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Abstract

Motivated by recent interest for multi-agent systems and smart power grid architectures, we discuss

the synchronization problem for the network-reduced model of a power system with non-trivial transfer

conductances. Our key insight is to exploit the relationship between the power network model and

a first-order model of coupled oscillators. Assuming overdamped generators (possibly due to local

excitation controllers), a singular perturbation analysis shows the equivalence between the classic swing

equations and a non-uniform Kuramoto model. Here, non-uniform Kuramoto oscillators are characterized

by multiple time constants, non-homogeneous coupling, and non-uniform phase shifts. Extending methods

from transient stability, synchronization theory, and consensus protocols, we establish sufficient conditions

for synchronization of non-uniform Kuramoto oscillators. These conditions reduce to and improve upon

previously-available tests for the standard Kuramoto model. Combining our singular perturbation and

Kuramoto analyses, we derive concise and purely algebraic conditions that relate synchronization and

transient stability of a power network to the underlying system parameters and initial conditions.

I. INTRODUCTION

The vast North American interconnected power grid is often referred to as the largest and most complex

machine engineered by humankind. The various instabilities arising in such a large-scale power grid can

be classified by their physical nature, the size of the uncertainty or disturbance causing the instability,

or depending on the devices, processes, and the time necessary to determine the instability. All of these

instabilities can lead and have led to blackouts of power grids [2], and their detection and rejection will

be one of the major challenges faced by the future “smart power grid.”
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The envisioned future power generation will rely increasingly on renewable energy sources such as wind

and solar power. Since these renewable power sources are highly stochastic, there will be an increasing

number of transient disturbances acting on a power grid that is expected to be even more complex and

decentralized than the current one. Thus, an important form of power network stability is the so-called

transient stability [3], which is the ability of a power system to remain in synchronism when subjected

to large transient disturbances. These disturbances may include faults on transmission elements or loss

of load, loss of generation, or loss of system components. For example, a recent major blackout in Italy

in 2003 was caused by tripping of a tie-line and resulted in a cascade of events leading to the loss of

synchronism of the Italian power grid with the rest of Europe [2]. The mechanism by which interconnected

synchronous machines maintain synchronism is a balance of their mechanical power inputs and their

electrical power outputs depending on the relative rotor angles among machines. In a classic setting the

transient stability problem is posed as a special case of the more general synchronization problem, which

is defined over a possibly longer time horizon, for rotor angles possibly drifting away from their nominal

values, and for generators subject to local excitation controllers aiming to restore synchronism. In order

to analyze the stability of a synchronous operating point of a power grid and to estimate its region of

attraction, various sophisticated algorithms have been developed [4], [5], [6], [7], [8], [9]. Reviews and

survey articles on transient stability analysis can be found in [10], [11], [12], [13]. Unfortunately, the

existing methods can cope only with simplified models and do not provide simple formulas to check if a

power system synchronizes for a given system state and parameters. In fact, an open problem, recognized

by [14] and not resolved by classical analysis methods, is the quest for explicit and concise conditions for

synchronization as a function of the topological, algebraic, and spectral graph properties of the network.

The recent years have witnessed a burgeoning interest of the control community in cooperative control

of autonomous agent systems. Recent surveys and monographs include [15], [16], [17]. One of the basic

tasks in a multi-agent system is a consensus of the agents’ states to a common value. This consensus

problem has been subject to fundamental research [18], [19] as well as to applications in robotic coordi-

nation, distributed sensing and computation, and various other fields including synchronization. In most

articles treating consensus problems the agents obey single integrator dynamics, but the synchronization

of interconnected power systems has often been envisioned as possible future application [20]. However,

we are aware of only one article [21] that indeed applies consensus methods to a power network model.

Another set of literature relevant to our investigation is the synchronization of coupled oscillators [22],

in particular in the classic model introduced by Kuramoto [23]. The synchronization of coupled Kuramoto

oscillators has been widely studied by the physics [24], [25], [26] and the dynamical systems communities

[27], [28], [29]. This vast literature with numerous theoretical results and rich applications to various

scientific areas is elegantly reviewed in [30], [31]. Recent works in the control community [18], [19],

[32], [33] investigate the close relationship between Kuramoto oscillators and consensus networks.

The three areas of power network synchronization, Kuramoto oscillators, and consensus protocols are
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apparently closely related. Indeed, the similarity between the Kuramoto model and the power network

models used in transient stability analysis is striking. Even though power networks have often been

referred to as systems of coupled oscillators, the similarity to a second-order Kuramoto-type model has

been mentioned only very recently in the power networks community in [34], [35], [36], where only

qualitative simulation studies for simplified models are carried out. In the coupled-oscillators literature,

second-order Kuramoto models similar to power network models have been analyzed in simulations and

in the continuum limit; see [31] and references therein. However, we are aware of only two articles

referring to power networks as possible application [22], [37]. In short, the evident relationship between

power network synchronization, Kuramoto oscillators, and consensus protocols has been recognized, but

the gap between the first and the second two topics has not been bridged yet in a thorough analysis.

There are three main contributions in the present paper. As a first contribution, we present a coupled-

oscillator approach to the problem of synchronization and transient stability in power networks. Via a

singular perturbation analysis, we show that the transient stability analysis for the classic swing equations

with overdamped generators reduces, on a long time-scale, to the problem of synchronizing non-uniform

Kuramoto oscillators with multiple time constants, non-homogeneous coupling, and non-uniform phase-

shifts. This reduction to a non-uniform Kuramoto model is arguably the missing link connecting transient

stability analysis to networked control, a link that was hinted at in [14], [20], [34], [35], [36], [22], [21].

Second, we give novel, simple, and purely algebraic conditions that are sufficient for synchronization

and transient stability of a power network. To the best of our knowledge these conditions are the first

ones to relate synchronization and performance of a power network directly to the underlying network

parameters and initial state. Our conditions are based on different and possibly less restrictive assumptions

than those obtained by classic analysis methods [4], [5], [6], [7], [8], [9], [10]. We consider a network-

reduced model of a power network, and do not make any of the following common or classic assumptions:

we do not require the swing equations to be formulated in relative coordinates accompanied by a uniform

damping assumption, we do not require the existence of an infinite bus, and we do not require the transfer

conductances to be “sufficiently small” or even negligible. On the other hand, our results are based on the

assumption that each generator is strongly overdamped, possibly due to internal excitation control. This

assumption allows us to perform a singular perturbation analysis and study a dimension-reduced system.

Due to topological equivalence, our synchronization conditions hold locally even if generators are not

overdamped, and in the application to real power networks the approximation via the dimension-reduced

system is theoretically well-studied and also applied in the power industry [38]. Our synchronization

conditions are based on an analytic approach whereas classic analysis methods [4], [5], [7], [8], [9], [10]

rely on numerical procedures to approximate the region of attraction of an equilibrium by level sets of

energy functions and stable manifolds. Compared to classic analysis methods, our analysis does not aim

at providing best estimates of the region of attraction or the critical clearing time. Rather, we approach

the open problem [14] of relating synchronization to the underlying network structure. For this problem,
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we derive sufficient and purely algebraic conditions that can be interpreted as “the network connectivity

has to dominate the network’s non-uniformity, the network’s losses, and the lack of phase cohesiveness.”

Third and final, we perform a synchronization analysis of non-uniform Kuramoto oscillators, as an

interesting mathematical problem in its own right. Our analysis combines and extends methods from

consensus protocols and synchronization theory. As an outcome, purely algebraic conditions on the

network parameters and the system state establish the phase cohesiveness, frequency synchronization, and

phase synchronization of the non-uniform Kuramoto oscillators. We emphasize that our results do not

hold only for non-uniform network parameters but also in the case when the underlying coupling topology

is not a complete graph. When our results are specialized to classic (uniform) Kuramoto oscillators, they

reduce to and even improve upon various well-known conditions in the literature on the Kuramoto model

[25], [24], [19], [32], [33], [39]. In the end, these conditions guaranteeing synchronization of non-uniform

Kuramoto oscillators also suffice for the transient stability of the power network.

Paper Organization: This article is organized as follows. The remainder of this section introduces

some notation, recalls preliminaries on algebraic graph theory and differential geometry, and reviews

the consensus protocol and the Kuramoto model of coupled oscillators. Section II reviews the problem

of transient stability analysis. Section III introduces the non-uniform Kuramoto model and presents the

main result of this article. Section IV translates the power network model to the non-uniform Kuramoto

model whose synchronization analysis is presented in Section V. Section VI provides simulation studies

to illustrate the analytical results. Finally, some conclusions are drawn in Section VII. The appendix in

Section VIII contains different synchronization conditions and estimates for the phase cohesiveness that

can be derived alternatively to the ones presented in Section V.

Vector and matrix notation: Given an n-tuple (x1, . . . , xn), diag(xi) ∈ Rn×n is the associated diagonal

matrix, x ∈ Rn is the associated column vector, xmax and xmin are the maximum and minimum elements,

and ‖x‖2 and ‖x‖∞ are the 2- and ∞-norm. Let 1n and 0n be the vectors of 1’s and 0’s of dimension

n. Given two non-zero vectors x ∈ Rn and y ∈ Rn, the angle ∠(x, y) ∈ [0, π/2] between them satisfies

cos(∠(x, y)) = xT y/(||x|| ||y||). Given an array {Aij} with i, j ∈ {1, . . . , n}, A ∈ Rn×n is the associated

matrix with Amax = maxi,j{Aij} and Amin = mini,j{Aij}. Given a total order relation among the indices

(i, j), let diag(Aij) denote the corresponding diagonal matrix.

Graph theory: A weighted directed graph is a triple G = (V, E , A), where V = {1, . . . , n} is the set of

nodes, E ⊂ V × V is the set of directed edges, and A ∈ Rn×n is the adjacency matrix. The entries of A

satisfy aij > 0 for each directed edge (i, j) ∈ E and are zero otherwise. Any nonnegative matrix A induces

a weighted directed graph G. The Laplacian of G is the n× n matrix L(aij) := diag(
∑n

j=1 aij)−A. In

the following, we assume that A = AT , that is, G is undirected. In this case, the graph G is fully described

by the elements aij with i ≥ j. If a number k ∈ {1, . . . , |E|} and a weight wk = aij is assigned to any

of these edges (i, j) with i > j, then the incidence matrix H ∈ R|E|×n is defined component-wise as

Hkl = 1 if node l is the sink node of edge k and as Hkl = −1 if node l is the source node of edge k; all
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other elements are zero. The Laplacian equals then the symmetric matrix L(aij) = HT diag(wk)H . If G
is connected, then ker(H) = ker(L(aij)) = span(1n), all n− 1 remaining non-zero eigenvalues of L(G)

are strictly positive, and the second-smallest eigenvalue λ2(L(aij)) is called the algebraic connectivity of

G and, for a complete and uniformly weighted graph (aij ≡ 1 for all i 6= j), it satisfies λ2(L(aij)) = n.

Geometry on the n-torus: The torus is the set T1 = ]−π,+π], where −π and +π are associated with

each other, an angle is an element θ ∈ T1, and an arc is a connected subset of T1. The product set

Tn is the n-dimensional torus. With slight abuse of notation, let |θ1 − θ2| denote the geodesic distance

between two angles θ1 ∈ T1 and θ2 ∈ T1. For γ ∈ [0, π], let ∆(γ) ⊂ Tn be the set of angle arrays

(θ1, . . . , θn) ∈ Tn such that there exists an arc of length γ containing all θ1, . . . , θn in its interior. Thus,

an array of angles θ ∈ ∆(γ) satisfies maxi,j∈{1,...,n} |θi − θj | < γ. For γ ∈ [0, π], we also define ∆̄(γ)

to be the union of the set {θ ∈ Tn | θi = θj , i, j ∈ {1, . . . , n}} and the closure of the open set ∆(γ).

For a rigorous definition of the difference between angles (i.e., points on the torus), we restrict our

attention to angles contained in an open half-circle: for angles θ1, θ2 with |θ1 − θ2| < π, the difference

θ1−θ2 is the number in ]−π, π[ with magnitude equal to the geodesic distance |θ1−θ2| and with positive

sign iff the counter-clockwise path length connecting θ1 and θ2 on T1 is smaller than the clockwise path

length. Finally, we define the multivariable sine sin : Tn → [0, 1]n by sin(x) = (sin(x1), . . . , sin(xn))

and the sinc function sinc : R→ R by sinc(x) = sin(x)/x.

Review of the Consensus Protocol and the Kuramoto Model: In a system of n autonomous agents,

each characterized by a state variable xi ∈ R, one of the most basic tasks is to achieve a consensus on

a common state value, that is, all agent states xi(t) converge to a common value x∞ ∈ R as t → ∞.

Given a graph G with adjacency matrix A describing the interaction between agents, a simple, linear,

and continuous time algorithm to achieve consensus on the agents’ state is the consensus protocol

ẋi = −
∑n

j=1
aij(xi − xj), i ∈ {1, . . . , n} . (1)

In vector notation the consensus protocol (1) takes the form ẋ = −L(aij)x, which directly reveals the

dependence of the consensus protocol to the underlying graph G.

