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LOCAL WELL-POSEDNESS OF THE KDV EQUATION WITH

QUASI PERIODIC INITIAL DATA

KOTARO TSUGAWA

Abstract. We prove the local well-posedness for the Cauchy problem of the

Korteweg-de Vries equation in a quasi periodic function space. The function space

contains functions such that f = f1+f2+ ...+fN where fj is in the Sobolev space

of order s > −1/2N of 2πα−1

j periodic functions. Note that f is not a periodic

function when the ratio of periods αi/αj is irrational. The main tool of the proof

is the Fourier restriction norm method introduced by Bourgain. We also prove an

ill-posedness result in the sense that the flow map (if it exists) is not C2, which is

related to the Diophantine problem.

1. Introduction

We consider the Cauchy problem of the Korteweg-de Vries equation as follows:

ut + uxxx + (u2)x = 0, u(0) = f. (1.1)

where u(x, t) and f(x) are complex or real valued functions. The local and global

well-posedness for (1.1) in Hs(T) has been intensively studied. In the present paper,

we show the local well-posedness in a quasi periodic function space. Note that a

2π-periodic function on R can be written as f =
∑∞

j=1 aje
iλjx with {λj}

∞
j=1 ⊂ Z. On

the other hand, when f is an almost periodic function, the distribution of {λj}
∞
j=1 on

R can be totally arbitrary. When f is a quasi periodic function, there exist N ∈ N,

α ∈ RN such that {λj}
∞
j=1 ⊂ {α ·k : k ∈ ZN}. First, we recall some known results of

the well-posedness for (1.1) in Hs(T). In [3], Bourgain proved the local and global

well-posedness with s ≥ 0 by introducing the Fourier restriction norm method. In

[18], Kenig, Ponce and Vega proved refined bilinear estimates to extend Bourgain’s

local well-posedness result to s ≥ −1/2. In [6], Colliander, Keel, Staffilani, Takaoka

and Tao proved the global well-posedness with s ≥ −1/2. Since the KdV equation

on Hs with s < 0 has no conservation law, it seemed difficult to consider the long

time behavior of solutions in Hs with s < 0. To overcome this difficulty, they
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introduced a regularizing Fourier multiplier operator I and calculated a modified

energy defined in Hs with s ≥ −1/2, which is called the “I-method”. Kappeler

and Topalov proved the global well-posedness with s ≥ −1 by the inverse scattering

method in [15]. It is known that the flow map is analytic if and only if s ≥ −1/2.

For the well-posedness results in Hs(R), see [2], [17], [13], [3], [18], [6], [21] and

[9]. For the ill-posedness results and counter examples of bilinear estimates related

to this problem, see [18], [29], [25], [20], [5], [22] and [24]. To the best of author’s

knowledge, there are few results for almost periodic initial data. In [8], Egorova

proved that global solutions of (1.1) exist when the initial data f is real valued and

f ∈ Qs(A) for s ∈ N and s ≥ 4 and that the solutions are almost periodic in t and

x. Here, we say f ∈ Qs(A) if and only if

‖f‖s = sup
x

(∫ x+1

x

|f |2 + |∂s
xf |

2 dx
)1/2

< ∞

and there exists a sequence of an-periodic functions fn ∈ Hs(R/an) such that the

following condition holds:

∀p > 0, lim
n→∞

epan+1‖f − fn‖s = 0, (1.2)

where A = {an} is an increasing sequence of positive numbers such that an+1/an ∈

N \ {1}. Note that f1 + f2 /∈ Qs(A) if fj is an aj-periodic function for j = 1, 2

and a1/a2 is irrational. Namely, quasi periodic functions are not in Qs(A). The

Navier-Stokes equations with almost periodic initial data were studied in [10], [11],

[30] and [12]. Kenig, Ponce and Vega studied the KdV with unbounded initial data

in [19], which does not include almost periodic initial data.

In the proof of the local well-posedness results in Hs(T) ([3], [18], [6]), the fol-

lowing argument is crucial. If u is a solution of (1.1) on T, we have the following

conservation law:
∫

T

u(t) dx =

∫

T

f dx = c (1.3)

for any t. Put

v = u− c. (1.4)

Then, v satisfies

vt + 2cvx + vxxx + (v2)x = 0, v(0) = f − c (1.5)

and
∫
T
v(t) dx =

∫
T
v(0) dx = 0. In the proof of the local well-posedness by the

Fourier restriction norm method, the presence of the term 2cvx in (1.5) does not
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make any difference. Therefore, it is enough to study (1.1) under the assumption∫
T
u(t) dx =

∫
T
f dx = 0 when f ∈ Hs(T). When u is a spatially quasi periodic

function, we have the following conservation law instead of (1.3):

lim
M→∞

1

2M

∫ M

−M

u(t) dx = lim
M→∞

1

2M

∫ M

−M

f dx = c

for any t and we can use the same argument as in the case of T above. Therefore, we

assume limM→∞
1

2M

∫M

−M
u(t) dx = limM→∞

1
2M

∫M

−M
f dx = 0 in the present paper.

We assume that N ∈ N, α = (α1, α2, · · · , αN) ∈ RN satisfy α · k 6= 0 for any

k ∈ ŻN where ŻN = ZN \ (0, · · · , 0) throughout the paper. When fj are 2πα−1
j

periodic functions,
∑N

j=1 fj is not a periodic function but a quasi periodic function.

It is a natural question to ask whether the local well-posedness holds or not in a

function space which contains
∑N

j=1 fj with fj ∈ Ḣσj (R/2πα−1
j Z). A quasi periodic

function
∑N

j=1 fj can be written as follows:

N∑

j=1

∑

k∈Ż

f̂j(k) exp(iαjkx)

where f̂j(k) : Ż → C are the Fourier coefficients of fj. Since the KdV equation has a

quadratic term, we need to consider multiplications of functions of the form above.

Therefore, we introduce the following function space.

Definition 1. For σ = (σ1, · · · , σN) ∈ RN and a ∈ R, we define the Banach space

Gσ,a by

Gσ,a =
{
f(x) =

∑

k∈ŻN

f̂(k) exp(iα · kx)
∣∣∣ f̂ : ŻN → C, ‖f‖Gσ,a < ∞

}
(1.6)

where

‖f‖Gσ,a := ‖f̂‖Ĝσ,a :=
∥∥∥ |α · k|a

N∏

j=1

〈kj〉
σj f̂(k)

∥∥∥
l2(ŻN )

, 〈·〉 = (1 + | · |2)1/2.

