement and, in addition, we can remove all quadratic terms of T̂13 in (14).

Finally, since we assume ∂V
∂qi

= 0 at q = 0 for i = 1, . . . ,4, the left hand side of (14)

vanishes at q = 0. Hence, in order to define T̂13 using (14), we require the T̂13 to be
non-vanishing on the right hand side of (14), that is,

ms3 ∂2V

∂qs∂q2
≠ 0
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Remark. When (13) holds, then T̂13 is defined by

T̂13 =
(T̂11T̂22 − (T̂12)2) (−T̂1ŝm

ŝk ∂2V
∂qk∂q2

+ T̂2sm
sk ∂2V
∂qk∂q1

) + P1

(T̂11T̂22 − (T̂12)2)m3k ∂2V
∂qk∂q2

− P2

, (15)

where ŝ runs through 1,2 and 4 only, with P1, P2 defined by

P1 = ( ∂V
∂q1

T̂22 −
∂V

∂q2
T̂12) (3g1 + T̂1ŝm

ŝiΓt̂2iT̂1t̂ − T̂2tm
tiΓŝ1iT̂1ŝ)

+ ( ∂V
∂q2

T̂11 −
∂V

∂q1
T̂12) (−3g2 + T̂1ŝm

ŝiΓt2iT̂2t − T̂2sm
siΓt1iT̂2t)

P2 = ( ∂V
∂q1

T̂22 −
∂V

∂q2
T̂12) (T̂1ŝm

ŝiΓ3
2i + T̂1t̂m

3iΓt̂2i − T̂2sm
siΓ3

1i)

+ ( ∂V
∂q2

T̂11 −
∂V

∂q1
T̂12)m3iΓt2iT̂2t,

where ŝ, t̂ runs for 1, 2 and 4 only. Notice that due to the presence of partial derivatives
of V , both P1 and P2 are zero at q = 0. We will make use of this fact in later proofs.

We now need to consider the solution for the following system of PDEs:

R1 ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ1 ∶ T̂1sm
sk ∂V̂
∂qk

= ∂V
∂q1

Φ2 ∶ T̂2sm
sk ∂V̂
∂qk

= ∂V
∂q2

Φ3 ∶ T̂1sm
sk (∂T̂11

∂qk
− 2Γr1kT̂1r) = 0

Φ4 ∶ T̂2sm
sk (∂T̂11

∂qk
− 2Γr1kT̂1r) = −2(g1 − 1

3m
3iΓ3

2i(T̂13)2)
Φ5 ∶ T̂1sm

sk (∂T̂12
∂qk

− Γr1kT̂2r − Γr2kT̂1r) = g1 − 1
3m

3iΓ3
2i(T̂13)2

Φ6 ∶ T̂2sm
sk (∂T̂12

∂qk
− Γr1kT̂2r − Γr2kT̂1r) = g2

Φ7 ∶ T̂1sm
sk (∂T̂22

∂qk
− 2Γr2kT̂2r) = −2g2

Φ8 ∶ T̂2sm
sk (∂T̂22

∂qk
− 2Γr2kT̂2r) = 0

Φ9 ∶ det(X1,X2, [X1,X2],X4) = 0

Φ10 ∶ det(X1,X2,X3, [X1,X2]) = 0

where g1 is replaced by g1 − 1
3m

3iΓ3
2i(T̂13)2 so that T̂13 is well-defined by using the inte-

grability condition for V̂ . Here, we do not explicitly eliminate T̂13 for the sake of clarity,
but from now on, we should eliminate T̂13 in the system of PDEs whenever it appears.

Lemma 4.5. The symbol G1 of R1, after eliminating T̂13 using the integrability condition
for V̂ , is involutive if

T̂1sm
s4 ≠ 0 (16)

T̂1sm
s4 −

m3k ∂2V
∂qk∂q1

m3s ∂2V
∂qs∂q2

T̂2tm
t4 ≠ 0. (17)

Proof. By Corollary 4.3, we know that the first eight PDEs (Φ1 to Φ8) constitute a
system of PDEs with an involutive symbol. We now show that the whole system R1,
after eliminating T̂13, has an involutive symbol. This is done by observing that Φ9 and
Φ10 can be treated as class 4 equations for T̂23 and T̂24. We first consider Φ10, which is
equivalent to det(T̂1k, T̂2k, δ3k,Exprk) = 0 or, more explicitly,

(T̂11T̂22 − (T̂12)2)(X1T̂24 −X2T̂14) = 0,
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in the equations of the symbol G1 of the system. Thus, this PDE can be used to solve
∂T̂24
∂q4

provided that its coefficient in the PDE is nonzero, i.e. if (16) holds.