A well-known and widely used model for the synchronization among coupled oscillators is the Ku-

ramoto model, which considers n coupled oscillators with state θi ∈ T1 with the dynamics

θ̇i = ωi −
K

n

∑n

j=1
sin(θi − θj), i ∈ {1, . . . , n} , (2)

where K is the coupling strength and ωi is the natural frequency of oscillator i. Unlike for the consensus

protocol (1), different levels of consensus or synchronization can be distinguished for the Kuramoto

model (2): The case when all angles θi(t) converge to a common angle θ∞ ∈ T1 as t→∞ is referred

to as phase synchronization and can only occur if all natural frequencies are identical. If the natural

frequencies are non-identical, then each phase difference θi(t)− θj(t) can converge to a constant value,

but this value is not necessarily zero. A solution θ : R≥0 → Tn to the Kuramoto model (2) is phase

cohesive if there exists a length γ ∈ [0, π[ such that θ(t) ∈ ∆̄(γ) for all t ≥ 0, i.e., at each time t there
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exists an arc of length γ containing all angles θi(t). A solution θ : R≥0 → Tn achieves exponential

frequency synchronization if all frequencies θ̇i(t) converge exponentially fast to a common frequency

θ̇∞ ∈ R as t→∞. Finally, a solution θ : R≥0 → Tn achieves exponential synchronization if it is phase

cohesive and it achieves exponential frequency synchronization. In this case, all phases become constant

in a rotating coordinate frame with frequency θ̇∞, and hence the terminology phase locking is sometimes

also used in the literature.

II. MODELS AND PROBLEM SETUP IN SYNCHRONIZATION AND TRANSIENT STABILITY ANALYSIS

A. The Mathematical Model of a Power Network

In a power network with n generators we associate to each generator its internal voltage Ei > 0, its

active power output Pe,i, its mechanical power input Pm,i > 0, its inertia Mi > 0, its damping constant

Di > 0, and its rotor angle θi measured with respect to a rotating frame with frequency f0. All parameters

are given in per unit system, except for Mi and Di which are given in seconds, and f0 is typically given

as 50 Hz or 60 Hz. The rotor dynamics of generator i are then given by the classic constant-voltage

behind reactance model of interconnected swing equations [11], [40], [41]

Miθ̈i = Pm,i − E2
iGii −Diθ̇i − Pe,i, i ∈ {1, . . . , n} .

Under the common assumption that the loads are modeled as passive admittances, all passive nodes of a

power network can be eliminated (c.f. Kron reduction [42]) resulting in the reduced (transfer) admittance

matrix Y = Y T ∈ Cn×n, where Yii is the self-admittance of generator i and <(Yij) ≥ 0 and =(Yij) > 0,

i 6= j, are the transfer conductance and (inductive) transfer susceptance between generator i and j in per

unit values. With the power-angle relationship, the active output power Pe,i is then

Pe,i =
∑n

j=1
EiEj

(
<(Yij) cos(θi − θj) + =(Yij) sin(θi − θj)

)
.

Given the transfer admittance Yij between generator i and j, define the magnitude |Yij | > 0 and the phase

shift ϕij = arctan(<(Yij)/=(Yij)) ∈ [0, π/2[ depicting the energy loss due to the transfer conductance

<(Yij). Recall that a lossless network is characterized by zero phase shifts. Furthermore, we define

the natural frequency ωi := Pm,i − E2
i <(Yii) (effective power input to generator i) and the coupling

weights Pij := EiEj |Yij | (maximum power transferred between generators i and j) with Pii := 0 for

i ∈ {1, . . . , n}. The network–reduced power system model can then be formulated compactly as

Miθ̈i = −Diθ̇i + ωi −
∑n

j=1
Pij sin(θi − θj + ϕij) . (3)

Typically, a dynamical model for the internal voltage of generator i is given as Ėi = Ėi(Ei, ui, θi− θj),

where ui is the field excitation and can be used as a control input [43]. Higher order electrical and flux

dynamics can be reduced [44] into an augmented damping constant Di in equation (3). The generator’s

internal excitation control essentially increases the damping torque towards the net frequency and can also

be reduced into the damping constant Di [40], [44]. It is commonly agreed that the classical model (3)
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captures the power system dynamics sufficiently well during the first swing. Thus, we omit higher order

dynamics and control effects and assume they are incorporated into the model (3). We remark that all our

results are also valid if Ei = Ei(t) is a smooth, bounded, and strictly positive time-varying parameter.

A frequency equilibrium of (3) is characterized by θ̇ = 0 and by the (reduced) real power flow equations

Qi(θ) := ωi −
∑n

j=1
Pij sin(θi − θj + ϕij) ≡ 0, i ∈ {1, . . . , n} . (4)

depicting the power balance. More general, the generators are said to be in a synchronous equilibrium if

all angular distances |θi−θj | are constant and bounded (phase cohesive) and all frequencies are identical

θ̇i = θ̇j . Exponential synchronization is then understood as defined before for the Kuramoto model (2).

In order to analyze the synchronization problem, system (3) is usually formulated in relative coordinates

[45]. To render the resulting dynamics self-contained, uniform damping is sometimes assumed, i.e., Di/Mi

is constant. Some other times, the existence of an infinite bus (a stationary generator without dynamics)

as reference is postulated [4], [10]. We remark that both of these assumptions are not physically justified

but are mathematical simplifications to reduce the synchronization problem to a stability analysis.

B. Review of Classic Transient Stability Analysis

Classically, transient stability analysis deals with a special case of the synchronization problem, namely

the stability of a post-fault frequency equilibrium, that is, a new equilibrium of (3) arising after a change

in the network parameters or topology. To answer this question various sophisticated analytic and numeric

methods have been developed [10], [11], [12], [13], which typically employ the Hamiltonian structure of

system (3). Since in general a Hamiltonian function for model (3) with non-trivial network conductance

<(Yij) > 0 (or equivalently ϕij > 0) does not exist [46], early transient stability approaches neglect the

phase shifts ϕij [4], [6], [10]. In this case, the power network model (3) takes form

M θ̈ = −Dθ̇ −∇U(θ)T , (5)

where ∇ is the gradient and U :]−π, π]n → R is the potential energy given up to an additive constant by

U(θ) = −
∑n

i=1

(
ωiθi +

∑n

j=1
Pij
(
1− cos(θi − θj)

))
. (6)

When system (5) is formulated in relative or reference coordinates (that feature equilibria), the energy

function (θ, θ̇) 7→ (1/2) θ̇TMθ̇ + U(θ) serves (locally) as a Lyapunov function. In combination with the

invariance principle, we clearly have that the dynamics (5) converge to θ̇ = 0 and the largest invariant

zero level set of ∇U(θ). In order to estimate the region of attraction of a stable equilibrium, algorithms

such as PEBS [4] or BCU [7] consider the associated dimension-reduced gradient flow

θ̇ = −∇U(θ)T . (7)

Then (θ∗,0) is a hyperbolic type-k equilibrium of (5), i.e., the Jacobian has k stable eigenvalues, if and

only if θ∗ is a hyperbolic type−k equilibrium of (7), and if a generic transversality condition holds, then
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the regions of attractions of both equilibria are bounded by the stable manifolds of the same unstable

equilibria [4, Theorems 6.2-6.3]. This topological equivalence between (5) and (7) can also be extended

to “sufficiently small” transfer conductances [7, Theorem 5.7]. For further interesting relationships among

the systems (5) and (7), we refer to [4], [7], [12], [10]. Other approaches to lossy power networks with

non-zero transfer conductances compute numerical energy functions [5] or employ an extended invariance

principle [9]. Based on these results computational methods were developed to approximate the stability

boundaries of (5) and (7) by level sets of energy functions or stable manifolds of unstable equilibria.

To summarize the shortcomings of the classical transient stability analysis methods, they consider

simplified models formulated in reference or relative coordinates (with uniform damping assumption)

and result mostly in numerical procedures rather than in concise and simple conditions. For lossy power

networks the cited articles consider either special benchmark problems or networks with “sufficiently

small” transfer conductances. To the best of our knowledge there are no results quantifying this smallness

of <(Yij) or ϕij for arbitrary networks. Moreover, from a network perspective the existing methods do not

result in explicit and concise conditions relating synchronization to the network’s state, parameters, and

topology. The following sections will address these questions quantitatively via purely algebraic tests.

III. THE NON-UNIFORM KURAMOTO MODEL AND MAIN SYNCHRONIZATION RESULT

A. The Non-Uniform Kuramoto Model

As we have already mentioned, there is a striking similarity between the power network model (3)

and the Kuramoto model (2). To study this similarity, we define the non-uniform Kuramoto model by

Di θ̇i = ωi −
∑n

j=1
Pij sin(θi − θj + ϕij), i ∈ {1, . . . , n} , (8)

where we assume that the parameters satisfy Di > 0, ωi ∈ R, Pij > 0, and ϕij ∈ [0, π/2[, for all

i, j ∈ {1, . . . , n}, i 6= j; by convention, Pii and ϕii are set to zero. System (8) may be regarded as a

generalization of the classic Kuramoto model (2) with multiple time-constants Di and non-homogeneous

but symmetric coupling terms Pij and phase shifts ϕij . The non-uniform Kuramoto model (8) will serve

as a link between the power network model (3), the Kuramoto model (2), and the consensus protocol (1).

Remark III.1 (Second-order systems and their first-order approximations:) The non-uniform Ku-

ramoto model (8) can be seen as a long-time approximation of the second order system (3) for a small

“inertia over damping ratio” Mi/Di. Note the analogy between the non-uniform Kuramoto model (8) and

the dimension-reduced gradient system (7) studied in classic transient stability analysis to approximate the

stability properties of the second-order system (5) [4], [7], [10]. Both models are of first order, have the

same right-hand side, and differ only in the time constants Di. Thus, both models have the same equilibria

with the same stability properties and with regions of attractions bounded by the same separatrices [4,

Theorems 3.1-3.4]. The reduced system (7) is formulated as a gradient-system to study the stability of
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the equilibria of (7) (possibly in relative coordinates). The non-uniform Kuramoto model (8), on the other

hand, can be directly used to study synchronization and reveals the underlying network structure. �

B. Main Synchronization Result

We can now state our main result on the power network model (3) and the non-uniform Kuramoto model (8).

Theorem III.2 (Main synchronization result) Consider the power network model (3) and the non-

uniform Kuramoto model (8). Assume that the minimal lossless coupling of any oscillator to the network

is larger than a critical value, i.e.,

Γmin := nmin
i 6=j

{
Pij
Di

cos(ϕij)

}
> Γcritical :=

1

cos(ϕmax)

(
max
i 6=j

∣∣∣∣ ωiDi
− ωj
Dj

∣∣∣∣+ 2 max
i∈{1,...,n}

n∑
j=1

Pij
Di

sin(ϕij)
)
.

(9)

Accordingly, define γmin ∈ [0, π/2 − ϕmax[ and γmax ∈ ]π/2, π] as unique solutions to the equations

sin(γmin) = sin(γmax) = cos(ϕmax) Γcritical/Γmin.

For the non-uniform Kuramoto model,

1) phase cohesiveness: the set ∆̄(γ) is positively invariant for every γ ∈ [γmin, γmax], and each

trajectory starting in ∆(γmax) reaches ∆̄(γmin); and

2) frequency synchronization: for every θ(0) ∈ ∆(γmax), the frequencies θ̇i(t) synchronize exponen-

tially to some frequency θ̇∞ ∈ [θ̇min(0), θ̇max(0)].

For the power network model, for all θ(0) ∈ ∆(γmax) and initial frequencies θ̇i(0),

3) approximation error: there exists a constant ε∗ > 0 such that, if ε := Mmax/Dmin < ε∗, then the

solution (θ(t), θ̇(t)) of (3) exists for all t ≥ 0 and it holds uniformly in t that(
θi(t)− θn(t)

)
=
(
θ̄i(t)− θ̄n(t)

)
+O(ε), ∀t ≥ 0, i ∈ {1, . . . , n− 1},

θ̇(t) = D−1Q(θ̄(t)) +O(ε), ∀t > 0 ,
(10)

where θ̄(t) is the solution to the non-uniform Kuramoto model (8) with initial condition θ̄(0) = θ(0),

and D−1Q(θ̄) is the power flow (4) scaled by the inverse damping D−1; and

4) asymptotic approximation error: there exists ε and ϕmax sufficiently small, such that the O(ε)

approximation errors in equation (10) converge to zero as t→∞.

The proof of Theorem III.2 is based on a singular perturbation analysis of the power network model (3)

(see Section IV) and a synchronization analysis of the non-uniform Kuramoto model (8) (see Section V)

and will be postponed to the end of Section V. We discuss the assumption that the perturbation parameter

ε needs to be small separately in the next subsection and state the following remarks to Theorem III.2:

Remark III.3 (Physical interpretation of Theorem III.2:) The right-hand side of condition (9) states

the worst-case non-uniformity in natural frequencies (the difference in effective power inputs at each
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generator) and the worst-case lossy coupling of a generator to the network (Pij sin(ϕij) = EiEj<(Yij)

reflects the transfer conductance), both of which are scaled with the rates Di. The term cos(ϕmax) =

sin(π/2− ϕmax) corresponds to phase cohesiveness in ∆(π/2− ϕmax), which is necessary for the latter

consensus-type analysis. These negative effects have to be dominated by the left-hand side of (9), which

is a lower bound for mini
{∑n

j=1

(
Pij cos(ϕij)/Di

)}
, the worst-case lossless coupling of a node to the

network. The multiplicative gap Γcritical/Γmin between the right- and the left-hand side in (9) can be

understood as a robustness margin that additionally gives a practical stability result determining the

admissible initial and the possible ultimate lack of phase cohesiveness in ∆̄(γmin) and ∆̄(γmax).