Note that the series in (1.6) does not converge even in S ′ when σj are small (see

Lemma 5.2). Therefore, we introduce the following notations and assumption.

Definition 2. Let ej be the standard unit vector in RN whose j-th component is

equal to 1 and the others are equal to 0. Put dj = s
N−1

{(1, 1, . . . , 1) − ej}. For

s ∈ R, we define

Λs =
{ N∑

j=1

θjdj ∈ R
N
∣∣∣

N∑

j=1

θj = 1, θj ≥ 0 (1 ≤ j ≤ N)
}
. (1.7)
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Using the fact that Λs is the set of internal dividing points of dj(1 ≤ j ≤ N), we can

easily check that the series in (1.6) converges in S ′ when a ≤ 0 and the following

assumption holds:

(A) s > (N − 1)/2, σ ∈ Λs.

So, we assume (A) throughout the paper (except Lemma 5.2). Here, we give some

remarks on (A), Gσ,a and Λs.

Remark 1.1. If fj ∈ Ḣσj+a(R/2πα−1
j Z), then

∑N
j=1 fj ∈ Gσ,a.

Remark 1.2. If σ ∈ Λs, then
∑N

j=1 σj = s.

Remark 1.3. For simpleness we assume σ1 ≤ σ2 ≤ · · · ≤ σN . Then, (A) is equivalent

to that σ1 ≥ 0 and σ1 + · · ·+ σj > (j − 1)/2 for any j satisfying 2 ≤ j ≤ N .

We rewrite (1.1) into the following integral equation:

u(t) = e−t∂3
xf +

∫ t

0

e−(t−t′)∂3
x∂x(u

2(t′)) dt′. (1.8)

Now, we state our main result.

Theorem 1.1. Assume (A). Then, (1.8) is locally well-posed in Gσ,−1/2.

Remark 1.4. If σ1 = · · · = σN , then (A) is equivalent to σj > 1/2−1/2N . Therefore,

from Remark 1.1, it follows that if r > −1/2N and fj ∈ Ḣr(R/2πα−1
j Z) for 1 ≤ j ≤

N , then
∑N

j=1 fj ∈ Gσ,−1/2 with (A). Note that when N = 1, the lower bound−1/2N

coincides −1/2, which is the critical value to assure that the flow map in Hs(T) is

analytic. In this sense, Theorem 1.1 is a generalization of the local well-posedness

result for the KdV on T by Kenig, Ponce and Vega in [18].

For a more precise statement of this theorem, see Proposition 4.1. The main idea

in the present paper is the definition of Gσ,a and to take a = −1/2. It is known that

a nonlinear interaction between high and very low frequency parts of solutions make

the well-posedness problem difficult in the study of the KdV equation. To avoid this

difficulty, we usually use the transform (1.4) for the periodic case. It is not enough

for the quasi periodic case because the support of Fx[f ](ξ) =
∑

k∈ŻN δ(ξ−α ·k)f̂(k)

can be dense around ξ = 0 when f is quasi periodic. In our proof, it is crucial to

assume Fx[f ](ξ) is very small around ξ = 0. This is the reason why we use the

homogeneous weight function |α · k|a in the definition of Gσ,a and take a = −1/2

(see Remark 5.1). Similar ideas were used for some different problems, for instance,
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for a stochastic KdV equation in [7], for quadratic nonlinear Schrödinger equations

in [23] and for the fifth order KdV equation in [16].

We also prove an ill-posedness result in the sense that the flow map in Gσ,a (if it

exists) is not C2 at the origin under some condition on σ and a, which is related to

the Diophantine problem (see Proposition 5.1). A relation between a Diophantine

condition and the well-posedness of a coupled system of KdV equations is studied

by Oh in [26] and [27]. The method used for the ill-posedness result is introduced

by Bourgain in [4] to prove that the flow map of KdV in Hs(T) (if it exists) with

s < −1/2 can not be C3.

If u is a real valued solution of (1.1) and f is a quasi periodic function, the

following conservation law holds (at least formally):

‖u(t)‖2G0,0 = lim
M→∞

1

2M

∫ M

−M

u2(t) dx = lim
M→∞

1

2M

∫ M

−M

f 2 dx = ‖f‖2G0,0 .

Unfortunately, we can not extend the local solutions obtained in Theorem 1.1 to

global ones by using this conservation law because ‖u(t)‖Gσ,−1/2 with the assumption

(A) can not be bounded by ‖u(t)‖G0,0. On the other hand, for the periodic case,

we have the global well-posedness in Hs(T) with s ≥ −1/2 in [6]. Therefore, we

can easily obtain the following result by combining the global well-posedness in

Hσ1−1/2(R/2πα−1
1 Z) and Theorem 1.1.

Corollary 1.2. Assume (A). Let r > 0 and T > 0. Then there exists ε = ε(r, T ) >

0 which satisfies the following: if initial data f ∈ Gσ,−1/2 satisfies f = g + h,

g ∈ Br(H
σ1−1/2(R/2πα−1

1 Z)), h ∈ Bε(G
σ,−1/2) and g is real valued, then the solution

of (1.8) obtained in Theorem 1.1 can be extended on t ∈ [−T, T ].

The main tool of the proof of Theorem 1.1 is the Fourier restriction norm method.

We define the Fourier restriction norm as follows:

Zσ,a = {u(t) ∈ S ′(R : Gσ,a) | ‖u‖Zσ,a < ∞},

‖u‖Zσ,a = ‖u‖Xσ,a,1/2 + ‖u‖Y σ,a,0,

‖u‖Xσ,a,b = ‖〈τ + (α · k)3〉
b
ũ‖Ĝσ,aL2

τ
,

‖u‖Y σ,a,b = ‖〈τ + (α · k)3〉
b
ũ‖Ĝσ,aL1

τ
,

where ũ = Ftû. Note that Zσ,a is continuously embedded in Ct(R : Gσ,a).

