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RISK TRADING AND ENDOGENOUS PROBABILITIES IN
INVESTMENT EQUILIBRIA∗
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Abstract. A risky design equilibrium problem is an equilibrium system that involves N designers
who invest in risky assets, such as production plants, evaluate these using convex or coherent risk
measures, and also trade financial securities in order to manage their risk. Our main finding is that
in a complete risk market—when all uncertainties can be replicated by financial products—a risky
design equilibrium problem collapses to what we call a risky design game, i.e., a stochastic Nash game
in which the original design agents act as risk neutral and there emerges an additional system risk
agent. The system risk agent simultaneously prices risk and determines the probability density used
by the other agents for their risk neutral evaluations. This situation is stochastic-endogenous: the
probability density used by agents to value uncertain investments is endogenous to the risky design
equilibrium problem. This result is most striking when design agents use coherent risk measures
in which case the intersection of their risk sets turns out to be a risk set for the system risk agent,
thereby extending existing results for risk markets. We also investigate existence of equilibria in both
the complete and incomplete cases.
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1. Introduction. We study equilibria over N agents that design or invest in
risky assets or stochastic processes representing uncertain future costs (or profits),
motivated by risky capital investments such as manufacturing plants. In the style of a
Nash game, the ith agent chooses xi from its set of feasible strategiesXi ⊂ R

n knowing
the strategies x−i ∈ X−i ⊂ R

(N−1)n of other agents, thereby defining its risky cost or
risky asset as a random vector Ξi(xi, x−i). This risky cost lies in an uncertain outcome
space Z which is either R

K if there are K future scenarios or an Lp space, usually
with 1 ≤ p <∞, if there are infinitely many scenarios. We think of Ξi(xi, x−i) as the
uncertain cost, net of sales revenue, of production in a future market; equivalently
−Ξi(xi, x−i) represents future profit. In terms of microeconomics, Ξi(xi, x−i) is an
abstract description of stochastic production sets which relate inputs to outputs.

Given a probability density Π on Z, the expectation EΠ

[
Ξi(xi, x−i)

]
is a risk

neutral valuation of agent i’s risky cost. This leads to a risk neutral Nash game,

(1) min
xi

EΠ

[
Ξi(xi, x−i)

]
subject to xi ∈ Xi

for i = 1, . . . , N . Our interest, however, is in agents that are risk averse.
Suppose agent i puts a value of ri

(
Ξi(xi, x−i)

)
on its uncertain cost using a

convex risk measure [16] denoted ri : Z → R. It can also hedge its risky cost, i.e.,
change Ξi(xi, x−i) to Ξi(xi, x−i)−Wi by purchasing financial securities or contracts
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2590 DANIEL RALPH AND YVES SMEERS

as represented by a vector Wi ∈ Z. Given the price of risk P r in the dual space of
Z, the cost of Wi is defined by the dual action P r[Wi] ∈ R. Hence agent i optimizes
with respect to both design and hedging variables,

(2) min
xi,Wi

P r[Wi] + ri

(
Ξi(xi, x−i)−Wi

)
subject to xi ∈ Xi.

Recall the classical risk market [1] in which each agent i has a risky cost Zi ∈ Z,
e.g., Zi = Ξi(xi, x−i) for fixed xi and x−i, and is given the price of risk P r. Agent i
hedges Zi by solving

(3) min
Wi

P r[Wi] + ri(Zi −Wi).

The price of risk P r is determined by the equilibrium condition that all trades of
financial products balance each other:

(4)

N∑
i=1

Wi = 0.

This describes a complete risk market, i.e., when Wi can be any member of Z.
Definition 1. The risky design equilibrium problem1 is the system that combines

(2) (for i = 1, . . . , N) and (4). A risky design equilibrium is a solution of this system
that comprises design variables x↑, risk trades W↑, and a price of risk P r.

A risky design equilibrium problem combines a risk averse Nash game in design
variables x↑ := (xi)

N
i=1 with a (complete) market in risk. Incomplete risky design

equilibrium problems, where risk tradesWi are constrained to lie in a closed subspace
of Z, are addressed in section 4.