In summary, the conditions of Theorem III.2 read as “the network connectivity has to dominate the

network’s non-uniformity, the network’s losses, and the lack of phase cohesiveness.” In Theorem III.2

we present the scalar synchronization condition (9), the estimate for the region of attraction ∆(γmax),

and the ultimate phase cohesive set ∆̄(γmin). In the derivations leading to Theorem III.2 it is possible

to trade off a tighter synchronization condition against a looser estimate of the region of attraction, or a

single loose scalar condition against n(n−1)/2 tight pairwise conditions. These tradeoffs are explored in

the appendix of this document. Finally, we remark that the coupling weights Pij in condition (9) are not

only the reduced power flows but reflect for uniform voltages Ei and phase shifts ϕij also the effective

resistance of the original (non-reduced) network topology [42]. Moreover, condition (9) indicates at which

generator the damping torque has to be increased or decreased (via local power system stabilizers) in

order to meet the sufficient synchronization conditions.

The power network model (3) inherits the synchronization condition (9) in the relative coordinates

θi − θn and up to the approximation error (10) which is of order ε and eventually vanishes for ε and

ϕmax sufficiently small. The relative coordinates can be shown to be well-posed (see Section IV). The

convergence of the power network model only from almost all initial conditions is a consequence of the

existence of saddle points in the non-uniform Kuramoto model. �

Remark III.4 (Refinement of Theorem III.2:) Theorem III.2 can also be stated for two-norm bounds

on the parameters involving the algebraic connectivity (see Theorem V.5). For a lossless network, explicit

values for the synchronization frequency and the exponential synchronization rate as well as conditions

for phase synchronization can be derived (see Theorems V.1 and V.10). When specialized to the classic

Kuramoto model (2), the sufficient condition (9) is improves the results [24], [25], [32], [33], [39], and

it can also shown to be a tight bound. We refer the reader to the detailed comments in Section V. �

C. Discussion of the Perturbation Assumption

The assumption that each generator is strongly overdamped is captured by the smallness of the

perturbation parameter ε = Mmax/Dmin. This choice of the perturbation parameter and the subsequent

singular perturbation analysis (in Section IV) is similar to the analysis of Josephson arrays [26], coupled

overdamped mechanical pendula [47], flocking models [48], and also classic transient stability analysis
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[4, Theorem 5.2], [36]. In the linear case, this analysis resembles the well-known overdamped harmonic

oscillator, which features one slow and one fast eigenvalue. The overdamped harmonic oscillator exhibits

two time-scales and the fast eigenvalue corresponding to the frequency damping can be neglected in the

long-term phase dynamics. In the non-linear case these two distinct time-scales are captured by a singular

perturbation analysis. In short, this reduction of a coupled-pendula system corresponds to the assumption

that damping to a synchronization manifold and synchronization itself occur on separate time scales.

In the application to realistic generator models one has to be careful under which operating conditions

ε is indeed a small physical quantity. Typically, Mi ∈ [2s, 12s]/(2πf0) depending on the type of generator

and the mechanical damping (including damper winding torques) is poor: Di ∈ [1, 3]/(2πf0). However,

for the synchronization problem also the generator’s internal excitation control have to be considered,

which increases the damping torque to Di ∈ [10, 35]/(2πf0) depending on the system load [41], [40],

[44]. In this case, ε ∈ O(0.1) is indeed a small quantity and a singular perturbation approximation is

accurate. In fact, the recent power systems literature discusses the need for sufficiently large damping to

enhance transient stability, see [49], [50] and references therein.

We note that simulation studies show an accurate approximation of the power network by the non-

uniform Kuramoto model also for values of ε ∈ O(1), i.e., they indicate that the threshold ε∗ may be

sizable. The theoretical reasoning is the topological equivalence discussed in Subsection II-B between

the power network model (3) and the first-order model (7), which is again topologically equivalent to the

non-uniform Kuramoto model (8), as discussed in Remark III.1. The synchronization condition (9) on the

non-uniform Kuramoto model (8) guarantees exponential stability of the non-uniform Kuramoto dynamics

formulated in relative coordinates θi − θn, which again implies local exponential stability of the power

network model (3) in relative coordinates. These arguments are elaborated in detail in the next section.

Thus, from the viewpoint of topological equivalence, Theorem III.2 holds locally completely independent

of ε > 0, and the magnitude of ε gives a bound on the approximation errors (10) during transients.

The analogies between the power network model (3) and the reduced model (7), corresponding to the

non-uniform Kuramoto model (8), are directly employed in the PEBS [4] and BCU algorithms [7]. These

algorithms are not only scholastic but applied by the power industry [38], which additionally supports

the validity of the approximation of the power network model by the non-uniform Kuramoto model.
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IV. SINGULAR PERTURBATION ANALYSIS OF SYNCHRONIZATION

A. Time-Scale Separation of the Power Network Model

In this section, we put the approximation of the power network model (3) by the non-uniform Kuramoto

model (8) on solid mathematical ground via a singular perturbation analysis. The analysis by Tikhonov’s

method [51] requires a system evolving on Euclidean space and exponentially stable fixed points. In

order to satisfy the assumptions of Tikhonov’s theorem, we introduce two concepts.

First, we introduce a smooth map from a suitable subset of Tn to a compact subset of Rn−1. For

γ ∈ [0, π[, define the map grnd : ∆(γ)→ ∆grnd(γ) := {δ̄ ∈ Rn−1 | |δ̄i| < γ, maxi,j |δ̄i − δ̄j | < γ, i, j ∈
{1, . . . , n − 1}} that associates to the angles (θ1, . . . , θn) ∈ ∆(γ) the array of angle differences δ̄ with

components δ̄i = θi − θn, for i ∈ {1, . . . , n − 1}. This map is well defined, that is, δ̄ ∈ ∆grnd(γ),

because |δ̄i| = |θi − θn| < γ for all i ∈ {1, . . . , n − 1} and |δ̄i − δ̄j | = |θi − θj | < γ for all distinct

i, j ∈ {1, . . . , n − 1}. Also, this map is smooth because γ < π implies that all angles take value in an

open half-circle and their pairwise differences are smooth functions (see Section I). As a final remark,

note that the angle differences δ̄1, . . . , δ̄n−1 are well-known in the transient stability [7], [52] and in the

Kuramoto literature [29], and we refer to them as grounded angles in the spirit of circuit theory. The

sets ∆(π) and ∆grnd(π) as well as the map θ 7→ δ̄ = grnd(θ) are illustrated in Figure 1.

θn

θi θj

∆(γ)
0

+ γ− γ

δ̄j = grnd(θj)δ̄i = grnd(θi)

∆grnd(γ)
S1

grnd

R1

Fig. 1. Illustration of the map grnd : ∆(γ) → ∆grnd(γ). The map grnd can be thought of as as a symmetry-reducing projection

from ∆(γ) (illustrated as subset of S1) to ∆grnd(γ) (illustrated as subset of R1), where θn is projected to the origin 0. The set

∆(γ) and the map grnd are invariant under translations on Tn that is, under maps of the form (θ1, . . . , θn) 7→ (θ1+α, . . . θn+α).

Second, by formally computing the difference between the angles θ̇i and θ̇n, we define grounded

Kuramoto model with state δ ∈ Rn−1 by

δ̇i =
ωi
Di
− ωn
Dn
−

n−1∑
j=1,j 6=i

(Pij
Di

sin(δi−δj+ϕij)+
Pnj
Dn

sin(δj−ϕjn)
)
−
(Pin
Di

sin(δi+ϕin)+
Pin
Dn

sin(δi−ϕin)
)
.

(11)
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Lemma IV.1 (Properties of grounded Kuramoto model) Let γ ∈ [0, π[ and let θ : R≥0 → Tn be a

solution to the non-uniform Kuramoto model (8) satisfying θ(0) ∈ ∆(γ). Let δ : R≥0 → Rn−1 be the

solution to the grounded Kuramoto model (11) with initial condition δ(0) = grnd(θ(0)) ∈ ∆grnd(γ).

Then, δ(t) = grnd(θ(t)) for all t ≥ 0, if any one of the two following equivalent conditions holds:

1) phase cohesiveness: the angles θ(t) take value in ∆(γ) for all time t ≥ 0; and

2) well-posedness: the grounded angles δ(t) take value in ∆grnd(γ) for all time t ≥ 0.

Moreover, the following two statements are equivalent for any γ ∈ [0, π[:

3) exponential frequency synchronization: each trajectory of the non-uniform Kuramoto model

satisfying the phase cohesiveness property 1) achieves exponential frequency synchronization; and

4) exponential convergence to equilibria: each trajectory of the grounded Kuramoto model satisfying

the well-posedness property 2) converges exponentially to an equilibrium point.

Finally, every trajectory of the grounded Kuramoto model as in 4) satisfying the well-posedness property

2) with γ ∈ [0, π/2− ϕmax] converges to an exponentially stable equilibrium point.

Proof: Note that, since both vector fields (8) and (11) are locally Lipschitz, existence and uniqueness

of the corresponding solutions follows provided that the corresponding evolutions are compact. Now,

assume that 1) holds, that is, θ(t) ∈ ∆(γ) (compact) for all t ≥ 0. Therefore, δ̄(t) = grnd(θ(t)) ∈
∆grnd(γ) for all t ≥ 0. Also recall that the map grnd is smooth over ∆(γ). These facts and the definition

of the grounded Kuramoto model (11) imply that d
dt grnd(θ(t)) is well defined and identical to δ̇(t) for

all t ≥ 0. In turn, this implies that δ(t) = grnd(θ(t)) ∈ ∆grnd(γ) holds for all positive times.

Conversely, assume that 2) holds, that is, δ(t) ∈ ∆grnd(γ) (compact) for all t ≥ 0. Due to existence and

uniqueness and since initially δ(0) = grnd(θ(0)) with θ(0) ∈ ∆(γ), a set of angles θ(t) ∈ ∆(γ) can be

associated to δ(t) ∈ ∆grnd(γ) such that δ(t) = grnd(θ(t)) for all t ≥ 0. By construction of the grounded

Kuramoto model (11), we have that θ(t) is identical to the solution to the non-uniform Kuramoto model

(8) for all t ≥ 0. Thus, statement 2) implies statement 1) and δ(t) = grnd(θ(t)) for all t ≥ 0. Having

established the equivalence of 1) and 2), we do not further distinguish between δ(t) and grnd(θ(t)).

Assume that 3) holds, that is, all θ̇i(t) converge exponentially fast to some θ̇∞ ∈ R. It follows

that each δ̇i(t) = θ̇i(t)−θ̇n(t) converges exponentially fast to zero, and δ(t) = δ(0)+
∫ t
0 δ̇(τ)dτ converges

exponentially fast to some δ∞ ∈ ∆grnd(γ) due to property 2). Since the vector field (11) is continuous and

lim
t→∞

(
δ(t), δ̇(t)

)
= (δ∞,0), the vector δ∞ is necessarily an equilibrium of (11), and property 4) follows.

Assume that 4) holds, that is, all angular differences δi(t) = θi(t) − θn(t) converge exponentially

fast to constant values δi,∞ for i ∈ {1, . . . , n − 1}. This fact and the continuity of the vector field in

equation (11) imply that the array with entries δi,∞ is an equilibrium for (11) and that each frequency

difference δ̇i(t) = θ̇i(t) − θ̇n(t) converges to zero. Moreover, because the vector field in equation (11)

is analytic and the solution converges exponentially fast to an equilibrium point, the right-hand side of

equation (11) converges exponentially fast to zero and thus also the time-derivative of the solution, i.e.,

the array of all frequency differences, converges exponentially fast to zero.
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To prove the final statement, assume that the non-uniform Kuramoto model (8) achieves frequency

synchronization with synchronization frequency θ̇sync ∈ R1 and phase cohesiveness in ∆(π/2 − ϕmax).

Thus, when formulated in a rotating coordinate frame with zero synchronization frequency, all trajectories

θi(t)− θ̇sync · t (mod 2π) necessarily converge to an equilibrium θ∗ ∈ ∆(π/2− ϕmax).

The Jacobian J(θ∗) of the non-uniform Kuramoto model is given by the Laplacian matrix with weights

aij(θ
∗) = (Pij/Di) cos(θ∗i − θ∗j + ϕij). For any θ∗ ∈ ∆(π/2 − ϕmax), the weights aij(θ∗) are strictly

positive. In this case, it follows from the contraction property [53, Theorem 1] that the linearized dynamics

θ̇ = J(θ∗) ·θ converge from any initial condition in Rn to a point in the diagonal vector space 1n. Hence,

for any θ∗ ∈ ∆(π/2−ϕmax), the matrix J(θ∗) has n−1 stable eigenvalues and one zero eigenvalue with

eigenspace 1n corresponding to the translational invariance of the angular variable.

Hence, any equilibrium manifold θ∗ ∈ ∆(π/2−ϕmax) (of dimension one due to translational invariance)

is exponentially stable w.r.t. to the non-uniform Kuramoto dynamics (8). The corresponding point δ∗ =

grnd(θ∗(t)) ∈ ∆grnd(π/2 − ϕmax) (the translational symmetry is removed) is an equilibrium of the

grounded Kuramoto dynamics (11) (due to property 4)). Finally, since θ∗ is exponentially stable, it

necessarily follows that δ∗ is an exponentially stable equilibrium point.