In the proof of Theorem 1.1, the following bilinear estimates play an important

role.
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Proposition 1.3. Assume (A). Let T > 0. Then, there exists ε > 1/8 such that

the following estimates hold for any u, v satisfying supp u, supp v ⊂ [−T, T ]× R:

‖(uv)x‖Xσ,−1/2,−1/2 . T ε‖u‖Xσ,−1/2,1/2‖v‖Xσ,−1/2,1/2 , (1.9)

‖(uv)x‖Y σ,−1/2,−1 . T ε‖u‖Xσ,−1/2,1/2‖v‖Xσ,−1/2,1/2 . (1.10)

Finally, we give some notations. We will use A . B to denote an estimate of the

form A ≤ CB for some constant C and write A ∼ B to mean A . B and B . A.

Implicit constants may depend on σ, b, α and N . For a Banach space X , We define

Br(X) = {f ∈ X | ‖f‖X ≤ r}. Let χ(t) be a smooth function such that χ(t) = 1

for |t| < 1 and χ(t) = 0 for |t| > 2 and χT (t) = χ(t/T ). Ft (resp. Fx) is the

Fourier transform with respect to t (resp. x). The rest of this paper is planned as

follows. In Section 2, we give some notations and preliminary lemmas. In Section

3, we prove bilinear estimates. In Section 4, we prove Theorem 1.1 and Corollary

1.2. In Section 5, we prove an ill-posedness result.
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2. preliminary lemmas

Lemma 2.1. Assume (A). Let a ∈ R, ε > ε′ > 0 and T > 0. Then, it follows that

‖u‖Xσ,a,1/2−ε . T ε′‖u‖Xσ,a,1/2 (2.1)

for any u satisfying supp u ⊂ [−T, T ]× R.

Proof. Let supp g(t) ⊂ [−T, T ]. Then, by the Plancherel theorem and the triangle

inequality, we have

‖g‖H1/2−ε = ‖χTg‖H1/2−ε . ‖(〈τ〉1/2−ε|FχT |) ∗ |Fg|‖L2
τ
+ ‖|FχT | ∗ (〈τ〉

1/2−ε|Fg|)‖L2
τ

By the Young inequality and the direct calculation, the first term is bounded by

‖〈τ〉1/2−εFχT‖Lp
τ
‖Fg‖Lq

τ
. T ε′‖〈τ〉1/2Fg‖L2

τ
,



KDV WITH QUASI PERIODIC INITIAL DATA 7

where 1/p = ε− ε′+1/2 and 1/q = 1− ε+ ε′. In the same manner, the second term

is bounded by

‖FχT‖Lp
τ
‖〈τ〉1/2−εFg‖Lq

τ
. T ε′‖〈τ〉1/2Fg‖L2

τ
,

where 1/p = 1− ε′ and 1/q = ε′ + 1/2. Therefore, we obtain

‖u‖Xσ,a,1/2−ε = ‖〈∂t〉
1/2−ε exp(−t∂3

x)u‖Gσ,aL2
t

. T ε′‖〈∂t〉
1/2 exp(−t∂3

x)u‖Gσ,aL2
t
= T ε′‖u‖Xσ,a,1/2.

�

Lemmas 2.2, 2.3 are variants of the Sobolev inequality.

Lemma 2.2. (i) Let min1≤j≤N{σj} > 1/2. Then, it follows that

‖uv‖Gσ,0 . ‖u‖Gσ,0‖v‖Gσ,0. (2.2)

(ii) Let σ1 = 0,min2≤j≤N{σj} > 1/2 and a > 1/4. Then, it follows that
∥∥∥

∑

k′∈ŻN ,k′ 6=k

〈|α · k||α · (k − k′)||α · k′|〉
−a
|û(k − k′)||v̂(k′)|

∥∥∥
Ĝσ,0

. ‖u‖Gσ,0‖v‖Gσ,0.

(2.3)

Proof. By the Schwarz inequality, we have

‖uv‖2Gσ,0 ≤
∑

k∈ŻN

N∏

j=1

〈kj〉
2σj

∣∣∣
∑

k′∈ŻN , k′ 6=k

û(k − k′)v̂(k′)
∣∣∣
2

≤ C1(σ)
∑

k∈ŻN

∑

k′∈ŻN , k′ 6=k

N∏

j=1

〈kj − k′
j〉

2σj〈k′
j〉

2σj

∣∣∣û(k − k′)v̂(k′)
∣∣∣
2

≤ C1(σ)‖u‖
2
Gσ,0‖v‖2Gσ,0,

where

C1(σ) = sup
k∈ŻN

∑

k′∈ŻN , k′ 6=k

N∏

j=1

〈kj〉
2σj〈kj − k′

j〉
−2σj〈k′

j〉
−2σj .

Since C1(σ) < ∞, we obtain (2.2). Put

F (k) =
∑

k′∈ŻN , k′ 6=k

〈|α · k||α · (k − k′)||α · k′|〉
−a
|û(k − k′)||v̂(k′)|,

F1(k) = F (k)
∣∣
|α·k|≥1

, F2(k) = F (k)
∣∣
|α·k|<1

.

In the same manner as the proof of (2.2), we obtain

‖F1‖Ĝσ,0 . ‖u‖Gσ,0‖v‖Gσ,0 (2.4)
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since

C2(σ, a)

= sup
|α·k|≥1

∑

k′∈ŻN , k′ 6=k

〈|α · k||α · (k − k′)||α · k′|〉
−2a

N∏

j=2

〈kj〉
2σj〈kj − k′

j〉
−2σj〈k′

j〉
−2σj

.
∑

k′∈ŻN , k′ 6=k

〈|α · (k − k′)||α · k′|〉
−2a

N∏

j=2

min{〈kj − k′
j〉, 〈k

′
j〉}

−2σj < ∞.

Because #{k1 ∈ Z | |α · k| < 1} ∼ 1 for any (k2, · · · , kN) ∈ ZN−1, we have

‖F2‖
2
Ĝσ,0 .

∑

k∈ŻN

N∏

j=2

〈kj〉
2σj

( ∑

k′∈ŻN , k′ 6=k

|û(k − k′)||v̂(k′)|
)2∣∣∣

|α·k|<1

. sup
k1∈Z

∑

(k2,··· ,kN )∈ZN−1

N∏

j=2

〈kj〉
2σj

( ∑

k′∈ŻN , k′ 6=k

|û(k − k′)||v̂(k′)|
)2

.