We now come to Φ9, which is det(T̂1k, T̂2k,Exprk, δ4k) = 0 or more explicitly,

(T̂11T̂22 − (T̂12)2)(X1T̂23 −X2T̂13) = 0

in the equations of the symbol G1. Making use of (15) to eliminate T̂13, the above PDE
in G1 around q = 0 is

(T̂11T̂22 − (T̂12)2)
⎛
⎜
⎝
X1T̂23 −X2

⎛
⎜
⎝

T̂2sm
sk ∂2V
∂qk∂q1

− T̂1ŝm
ŝk ∂2V
∂qk∂q2

m3s ∂2V
∂qs∂q2

⎞
⎟
⎠

⎞
⎟
⎠
= 0 .

Hence, Φ9 can be used to define ∂T̂23
∂q4

provided that its coefficient is nonzero, or equiva-

lently, if (17) holds. Since Φ9 and Φ10 are both PDEs of class 4 and the rest of the system
R1 has an involutive symbol, we can conclude that the symbol G1 of the whole system is
involutive.

Since R1 differs from R1 by having two extra equations of class 4, the number of
integrability conditions in R1 is still four. The one for V̂ has been used to define and
eliminate T̂13. Hence, we are left with the integrability conditions for T̂11, T̂12 and T̂22.

If we can show that these equations are also of class 4, then we can conclude that R(1)1

is involutive and the whole prolongation-projection algorithm ends.

Lemma 4.6. The integrability conditions for T̂11, T̂12 and T̂22 in their solved forms on

the system R(1)1 are of class 4 if

T̂2sm
s4 ≠ 0 (18)

T̂1sm
s4T̂1tm

tkΓ4
2k ≠ T̂2sm

s4T̂1tm
tkΓ4

1k. (19)

Proof. We first derive, in the equations of the symbol of the system, the three integrability
conditions explicitly. By Lemma 4.2 and the involutive assumption on the differential
operators X1 and X2, the integrability condition for T̂11 is

[X1,X2]T̂11 = (f1X1 + f2X2)T̂11 .

By Lemma 4.1, f1 and f2 are purely algebraic, and we can eliminate X1T̂11 and X2T̂11, as
they satisfy Φ3 and Φ4, by purely algebraic expressions. Thus the right hand side of the
above equation, after such elimination, does not appear in the equations of the symbol
of the system. In other words, we can simply consider the left hand side of the above
integrability condition:

[X1,X2]T̂11 =X1(X2T̂11) −X2(X1T̂11)

=X1 (2T̂2sm
skΓr1kT̂1r − 2g1 +

2

3
m3iΓ3

2i(T̂13)2) −X2(2T̂1sm
skΓr1kT̂1r),

by using Φ3 and Φ4. Now, note that X1T̂11 = 0 and X2T̂11 = 0 in the symbol G1. Thus,
in the equations of the symbol of the system, the integrability condition for T̂11 reduces
to

2 (−X1g1 + T̂2sm
skΓr1kX1T̂1r + T̂1rm

skΓr1kX1T̂2s

− T̂1sm
skΓr1kX2T̂1r − T̂1rm

skΓr1kX2T̂1s) +⋯,
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where r and s run from 3 to 4 only, and the terms not containing derivatives of T̂14

are omitted. From Φ9 and Φ10 we know that X1T̂23 = X2T̂13 and X1T̂24 = X2T̂14 in the
equations of the symbol G1 of the system (as mentioned in the proof of Lemma 4.5).
Hence, the integrability condition for T̂11 can further reduce to

2(−X1g1 + T̂2sm
skΓr1kX1T̂1r − T̂1sm

skΓr1kX2T̂1r) +⋯ = 0,

in the equations of the symbol G1, and we omit again terms not containing derivatives
of T̂14. In a similar fashion one can derive the other integrability conditions