Our main contribution is to build a bridge between the risky design equilibrium
problem (2), (4) and the risk neutral design game (1), which we do by introducing a
risky design game as we now describe. The most striking case is when each ri is a
coherent risk measure (CRM) [2], hence

ri(Z) = max{EΠ[Z] : Π ∈ Di}
for some nonempty, closed, convex set of probability densities Di called its risk set.
This is a worst-case appraisal of the cost of Z over all Π ∈ Di. Let D0 be the intersec-
tion

⋂N
i=1 Di, the system risk set (see Definition 4 in section 2.2.1). Nonemptiness of

D0 can be assumed since this is necessary for existence of a risk market equilibrium
(see part 2 of Theorem 4, section 2.2.1). We reformulate the risky design equilibrium
problem as a game combining the risk neutral design game (1), over N players, with
an N +1st agent, the system risk agent, that sets the probability density Π by solving

(5) max
Π

EΠ

[
N∑
i=1

Ξi(xi, x−i)

]
subject to Π ∈ D0.

That is, the system risk agent evaluates the system CRM whose risk set is D0.
The combination of (1) and (5) exemplifies the risky design game mentioned

above. See Definition 5 in section 3.3 for the more general case when agents use
convex risk measures.

1We make a distinction between an equilibrium problem and a game in that, in the former, the
price is not provided by a preexisting agent (that optimizes its utility) but emerges from the market
as a whole.
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Our main finding is that a risky design equilibrium x↑, W↑, P r yields a solution
x↑, Π = P r of the risky design game, and the converse holds under mild technical
conditions. This is explored in detail in section 3, including existence results; see
Theorem 8 and Corollary 2.

The leap described from risky design equilibria to risky design games and back is
considerable. It entails that the probability density Π is both the price of risk and the
worst-case probability density for every design agent’s hedged cost Ξi(xi, x−i) −Wi.
That is, at equilibrium, the marginal view of risk (which turns out to be a probability
density) is the same for all design agents, which is why they appear as risk neutral in
the risky design game. Since Π is part of the solution of this system, we say that the
equilibrium problem is stochastic-endogenous.

The properties of Π, above, extend important work in the finance literature [1, 4,
7, 8, 10, 14, 15, 16, 18], in which agents are endowed with risky assets that they value
with risk measures, and trade financial securities to manage risk. This is reviewed in
section 2. The underlying theory of risk measures [2, 16] is also an expanding topic
in stochastic optimization theory [31, 33]. The design equilibrium setting combines
both topics by modeling competition between risk averse agents that invest in both
risky assets and financial securities.

Section 4 concludes the paper with a short exploration of risky design equilibria
when the risk market is incomplete, namely, each risk trade Wi is confined to a closed
subspace W of Z. Once again we reformulate the equilibrium problem as a hybrid of a
risk neutral Nash game and a risk pricing equilibrium problem; see Theorem 11. This
diverges from the complete case in that, at equilibrium, each agent may use a different
probability density (or price of risk) to describe its marginal view of risk. Although
we are unable to convert this hybrid equilibrium problem to a Nash game, we use
Kakutani’s fixed point theorem to provide existence of equilibria; see Theorem 12.

Before proceeding to the main sections of the paper we give a literature review in
section 1.1 and set up our notation in section 1.2.

1.1. Motivation and the broader literature. In this paper the stochastic
process Ξi(xi, x−i) is generic. For example, in the robust competitive newsvendor
setting [20] it would be cost net of uncertain sales, where a quantity xi of newspapers
is ordered today for sales tomorrow and the level of uncertain demand to be serviced
by newsvendor i depends on others’ orders x−i.

In fact our motivation originates from our interest in restructured electricity
systems. Restructuring induced a move from the optimization to the equilibrium
paradigm in order to represent the change of structure of the industry. These equi-
librium models are often of the stochastic programming type but make two simplifi-
cations. First, the underlying stochastic processes (e.g., of prices) are exogenous and
do not depend on the decisions embedded in the model; second, the models are often
formulated in a risk neutral world without any representation of hedging processes.
Both simplifications depart from the reality of the restructured electricity system and
should be remedied. Our model is a step in this direction: it contains financial hedging
instruments that are priced endogenously.

Richer models involving two-stage or multistage operational or investment de-
cisions underlie the abstract setting we develop. The electricity investment model
proposed in [11] is of this type and was one of the inspirations for the work presented
here. Our paper, or rather the first version of it [26], is cited in work on two-stage
capacity equilibria [12] and two-stage hydropower equilibria [25]. It is also cited in
[22], which combines a market in financial instruments with a spot electricity market,
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2592 DANIEL RALPH AND YVES SMEERS

so that payoffs are endogenous, and considers an incomplete risk market that yields
a generalized Nash equilibrium.