(2.5)

By the Schwarz inequality, we have
( ∑

k′∈ZN , k′ 6=k

|û(k − k′)||v̂(k′)|
)2

.
( ∑

(k′2,··· ,k
′

N )∈ZN−1

‖û(k − k′)‖l2
k′1

‖v̂(k′)‖l2
k′1

)2

.
∑

(k′2,··· ,k
′

N )∈ZN−1

N∏

j=2

〈kj − k′
j〉

−2σ
〈k′

j〉
−2σj

×
∑

(k′2,··· ,k
′

N )∈ZN−1

( N∏

j=2

〈kj − k′
j〉

2σ
〈k′

j〉
2σj

)
‖û(k − k′)‖2l2

k′1

‖v̂(k′)‖2l2
k′1

.

(2.6)

Here we have

sup
(k2,··· ,kN )∈ZN−1

∑

(k′2,··· ,k
′

N )∈ZN−1

N∏

j=2

〈kj〉
2σj〈kj − k′

j〉
−2σj〈k′

j〉
−2σj . 1. (2.7)

Therefore, from (2.5)–(2.7), we obtain

‖F2‖
2
Ĝσ,0

.
∑

(k2,··· ,kN )∈ZN−1

∑

(k′2,··· ,k
′

N )∈ZN−1

( N∏

j=2

〈kj − k′
j〉

2σj 〈k′
j〉

2σj

)
‖û(k − k′)‖2l2

k′
1

‖v̂(k′)‖2l2
k′
1

. ‖u‖2Gσ,0‖v‖2Gσ,0.

(2.8)

Collecting (2.4) and (2.8), we obtain (2.3). �



KDV WITH QUASI PERIODIC INITIAL DATA 9

Lemma 2.3. Let A,B,C ∈ R,min{a, b, c} ≥ 0,min{a + b, b + c, c + a} > 1/2 and

a+ b+ c > 1. Then, it follows that

‖〈·+ A〉−af ∗ g‖L1 . ‖〈·+B〉bf‖L2‖〈·+ C〉cg‖L2 (2.9)

where the implicit constant depends only on a, b and c.

Proof. (2.9) is equivalent to

‖

∫
〈τ + A〉−a〈τ − τ ′ +B〉

−b
f(τ − τ ′)〈τ ′ + C〉

−c
g(τ ′) dτ ′‖L1 . ‖f‖L2‖g‖L2

By using the Schwarz inequality, the left hand-side is bounded by

‖〈τ + A〉−a〈τ − τ ′ +B〉
−b
〈τ ′ + C〉

−c
‖L2

τL
2
τ ′
‖f(τ − τ ′)g(τ ′)‖L2

τL
2
τ ′
. ‖f‖L2‖g‖L2.

Here, we used
∫ ∫

〈τ + A〉−2a〈τ − τ ′ +B〉
−2b

〈τ ′ + C〉
−2c

dτ ′dτ ≤ C

where the constant depends only on a, b and c. �

Lemma 2.4. Let τ, τ ′ ∈ R, k, k′ ∈ ZN . Then, it follows that

M : = max{|τ + (α · k)3|, |τ − τ ′ + (α · (k − k′))3|, |τ ′ + (α · k′)3|}

& |α · k||α · (k − k′)||α · k′|.
(2.10)

The proof of Lemma 2.4 follows from the triangle inequality and a3−(a−b)3−b3 =

3ab(a− b). The following lemmas are standard tools of the Fourier restriction norm.

For the proofs, see e.g. [14].

Lemma 2.5. Assume (A). Let a ∈ R. Then, for any f , it follows that

‖χ(t)e−t∂3
xf‖Zσ,a . ‖f‖Gσ,a.

Lemma 2.6. Assume (A). Let a ∈ R. Then, for any F , it follows that

‖χ(t)

∫ t

0

e−(t−t′)∂3
xF (t′) dt′‖Zσ,a . ‖F‖Xσ,a,−1/2 + ‖F‖Y σ,a,−1.

3. proof of the bilinear estimates

Our aim in this section is to prove Proposition 1.3. The proof of the following

lemma is almost similar to that of Theorem 1.2 in [18]. The difference is the presence

of P,Q. It is crucial that the implicit constant in (3.1) does not depend on P,Q to

apply Lemma 3.1 for the proof of Lemma 3.2.
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Lemma 3.1. Let α1 6= 0 and b > 3/8. Then, the following estimate holds for any

P,Q ∈ R and any functions ũ(τ, k1), ṽ(τ, k1) on R× Z:

‖|ũ| ∗τ,k1 |ṽ|‖ℓ2k1L
2
τ

. ‖〈τ + (α1k1 + P )3〉
b
ũ(τ, k1)‖ℓ2k1L

2
τ
‖〈τ + (α1k1 +Q)3〉

b
ũ(τ, k1)‖ℓ2k1L

2
τ
,

(3.1)

where the implicit constant depends only on α1 and b.

Proof. We first consider the region A =
{
k1 ∈ Z

∣∣ 3α2
1|α1k1+P +Q| > 1

}
. Applying

the Schwartz inequality, we have

|ũ| ∗τ,k1 |ṽ| . I(τ, k1)
1/2

(
〈τ + (α1k1 + P )3〉

2b
|ũ|2 ∗τ,k1 〈τ + (α1k1 +Q)3〉

2b
|ṽ|2

)1/2

where

I(τ, k1) = 〈τ + (α1k1 + P )3〉
−2b

∗τ,k1 〈τ + (α1k1 +Q)3〉
−2b

.

If we have

sup
τ∈R,k1∈A

I(τ, k1) . 1, (3.2)

then we obtain

‖|ũ| ∗τ,k1 |ṽ|‖ℓ2k1(A)L2
τ

. ‖(〈τ + (α1k1 + P )3〉
2b
|ũ|2) ∗τ,k1 (〈τ + (α1k1 +Q)3〉

2b
|ṽ|2)‖

1/2

ℓ1k1
L1
τ

. ‖〈τ + (α1k1 + P )3〉
b
ũ‖ℓ2k1L

2
τ
‖〈τ + (α1k1 +Q)3〉

b
ṽ‖ℓ2k1L

2
τ

from the Young inequality. Therefore, we have only to check (3.2). Since 〈τ + β〉−2b∗τ

〈τ + γ〉−2b
. 〈τ + β + γ〉min{1−4b,−2b}, we have

I(τ, k1) .
∑

k′1∈Z

〈τ + (α1k
′
1 +Q)3 + (α1(k1 − k′

1) + P )3〉
min{1−4b,−2b}

.