As mentioned in Remark III.1, system (8) may be seen a long-time approximation of (3), or spoken

differently, it is the reduced system obtained by a singular perturbation analysis. A physically reasonable

singular perturbation parameter is the worst-case choice of Mi/Di, that is, ε := Mmax/Dmin. The

dimension of ε is in seconds, which makes sense since time still has to be normalized with respect

to ε. If we reformulate the power network model (3) in grounded angular coordinates with the state

(δ, θ̇) ∈ Rn−1 × Rn, then we obtain the following system in singular perturbation standard form

d

d t
δi =fi(θ̇) := θ̇i − θ̇n , i ∈ {1, . . . , n− 1} , (12)

ε
d

d t
θ̇i =gi(δ, θ̇) := −Fi θ̇i +

Fi
Di

(
ωi −

∑n

j=1
Pij sin(δi − δj + ϕij)

)
, i ∈ {1, . . . , n} , (13)

where Fi := (Di/Dmin)/(Mi/Mmax) and δn := 0 in equation (13). For ε sufficiently small, the long-term

dynamics of (12)-(13) can be approximated by the grounded Kuramoto model (11) and the power flow (4),

where the approximation error is of order ε and Fi determines its convergence rate in the fast time-scale.

Theorem IV.2 (Singular Perturbation Approximation) Consider the power network model (3) written

as the singular perturbation problem (12)-(13) with bounded initial conditions (δ(0), θ̇(0)), and the

grounded non-uniform Kuramoto model (11) with initial condition δ(0) and solution δ̄(t). Assume that

there exists an exponentially stable fixed point δ∞ of (11) and δ(0) is in a compact subset Ωδ of its

region of attraction. Then, for each Ωδ

1) there exists ε∗ > 0 such that for all ε < ε∗, the singular perturbation problem (12)-(13) has a

unique solution (δ(t, ε), θ̇(t, ε)) for t ≥ 0, and for all t ≥ 0 it holds uniformly in t that

δ(t, ε)− δ̄(t) = O(ε), and θ̇(t, ε)− h(δ̄(t))− y(t/ε) = O(ε) , (14)
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where yi(t/ε) := (θ̇i(0)− hi(δ(0))) e−Fit/ε and hi(δ) := Qi(δ)/Di for i ∈ {1, . . . , n}.
2) For any tb>0, there exists ε∗≤ε∗ such that for all t≥ tb and whenever ε<ε∗ it holds uniformly that

θ̇(t, ε)− h(δ̄(t)) = O(ε) . (15)

3) Additionally, there exist ε and ϕmax sufficiently small such that the approximation errors (14)-(15)

converge exponentially to zero as t→∞.

Proof: To prove statements 1) and 2) of Theorem IV.2 we will follow Tikhonov’s theorem [51,

Theorem 11.2] and show that the singularly perturbed system (12)-(13) satisfies all assumptions of [51,

Theorem 11.2] when analyzing it on Rn−1×Rn and after translating the arising fixed point to the origin.

Exponential stability of the reduced system: The quasi-steady-state of (12)-(13) is obtained by solving

gi(δ, θ̇) = 0 for θ̇, resulting in the unique (and thus isolated) root θ̇i = hi(δ) = Qi(δ)/Di, i ∈ {1, . . . , n}.
The reduced system is obtained as δ̇i = fi(h(δ)) = hi(δ)−hn(δ), i ∈ {1, . . . , n−1}, which is equivalent

to the grounded non-uniform Kuramoto model (11). The reduced system is smooth, evolves on Rn−1,

and by assumption its solution δ̄(t) is bounded and converges exponentially to the stable fixed point

δ∞. Define the error coordinates xi(t) = δ̄i(t) − δi,∞, i ∈ {1, . . . , n − 1} and the resulting system

ẋ = f(h(x + δ∞)) with state in Rn−1 and initial condition x(0) = δ(0) − δ∞. By assumption, the

solution x(t) is bounded and converges exponentially to the stable fixed point at x = 0.

Exponential stability of the boundary layer system: Consider the error coordinate yi = θ̇i − hi(δ),

which shifts the error made by the quasi-stationarity assumption θ̇i(t) ≈ hi(δ(t)) to the origin. After

stretching time to the dimensionless variable τ = t/ε, the quasi-steady-state error is

d

d τ
yi = gi(δ, y + h(δ))− ε∂hi

∂δ
f(y + h(δ)) = −Fi yi − ε

∂h

∂δ
fi(y + h(δ)) (16)

with yi(0) = θ̇i(0)− hi(δ(0)). By setting ε = 0, (16) reduces to the boundary layer model

d

d τ
yi = −F yi , yi(0) = θ̇i(0)− hi(δ(0)) . (17)

The boundary layer model (17) is globally exponentially stable with solution yi(t/ε) = yi(0)e−Fit/ε,

where yi(0) is in a compact subset of the region of attraction of (17) due to boundedness of (δ(0), θ̇(0)).

In summary, the singularly perturbed system (12)-(13) is smooth on Rn−1 × Rn, and the origins of

the reduced system (in error coordinates) ẋ = f(h(x + δ∞)) and the boundary layer model (17) are

exponentially stable (where Lyapunov functions are readily existent by converse arguments [51, Theorem

4.14]). Thus, all assumptions of [51, Theorem 11.2] are satisfied and statements 1) and 2) follow.

To prove statement 3), note that δ̄(t) converges to an exponentially stable equilibrium point δ∞, and

(δ(t, ε), θ̇(t, ε)) converges to an O(ε) neighborhood of
(
δ∞, h(δ̄∞)

)
, where h(δ̄∞) = 0. We now invoke

classic topological equivalence arguments from the transient stability literature [4], [7]. Both the second

order system (12)-(13) as well as the reduced system δ̇ = f(h(δ)) correspond to the perturbed Hamiltonian

system (8)-(9) in [7] and the perturbed gradient system (10) in [7], where the latter is considered in [7]

with Di = 1 for all i. Consider for a moment the case when all ϕij = 0. In this case, the reduced system
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has a locally exponentially stable fixed point δ∞ (for any Di > 0 due to [4, Theorem 3.1]), and by [7,

Theorem 5.1] we conclude that (δ∞,0) is also a locally exponentially stable fixed point of the second

order system (12)-(13). Furthermore, due to structural stability [7, Theorem 5.7, R1], this conclusion

holds also for sufficiently small phase shifts ϕij . Thus, for sufficiently small ε and ϕmax, the solution of

(12)-(13) converges exponentially to (δ∞,0). Consequently, the approximation errors δ(t, ε) − δ̄(t) and

θ̇(t, ε)− h(δ̄) as well as the boundary layer error y(t/ε) converge exponentially to zero.

Theorem IV.2 can be interpreted geometrically as follows. The frequency dynamics of system (3) happen

on a fast time-scale and converge exponentially to a slow manifold which can be approximated to first

order by the scaled power flow D−1Q(θ). On this slow manifold the long-term phase synchronization

dynamics of system (3) are given by the non-uniform Kuramoto model (8).

V. SYNCHRONIZATION OF NON-UNIFORM KURAMOTO OSCILLATORS

This section combines and extends methods from the consensus and Kuramoto literature to analyze

the non-uniform Kuramoto model (8). The role of the time constants Di and the phase shifts ϕij is

immediately revealed when dividing by Di both hand sides of (8) and expanding the right-hand side as

θ̇i =
ωi
Di
−

n∑
j=1,j 6=i

(
Pij
Di

cos(ϕij) sin(θi − θj) +
Pij
Di

sin(ϕij) cos(θi − θj)
)
. (18)

The difficulties in the analysis of system (8) are the phase shift-induced lossy coupling (Pij/Di) sin(ϕij)

× cos(θi − θj) inhibiting synchronization and the non-symmetric coupling between an oscillator pair

{i, j} via Pij/Di on the one hand and Pij/Dj on the other. Since the non-uniform Kuramoto model

(8) is derived from the power network model (3), the underlying graph induced by P is complete and

symmetric, i.e., except for the diagonal entries, the matrix P is fully populated and symmetric. For the

sake of generality, this section considers the non-uniform Kuramoto model (8) under the assumption that

the graph induced by P is neither complete nor symmetric, that is, some Pij are zero and P 6= P T .

A. Frequency Synchronization of Phase-Cohesive Oscillators

Under the assumption of cohesive phases, the classic Kuramoto model (2) achieves frequency synchro-

nization [32, Theorem 3.1], [39, Corollary 11]. An analogous result guarantees frequency synchronization

of non-uniform Kuramoto oscillators (8) whenever the graph induced by P has a globally reachable node.

Theorem V.1 (Frequency synchronization) Consider the non-uniform Kuramoto model (8) where the

graph induced by P has a globally reachable node. Assume that there exists γ ∈ [0, π/2−ϕmax[ such that

the (non-empty) set of bounded phase differences ∆̄(γ) is positively invariant. Then for every θ(0) ∈ ∆̄(γ),

1) the frequencies θ̇i(t) synchronize exponentially to some frequency θ̇∞ ∈ [θ̇min(0), θ̇max(0)]; and

2) if ϕmax = 0 and P = P T , then θ̇∞ = Ω :=
∑

i ωi/
∑

iDi and the exponential synchronization rate

is no worse than

λfe =−λ2(L(Pij)) cos(γ) cos(∠(D1,1))2/Dmax. (19)
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In the definition of the convergence rate λfe in (19), the factor λ2(L(Pij)) is the algebraic connectivity

of the graph induced by P = P T , the factor 1/Dmax is the slowest time constant of the non-uniform

Kuramoto system (8), the proportionality λfe ∼ cos(γ) reflects the phase cohesiveness in ∆̄(γ), and

the proportionality λfe ∼ cos(∠(D1,1))2 reflects the fact that the error coordinate θ̇ − Ω1 is for non-

uniform damping terms Di not orthogonal to the agreement vector Ω1. For non-zero phase shifts a

small signal analysis of the non-uniform Kuramoto model (18) reveals that the natural frequency of

each oscillator diminishes as ωi −
∑

j 6=i Pij sin(ϕij). In this case, and for symmetric coupling P = P T ,

the synchronization frequency θ̇∞ in statement 1) will be smaller than θ̇∞ = Ω in statement 2). When

specialized to the classic Kuramoto model (2), statement 2) of Theorem V.1 reduces to [32, Theorem 3.1].

Proof of Theorem V.1: By differentiating the non-uniform Kuramoto model (8) we obtain the

following dynamical system describing the evolution of the frequencies

d

d t
Diθ̇i = −

∑n

j=1
Pij cos(θi − θj + ϕij) (θ̇i − θ̇j) . (20)

Given the matrix P , consider a directed weighted graph G induced by the matrix with elements aij =

(Pij/Di) cos(θi − θj + ϕij). By assumption we have for every θ(0) ∈ ∆̄(γ) that θ(t) ∈ ∆̄(γ) for all

t ≥ 0. Consequently the weights aij(t) = (Pij/Di) cos(θi(t)− θj(t) +ϕij) are non-degenerate, i.e., zero

for Pij = 0 and strictly positive otherwise for all t ≥ 0. Note also that system (20) evolves on the tangent

space of Tn, that is, the Euclidean space Rn. Therefore, the dynamics (20) can be analyzed as a linear

time-varying consensus protocol for the velocities θ̇i with state-dependent Laplacian matrix L(aij):

d

d t
θ̇ = −L(aij) θ̇ , (21)

We analyze L(aij) as if it was a just time-varying Laplacian matrix L(aij(t)). At each time instance

the matrix −L(aij(t)) is Metzler with zero row sums, and the weights aij(t) are bounded continuous

functions of time that induce integrated over any non-zero time interval a graph with non-degenerate

weights and a globally reachable node. It follows from the contraction property [53, Theorem 1] that

θ̇i(t) ∈ [θ̇min(0), θ̇max(0)] for all t ≥ 0 and θi(t) converge exponentially to θ̇∞. This proves statement 1).1

In the case of zero shifts and symmetric coupling P = P T the frequency dynamics (21) can be

reformulated as a symmetric time-varying consensus protocol with multiple rates D as

d

d t
Dθ̇ = −L(wij(t)) θ̇ , (22)

where L(wij(t)) is a symmetric time-varying Laplacian corresponding to a connected graph with strictly

positive weights wij(t) = Pij cos(θi−θj). It follows from statement 1) that the oscillators synchronize ex-

ponentially to some frequency θ̇∞. Since L(wij) is symmetric, it holds that 1Tn
d
d t Dθ̇ = 0, or equivalently,

1We remark that in the case of smoothly time-varying natural frequencies ωi(t) an additional term ω̇(t) appears on the right-

hand side of the frequency consensus dynamics (21). If the natural frequencies are non-identical or not exponentially convergent

to identical values, the oscillators clearly cannot achieve frequency synchronization and the proof of Theorem V.1 fails.
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1n
D1n

δ

δ⊥

∠(D1n,1n)

Fig. 2. Illustration of the disagreement eigenspace and the orthogonal complement of 1n

∑
iDiθ̈i(t) is a constant conserved quantity. If we apply this argument again at θ̇∞ := limt→∞ θ̇i(t), then

we have
∑

iDiθ̇i(t) =
∑

iDiθ̇∞, or equivalently, the frequencies synchronize exponentially to θ̇∞ = Ω.

In order to derive an explicit synchronization rate, consider the weighted disagreement vector δ =

θ̇−Ω1n, as an error coordinate satisfying 1TnDδ = 1TnDθ̇−1TnDΩ1n = 0, that is, δ lives in the weighted

disagreement eigenspace of co-dimension 1n and with normal vector D 1n. Since Ω is constant and

ker(L(wij)) = span(1n), the weighted disagreement dynamics are obtained from (44) in δ-coordinates as

d

d t
Dδ = −L(wij(t)) δ . (23)

Consider the weighted disagreement function δ 7→δTDδ and its derivative along the dynamics (23) given by

d

d t
δTDδ = −2 δTL(wij(t))δ .