While our model is an extension of partial equilibrium models found in the litera-
ture, it can also be seen as a simplification of the generalization of general equilibrium
models to stochastic models of physical and financial assets. An in-depth analysis of
the economic work in that area can be found in [23]. The paper [21] presents a
mathematical programming–based analysis of these questions. Our model works in a
simpler context but it may be useful to briefly note some relations between the two
areas. In contrast with stochastic general equilibrium (SGE) problems, we neglect the
consumer side because of the complexity in SGE problems introduced by two-stage
budget constraints. We also state our problem in a Nash equilibrium set-up which
avoids the complication of pricing physical assets (we only deal with the prices of
the financial assets). Our model is thus a pure production model; an extension that
embeds a consumer with constant marginal utility of money (hence still avoiding the
complexity of the intertemporal budget constraint) and explicitly deals with the prices
of the physical assets is in preparation.

Although our main results pertain to complete markets, a treatment of incomplete
markets, as in the SGE case, is closer to reality. In an incomplete market the space of
revenue from the physical market cannot be spanned by the financial products (which
is typical in electricity markets) and hence where a standard nonarbitrage condition
leads to a multiplicity of prices. In the language of SGE models [23], we consider equi-
librium in “constrained equilibrium allocation,” i.e., in the space of financial transfers
spanned by existing instruments, and show existence of an equilibrium in terms of
risk adjusted evaluation of profits, taking into account the variety of prices. A final
note is that although Pareto optimality is an ever-present topic in economics, from
welfare theory through to recent work on financial markets, the question of Pareto
optimality for these equilibria is left for further research.

1.2. Notation.

Simple finite dimensional case. Let R denote the set of real numbers, R+ :=
[0,∞), R∞ := R∪{∞}. We will identify each future scenario or state ω with a future
cost, e.g., Zω ∈ R, and also identify probability density functions on the set Ω of
all scenarios. For example, if Ω = {1, . . . ,K}, then Z = R

K , so that an uncertain
outcome Z ∈ Z represents K cost scenarios, and the set of probability densities P is
defined as the set of vectors in R

K with nonnegative entries that sum to 1.
The usual dot or inner product between any vectors ζ and Z in Z is ζ[Z] :=∑K

ω=1 ζωZω. We also introduce � as the vector of ones in Z, and the comparison
Z1 � Z2 between vectors in Z to mean that Z1ω ≤ Z2ω for each ω. This allows
us to write P in dual form as those ζ ∈ R

K such that ζ[Z] ≥ 0 for all Z 
 0 and
ζ[�] = 1. We usually denote a probability density by Π and write its dual action as
an expectation: EΠ[Z] := Π[Z].

We write a list of uncertain outcomes, one for each agent, as Z↑ := (Zi)
N
i=1. Thus

Z↑ belongs to ZN , which is the Cartesian product of N copies of Z. Likewise, when
we introduce financial products in section 2.1.2, we will write W↑ := (Wi)

N
i=1 ∈ ZN .

For x, v ∈ R
n, the inner product is denoted v�x (we use different notation from

that of the inner product on Z, to avoid confusing R
n with Z.) For a set D ⊂ R

n

recall that its tangent cone at a point x ∈ D, written TD(x), is the set of points of the
form lim(xν − x)/tν , where {xν} ⊂ D converges to x and 0 < tν → 0. If D is convex
and x ∈ D, then TD(x) is nonempty, closed and convex; and both D and TD(x) have
nonempty relative interior [29].
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For readers whose primary interest is in stochastic situations with finitely many
scenarios, the remainder of this section can be skipped. We suggest reading subsequent
results with K scenarios in mind, Z and its dual space Z∗ as RK , and other notation
as above.

Lp spaces and uncertain outcome spaces. To allow for an infinite number
of scenarios we need more notational tools. Adapting [31], let (Ω,F , μ) be a measure
space that is nonnegative, nontrivial, and finite, i.e., the measure of sets S in F
satisfies μ(S) ≥ 0 and, in particular, 0 < μ(Ω) < ∞.2 (The prototype such measure
space is the real interval [0,1] under Lebesgue measure.) Henceforth measurable means
F -measurable, and the measure of a set is taken with respect to μ.