Note that

τ + (α1k
′
1 +Q)3 + (α1(k1 − k′

1) + P )3

=τ + 3α2
1(α1k1 + P +Q)k′2

1 + Γ(α1, k1, k
′
1, P, Q),

and the order of Γ(α1, k1, k
′
1, P, Q) with respect to k′

1 is less than 2. Because min{1−

4b,−2b} < −1/2, we obtain (3.2).
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Next, we consider the region Ac = {k1 ∈ Z | 3α2
1|α1k1 + P + Q| ≤ 1}. Since

#Ac ∼ α−3
1 , it follows that

‖|ũ| ∗τ,k1 |ṽ|‖ℓ2k1(A
c)L2

τ
. α−3

1 sup
k1∈Z

∥∥∥
∑

k′1

|ũ(τ, k1 − k′
1)| ∗τ |ṽ(τ, k

′
1)|

∥∥∥
L2
τ

. α−3
1 sup

k1∈Z

∑

k′1

∥∥∥|ũ(τ, k1 − k′
1)| ∗τ |ṽ(τ, k

′
1)|

∥∥∥
L2
τ

.
(3.3)

Applying the Schwartz inequality, we have

|ũ(τ, k1 − k′
1)| ∗τ |ṽ(τ, k

′
1)|

. J(τ, k, k′
1)

1/2
(
(〈τ + (α1(k1 − k′

1) + P )3〉
2b
|ũ(τ, k1 − k′

1)|
2)

∗τ (〈τ + (α1k
′
1 +Q)3〉

2b
|ṽ(τ, k′

1)|
2)
)1/2

(3.4)

where

J(τ, k1, k
′
1) = 〈τ + (α1(k1 − k′

1) + P )3〉
−2b

∗τ 〈τ + (α1k
′
1 +Q)3〉

−2b
.

Obviously,

sup
τ∈R,k1∈Z,k′1∈A

c

J(τ, k1, k
′
1) . 1. (3.5)

Therefore, from (3.3)–(3.5), we obtain

‖|ũ| ∗τ,k1 |ṽ|‖ℓ2k1(A
c)L2

τ

. α−3
1 sup

k1∈Z

∑

k′1

∥∥∥〈τ + (α1(k1 − k′
1) + P )3〉

2b
|ũ(τ, k1 − k′

1)|
2

∗τ 〈τ + (α1k
′
1 +Q)3〉

2b
|ṽ(τ, k′

1)|
2
∥∥∥
1/2

L1
τ

. α−3
1 sup

k1∈Z

∑

k′1

∥∥∥〈τ + (α1(k1 − k′
1) + P )3〉

b
|ũ(τ, k1 − k′

1)|
∥∥∥
L2
τ

×
∥∥∥〈τ + (α1k

′
1 +Q)3〉

b
|ṽ(τ, k′

1)|
∥∥∥
L2
τ

. α−3
1 ‖〈τ + (α1k1 + P )3〉

b
ũ(τ, k1)‖ℓ2k1L

2
τ
‖〈τ + (α1k1 +Q)3〉

b
ũ(τ, k1)‖ℓ2k1L

2
τ
.

�

Lemma 3.2. Assume (A) and b > 3/8. Then, the following bilinear estimates hold:

‖uv‖Xσ,0,0 . ‖u‖Xσ,0,b‖v‖Xσ,0,b, (3.6)

‖uv‖Xσ,0,−b . ‖u‖Xσ,0,b‖v‖Xσ,0,0, (3.7)

‖uv‖Y σ,0,−1/2 . ‖u‖Xσ,0,b‖v‖Xσ,0,b, (3.8)
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Proof. Since σ is an internal dividing point of sdj/(N − 1), we have the estimates

for general σ by interpolating among the estimates for σ = sdj/(N − 1) with j =

1, · · · , N . By symmetry, we have only to consider the case σ = sd1/(N−1), namely,

σ1 = 0, σ2 = · · · = σN = s/(N − 1) > 1/2.

We first prove (3.6). The left hand-side of (3.6) is bounded by

∥∥∥
N∏

j=2

〈kj〉
σj

∑

k′∈ŻN , k′ 6=k

∫
|ũ(τ − τ ′, k − k′)||ṽ(τ ′, k′)|dτ ′

∥∥∥
ℓ2kL

2
τ

.

∥∥∥
N∏

j=2

〈kj〉
σj

∑

k′2···k
′

N

∥∥∥
∑

k′1

∫
|ũ(τ − τ ′, k − k′)||ṽ(τ ′, k′)|dτ ′

∥∥∥
ℓ2k1

L2
τ

∥∥∥
ℓ2k2···kN

.

Applying Lemma 3.1 with P =
∑N

j=2 αj(kj − k′
j), Q =

∑N
j=2 αjkj and (2.2) with

respect to k2, · · · , kN variables, we obtain (3.6).

By the duality argument, (3.7) is equivalent to

‖uv‖X−σ,0,0 . ‖u‖Xσ,0,b‖v‖X−σ,0,b,

which is obtained in the same manner as the proof of (3.6) if we apply the duality

of (2.2):

‖uv‖G−σ,0 . ‖u‖Gσ,0‖v‖G−σ,0

instead of (2.2).

Finally, we prove (3.8). Divide R× ŻN × R× ŻN into the following three parts:

Ω1 =
{
(τ, k, τ ′, k′)

∣∣ |τ + (α · k)3| ≥ max{|τ ′ + (α · k′)3)|, |τ − τ ′ + (α · (k − k′))3|}
}

Ω2 =
{
(τ, k, τ ′, k′)

∣∣ |τ ′ + (α · k′)3| ≥ max{|τ + (α · k)3)|, |τ − τ ′ + (α · (k − k′))3|}
}
,

Ω3 =
{
(τ, k, τ ′, k′)

∣∣ |τ − τ ′ + (α · (k − k′))3| ≥ max{|τ ′ + (α · k′)3)|, |τ + (α · k)3|}
}
.