Since δTD1n = 0, it follows that δ 6∈ span(1n) and δ can be uniquely decomposed into orthogonal

components as δ = (1Tn δ/n)1n + δ⊥, where δ⊥ is the orthogonal projection of δ on the subspace

orthogonal to 1n. By the Courant-Fischer Theorem [54], the time derivative of the weighted disagreement

function can be upper-bounded (point-wise in time) with the algebraic connectivity λ2(L(Pij)) as follows:

d

d t
δTDδ = −2 δT⊥L(wij(t))δ⊥ = −(Hδ⊥)T · diag(Pij cos(θi − θj)) · (Hδ⊥)

≤ −min{i,j}∈E{cos(θi−θj) : θ ∈ ∆̄(γ)} · (Hδ⊥)T ·diag(Pij) · (Hδ⊥) ≤ −λ2(L(Pij)) cos(γ) · ‖δ⊥‖22 .

In the sequel, ‖δ⊥‖ will be bounded by ‖δ‖. In order to do so, let 1⊥ = (1/ ‖δ⊥‖) δ⊥ be the unit

vector that δ is projected on (in the subspace orthogonal to 1n). The norm of δ⊥ can be obtained as

‖δ⊥‖ =
∥∥δT1⊥∥∥ = ‖δ‖ cos(∠(δ,1⊥)). The vectors δ and 1⊥ each live on (n − 1)-dimensional linear

hyperplanes with normal vectors D1n and 1n, respectively, see Figure 2 for an illustration. The angle

∠(δ,1⊥) is upper-bounded by maxδ ∠(δ,1⊥), which is said to be the dihedral angle and its sine is the

gap between the two subspaces [54]. Since both hyperplanes are of co-dimension 1, we obtain the dihedral

angle as the angle between the normal vectors D1n and 1n, and it follows that ∠(δ,1⊥) ≤ ∠(D1n,1n)

(with equality for n = 2). In summary, we have ‖δ‖ ≥ ‖δ⊥‖ ≥ ‖δ‖ cos(∠(D1n,1n)).
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Finally, given Dmin ‖δ‖2 ≤ δTDδ ≤ Dmax ‖δ‖2 and λfe as stated in equation (19), we obtain for the

derivative of the disagreement function d
d t δ

TDδ ≤ −2λfeδ
TDδ. An application of the Bellman-Gronwall

Lemma yields δ(t)TDδ(t) ≤ δ(0)TDδ(0) e−2λfe(t) for all t ≥ 0. After reusing the bounds on δTDδ, we

obtain that the disagreement vector δ(t) satisfies ‖δ(t)‖ ≤
√
Dmax/Dmin ‖δ(0)‖ e−λfe(t) for all t ≥ 0.

B. Phase Cohesiveness

The key assumption in Theorem V.1 is that the angular distances are bounded in the set ∆(π/2−ϕmax).

This subsection provides two different approaches to deriving conditions for this phase cohesiveness

assumption - the contraction property and ultimate boundedness arguments. The dynamical system

describing the evolution of the phase differences for the non-uniform Kuramoto model (8) reads as

θ̇i−θ̇j =
ωi
Di
− ωj
Dj
−
∑n

k=1

(
Pik
Di

sin(θi − θk + ϕik)−
Pjk
Dj

sin(θj − θk + ϕjk)

)
, i, j ∈ {1, . . . , n}. (24)

Note that equation (24) cannot have a fixed point of the form θ̇i= θ̇j if the following condition is not met.

Lemma V.2 (Necessary Condition on Synchronization) Consider the non-uniform Kuramoto model

(8). For any two distinct i, j ∈ {1, . . . , n} there exists no solution of the form θ̇i(t) = θ̇j(t), t ≥ 0, if∣∣∣∣ ωiDi
− ωj
Dj

∣∣∣∣ > n∑
k=1

(Pik
Di

+
Pjk
Dj

)
. (25)

Condition (25) can be interpreted as “the coupling between oscillators i and j needs to dominate

their non-uniformity” such that they can synchronize. For the classic Kuramoto model (2) condition (25)

reduces to K < n/(2(n−1)) ·(ωi−ωj), a necessary condition derived also in [32], [33], [25]. We remark

that condition (25) is only a loose bound for synchronization since it does take into account the effect of

lossy coupling induced by the phase shift ϕij , which becomes obvious when expanding the sinusoidal

coupling terms in (24) as in equation (18). Nevertheless, condition (25) indicates that the coupling needs

to dominate the non-uniformity and possibly also disadvantageous effects of the lossy coupling.

In order to show the phase cohesiveness θ(t) ∈ ∆(π/2 − ϕmax), the Kuramoto literature provides

various methods such as quadratic Lyapunov functions [32], contraction mapping [33], geometric [24],

or Hamiltonian arguments [27], [25]. Due to the non-symmetric coupling via the weights Pij/Di and

the phase shifts ϕij none of the mentioned methods appears to be easily applicable to the non-uniform

Kuramoto model non-uniform Kuramoto model (8). A different approach from the literature on consensus

protocols [18], [19], [39] is based on convexity and contraction and aims to show that the arc in which all

phases are contained is of non-increasing length. A modification of this approach turns out to be applicable

to non-uniform Kuramoto oscillators with a complete coupling graph and results in the following theorem.

Theorem V.3 (Synchronization condition I) Consider the non-uniform Kuramoto-model (8), where the

graph induced by P = P T is complete. Assume that the minimal lossless coupling of any oscillator to
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the network is larger than a critical value, i.e.,

Γmin := nmin
i 6=j

{
Pij
Di

cos(ϕij)

}
> Γcritical :=

1

cos(ϕmax)

(
max
i 6=j

∣∣∣∣ ωiDi
− ωj
Dj

∣∣∣∣+ 2 max
i∈{1,...,n}

n∑
j=1

Pij
Di

sin(ϕij)
)
.

(26)

Accordingly, define γmin ∈ [0, π/2 − ϕmax[ and γmax ∈ ]π/2, π] as unique solutions to the equations

sin(γmin) = sin(γmax) = cos(ϕmax) Γcritical/Γmin. Then

1) phase cohesiveness: the set ∆̄(γ) is positively invariant for every γ ∈ [γmin, γmax], and each

trajectory starting in ∆(γmax) reaches ∆̄(γmin); and

2) frequency synchronization: for every θ(0) ∈ ∆(γmax), the frequencies θ̇i(t) synchronize exponen-

tially to some frequency θ̇∞ ∈ [θ̇min(0), θ̇max(0)].

Condition (26) is interpreted in Remark III.3. In essence, Theorem V.3 is based on the contraction

property: the positive invariance of ∆̄(γ) is equivalent to showing that all angles θi(t) are contained

in a rotating arc of non-increasing maximal length γ. This contraction analysis is similar to that of

the consensus algorithms in [18], [19], [39], which derive their results on Rn. Throughout the proof of

Theorem V.3 we comment on different possible branches leading to slightly different conditions than (26).

These branches are explored in detail in the Appendix VIII.

Remark V.4 (Reduction of Theorem V.3 to classic Kuramoto oscillators:) For the classic Kuramoto

oscillators (2) the sufficient condition (26) of Theorem V.3 specializes to

K > Kcritical := ωmax − ωmin . (27)

In other words, if K > Kcritical, then for every θ(0) ∈ ∆(γmax) the oscillators synchronize and are

ultimately phase cohesive in ∆̄(γmin), where γmax ∈ ]π/2, π] and γmin ∈ [0, π/2[ are the unique solutions

to the equations sin(γmin) = sin(γmax) = Kcritical/K. To the best of our knowledge, condition (27) on the

coupling gain K is the tightest explicit sufficient synchronization condition that has been presented in the

Kuramoto literature so far. In fact, the bound (27) is close to the necessary condition for synchronization

K > Kcritical n/(2(n−1)) derived in Lemma V.2 and [32], [33], [25]. Obviously, for n = 2 condition (27)

is necessary and sufficient for the onset of synchronization. Other sufficient bounds given in the literature

scale asymptotically with n, e.g., [33, Theorem 2] or [32, proof of Theorem 4.1]. To compare our condition

(27) with the bounds in [32], [24], [39], we note from the proof of Theorem V.3 that our condition can

be equivalently stated as follows. The set ∆̄(π/2− γ), for γ ∈ ]0, π/2], is positively invariant if

K ≥ K(γ) :=
Kcritical

cos(γ)
=
ωmax − ωmin

cos(γ)
. (28)

Our bound (28) improves the bound K > K(γ)n/2 derived in [32, proof of Theorem 4.1] via a quadratic

Lyapunov function, the bound K > K(γ)n/(n− 2) derived in [39] via contraction arguments similar to

ours, and the bound derived geometrically in [24, proof of Proposition 1] that, after some manipulations,

can be written in our notation as K ≥ K(γ) cos((π/2− γ)/2)/ cos(π/2− γ). Our ongoing research also
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reveals that the bound (27) is tight for a bimodal distribution of the natural frequenciesωi∈{ωmax, ωmin}
and also satisfies the implicit consistency conditions in [29]. Thus, (27) is a necessary and sufficient con-

dition for synchronization when the natural frequencies ωi are only known to be contained in [ωmin, ωmax].

We elaborate on this interesting circle of ideas in a separate publication [55].

In summary, condition (26) in Theorem V.3 improves the known [32], [33], [25], [24], [39] sufficient

conditions for synchronization of classic Kuramoto oscillators, and it is a necessary and sufficient if the

particular distribution of the natural frequencies ωi ∈ [ωmin, ωmax] is unknown. �

Proof of Theorem V.3: We start by proving the positive invariance of ∆̄(γ) for γ ∈ [0, π]. Recall the

geodesic distance between two angles on T1 and define the non-smooth function V : Tn → [0, π] by

V (ψ) = max{|ψi − ψj | | i, j ∈ {1, . . . , n}}.

By assumption, the angles θi(t) belong to the set ∆̄(γ) at time t = 0, that is, they are all contained

in an arc of length γ ∈ [0, π]. In this case, V (ψ) can equivalently be written as maximum over a set

of differentiable functions, that is, V (ψ) = max{ψi − ψj | i, j ∈ {1, . . . , n}}. The arc containing all

angles has two boundary points: a counterclockwise maximum and a counterclockwise minimum. If we

let Imax(ψ) (respectively Imin(ψ)) denote the set indices of the angles ψ1, . . . , ψn that are equal to the

counterclockwise maximum (respectively the counterclockwise minimum), then we may write

V (ψ) = ψm′ − ψ`′ , for all m′ ∈ Imax(ψ) and `′ ∈ Imin(ψ).

We aim to show that all angles remain in ∆̄(γ) for all subsequent times t > 0. Note that θ(t) ∈ ∆̄(γ)

if and only if V (θ(t)) ≤ γ. Therefore, ∆̄(γ) is positively invariant if and only if V (θ(t)) does not

increase at any time t such that V (θ(t)) = γ. The upper Dini derivative of V (θ(t)) along the dynamical

system (24) is given as in [19, Lemma 2.2]

D+V (θ(t)) = lim
h↓0

sup
V (θ(t+ h))− V (θ(t))

h
= θ̇m(t)− θ̇`(t) ,

where m ∈ Imax(θ(t)) and ` ∈ Imin(θ(t)) are indices with the properties that

θ̇m(t) = max{θ̇m′(t) | m′ ∈ Imax(θ(t))}, and θ̇`(t) = min{θ̇`′(t) | `′ ∈ Imin(θ(t))}.