X2g2 + T̂2sm
skΓr2kX2T̂1r − T̂1sm

skΓr2kX2T̂2r = 0

X1g2 −X2g1 + T̂2sm
sk(Γr1kX2T̂1r + Γr2kX1T̂1r) − T̂1sm

sk(Γr1kX2T̂2r + Γr2kX2T̂1r) +⋯ = 0

in the equations of the symbol G1. We now show that these PDEs can solve
∂g1
∂q4

, ∂g2
∂q4

and

∂T̂14
∂q4

respectively provided that (18) and (19) are satisfied. This is done by computing
the determinant of the coefficient matrix of these three derivatives:

RRRRRRRRRRRRRRRRRR

−T̂1sm
s4 0 T̂2sm

skΓ4
1kT̂1tm

t4 − T̂1sm
skΓ4

1kT̂2tm
t4

0 T̂2sm
s4 T̂2sm

skΓ4
2kT̂2tm

t4

−T̂2sm
s4 T̂1sm

s4 T̂2sm
skΓ4

2kT̂1tm
t4 + T̂2sm

skΓ4
1kT̂2tm

t4 − T̂1sm
skΓ4

2kT̂2tm
t4

RRRRRRRRRRRRRRRRRR

which simplifies to give (T̂2sm
s4)2(T̂1sm

s4T̂1tm
tkΓ4

2k − T̂2sm
s4T̂1tm

tkΓ4
1k). We can solve

the three class 4 derivatives uniquely if and only if the coefficient matrix has a nonzero
determinant. This concludes the proof.

Remark. In the proof we are not concerned about derivatives of unknowns other than
g1, g2 and T̂14 though they may appear in the symbol as well. This is valid in the proof
as we use the three integrability conditions to define derivatives of g1, g2 and T̂14 only.

We can now summarize our results into the following

Theorem 4.7. If n = 4, and if (11), (13), (16), (17), (18) and (19) hold, at least at

q = 0, then the system R(1)1 is involutive.

Proof. R(1)1 is defined by Φ1 to Φ10, together with 4 equations, derived from the inte-
grability conditions for V̂ , T̂11, T̂12 and T̂22. The one for V̂ , as proved in Lemma 4.4,
solves T̂13 if (13) holds. The resulting system of PDEs, after eliminating T̂13, still has an
involutive symbol. The reason for this is two-fold. First, Φ1 to Φ10 constitute a system
of PDEs with involutive symbol, as proved in Lemma 4.5. Secondly, by Lemma 4.6, the
extra integrability conditions from T̂αβ are of class 4, if (18) and (19) hold.

Now, by Theorem 3.9, if we can show that R(1)1 = π2
1((R

(1)
1 )+1), then we can conclude

that R(1)1 is involutive. But such an equality is true since, with the exception of the
integrability condition for V̂ , all integrability conditions for R1 are of class 4, and hence
we cannot generate further integrability conditions.

It should be noted that the above procedure of obtaining an involutive system of
PDEs is coordinate-dependent. Here we abide by the choice of coordinates as depicted
in [12], [13], where ∂

∂qi
are classified as class i, and we place higher priority for those

derivatives in higher classes. One can choose to prioritize coordinates in several different
manners, for example, we can define ∂

∂q1
as class 4 (i.e. highest priority) etc., and obtain

an involutive system with a similar set of inequality constraints. In other words, we have
the following.
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Theorem 4.8. If n = 4, and the following inequalities

T̂11T̂22 − (T̂12)2 ≠ 0 (X1
1X

2
2 −X2

1X
1
2 ≠ 0) (20)

m3s ∂2V

∂qs∂q2
≠ 0 (21)

T̂1sm
s1 ≠ 0 (22)

T̂1sm
s1 −

m3k ∂2V
∂qk∂q1

m3s ∂2V
∂qs∂q2

T̂2tm
t1 ≠ 0 (23)

T̂2sm
s1 ≠ 0 (24)

T̂1sm
s1T̂1tm

tkΓ4
2k ≠ T̂2sm

s1T̂1tm
tkΓ4

1k (25)

hold ( at least at q = 0), then the system R(1)1 is involutive.