Put

F̃j(u, v) =
∑

k′∈ŻN , k′ 6=k

∫
|ũ(τ − τ ′, k − k′)||ṽ(τ ′, k′)|1Ωj

dτ ′ (3.9)

for j = 1, 2, 3 where

1Ω(τ, k, τ
′, k′) =




1 when (τ, k, τ ′, k′) ∈ Ω,

0 otherwise.

Then, we have

‖uv‖Y σ,0,−1/2 .

3∑

j=1

‖Fj(u, v)‖Y σ,0,−1/2 .
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By symmetry, we have only to estimate ‖Fj(u, v)‖Y σ,0,−1/2 for j = 1, 2.

In Ω1, it follows that |τ + (α · k)3| & |α · k||α · (k − k′)||α · k′| from Lemma 2.4.

Therefore, we have

‖F1(u, v)‖Y σ,0,−1/2 .
∥∥∥〈τ + (α · k)3〉

b−5/8
∑

k′

∫
〈|α · k||α · (k − k′)||α · k′|〉

1/8−b

×|ũ(τ − τ ′, k − k′)||ṽ(τ ′, k′)| dτ ′
∥∥∥
Ĝσ,0L1

τ

,

which is bounded by
∥∥∥
∑

k′

〈|α · k||α · (k − k′)||α · k′|〉
1/8−b

× ‖〈τ + (α · (k − k′))3〉
b
ũ(τ, k − k′)‖L2

τ
‖〈τ + (α · k′)3〉

b
ṽ(τ, k′)‖L2

τ

∥∥∥
Ĝσ,0

. ‖u‖Xσ,0,b‖v‖Xσ,0,b

from Lemma 2.3 and Lemma 2.2.

In Ω2, it follows that |τ ′ + (α · k′)3| ≥ |τ + (α · k)3)|. Take ε > 0, b′ > 3/8 such

that b > b′ + ε. Then, we have

‖F3(u, v)‖Y σ,0,−1/2 ≤ ‖〈τ + (α · k)3〉
−1/2−ε

(|ũ| ∗τ,k 〈τ + (α · k)3〉
ε
|ṽ|)‖Ĝσ,0L1

τ

. ‖|ũ| ∗τ,k 〈τ + (α · k)3〉
ε
|ṽ|‖Ĝσ,0L2

τ

. ‖u‖Xσ,0,b′‖v‖Xσ,0,b′+ε.

Here, we used the Schwartz inequality in the second line and (3.6) in the final

line. �

Proof of Proposition 1.3. First, we prove (1.9). By symmetry and the decomposition

(3.9), we have only to prove

‖Fj(u, v)(τ, k)‖Xσ,1/2,−1/2 . T ε‖u‖Xσ,−1/2,1/2‖v‖Xσ,−1/2,1/2 (3.10)

for j = 1, 2. In Ω1, it follows that 〈τ + (α · k)3〉
−1/2

|α · k|1/2 . |α · k′|−1/2|α · (k −

k′)|−1/2. Therefore, for any b > 3/8, the left-hand side of (3.10) with j = 1 is

bounded by

‖(|α · k|−1/2|ũ|) ∗ (|α · k|−1/2|ṽ|)‖Xσ,0,0 . ‖u‖Xσ,−1/2,b‖v‖Xσ,−1/2,b

where we used (3.6). From Lemma 2.1, we obtain (3.10) with j = 1. In Ω2, it

follows that |α · k|1/2 . 〈τ ′ + (α · k′)3〉
1/2

|α · k′|−1/2|α · (k − k′)|−1/2. Therefore, for

any b > 3/8, the left-hand side of (3.10) with j = 2 is bounded by

‖(|α · k|−1/2|ũ|) ∗τ,k (|α · k|−1/2|τ ′ + (α · k′)|1/2|ṽ|)‖Xσ,0,−1/2

. ‖u‖Xσ,−1/2,b‖v‖Xσ,−1/2,1/2
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where we used (3.7). From Lemma 2.1, we obtain (3.10) with j = 2.

Next, we prove (1.10). By symmetry and the decomposition (3.9), we have only

to prove

‖Fj(u, v)(τ, k)‖Y σ,1/2,−1 . T ε‖u‖Xσ,−1/2,1/2‖v‖Xσ,−1/2,1/2 (3.11)

for j = 1, 2. In Ω1, it follows that 〈τ + (α · k)3〉
−1/2

|α · k|1/2 . |α · k′|−1/2|α · (k −

k′)|−1/2. Therefore, for any b > 3/8, the left-hand side of (3.11) with j = 1 is

bounded by

‖(|α · k|−1/2|ũ|) ∗τ,k (|α · k|−1/2|ṽ|)‖Y σ,0,−1/2 . ‖u‖Xσ,−1/2,b‖v‖Xσ,−1/2,b

where we used (3.8). From Lemma 2.1, we obtain (3.11) with j = 1. In Ω2, it

follows that |α · k|1/2 . 〈τ ′ + (α · k′)3〉
1/2

|α · k′|−1/2|α · (k − k′)|−1/2. Therefore, for

any 1/2 > b > 3/8 the left-hand side of (3.11) with j = 2 is bounded by

‖(|α · k|−1/2|ũ|) ∗τ,k (|α · k|−1/2|τ + (α · k)3|1/2|ṽ|)‖Y σ,0,−1

. ‖(|α · k|−1/2|ũ|) ∗τ,k (|α · k|−1/2|τ + (α · k)3|1/2|ṽ|)‖Xσ,0,−b

. ‖u‖Xσ,−1/2,b‖v‖Xσ,−1/2,1/2

where we used the Schwarz inequality with respect to τ in the second line and (3.7)

in the final line. From Lemma 2.1, we obtain (3.11) with j = 2.

�

4. well-posedness results

In this section, we give outlines of the proofs of the local well-posedness result

below and Corollary 1.2.

Proposition 4.1. Assume (A).