Written out in components (in the expanded form (18)) D+V (θ(t)) takes the form

D+V (θ(t)) =
ωm
Dm
− ω`
D`
−
∑n

k=1
(amk sin(θm(t)− θk(t)) + a`k sin(θk(t)− θ`(t)))

−
∑n

k=1
(bmk cos(θm(t)− θk(t))− b`k cos(θ`(t)− θk(t))) , (29)

where we used the abbreviations aik := Pik cos(ϕik)/Di and bik := Pik sin(ϕik)/Di. The equality

V (θ(t)) = γ implies that, measuring distances counterclockwise and modulo additional terms equal to

multiples of 2π, we have θm(t) − θ`(t) = γ, 0 ≤ θm(t) − θk(t) ≤ γ, and 0 ≤ θk(t) − θ`(t) ≤ γ. To
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simplify the notation in the subsequent arguments, we do not aim at the tightest and least conservative

bounding of the two sums on the right-hand side of (29) and continue as follows.2

Since both sinusoidal terms on the right-hand side of (29) are positive, they can be lower-bounded as

amk sin(θm(t)−θk(t))+a`k sin(θk(t)−θ`(t)) ≥ min
i∈{m,`}\{k}

{aik}
(

sin(θm(t)−θk(t))+sin(θk(t)−θ`(t))
)

= 2 min
i∈{m,`}\{k}

{aik} sin

(
θm(t)− θ`(t)

2

)
cos

(
θm(t) + θ`(t)

2
− θk(t)

)
≥ 2 min

i∈{m,`}\{k}
{aik} sin

(γ
2

)
cos
(γ

2

)
= min

i∈{m,`}\{k}
{aik} sin(γ) ,

where we applied the trigonometric identities sin(x)+sin(y) = 2 sin(x+y2 ) cos(x−y2 ) and 2 sin(x) cos(y) =

sin(x − y) + sin(x + y). The cosine terms in (29) can be lower bounded in ∆̄(γ) as bmk cos(θm(t) −
θk(t))− b`k cos(θ`(t)− θk(t)) ≥ −bmk − b`k. In summary, D+V (θ(t)) in (29) can be upper bounded by

D+V (θ(t)) ≤ ωm
Dm
− ω`
D`
−
∑n

k=1
min

i∈{m,`}\{k}
{aik} sin(γ) +

∑n

k=1
bmk +

∑n

k=1
b`k

≤ max
i 6=j

∣∣∣∣ ωiDi
− ωj
Dj

∣∣∣∣− nmin
i 6=j

{
Pij
Di

cos(ϕij)

}
sin(γ) + 2 max

i∈{1,...,n}

∑n

j=1
bij ,

where we further maximized the coupling terms and the differences in natural frequencies over all possible

pairs {m, `}. It follows that V (θ(t)) is non-increasing for all θ(t) ∈ ∆̄(γ) if

Γmin sin(γ) ≥ cos(ϕmax) Γcritical , (30)

where Γmin and Γcritical are defined in (26). The left-hand side of (30) is a strictly concave function of γ ∈
[0, π]. Thus, there exists an open set of arc lengths γ including γ∗ = π/2−ϕmax satisfying inequality (30)

if and only if inequality (30) is true at γ∗ = π/2−ϕmax with the strict inequality sign, which corresponds

to condition (26) in the statement of Theorem V.3. Additionally, if these two equivalent statements are

true, then V (θ(t)) is non-increasing in ∆̄(γ) for all γ ∈ [γmin, γmax], where γmin ∈ [0, π/2− ϕmax[ and

γmax ∈ ]π/2, π] are given as unique solutions to inequality (30) with equality sign. Moreover, V (θ(t)) is

strictly decreasing in ∆̄(γ) for all γ ∈ ]γmin, γmax[. This concludes the proof of statement 1) and ensures

that for every θ(0) ∈ ∆(γmax), there exists T ≥ 0 such that θ(t) ∈ ∆̄(π/2−ϕmax) for all t ≥ T . Thus, the

positive invariance assumption of Theorem V.1 is satisfied, and statement 2) of Theorem V.3 follows.

In summary, Theorem V.3 presents sufficient conditions for the synchronization of the non-uniform

Kuramoto model and is based on the bound (26). Condition (26) is a worst-case bound, both on the

parameters and on the initial angles. In the remainder of this section, we aim at deriving a two-norm type

bound and require only connectivity of the graph induced by P = P T and not necessarily completeness.

2Besides tighter bounding of the right-hand side of (29), the proof can alternatively be continued by adding and subtracting the

coupling with zero phase shifts in (29) or by noting that the right-hand side of (29) is a convex function of θk ∈ [θ`, θm] that

achieves its maximum at the boundary θk ∈ {θ`, θm}. If the analysis is restricted to γ ∈ [0, π/2], the term bmk can be dropped.
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We start our discussion with some preliminary notation and concepts. The following analysis is formally

carried out for the complete graph, but, without loss of generality, we assume that some weights Pij = Pji

can be zero and the non-zero weights P = P T induce a connected graph. Let H ∈ Rn(n−1)/2×n be the

incidence matrix of the complete graph with n nodes and recall that for a vector x ∈ Rn the vector of

all difference variables is Hx = (x2− x1, . . . ). The phase difference dynamics (24) (with the sinusoidal

coupling expanded as in (18)) can be reformulated in a compact vector notation as

d

d t
Hθ = HD−1ω −HD−1HT diag(Pij cos(ϕij)) sin(Hθ)−HX , (31)

where X ∈ Rn is the vector of lossy coupling with components Xi =
∑n

j=1(Pij/Di) sin(ϕij) cos(θi−θj)
and sin(Hθ) is the multivariable sine. The set of differential equations (31) is well defined on Tn: the

left-hand side of (31) is the vector of frequency differences Hθ̇ = (θ̇2 − θ̇1, . . . ) taking values in the

tangent space to Tn, and the right-hand side of (31) is a well-posed vector-valued function of θ ∈ Tn.

With slight abuse of notation, we denote the two-norm of the vector of all geodesic distances by

‖Hθ‖2 = (
∑

i

∑
j |θi − θj |2)1/2, and aim at ultimately bounding the evolution of ‖Hθ(t)‖2. Following

a classic Kuramoto analysis [33], [28], [27], [25], we note that the non-uniform Kuramoto model (8)

with ω ≡ 0 constitutes a Hamiltonian system with the Hamiltonian U(θ)|ω=0 defined in equation (6).

An analysis of (31) by Hamiltonian arguments is possible, but results in very conservative conditions.

In the recent Kuramoto literature [32], [33], a different Lyapunov function considered for the uniform

Kuramoto model (2) evolving on Rn is simply ‖Hθ‖22. Unfortunately, in the case of non-uniform rates

Di this function’s Lie derivative is sign-indefinite. However, it is possible to identify a similar Lyapunov

function that has a Lie derivative with symmetric coupling. Consider the functionW : Tn → R defined by

W(θ) =
1

4

∑n

i=1

∑n

j=1
DiDj |θi − θj |2 . (32)

A Lyapunov analysis of system (31) via the Lyapunov function W leads to the following theorem.

Theorem V.5 (Synchronization condition II) Consider the non-uniform Kuramoto model (8), where the

graph induced by P = P T is connected. Let H ∈ Rn(n−1)/2×n be the incidence matrix of the complete

graph and assume that the algebraic connectivity of the lossless coupling is larger than a critical value, i.e.,

λ2(L(Pij cos(ϕij))) > λcritical :=

∥∥HD−1ω∥∥
2

+
√
n
∣∣∣∣∣∣[∑n

j=1
P1j

D1
sin(ϕ1j), . . . ,

∑n
j=1

Pnj

Dn
sin(ϕnj)

]∣∣∣∣∣∣
2

cos(ϕmax)(κ/n)α/maxi 6=j{DiDj}
,

(33)

where κ :=
∑n

k=1Dk and α :=
√

mini 6=j{DiDj}/maxi 6=j{DiDj}.
Accordingly, define γmax ∈ ]π/2− ϕmax, π] and γmin ∈ [0, π/2− ϕmax[ to be the unique solutions to

the equations sinc(γmax)/ sinc(π/2−ϕmax) = sin(γmin)/ cos(ϕmax) = λcritical/λ2(L(Pij cos(ϕij))). Then,

1) phase cohesiveness: the set {θ ∈ ∆(π) : ‖Hθ‖2 ≤ γ} is positively invariant for every γ ∈
[γmin, αγmax], and each trajectory starting in {θ ∈ ∆(π) : ‖Hθ(0)‖2 < αγmax} reaches {θ ∈
∆(π) : ‖Hθ‖2 ≤ γmin}; and
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2) frequency synchronization: for every θ(0) ∈ ∆(π) with ‖Hθ(0)‖2 < αγmax the frequencies θ̇i(t)

synchronize exponentially to some frequency θ̇∞ ∈ [θ̇min(0), θ̇max(0)]. Moreover, if ϕmax = 0, then

θ̇∞ = Ω and the exponential synchronization rate is no worse than λfe as defined in equation (19).

Remark V.6 (Physical interpretation of Theorem V.5:) In condition (33),
∣∣∣∣[. . . ,∑n

j=1
Pij

Di
sin(ϕij), . . .

]∣∣∣∣
2

is the two-norm of the vector containing the lossy coupling,
∥∥HD−1ω∥∥

2
= ‖(ω2/D2 − ω1/D1, . . . )‖2

corresponds to the non-uniformity in the natural frequencies, λ2(L(Pij cos(ϕij))) is the algebraic connec-

tivity induced by the lossless coupling, cos(ϕmax) = sin(π/2−ϕmax) reflects again the phase cohsiveness

in ∆(π/2 − ϕmax), and (κ/n)α/maxi 6=j{DiDj} weights the non-uniformity in the time constants Di.

The gap in condition (33) yields a again practical stability result determining the initial and ultimate

phase cohesiveness. Condition (33) can be extended to non-reduced power network models [42]. �

Remark V.7 (Reduction of Theorem V.5 to classic Kuramoto oscillators:) For classic Kuramoto

oscillators (2), condition (33) reduces to K > K∗critical := ‖Hω‖2, which is a more conservative bound than

K > Kcritical = ωmax−ωmin presented in (27). It follows that the oscillators synchronize for ‖Hθ(0)‖2 <
γmax and are ultimately phase cohesive in ‖Hθ‖2 ≤ γmin, where γmax ∈ ]π/2, π] and γmin ∈ [0, π/2[ are

the unique solutions to (π/2) sinc(γmax) = sin(γmin) = K∗critical/K. The Lyapunov functionW(θ) reduces

to the one used in [32], [33] and can also be used to prove [32, Theorem 4.2] and [33, Theorem 1]. �

Recall from Section I that angular differences are well defined for θ ∈ ∆(π). Hence, for θ ∈ ∆(π),

the vector of phase differences is Hθ = (θ2 − θ1, . . . )∈Rn(n−1)/2, and the function W defined in (32)

can be rewritten as the function Hθ 7→W (Hθ) defined by

W(θ) =
1

4

∑n

i=1

∑n

j=1
DiDj |θi − θj |2 =

1

2
(Hθ)T diag(DiDj)(Hθ) =: W (Hθ) . (34)

The derivative of W (Hθ) along trajectories of system (31) is then given by

Ẇ (Hθ) = (Hθ)T diag(DiDj)HD
−1ω − (Hθ)T diag(DiDj)HX

− (Hθ)T diag(DiDj)HD
−1HT diag(Pij cos(ϕij)) sin(Hθ) . (35)

A component-wise analysis of the last term on the right-hand side of (35) yields a “diagonal” simplification.

Lemma V.8 Let P = P T ∈ Rn×n, θ ∈ ∆(π), and κ :=
∑n

k=1Dk. Then it holds that

(Hθ)T diag(DiDj)HD
−1HT diag(Pij cos(ϕij)) sin(Hθ) = κ(Hθ)T diag(Pij cos(ϕij)) sin(Hθ). (36)

Proof: The left-hand side of equation (36) reads component-wise as∑
i

∑
j

∑
k
(θi−θj)(Pik cos(ϕik)Dj) sin(θi−θk) +

∑
i

∑
j

∑
k
(θi−θj)(Pjk cos(ϕjk)Di) sin(θk−θj) ,

where all indices satisfy i, j, k ∈ {1, . . . , n}. An manipulation of the indices in both sums yields∑
i

∑
k

∑
j
(θi−θk)(Pij cos(ϕij)Dk) sin(θi−θj) +

∑
k

∑
j

∑
i
(θk−θj)(Pij cos(ϕij)Dk) sin(θi−θj) .
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Finally, the two sums can be added and simplify to
∑

i

∑
k

∑
j(Pij cos(ϕij)Dk)(θi − θj) sin(θi − θj),

which equals the right-hand side of equation (36) written in components.

The following lemma will help us to upper-bound the derivative Ẇ (Hθ) by the algebraic connectivity.

Lemma V.9 Consider a connected graph with n nodes induced by A=AT ∈Rn×n with incidence matrix

B and Laplacian L(Aij). For any x ∈ Rn, it holds that (Bx)T diag(Aij)(Bx) ≥ (λ2(L(Aij))/n) ‖Bx‖22 .

Proof: Let H be the incidence matrix of the complete graph. The Laplacian of the complete graph

with uniform weights is then given by (n · In − 1n1
T
n ) = HTH , and the projection of x ∈ Rn on the

subspace orthogonal to 1n is x⊥ = (In − (1/n)1n1
T
n )x = (1/n)HTH x. Consider now the inequality

(Bx)T diag(Aij)(Bx) = xTBT diag(Aij)Bx = xTL(Aij)x

≥ λ2(L(Aij)) ‖x⊥‖22 =
λ2(L(Aij))

n2
∥∥HTHx

∥∥2
2

=
λ2(L(Aij))

n2
(Hx)THHT (Hx) .

In order to continue, first note that HHT and the complete graph’s Laplacian HTH have the same

eigenvalues, namely n and 0. Second, range(H) and ker(HT ) are orthogonal complements. It follows

that (Hx)THHT (Hx) = n ‖Hx‖22. Finally, note that ‖Hx‖22 ≥ ‖Bx‖22 and the lemma follows.

Given Lemma V.8 and Lemma V.9 about the time derivative of W (Hθ), we are now in a position to

prove Theorem V.5 via standard Lyapunov and ultimate boundedness arguments.

Proof of Theorem V.5: Assume that θ(0) ∈ S(ρ) := {θ ∈ ∆(π) : ‖Hθ‖2 ≤ ρ} for some ρ ∈]0, π[. In

the following, we will show under which conditions and for which values of ρ the set S(ρ) is positively

invariant. For θ ∈ S(ρ) and since ‖Hθ‖∞ ≤ ‖Hθ‖2, it follows that θ ∈ ∆̄(ρ) and 1 ≥ sinc(θi − θj) ≥
sinc(ρ). Thus, for θ ∈ S(ρ), the inequality (θi − θj) sin(θi − θj)≥ (θi − θj)2 sinc(ρ) and Lemma V.8

yield an upper bound on the right-hand side of (35):

Ẇ (Hθ) ≤ (Hθ)Tdiag(DiDj)HD
−1ω−(Hθ)Tdiag(DiDj)HX−κ sinc(ρ)(Hθ)Tdiag(Pij cos(ϕij))(Hθ) .