For 1 ≤ p < ∞ let Lp(Ω,F , μ), or Lp(Ω) for short, be the space of measurable

functions3 f : Ω → R with finite p-norm, defined as ‖f‖p :=
( ∫

Ω |f(ω)|pdμ(ω))1/p.
The space L∞(Ω,F , μ) is defined similarly with ‖f‖∞ := inf{supω∈Ω\S |f(ω)| :
S has measure zero in Ω}. We usually emphasize the vector view by referring to
members of Lp(Ω,F , μ) in the form Z = (Zω)ω∈Ω rather than as functions on Ω
and may write ‖Z‖ rather than ‖Z‖p when the context is clear. These Lp spaces are
Banach spaces that, as a consequence of the finite measure of Ω, are contained in
L1(Ω,F , μ).

Definition 2 (uncertain outcome spaces). Z is an uncertain outcome space if
it is either R

K or Lp(Ω) for some 1 ≤ p ≤ ∞, where (Ω,F , μ) is a nonnegative,
nontrivial, finite measure space. Each Z in Z may be called an uncertain outcome or
uncertain vector or random vector.

More general spaces of uncertain outcomes are discussed in [31, 33]. Nevertheless
Lp spaces are quite rich and we prefer ease of presentation to greater generality.

There is a natural ordering of uncertain outcomes Z1, Z2 ∈ Z: Z1 � Z2 denotes
Z1ω ≤ Z2ω for almost all (a.a.) ω ∈ Ω, where a.a. ω means either all ω ∈ Ω if
Ω = {1, . . . ,K} or all ω except those in a measure zero subset of Ω if Ω is a more
general measure space. Likewise a.e. means for a.a. ω.

The dual space Z∗ and set of probability densities P. The topological
dual Z∗ of Z = Lp(Ω,F , μ) is conveniently expressed if 1 ≤ p <∞. By choosing q to
satisfy (1/p)+(1/q) = 1 it is well known that 1 < q ≤ ∞ and Z∗ = Lq(Ω,F , μ), where
the dual action of g ∈ Lq(Ω,F , μ) on f ∈ Lp(Ω,F , μ) is g[f ] :=

∫
Ω f(ω)g(ω)dμ(ω).

Analogous to probability densities on R
K , we define P as the set of dual elements g

with4 g 
 0 and g[�] =
∫ 1

0 g(ω)dμ(ω) = 1, and observe that the uniform distribution
�/μ(Ω) lies in P when Z is an Lp space.

2. The toolbox of risk markets and risk measures. Here we gather and
recast results from a number of papers in the finance literature, including [1, 4, 7,
8, 9, 10, 14, 15, 16, 18], to provide tools for complete and perfectly competitive risk
markets; these and other papers will be highlighted in the material to follow.

Section 2.1 introduces risk markets, where agents use convex functions to assess
uncertainty and trade financial products to hedge risk. The important results for us

2Without loss of generality the measure of Ω can be normalized to 1, making (Ω,F , μ) a proba-
bility measure space as in [31]. We avoid this to make the analogy between RK and Lp spaces more
direct.

3Actually elements of Lp are classes of measurable functions that are equal up to sets of measure
zero, which is appropriate for Banach space theory. We will find it more convenient to refer to specific
functions, or their vector forms, to designate their equivalence classes.

4More generally, g � 0 if and only if g[f ] ≥ 0 for each f ∈ Lp(Ω,F , μ) with f � 0.

D
ow

nl
oa

de
d 

01
/0

5/
16

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2594 DANIEL RALPH AND YVES SMEERS

are that the existence of a risk (market) equilibrium is equivalent to solving a system
risk optimization problem that follows as (6); that the optimal value of this system
risk problem can be written as an inf-convolution vr, defined by (7), that we call the
system risk function; and, when a risk equilibrium price P r exists, that the price of
risk is characterized as a subgradient of vr.

Section 2.2 specializes risk markets to the case of (convex) risk measures and
CRMs. An important first result is that the subgradients of these functions are
probability densities. Next, when each ri is a risk measure, the system risk function
vr is also a risk measure; hence, when a risk equilibrium exists, P r is a probability
density. The situation is particularly striking when each ri is a CRM, for then vr is a
CRM whose risk set can be characterized as the intersection of the risk sets of all N
agents.

The toolbox is concluded in section 2.3, which presents various sufficient condi-
tions for existence of risk equilibria.

2.1. Introduction to a market for risk.

2.1.1. Convex functions for assessing uncertain outcomes. Suppose there
are N agents indexed by i that are endowed with respective uncertain assets Zi ∈ Z.
Agent i has its own risk function, ri : Z → R, that is convex. (In section 2.2 we will
introduce further axioms to define risk measures.) Agent i knows each payoff Ziω with
certainty, but is not sure which of these cost outcomes, i.e., which scenario ω, will
occur in the future. Agents want to minimize cost or, equivalently, maximize profit,
which is taken to be synonymous with negative cost.