(Existence) Let 0 < θ < 1/8. For any r > 0, there exists T ∼ min{r−1/θ, 1} which

satisfies the following: for any f ∈ Br(G
σ,−1/2), there exists u ∈ C([−T, T ];Gσ,−1/2)∩

Zσ,−1/2 satisfying (1.8) on t ∈ [−T, T ]. Moreover, the flow map, f ∈ Br(G
σ,−1/2) 7→

u ∈ C([−T, T ];Gσ,−1/2) ∩ Zσ,−1/2 is Lipschitz continuous.

(Uniqueness) If u, v ∈ C([−T, T ];Gσ,−1/2) ∩ Zσ,−1/2 satisfy (1.8) on t ∈ [−T, T ],

then u(t) = v(t) on t ∈ [−T, T ].

We can prove this proposition by the standard method of the Fourier restriction

norm method (see e.g. [14], [18]). Therefore, we describe only the proof of the

existence.
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Proof. Put

M(u) = χ(t)e−t∂3
xf + χ(t)

∫ t

0

e−(t−t′)∂3
x∂x(χT (t

′)u(t′))2 dt′.

We shall show M is a contraction on BC0(Z
σ,−1/2) where C0 > 0 is to be determined

later. Then, we have a solution of u = M(u) by the fixed point argument, which

satisfy (1.8) on t ∈ [−T, T ]. From Lemma 2.5, we have

‖χ(t)e−t∂3
xf‖Zσ,−1/2 . ‖f‖Gσ,−1/2.

From Lemma 2.6 and Proposition 1.3, we have

‖χ(t)

∫ t

0

e−(t−t′)∂3
x∂x(χT (t

′)u(t′))2 dt′‖Zσ,−1/2 . T θ‖χTu‖
2
Zσ,−1/2 . T θ‖u‖2Zσ,−1/2.

Combining them, we obtain

‖Mu‖Zσ,−1/2 ≤ C‖f‖Gσ,−1/2 + CT θ‖u‖2Zσ,−1/2

≤ 2Cr

if u ∈ BC0(Z
σ,−1/2), C0 = 2Cr and T ≤ (4C2r)−1/θ. We conclude that M is a map

from BC0(Z
σ,−1/2) to itself. In the same manner, we have

‖M(u− v)‖Zσ,−1/2 ≤ CT θ‖u− v‖Zσ,−1/2‖u+ v‖Zσ,−1/2

≤ 1/2‖u− v‖Zσ,−1/2

for u, v ∈ BC0(Z
σ,−1/2). �

Here, we introduce the localized norm of Zσ,a;

‖u‖Zσ,a
[t1,t2]

= {inf ‖v‖Zσ,a | v = u on [t1, t2]}.

Outline of the proof of Corollary 1.2. In Theorem 2 in [6], a priori estimate and

global well-posedness for (1.8) with real valued initial data in Ḣσ1−1/2(R \ 2πα−1
j Z)

have been proved. Therefore, there exist C∗ = C∗(T, r), δ = δ(T, r) and 1/8 > θ > 0

satisfying

sup
t∈[−T,T ]

‖v(t)‖Gσ,−1/2 = sup
t∈[−T,T ]

‖v(t)‖Hσ1−1/2 ≤ C∗,

0 < δθ << C−1
∗ , sup

−k+1≤j≤k
‖v‖

Z
σ,−1/2
[(j−1)δ,jδ]

< C∗, k := T/δ ∈ N

for the solution v of (1.8) with initial data g. Since we have the local well-posedness

in Gσ,−1/2 and the existence time of solutions depends only on the size of the norm
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of initial data, we only need to prove the following a priori estimate: for sufficiently

small ε > 0, the solution u of (1.8) satisfies

sup
t∈[−T,T ]

‖u(t)‖Gσ,−1/2 ≤ 2C∗.

For that pourpose, put w = u− v and we will show

sup
t∈[−T,T ]

‖w(t)‖Gσ,−1/2 ≤ Cε < C∗ (4.1)

where ε > is to be determined later. For simpleness we consider only 0 ≤ t ≤ T . w

satisfies the following integral equation:

w(t) = e−t∂3
xw((j − 1)δ) +

∫ t

(j−1)δ

e−(t−t′)∂3
x∂x(w(t

′)(w(t′) + 2v(t′))) dt′.

Therefore, if we have

‖w((j − 1)δ)‖Gσ,−1/2 ≤ Cj−1ε < C∗,

then we obtain

sup
(j−1)δ≤t≤jδ

‖w(t)‖ ≤ C‖w‖
Z

σ,−1/2
[(j−1)δ,jδ]

≤ C‖w((j − 1)δ)‖Gσ,−1/2 < Cjε

in the same manner as the proof of Proposition 4.1 because δθ‖w+2v‖
Z

σ,−1/2
[(j−1)δ,jδ]

<< 1.

We can iterate this argument until j = k if we take ε sufficiently small such that

sup1≤j≤k Cjε << C∗. �

5. ill-posedness results

Let µ ∈ R, ρ ∈ R and K > 0. We say that µ is a number of type (K, ρ) if for any

integers p and q 6= 0,

∣∣∣µ−
p

q

∣∣∣ ≥ K

|q|2+ρ
.

Note that almost every µ ∈ R is a number of type (K, ρ) for some K > 0 when

ρ > 0 by Lemma 3 on p. 114 of [1]. By Dirichlet’s Theorem (see, e.g. Theorem 1A

on p. 34 of [28]), if µ ∈ R is a number of type (K, ρ) for some K > 0, then ρ ≥ 0.

We define ρµ by

ρµ = inf {ρ ≥ 0 |µ is a number of type (K, ρ) for someK > 0}

as in [26].

For simplicity, we consider only the case N = 2.
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Proposition 5.1. Assume that µ = α1/α2, a > (2min{σ1, σ2}−min{1, ρµ})/(1+ρµ)

and min{σ1, σ2}+ a ≥ −2. Let r > 0, 1 > T > 0. Then, the flow map of (1.8) from

initial data f ∈ Br(G
σ,a) to a solution u ∈ C([−T, T ] : Gσ,a) (if it exists) cannot be

C2 differentiable at the origin.

Remark 5.1. When σ2 = 0, ρµ = 1, the assumption on a in Proposition 5.1 is

a > −1/2. This is the reason why we take a = −1/2 in Theorem 1.1.