Note that ‖HX‖2 is lower bounded as

‖HX‖2 =
√
XTHTHX ≥

√
λmax(HTH) ‖X‖2 ≥

√
n
∣∣∣∣∣∣[ . . . ,∑

j

Pij
Di

sin(ϕij), . . .
]∣∣∣∣∣∣

2
=: X̃ .

This lower bound X̃ together with Lemma V.9 leads to the following upper bound on Ẇ (Hθ):

Ẇ (Hθ) ≤ ‖Hθ‖2 maxi 6=j{DiDj}
( ∥∥HD−1ω∥∥

2
+ X̃

)
− (κ/n) sinc(ρ)λ2(L(Pij cos(ϕij)) ‖Hθ‖22 . (37)

Note that the right-hand side of (37) is strictly negative for

‖Hθ‖2 > µc :=
maxi 6=j{DiDj}(

∥∥HD−1ω∥∥
2

+ X̃)

(κ/n) sinc(ρ)λ2(L(Pij cos(ϕij)))
.

In the following we apply standard Lyapunov and ISS arguments. Pick µ ∈]0, ρ[. If

µ > µc =
maxi 6=j{DiDj}(

∥∥HD−1ω∥∥
2

+ X̃)

(κ/n) sinc(ρ)λ2(L(Pij cos(ϕij)))
, (38)
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then for all ‖Hθ‖2 ∈ [µ, ρ], the right-hand side of (37) is upper-bounded by

Ẇ (Hθ) ≤ −(1− (µc/µ)) · (κ/n) sinc(ρ)λ2(L(Pij cos(ϕij))) ‖Hθ‖22 .

Note that W (Hθ) defined in (34) can easily be upper and lower bounded by constants multiplying ‖Hθ‖22:

mini 6=j{DiDj} ‖Hθ‖22 ≤ 2 ·W (Hθ) ≤ maxi 6=j{DiDj} ‖Hθ‖22 . (39)

To guarantee the ultimate boundedness of Hθ, two sublevel sets of W (Hθ) have to be fitted into {Hθ :

‖Hθ‖2 ∈ [µ, ρ]} where Ẇ (Hθ) is strictly negative. This is possible if [51, equation (4.41)]

µ <
√

mini 6=j{DiDj}/maxi 6=j{DiDj} · ρ = αρ . (40)

Ultimate boundedness arguments [51, Theorem 4.18] imply that, for every ‖Hθ(0)‖2 ≤ αρ, there is T ≥ 0

such that ‖Hθ(t)‖2 is strictly decreasing for t ∈ [0, T ] and ‖Hθ(t)‖2 ≤ µ/α for all t ≥ T . If we choose

µ = αγ with γ ∈]0, π/2− ϕmax], then equation (40) reduces to ρ > γ and (38) reduces to the condition

λ2(L(Pij cos(ϕij))) >
maxi 6=j{DiDj}(

∥∥HD−1ω∥∥
2

+ X̃)

αγ (κ/n) sinc(ρ)
= λcritical

cos(ϕmax)

γ sinc(ρ)
, (41)

where λcritical is as defined in equation (33). Now, we perform a final analysis of the bound (41). The

right-hand side of (41) is an increasing function of ρ and decreasing function of γ that diverges to ∞
as ρ ↑ π or γ ↓ 0. Therefore, there exists some (ρ, γ) in the convex set Λ := {(ρ, γ) : ρ ∈]0, π[ , γ ∈
]0, π/2−ϕmax] , γ < ρ} satisfying equation (41) if and only if equation (41) is true at ρ = γ = π/2−ϕmax,

where the right-hand side of (41) achieves its infimum in Λ. The latter condition is equivalent to inequality

(33). Additionally, if these two equivalent statements are true, then there exists an open set of points in Λ

satisfying (41) , which is bounded by the unique curve that satisfies equation (41) with the equality sign,

namely f(ρ, γ) = 0, where f : Λ → R, f(ρ, γ) := γ sinc(ρ)/ cos(ϕmax) − λcritical/λ2(L(Pij cos(ϕij))).

Consequently, for every (ρ, γ) ∈ {(ρ, γ) ∈ Λ : f(ρ, γ) > 0}, it follows for ‖Hθ(0)‖2 ≤ αρ that there

is T ≥ 0 such that ‖Hθ(t)‖2 ≤ γ for all t ≥ T . The supremum value for ρ is obviously given by

ρmax ∈ ]π/2− ϕmax, π] solving the equation f(ρmax, π/2− ϕmax) = 0 and the corresponding infimum of

γ by γmin ∈ [0, π/2− ϕmax[ solving the equation f(γmin, γmin) = 0.

This proves statement 1) (where we replaced ρmax by γmax) and shows that there is T ≥ 0 such that

‖Hθ(t)‖∞≤‖Hθ(t)‖2 < π/2− ϕmax for all t ≥ T . Statement 2) follows then from Theorem V.1.

C. Phase Synchronization

For identical natural frequencies and zero phase shifts, the practical stability results in Theorem V.3

and Theorem V.5 imply γmin ↓ 0, i.e., phase synchronization of the non-uniform Kuramoto oscillators (8).

Theorem V.10 (Phase synchronization) Consider the non-uniform Kuramoto model (8), where the graph

induced by P has a globally reachable node, ϕmax = 0, and ωi/Di = ω̄ for all i ∈ {1, . . . , n}.
Then for every θ(0) ∈ ∆̄(γ) with γ ∈ [0, π[,
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1) the phases θi(t) synchronize exponentially to θ∞(t) ∈ [θmin(0), θmax(0)] + ω̄t, and

2) if P = P T , then the phases θi(t) synchronize exponentially to the weighted mean angle3 θ∞(t) =∑
iDiθi(0)/

∑
iDi + ω̄t at a rate no worse than

λps = −λ2(L(Pij)) sinc(γ) cos(∠(D1,1))2/Dmax . (42)

The worst-case phase synchronization rate λps can be interpreted similarly as the terms in (19), where

sinc(γ) corresponds to the initial phase cohesiveness in ∆̄(γ). For classic Kuramoto oscillators (2)

statements 1) and 2) can be reduced to the Kuramoto results found in [19] and Theorem 1 in [33].

Proof of Theorem V.10: First we proof statement 1). Consider again the Lyapunov function V (θ(t))

from the proof of Theorem V.3. The Dini derivative in the case ϕmax = 0 and ωi/Di = ω̄ is simply

D+V (θ(t)) = −
∑n

k=1

(Pmk
Dm

sin(θm(t)− θk(t)) +
P`k
D`

sin(θk(t)− θ`(t))
)
.

Both sinusoidal terms are positive for θ(t) ∈ ∆̄(γ), γ ∈ [0, π[. Thus, V (θ(t) is non-increasing, and ∆̄(γ)

is positively invariant. Therefore, the term aij(t) = (Pij/Di) sinc(θi(t) − θj(t)) is strictly positive for

all t ≥ 0, and after changing to a rotating frame (via the coordinate transformation θ 7→ θ − ω̄ t) the

non-uniform Kuramoto model (8) can be written as the consensus time-varying consensus protocol

θ̇i(t) = −
∑n

j=1
aij(t)(θi(t)− θj(t)) , (43)

Statement 1) follows directly along the lines of the proof of statement 1) in Theorem V.1. In the case of

symmetric coupling P = P T , the phase dynamics (43) can be reformulated as a symmetric time-varying

consensus protocol with strictly positive weights wij(t) = Pij sinc(θi(t)−θj(t)) and multiple rates Di as
d

d t
Dθ = −L(wij(t)) θ , (44)

Statement 2) now follows directly along the lines of the proof of statement 2) in Theorem V.1. 4

The main result Theorem III.2 can be proved now as a corollary of Theorem V.3 and Theorem IV.2.

Proof of Theorem III.2: The assumptions of Theorem III.2 correspond exactly to the assumptions of

Theorem V.3 and statements 1) and 2) of Theorem III.2 follow trivially from Theorem V.3.

Since the non-uniform Kuramoto model synchronizes exponentially and achieves phase cohesiveness

in ∆̄(γmin) ( ∆(π/2 − ϕmax), it follows from Lemma IV.1 that the grounded non-uniform Kuramoto

dynamics (11) converge exponentially to a stable fixed point δ∞. Moreover, δ(0) = grnd(θ(0)) is bounded

and thus necessarily in a compact subset of the region of attraction of the fixed point δ∞. Thus, the

assumptions of Theorem IV.2 are satisfied. Statements 3) and 4) of Theorem III.2 follow from Theorem

IV.2, where we made the following changes: the approximation errors (14)-(15) are expressed as the

approximation errors (10) in θ-coordinates, we stated only the case ε < ε∗ and t ≥ tb > 0, we reformulated

h(δ̄(t)) = D−1Q(θ̄(t)), and weakened the dependence of ε on Ωδ to a dependence on θ(0).

3This weighted average of angles is geometrically well defined for θ(0) ∈ ∆(π).
4The proof of Theorem V.5 can be extended for HD−1ω = 0 and X = 0 to show statement 2) of Theorem V.10 with a

slightly different worst-case synchronization frequency than (42).
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VI. SIMULATION RESULTS

Figure 3 shows a simulation of the power network model (3) with n = 10 generators and the

corresponding non-uniform Kuramoto model (8), where all initial angles θ(0) are clustered with exception

of the first one (red curves) and the initial frequencies are chosen as θ̇(0) ∈ uni(−0.1, 0.1) rad/s, i.e.,

randomly from a uniform distribution over [−0.1, 0.1]. Additionally, at two-third of the simulation interval

a transient high frequency disturbance is introduced at ωn−1 (yellow curve). For illustration, relative

angular coordinates are defined as δi(t) = θi(t)−θn(t), i ∈ {1, . . . , n−1}. The system parameters satisfy

ωi ∈ uni(0, 10), Pij ∈ uni(0.7, 1.2), and tan(ϕij) ∈ uni(0, 0.25) matching data found in [11], [40], [41].

For the simulation in Figure 3(a), we chose Mi ∈ uni(2, 12)s/(2πf0) and Di ∈ uni(20, 30)s/(2πf0)

resulting in the rather large perturbation parameter ε = 0.58 s. The synchronization conditions of Theorem

III.2 are satisfied, and the angles δ̄(t) of the non-uniform Kuramoto model synchronize very fast from the

non-synchronized initial conditions (within 0.05 s), and the disturbance around t = 2s does not severely

affect the synchronization dynamics. The same findings hold for the quasi-steady state h(δ̄) depicting

the frequencies of the non-uniform Kuramoto model, where the the disturbance at angle n − 1 (yellow

curve) acts directly without being integrated. Since ε is large the power network trajectories (δ(t), θ̇(t))

show the expected underdamped behavior and synchronize with second-order dynamics. As expected, the

disturbance at t = 2 s does not affect the second order power network δ-dynamics as much as the first-

order non-uniform Kuramoto δ̄-dynamics. Nevertheless, after the initial and mid-simulation transients the

singular perturbation errors δ(t)− δ̄(t) and θ(t)−h(δ̄(t)) quickly become small and ultimately converge.

Figure 3(b) shows the exact same simulation as in Figure 3(a), except that the simulation time is halved,

the inertia are Mi ∈ uni(2, 6)s/(2πf0), and the damping is chosen uniformly as Di=30s/(2πf0), which

gives the small perturbation parameter ε = 0.18 s. The resulting power network dynamics (δ(t), θ̇(t))

are strongly damped (note the different time scales), and the non-uniform Kuramoto dynamics δ̄(t) and

the quasi-steady state h(δ̄(t)) have slower time constants. As expected, the singular perturbation errors

remain smaller during transients and converge faster than in the weakly damped case in Figure 3(a).

VII. CONCLUSIONS

This paper studied the synchronization and transient stability problem for a power network. A novel

approach leads to purely algebraic conditions, under which a network-reduced power system model is

transiently stable depending on network parameters and initial phase differences. Our technical approach

is based on the assumption that each generator is highly overdamped due to local excitation control. The

resulting singular perturbation analysis leads to the successful marriage of transient stability in power

networks, Kuramoto oscillators, and consensus protocols. As a result, the transient stability analysis of a

power network model reduces to the synchronization analysis of non-uniform Kuramoto oscillators. The

study of generalized coupled oscillator models is an interesting mathematical problem in its own right

and was tackled by combining and extending different techniques from all three mentioned areas.
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(a) Weakly damped simulation with ε = 0.58 s
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(b) Strongly damped simulation with ε = 0.18 s

Fig. 3. Simulation of the power network model (3) and the non-uniform Kuramoto model (8)

The presented approach to synchronization in power networks offers easily checkable conditions and

an entirely new perspective on the transient stability problem. The authors are aware that the derived

conditions are not yet competitive with the sophisticated numerical algorithms developed by the power

systems community. To render our results applicable to real power systems, tighter synchronization

conditions have to be developed, the region of attraction has to be characterized more accurately, and

more realistic power network models have to be considered. The authors’ ongoing work addresses the

last point and extends the presented analysis to structure-preserving power network models.

Finally, the revealed relationship between power networks, Kuramoto oscillators, and consensus algo-

rithms gives rise to various exciting research directions at the interface between these areas.
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VIII. APPENDIX: ALTERNATIVE SYNCHRONIZATION CONDITIONS

In this appendix we briefly comment on alternative bounding methods in the proof of Theorem V.3 and

how they affect the triplet of the synchronization condition (9), the estimate for the region of attraction

∆(γmax), and the ultimate phase cohesive set ∆̄(γmin). We will state only the essential parts of the theorem

statements and the corresponding proofs.