4.2 The Case when n ≥ 4

The generalization to the case n ≥ 4 is in fact rather straightforward. First of all, Φ1 to
Φ8 remain the same except that the indices r, s, t, . . . runs from 1 to n instead of 1 to 4.
We need n linearly independent differential operators Xi, that is,

X1 = T̂1sm
sk ∂

∂qk

X2 = T̂2sm
sk ∂

∂qk

Xi = δismsk ∂

∂qk
, i ≥ 3 .

As before, we can make the assumption that the differential operators X1 and X2 span an
involutive distribution, that is, assumption (12). The way we choose to define Xi allows
f1 and f2 in (12) remains purely algebraic, as in Lemma 4.1. The only difference for n > 4
is the number of extra equations due to this involutivity assumption. Previously when
n = 4, we have two extra PDEs (Φ9 and Φ10). When n > 4, we would have n − 2 extra
PDEs:

det(X1,X2, [X1,X2],X4,X5, . . . ,Xn−1,Xn) = 0

det(X1,X2, [X1,X2],X3,X5, . . . ,Xn−1,Xn) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

det(X1,X2, [X1,X2],X3,X4, . . . ,Xn−2,Xn−1) = 0 .

In other words, every time n increases by 1, we have one additional PDE. Nevertheless,
we have two more entries in T̂ in the meantime. Indeed, we can assign each of these extra
PDEs to solve the class 4 derivatives of T̂23, T̂24, . . . , T̂2n, and still have some free entries
in the first row of T̂ . Notice that (16) and (17) will guarantee that we can solve these
class n derivatives. Finally, the proof of Lemma 4.6 (i.e. the integrability conditions for
T̂αβ are all of class n) is essentially the same for n > 4. Hence, if we define ∂

∂qn as class n
derivatives etc., then we will have the following generalization of Theorem 4.7.
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T̂13 defined by (15)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

free entries
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

T̂11 T̂12 T̂13 T̂14 ⋯⋯⋯ T̂1n

T̂22 T̂23 T̂24 ⋯⋯⋯ T̂2n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
partials defined by determinant equations

Table 1: T̂ matrix with solved and free entries. Note that T̂αβ are solved by Φ3 through
Φ8; and class n derivative of T̂14 is solved by one of the integrability conditions from T̂αβ.

Theorem 4.9. R(1)1 is involutive if the following holds (at least at q = 0)

T̂11T̂22 − (T̂12)2 ≠ 0 (Xn−1
1 Xn

2 −Xn−1
2 Xn

1 ≠ 0) (26)

ms3 ∂2V

∂qs∂q2
≠ 0 (27)

T̂1sm
sn ≠ 0 (28)

T̂1sm
sn −

m3k ∂2V
∂qk∂q1

m3s ∂2V
∂qs∂q2

T̂2tm
tn ≠ 0 (29)

T̂2sm
sn ≠ 0 (30)

T̂1sm
snT̂1tm

tkΓ4
2k ≠ T̂2sm

snT̂1tm
tkΓ4

1k . (31)

As before, similar conditions can be derived if we prioritize partials in various different
manners. In particular, when we rank ∂

∂q1
as class n derivatives, etc., then we will have

the following alternate generalization of Theorem 4.7.

Corollary 4.10. R(1)1 is involutive if (20) to (25) hold (at least at q = 0).

Since R(1)1 is involutive, it is natural to ask if we have an analytic solution. The
answer is affirmative by the following theorem of stabilizability.

Theorem 4.11. Let (L,0,W ) be a controlled Lagrangian system with n ≥ 4 degrees of
freedom having a linearized system (L`,0,W `). Suppose the uncontrollable dynamics of
(L`,0,W `), if any, is oscillatory, and that there exists a linear controlled Lagrangian
system (L,0,W ) feedback equivalent to (L`,0,W `) such that the inequations (11), (13),
(16), (17), (18) and (19) are satisfied.11

Then there exists a controlled Lagrangian system (L̂, F̂ , Ŵ ) that is feedback equivalent
to (L,0,W ), with a positive definite mass matrix m̂, a gyroscopic force F̂ of degree 2,
and a potential function V̂ having a non-degenerate minimum at q = 0. In particular,
we can obtain a nonlinear controlled Lagrangian system (L̂, F̂ , Ŵ ) whose linearization is
equal to (L,0,W ). Furthermore, if (L`,0,W `) is controllable, then any linear dissipative
feedback force onto Ŵ exponentially stabilizes the system (L̂, F̂ , Ŵ ).