Proof. By symmetry, we assume σ1 ≤ σ2. We assume that the flow map is C2 and

u(γ, t, x) is the solution of (1.8) with initial data γf where γ > 0. Then, following

the argument in [29] (see also [4]), we have

∂u

∂γ
(0, t, x) = e−t∂3

xf(x) := u1(t, x),

∂2u

∂γ2
(0, t, x) =

∫ t

0

e−(t−t′)∂3
x∂x(u1(t

′, x))2 dt′ := u2(t, x).

We only need to show that

‖u2(t, x)‖Gσ,a . ‖f‖2Gσ,a

fails. From the definition of ρµ, for any ε > 0, we have the following:

(i) There exists K > 0 such that

∣∣∣α1

α2

−
p

q

∣∣∣ ≥ K

|q|2+ρµ+ε
(5.1)

holds for any integers p and q 6= 0.

(ii) For any n ∈ N, there exists (pn, qn) ∈ Z2 such that

∣∣∣α1

α2
−

pn
qn

∣∣∣ ≤ n−1

|qn|2+ρµ−ε
. (5.2)

Note that, from (5.2), it follows that pn ∼ qn → ∞ as n → ∞ if ε is sufficiently

small. Put

f̂n(k) = |qn|
−a−σ11(−qn,0)(k) + |α1qn − α2pn|

−a|qn|
−σ1 |pn|

−σ21(qn,−pn)(k)

where 1(a,b)(k) = 1 for k = (a, b) and 1(a,b)(k) = 0 otherwise.

Then,

‖fn‖
2
Gσ,a ∼ 1.
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We shall show that ‖u2(t, x)‖Gσ,a → ∞ as n → ∞. Put ϕα(k, k
′) = 3(α ·k)(α ·k′)(α ·

(k − k′)). Then,

êt∂3
xu2(t, k) = i

∫ t

0

∑

k′∈ŻN

e−it′ϕα(k,k′)(α · k)f̂n(k − k′)f̂n(k
′) dt′

= I1 + I2 + I3

where

I1 = −2i

∫ t

0

e−it′ϕα((0,−pn),(qn,−pn)) dt′

× (α2pn)|α1qn − α2pn|
−a|qn|

−a−2σ1 |pn|
−σ21(0,−pn)(k),

I2 = −2i

∫ t

0

e−it′ϕα((−2qn,0),(−qn,0)) dt′(α1qn)|qn|
−2a−2σ11(−2qn,0)(k),

I3 = 2i

∫ t

0

e−it′ϕα((2qn,−2pn),(qn,−pn)) dt′

× (α1qn − α2pn)|α1qn − α2pn|
−2a|qn|

−2σ1 |pn|
−2σ21(2qn,−2pn)(k).

We shall use the following inequality to estimate the integral with respect to t′

1

〈y〉
& sup

t∈[−T,T ]

∣∣∣
∫ t

0

e−it′y dt′
∣∣∣ & T

〈y〉
.

First, we estimate supt∈[−T,T ] ‖I1‖Gσ,a. Since |qn|
−ρµ−1+ε & |α1qn−α2pn| & |qn|

−ρµ−1−ε,

we have

sup
t∈[−T,T ]

‖I1‖Gσ,a & T
|α1qn − α2pn|

−a|qn|
−a−2σ1 |pn|

a+1

〈|α1qn − α2pn||qn||pn|〉

& T min{|qn|
a(ρµ+1±ε)−2σ1+1, |qn|

(a+1)(ρµ+1±ε)−2σ1−1},

which goes to ∞ for sufficiently small ε > 0.

Obviously, we have

sup
t∈[−T,T ]

‖I2‖Gσ,a .
|qn|

−a−σ1+1

〈|qn|3〉
∼ |qn|

−a−σ1−2 . 1.

Finally, we estimate supt∈[−T,T ] ‖I3‖Gσ,a.

sup
t∈[−T,T ]

‖I3‖Gσ,a .
|α1qn − α2pn|

−a+1|qn|
−σ1 |pn|

−σ2

〈|α1qn − α2pn|3〉

<< sup
t∈[−T,T ]

‖I1‖Gσ,a.

Therefore, we conclude ‖u2(t, x)‖Gσ,a → ∞. �

Finally we prove the following lemma to show that the condition s > (N − 1)/2

in (A) is necessary to assure that the series in (1.6) converges in S ′.
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Lemma 5.2. Let a ∈ R, σj ≥ 0 for all 0 ≤ j ≤ N and
∑N

j=1 σj ≤ (N − 1)/2. Then

there exists {fn} ⊂ Gσ,a which satisfies the following:

(i) supn ‖fn‖Gσ,a . 1

(ii) for some ϕ ∈ D, 〈fn,F
−1
ξ [ϕ]〉 = 〈Fx[fn], ϕ〉 → ∞ as n → ∞

Proof. Put

An = {x ∈ R
N | 〈x〉 ≤ n and 2|αN | ≤ |α · x| ≤ 4|αN |},

f̂n(k) =




〈k〉1−N (log 〈k〉)−1, when k ∈ ZN ∩An

0, otherwise.

Let ϕ(ξ) ∈ D such that ϕ(ξ) = 1 for 2|αN | ≤ ξ ≤ 4|αN | and ϕ(ξ) = 0 for ξ ≤ |αN |

or ξ ≥ 5|αN |. We have the following relation between the Fourier transform and the

Fourier coefficient

Fx[fn](ξ) =
∑

k∈ŻN

δ(ξ − α · k)f̂n(k).

Therefore, we have

〈Fx[fn], ϕ〉 ∼
∑

k∈ŻN∩An

〈k〉1−N (log 〈k〉)−1 → ∞,

and

‖fn‖
2
Gσ,a ∼ |αN |

2a
∑

k∈ŻN∩An

〈k〉2(1−N)(log 〈k〉)−2
N∏

j=1

〈kj〉
2σj

.
∑

k∈ŻN∩AN

〈k〉1−N (log 〈k〉)−2 . 1.

Here we used

lim
n→∞

∫

An

1

〈x〉N−1 log 〈x〉
dx ∼ C(αN)

∫

RN−1

1

〈x〉N−1 log 〈x〉
dx = ∞

and

sup
n

∫

An

1

〈x〉N−1(log 〈x〉)2
dx ∼ C(αN)

∫

RN−1

1

〈x〉N−1(log 〈x〉)2
dx . 1.

�
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