Consider a continuous convex function r : Z → R where Z is a Banach space.
Note that r is subdifferentiable at any Z ∈ Z, the latter meaning that the subdiffer-
ential defined below is nonempty:

∂r(Z) := {ζ ∈ Z∗ : r(Z) + ζ[Y − Z] ≤ r(Y ) for all Y ∈ Z}.

Moreover, the subdifferential is also locally bounded near any Z ∈ Z; these results,
which we will use without reference, can be found in [30, Theorems 8 and 11(a)]. It is
elementary that z is a local or equivalently a global minimum of minZ∈Z r(Z) if and
only if the optimality condition 0 ∈ ∂r(Z) holds.

2.1.2. A complete and perfectly competitive risk market. For i = 1, . . . ,
N let us fix Zi ∈ Z as agent i’s endowment and write the list of endowments as
Z↑ = (Zi)

N
i=1 ∈ ZN . Recall the risk market given by (3) for each Wi and (4) for the

P r.

Our first result, essentially due to [1], states that the equivalence between per-
fectly competitive trading and system optimization “is a trivial reformulation of the
usual one in welfare economics” given by [32, Chapter VIII]. This adapts the classical
paradigm of perfect competition from goods and services to risk, i.e., each agent sets
its consumption level (of financial productsWi) to balance its marginal risk reduction
against the unit prices (P r) of those products.

Theorem 1. Let Z be a Banach space, ri : Z → R be convex and lower semi-
continuous for i = 1, . . . , N , and the list of agents’ endowments, Z↑ = (Zi)

N
i=1 ∈ ZN ,

be given. The following are equivalent:

1. There exists a market equilibrium for risk, i.e., a price vector P r ∈ Z∗ and a
balanced list of risk trades W↑ = (Wi)

N
i=1 ∈ ZN such that Wi solves (3) for

each i.
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2. W↑ solves system risk problem

(6) min
W↑

N∑
i=1

ri(Zi −Wi) subject to

N∑
i=1

Wi = 0

and P r is the Lagrange multiplier of trade balance constraint.
3. W↑ is balanced,

⋂N
i=1 ∂ri(Zi −Wi) is nonempty, and P r is a member of this

intersection.
The equivalence between statements 1 and 2 is classical economics [32] and is

immediately derived by examining the stationary conditions [30] for the convex opti-
mization problems that are involved. The equivalence between statements 1 and 3 is
elementary and also follows easily from stationary conditions without resorting to La-
grange multipliers (or checking a regularity condition on the constraints) by defining

WN = −∑N−1
i=1 Wi in order to rewrite (6) as an unconstrained optimization problem

over W1, . . . ,WN−1.
We introduce the system risk function of the consolidated or aggregate portfolio

Z0 =
∑

i Zi,

(7) vr(Z0) := inf

{
N∑
i=1

ri(Zi) : Z↑ ∈ ZN ,
N∑
i=1

Zi = Z0

}
for all Z0 ∈ Z.

This is a classical inf convolution of the functions ri and is therefore convex when
each ri is convex [29]. Note that vr

(∑
i Zi

)
is the infimal value (or optimal value if

a solution exists) of (6). The theory of inf convolutions is used later in section 2.3
when discussing existence of a solution to (7).

Our next result is extracted and restated from [10].
Theorem 2 (see [10, section 3.2]). Under the assumptions of Theorem 1, if a

risk market equilibrium exists for a given list Z↑ ∈ ZN of agents’ endowments, then
the following are equivalent:

1. P r prices risk.
2. P r lies in ∂vr

(∑N
i=1 Zi

)
.

2.2. Introduction to risk measures. Recall the notation Z1 � Z2 which
means Z1ω ≤ Z2ω a.a. ω.

Definition 3 (risk measures). Let Z be an uncertain outcome space, r : Z → R,
and consider the following properties:

Axiom 1. Convexity.
Axiom 2. Monotonicity: r(Z1) ≤ r(Z2) for Z1, Z2 ∈ Z with Z1 � Z2.
Axiom 3. Translation invariance: r(Z + α�) = r(Z) + α for Z ∈ Z and α ∈ R.
Axiom 4. Positive homogeneity: ρ(αZ) = αρ(Z) for Z ∈ Z and α > 0.
We say r is a (convex) risk measure [16] if it satisfies axioms 1–3 and is a CRM

[2] if it additionally satisfies axiom 4.
We note that [5, 6, 31, 33] all provide bridges between the finance and optimiza-

tion approaches to risk measures though the optimized certainty equivalent of [5] was
defined prior to the coining of the terms convex and CRMs.