Proof. We first need to check that defining T̂13 by (15) does not bring any extra restriction

11Here it is understood that T̂ij are replaced by T ij in those equations.
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to the linearized system. Indeed, at q = 0, (15) reduces to

T̂2sm
sk ∂2V

∂qk∂q1
∣
q=0

= T̂1sm
sk ∂2V

∂qk∂q1
∣
q=0

⇒ T̂2sm
sk ∂

∂qk
(T̂1tm

tl ∂V̂

∂ql
)∣
q=0

= T̂1sm
sk ∂

∂qk
(T̂2tm

tl ∂V̂

∂ql
)∣
q=0

.

Since ∂V̂
∂qi

(0) = 0, the above equation reduces further to

T̂2sm
skT̂1tm

tl ∂2V̂

∂qk∂ql
∣
q=0

= T̂1sm
skT̂2tm

tl ∂2V̂

∂ql∂qk
∣
q=0

,

which is obviously true.
Hence, we conclude that there are analytic solutions for T̂ and V̂ once we impose

suitable initial conditions. We look for initial conditions from the linearized system
(L`,0,W `) of the given controlled Lagrangian system (L,0,W ). It can be proven (c.f.
[7]) that there exists a linear controlled Lagrangian system (L,0,W ) which is feedback
equivalent to (L`,0,W `), and which has a positive definite symmetric mass matrix M and
a potential energy U = 1

2q
TSq, where S is positive definite and symmetric, if and only if the

uncontrollable dynamics of (L,0,W ), if any, is oscillatory. Then, U and the corresponding

T =m(0)M−1
m(0) can serve as the initial condition for the PDEs governing the unknown

nonlinear V̂ and T̂ . Thus, we can now apply the Cartan-Kähler theorem on the first order
system to conclude the existence of a solution. Using a continuity argument, we can ensure
that the nonlinear solutions m̂ and V̂ to this initial value problem are positive definite
(at least locally around q = 0).

For exponential stability, it can be proved (cf. [7]) that any linear controlled La-
grangian system, with positive definite mass matrix m and positive definite potential
energy V , is controllable if and only if it can be exponentially stabilized by a linear
dissipative feedback. Then the Lyapunov linearization method can be used to conclude
that any linear dissipative feedback force onto Ŵ will exponentially stabilize the system
(L̂, F̂ , Ŵ ).

We end this section by making some comments on the linearized system. In the case of
one degree of underaction, we know from Theorem 2.8, one of the main results in [7], that
the linearized system provides the boundary conditions for those matching conditions, and
as a result, the control designer can freely place the poles of the controllable subsystem
of the linearized system. What we proved here is, for the case where the degree of
underactuation is two while the degree of freedom is at least four, that the control designer
can still achieve the same pole placement of the controllable subsystem of the linearized
system, provided the given system satisfies the extra inequations as stated in (26)-(31)
(or any equivalent set of inequations depending on the choice of coordinates). The set
of elements not satisfying these inequations is comparatively small or of measure zero,
and furthermore, these inequations do not add extra equality constraints on the energy
shaping of the linearized dynamics. As a result, we can conclude that it is generically the
case that one can choose the eigenvalues of the controllable subsystem of the linearization
of the system so as to achieve energy shaping when the uncontrollable subsystem, if any,
of the linearized system is oscillatory.
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5 Example: Three Linked Carts with Inverted Pendulum

We illustrate the use of the theorems developed in this paper through an example of three
linked carts with an inverted pendulum; see Figure 1.

Figure 1: A system of three linked carts with an inverted pendulum.

For simplicity, we assume point masses for the carts and the inverted pendulum, each
with a mass of 1 kg. The pendulum has a length of 1 m and each string has a natural
length of 1 m. We take g to be the symbol representing the gravitational constant. In
this case the mass matrix for the system is given by

m =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 cos q1 0

0 1 0 0

cos q1 0 2 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and the potential energy is

V = 1

2
((q2 − q3)2 + (q3 − q4)2) + g cos q1.