A. Pairwise Bounding

The proof of Theorem V.3 can be continued from equation (29) by bounding the right-hand side of

equation (29) for each single pair {m, `} rather than for all m, ` ∈ {1, . . . , n}. Such a pairwise bounding

results in n(n − 1)/2 pairwise synchronization conditions and the worst multiplicative gap over all

conditions determines the estimates for the region of attraction ∆(γmax) and the ultimate phase cohesive

set ∆̄(γmin). In short, tighter bounds are traded off for complexity. The resulting theorem statement is as

follows.

Theorem VIII.1 (Synchronization condition I) Consider the non-uniform Kuramoto-model (8), where

the graph induced by P = P T is complete. Assume that the minimal lossless coupling of any oscillator

pair {m, `} to the network is larger than a critical value, i.e., for every m, ` ∈ {1, . . . , n}, m 6= `,

Γm` :=

n∑
k=1

min
i∈{m,`}\{k}

{
Pik
Di

cos(ϕik)

}
>

Γcritical
m` :=

1

cos(ϕmax)
·
(∣∣∣∣ ωmDm

− ω`
D`

∣∣∣∣+

n∑
k=1

(
Pmk
Dm

sin(ϕmk) +
P`k
D`

sin(ϕ`k)

))
. (45)

Accordingly, define γmin ∈ [0, π/2 − ϕmax[ and γmax ∈ ]π/2, π] as unique solutions to the equations

sin(γmin) = sin(γmax) = cos(ϕmax) maxm,`{Γcritical
m` /Γm`}. Then . . .

Proof of Theorem VIII.1: . . . [see proof of Theorem V.3] . . .

In summary, D+V (θ(t)) in (29) can be upper bounded by the simple expression

D+V (θ(t)) ≤ ωm
Dm
− ω`
D`
−
∑n

k=1
min

i∈{m,`}\{k}
{aik} sin(γ) +

∑
k
b`k +

∑
k
bmk .

It follows that V (θ(t)) is non-increasing for all θ(t) ∈ ∆̄(γ) and for all pairs {m, `} if

Γm` sin(γ) ≥ cos(ϕmax)Γcritical
m` , (46)

where Γm` and Γcritical
m` are defined in (45). The left-hand side of (46) is a strictly concave function

of γ ∈ [0, π]. Thus, there exists an open set of arc lengths γ including γ∗ = π/2 − ϕmax satisfying

equation (46) if and only if equation (46) is true at γ∗ = π/2 − ϕmax with the strict inequality sign,

which corresponds to condition (45) in the statement of Theorem VIII.1. Additionally, if these two

equivalent statements are true, then V (θ(t)) is non-increasing in ∆̄(γ) for all γ ∈ [γmin, γmax], where

γmin ∈ [0, π/2− ϕmax[ and γmax ∈ ]π/2, π] satisify inequality (46) for all pairs {m, `} . . .
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B. Pairwise Concavity-Based Bounding

The bounding in the proof of Theorem V.3 can be further tightened by cocavity-based arguments. This

bounding results in n(n− 1)/2 pairwise synchronization conditions and n(n− 1) equations determining

the estimates for the region of attraction ∆(γmax) and the ultimate phase cohesive set ∆̄(γmin). Again,

tighter bounds are traded off for increasing complexity. The resulting theorem statement is as follows.

Theorem VIII.2 (Synchronization condition I) Consider the non-uniform Kuramoto-model (8), where

the graph induced by P = P T is complete. Assume that the minimal lossless coupling of any oscillator

pair {m, `} to the network is larger than a critical value, i.e., for every m, ` ∈ {1, . . . , n}, m 6= `,
n∑
k=1

min
i∈{m,`}\{k}

{
Pik
Di

cos(ϕik + ϕmax)

}
> Γcritical

m` :=

∣∣∣∣ ωmDm
− ω`
D`

∣∣∣∣+ max
i∈{m,`}

{
n∑
k=1

Pik
Di

sin(ϕik)

}
. (47)

Accordingly, for every pair {m, l} define γm`min ∈ [0, π/2− ϕmax[ and γm`max ∈ ]π/2, π] as unique solutions to
n∑
k=1

min
i∈{m,`}\{k}

{
Pik
Di

sin(γm`min − ϕik)
}

=

n∑
k=1

min
i∈{m,`}\{k}

{
Pik
Di

sin(γm`max + ϕik)

}
= Γcritical

m` , (48)

and let γmin := maxm,`{γm`min} and γmax := minm,`{γm`max}. Then . . .

Proof of Theorem VIII.2: . . . [see proof of Theorem V.3] . . .

Written out in components D+V (θ(t)) (in the non-expanded form (8)) takes the form

D+V (θ(t)) =
ωm
Dm
− ω`
D`
−

n∑
k=1

Pmk
Dm

sin(θm(t)− θk(t) + ϕmk) +
P`k
D`

sin(θk(t)− θ`(t)− ϕ`k) . (49)

In the following we abbreviate the summand on the right-hand side of (49) as fk(θk(t)) := Pmk

Dm
sin(θm(t)−

θk(t) +ϕmk) + P`k

D`
sin(θk(t)− θ`(t)−ϕ`k) and aim at a least conservative bounding of fk(θk(t)). There

are different ways to continue from here – the following approach is based on concavity.

Since fk(θk) is the sum of two shifted concave sine functions of θk ∈ [θ`, θm] (with same period and

shifted by strictly less than π/2), fk(θk) is again concave sine function of θk ∈ [θ`, θm] and necessarily

achieves its minimum at the boundary θk ∈ {θ`, θm}. If argminθk∈[θm,θ`] fk(θk) = θ`, then

fk(θk(t)) ≥ f1k (γ) :=
Pmk
Dm

sin(γ + ϕmk)−
P`k
D`

sin(ϕ`k) ,

and otherwise for argminθk∈[θm,θ`] fk(θk) = θm

fk(θk(t)) ≥ f2k (γ) :=
P`k
D`

sin(γ − ϕ`k) +
Pmk
Dm

sin(ϕmk) ,

where f1k and f2k are functions from [0, π] to R. In the following let f3k : [0, π]→ R be defined by

f3k (γ) := min

{
Pmk
Dm

sin(γ + ϕmk),
P`k
D`

sin(γ − ϕ`k)
}
− P`k
D`

sin(ϕ`k) .

Since fk(θ(t)) ≥ f3k (γ) for all θk(t) ∈ [θm(t), θ`(t)], the derivative (49) is upper-bounded by

D+V (θ(t)) =
ωm
Dm
− ω`
D`
−
∑

k
f3k (γ) .
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It follows that V (θ(t)) is non-increasing for all θ(t) ∈ ∆̄(γ) and for all pairs {m, `} if for all {m, `}
n∑
k=1

min
i∈{m,`}\{k}

{
Pik
Di

sin(γ + ϕik),
Pik
Di

sin(γ − ϕik)
}
≥
∣∣∣∣ ωmDm

− ω`
D`

∣∣∣∣+ max
i∈{m,`}

{
n∑
k=1

Pik
Di

sin(ϕik)

}
.

(50)

Note that the minimizing summand on the left-hand side of (50) is mini∈{m,`}\{k}{Pik sin(γ − ϕik)/Di}
for γ < π/2, mini∈{m,`}\{k}{Pik sin(γ + ϕik)/Di} for γ > π/2, and it achieves its maximum value

mini∈{m,`}\{k}{Pik cos(ϕik)/Di} for γ = π/2. In particular, there exists an open set of arc lengths γ for

including γ∗ = π/2−ϕmax for which V (θ(t)) is non-increasing in ∆̄(γ) if and only if inequality (50) is

strictly satisfied for γ∗ = π/2− ϕmax. In this case, define γm`min ∈ [0, π/2− ϕmax[ and γm`max ∈ ]π/2, π] as

the two unique solutions to equation (50) with equality sign, which is equivalent to equation (48). Then

V (θ(t)) is non-increasing in ∆̄(γ) for all γ ∈ [γm`min, γ
m`
max]. Finally define γmin and γmax as the maximum

and minimum values of γm`min and γm`max over all pairs {m, `} . . .

C. Adding and Subtracting the Lossless Coupling

The last possible bounding we explore is restricted to the set of initial conditions in ∆(π/2 − ϕmax)

and results in a simple, scalar, and intuitive but very conservative synchronization condition. Instead of

bounding the right-hand side of D+V (θ(t)) directly, we add and subtract the lossless coupling in the

proof of Theorem V.3. The resulting theorem statement is as follows.

Theorem VIII.3 (Synchronization condition I) Consider the non-uniform Kuramoto-model (8), where

the graph induced by P = P T is complete. Assume that the minimal coupling is larger than a critical

value, i.e., for every i, j ∈ {1, . . . , n}

Pmin > Pcritical :=
Dmax

n cos(ϕmax)

(
max
{i,j}

∣∣∣ ωi
Di
− ωj
Dj

∣∣∣+ max
i

∑n

j=1

Pij
Di

sin(ϕij)

)
. (51)

Accordingly, define γmin = arcsin(cos(ϕmax)Pcritical/Pmin) taking value in [0, π/2− ϕmax[ and γmax =

π/2− ϕmax. Then . . .

Proof of Theorem VIII.3: . . . see proof of Theorem V.3 . . .

Written out in components (in the non-expanded form (8)) D+V (θ(t)) takes the form

D+V (θ(t)) =
ωm
Dm
− ω`
D`
−

n∑
k=1

(
Pmk
Dm

sin(θm(t)− θk(t) + ϕmk)−
P`k
D`

sin(θ`(t)− θk(t) + ϕ`k)

)
.

(52)

Adding and subtracting the coupling with zero phase shifts yields

D+V (θ(t)) =
ωm
Dm
− ω`
D`
−
∑n

k=1

(Pmk
Dm

sin(θm(t)− θk(t)) +
P`k
D`

sin(θk(t)− θ`(t))
)

−
∑n

k=1

Pmk
Dm

(
sin(θm(t)− θk(t) + ϕmk)− sin(θm(t)− θk(t))

)
+
∑n

k=1

P`k
D`

(
sin(θ`(t)− θk(t)) + ϕ`k) + sin(θk(t)− θ`(t))

)
.
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Since both sinusoidal terms in the first sum are strictly positive, they can be lower-bounded as

Pmk
Dm

sin(θm(t)− θk(t)) +
P`k
D`

sin(θk(t)− θ`(t)) ≥
Pmin

Dmax

(
sin(θm(t)− θk(t)) + sin(θk(t)− θ`(t))

)
.

In the following we apply classic trigonometric arguments from the Kuramoto literature [32], [24], [39].

The identity sin(x) + sin(y) = 2 sin(x+y2 ) cos(x−y2 ) leads to the further simplifications

sin(θm(t)− θk(t)) + sin(θk(t)− θ`(t)) = 2 sin

(
θm(t)− θ`(t)

2

)
cos

(
θm(t) + θ`(t)

2
− θk(t)

)
,

sin(θm(t)− θk(t) + ϕmk) + sin(θk(t)− θm(t)) = 2 sin
(ϕmk

2

)
cos
(
θm(t)− θk(t) +

ϕmk
2

)
,

sin(θ`(t)− θk(t) + ϕ`k) + sin(θk(t)− θ`(t)) = 2 sin
(ϕ`k

2

)
cos
(
θ`(t)− θk(t) +

ϕ`k
2

)
.

Note that the right-hand side of (52) is a convex function of θk ∈ [θ`, θm] (see Proof of Theorem VIII.2)

and accordingly achieves its maximum at the boundary for θk ∈ {θ`, θm} Therefore, D+V (θ(t)) is upper

bounded by

D+V (θ(t)) ≤ max
{i,j}

∣∣∣ ωi
Di
− ωj
Dj

∣∣∣− Pmin

Dmax

∑n

k=1
2 sin

(γ
2

)
cos
(γ

2

)
−
∑n

k=1

Pmk
Dm

2 sin
(ϕmk

2

)
cos
(
γ +

ϕmk
2

)
+
∑n

k=1

P`k
D`

2 sin
(ϕ`k

2

)
cos
(ϕ`k

2

)
.

Note that the second sum is strictly negative for γ ∈ [0, π/2− ϕmax[ and can be neglected. Moreover,

in the third sum the maximum over all nodes ` can be taken. Reversing the trigonometric identity from

above as 2 sin(x) cos(y) = sin(x− y) + sin(x+ y) yields then the simple expression

D+V (θ(t)) ≤ max
{i,j}

∣∣∣ ωi
Di
− ωj
Dj

∣∣∣− Pmin

Dmax

∑n

k=1
sin(γ) + max

i

∑n

k=1

Pik
Di

sin(ϕik) .

It follows that the length of the arc formed by the angles is non-increasing in ∆(γ) if

Pmin sin(γ) ≥ Pcritical cos(ϕmax) , (53)

where Pcritical is as stated in equation (51). The left-hand side of (53) is a strictly increasing function of γ ∈
[0, π/2− ϕmax[. Therefore, there exists some γ∗ ∈ [0, π/2− ϕmax[ satisfying equation (53) if and only if

equation (53) at γ = π/2−ϕmax is true with the strict inequality sign, which corresponds to equation (51).

Additionally, if these two equivalent statements are true, then there exists a unique γmin ∈ [0, π/2− ϕmax[

that satisfies equation (53) with the equality sign, namely γmin = arcsin(cos(ϕmax)Pcritical/Pmin). . .
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