The control bundle W is spanned by dq3 and dq4. Now, notice that the Christoffel
symbols Γijk are zero at q = 0. Hence, to ensure that (19) is still satisfied (at least at

q = 0), we do the following change of coordinates: qi = zi for i = 1,2,3 and q4 = z1z4 + z4.
By so doing, only Γ4

14 = Γ4
41 are nonzero at z = 0. Under the new coordinates,

m =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + (z4)2 0 cos(z1) z4(z1 + 1)
0 1 0 0

cos(z1) 0 2 0

z4(z1 + 1) 0 0 (z1 + 1)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and the potential energy is

V = 1

2
((z2 − z3)2 + (z3 − z1z4 − z4)2) + g cos z1.

We now need to impose suitable initial conditions for T̂ and V̂ in the new coordinates.
Following [7], we can set up these initial conditions by considering the linearization of the
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given system. The linearized system has a mass matrix given by

m` =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0

0 1 0 0

1 0 2 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
It can be proved that the linearized system is controllable. A feedback equivalent system
(L,0,W ) is given by

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 1

2 10 4 1

3 4 100 0

1 1 0 100

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

367
50 − 7

25
3
2 −1

5

− 7
25

11
100 −1

4 − 1
10

3
2 −1

4 1 0

−1
5 − 1

10 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

both of which are positive definite. Furthermore, we can check that T̂ and V̂ satisfy the
inequalities (11), (13), (16), (17), (18) and (19) around z = 0. Hence, a solution exists by
Theorem 4.11. We can now incorporate these initial conditions to the system of PDEs,
leading to the following solutions

T̂11 = 2 cos2 z1 − 1 + 2z4 + 100(z4)2

T̂12 = 2 cos z1 + z4

T̂13 = 3 cos z1

T̂14 = (z1 + 1)(100z4 + 1)
T̂22 = 10

T̂23 = 4

T̂24 = z1 + 1

V̂ = (F (z1, z2, z3))2 + (G(z1, z2, z4))2 + 4

25
cos2 z1 − g cos z1

− 6

25
+ 1

50
(2z2 − 10z3) sin z1 + 3

50
(z2)2 − 1

10
z2z3,

where F (z1, z2, z3) = 8
5 sin z1 − z2

5 + z3 and G(z1, z2, z4) = −1
5 sin z1 + (z

1
)
2

2 − z2

10 + z
1z4 + z4.

It is easy to verify that V̂ is positive definite at z = 0. The same is true for T̂ , when we
assign T̂33 and T̂44 in such a way that they are 100 when z = 0. Hence, we have shaped
the energy of the given system, and by its linear controllability, we can conclude that the
resulting feedback equivalent system can be asymptotically stabilized by an additional
dissipative feedback.

6 Conclusion and Future Work

In this paper we have investigated the energy shapability of controlled Lagrangian systems
with at least four degrees of freedom and exactly two degrees of underactuation, using the
formal theory of PDEs. The criteria of energy shapability was illustrated with a three-
cart-one-inverted pendulum example. Our method is practical with the criteria easily
verifiable on any given mechanical system with the correct degrees of underactuation and
freedom. When the linearized system is controllable, the linear pole placement method
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will work for local exponential stabilization of the original nonlinear system. However it
is well known that shaping a nonlinear system with nonlinear controls has the advantage
that it typically gives a signficantly larger region of attraction.

For future work we are interested in the case where the degree of underactuation
n1 goes beyond 2. However, while we have n1 PDEs for V̂ the number of PDEs for T̂
increases faster than the order of n1 as n1 increases. For example, when n1 = 3 and
n1 = 4, we have 10 and 20 PDEs, respectively, in these cases. As such making use of
the formal theory of PDEs to the problem of higher degrees of underactuation becomes a
significantly more challenging task. In addition, we are also interested in the case where
the number of degrees of freedom is 3 and the degree of underactuation is 2. In this
particular case our methods break down, primarily because all the free components of T̂
get exhausted early. As such our approach of using the formal theory as presented in this
paper would need to be modified accordingly in order to handle this case.

7 Appendix

In this appendix we give the proof of Lemma 4.2.

Proof. By Cramer’s rule, we can solve ∂Ĥ
∂q3

and ∂Ĥ
∂q4

as follows:

(X3
1X

4
2 −X4

1X
3
2)
∂Ĥ

∂q3
= (X4

1X
α
2 −X4

2X
α
1 ) ∂Ĥ
∂qα

+X4
2h1 −X4

1h2

(X3
1X

4
2 −X4

1X
3
2)
∂Ĥ

∂q4
= (X3

2X
α
1 −X3

1X
α
2 ) ∂Ĥ
∂qα

+X3
1h2 −X3

2h1

where α runs from 1 to 2 (or 1 to n−2 for general n ≥ 4). Thus, this system has a symbol
given by

(X3
1X

4
2 −X4

1X
3
2)
∂Ĥ

∂q4
= (X3

2X
α
1 −X3

1X
α
2 ) ∂Ĥ
∂qα

1 2 3 4

(X3
1X

4
2 −X4

1X
3
2)
∂Ĥ

∂q3
= (X4

1X
α
2 −X4

2X
α
1 ) ∂Ĥ
∂qα

1 2 3 ●

The “dot” board is a bookkeeping way of indicating that the first and second equation
are of class 4 and 3 respectively. The prolongation of the second equation (X3

1X
4
2 −

X4
1X

3
2)
∂Ĥ

∂q3
= (X4

1X
α
2 −X4

2X
α
1 ) ∂Ĥ
∂qα

with respect to the “dot” (i.e. q4) is a linear combina-

tion of other prolongations with respect to the multiplicative variables. Indeed, this linear
combination can be derived from the fact that the Lie bracket [X1,X2] is a differential
operator of order 1 only, where

X1 ∶= (X3
1X

4
2 −X4

1X
3
2)

∂

∂q3
− (X4

1X
α
2 −X4

2X
α
1 ) ∂

∂qα
= (X4

2X
k
1 −X4

1X
k
2 )

∂

∂qk

X2 ∶= (X3
1X

4
2 −X4

1X
3
2)

∂

∂q4
− (X3

2X
α
1 −X3

1X
α
2 ) ∂

∂qα
= (X3

1X
k
2 −X3

2X
k
1 )

∂

∂qk
.

Hence, by Theorem 3.7, the symbol for the system of these two PDEs is involutive.
Moreover, the integrability condition is

[X1,X2]Ĥ =X1(X3
1h2 −X3

2h1) −X2(X4
2h1 −X4

1h2) ,
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which can also be derived by Frobenius theorem. We now prove that this is the same as
[X1,X2]Ĥ =X1h2 −X2h1. We have

[X1,X2]Ĥ =X1(X3
1X

k
2 −X3

2X
k
1 )
∂Ĥ

∂qk
−X2(X4

2X
k
1 −X4

1X
k
2 )
∂Ĥ

∂qk

= (X1X
3
1 +X2X

4
1)(Xk

2

∂Ĥ

∂qk
) − (X1X

3
2 +X2X

4
2)(Xk

1

∂Ĥ

∂qk
)

+ ((X3
1X1 +X4

1X2)Xk
2 − (X3

2X1 +X4
2X2)Xk

1 )
∂Ĥ

∂qk
.

But since Xk
i
∂Ĥ
∂qk

= hi for i = 1,2, and X3
1X1 +X4

1X2 = (X3
1X

4
2 −X4

1X
3
2)Xm

1
∂

∂qm , X3
2X1 +

X4
2X2 = (X3

1X
4
2 −X4

1X
3
2)Xm

2
∂

∂qm , we have

[X1,X2]Ĥ = (X1X
3
1+X2X

4
1)h2−(X1X

3
2+X2X

4
2)h1+(X3

1X
4
2−X4

1X
3
2)(X1X

k
2 −X2X

k
1 )
∂Ĥ

∂qk

(32)
Meanwhile, similar computation gives

X1(X3
1h2 −X3

2h1) −X2(X4
2h1 −X4

1h2)
= (X1X

3
1 +X2X

4
1)h2 − (X1X

3
2 +X2X

4
2)h1 + (X3

1X
4
2 −X4

1X
3
2)(X1h2 −X2h1) (33)

Hence, canceling common terms in (32) and (33), we arrive at [X1,X2]Ĥ =X1h2 −X2h1

as desired.
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