We list some properties of risk measures that we will use without reference below.
Theorem 3. Let Z be an uncertain outcome space and r : Z → R.
1. [31, Proposition 3.1] If r is a risk measure, then it is continuous.
2. [16] r is a risk measure if and only if it is convex and its subgradients are

probability densities.
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2596 DANIEL RALPH AND YVES SMEERS

3. [2] r is a CRM if and only if for some nonempty, closed, and convex set D
of probability densities we have r(Z) = maxζ∈D ζ[Z].

The closed convex set D associated with the CRM maxΠ∈D EΠ[·] is called its risk
set.

2.2.1. Pricing risk under risk measures. In this section we combine sec-
tions 2.1 and 2.2 to analyze markets for risk when agents are risk averse and express
their value of future, uncertain outcomes via risk measures or CRMs. Risk markets
exemplify equilibria under risk. More complex situations that combine risk trading
with design or investment decisions are discussed in sections 3 and 4.

We study N agents (e.g., investors in production plants) where agent i is endowed
with an uncertain cost vector Zi = (Ziω)ω∈Ω (e.g., the cost of production tomorrow),
and each ω indexes a future scenario (e.g., relating to cost of inputs or price of output).
Agents are risk averse and exchange financial securities to reduce their risk.

We introduce a CRM to characterize system risk when all agents use CRMs.
Definition 4 (system CRM). Let Z be an uncertain outcome space. For each

agent i = 1, . . . , N , let ri : Z → R be a CRM and denote its (nonempty, convex, and
closed) risk set as Di ⊂ P. Define the system risk set as

(8) D0 =

N⋂
i=1

Di

and the system CRM as the CRM with the risk set D0:

(9) r0 = σD0 .

We say r0 describes the risk aversion of a system agent that is the least risk averse
or most risk neutral of all agents. The term “least risk averse” reflects the weakly
lower cost of uncertainty faced by the system agent than by any other agent due to
the containment of D0 in each Di, hence the inequality r0[Z] ≤ ri[Z] for any random
outcome Z.

The next result shows that the system risk function inherits the risk measure prop-
erties of the individual risk functions ri. Part 2 is freely adapted from the references
cited there.

Theorem 4. Assume Z is an uncertain outcome space; there are N agents where
each agent i assesses the value of uncertain assets using a risk measure ri : Z → R;
and the risk market is perfectly competitive and complete. If agents’ endowments are
given by Z↑ ∈ ZN and a corresponding risk market equilibrium exists, then

1. [4, Theorem 3.2], [10, section 3.2] the system risk function vr, (7), is a real
valued (convex) risk measure;

2. [7, Propositions 2.5 and 2.7], [8, Lemma 4.3] in the situation of Definition 4,
D0 is nonempty and vr coincides with r0 which is the CRM with risk set D0.

2.3. Existence of risk equilibria under risk measures. We give some con-
ditions under which risk can be priced. The case of risk measures is treated in The-
orem 5, followed by a brief review of some important related results in the financial
mathematics literature. The case of existence under CRMs follows immediately as
Corollary 1.

We recall two well known classes of extended real valued convex functions f :
Z → R∞. We say f is polyhedral convex if its epigraph is the intersection of finitely
many closed half spaces in Z×R. We say f is law invariant if f(Z1) = f(Z2) when Z1
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and Z2 are identically distributed on the measure space (Ω,F , μ), written Z1 ∼ Z2,
i.e., μ{ω : Z1ω ≤ α} = μ{ω : Z2ω ≤ α} for any α ∈ R.

We’ll need some additional notation. First, the convex conjugate of f : Z → R∞
is the function f∗ : Z∗ → R ∪ {∞} defined by

f∗(ζ) := sup
Z∈Z

ζ[Z]− vr(Z).

Second, the domain of f∗ is dom f∗ := {ζ ∈ Z∗ : f∗(ζ) < ∞}. Third, the strong
quasi-relative interior of a set S in Z∗, sqri(S), is the set of ζ0 ∈ S such that the cone
{α(ζ − ζ0) : α > 0, ζ ∈ S} is a closed subspace of Z∗.

Theorem 5. Under the assumptions of Theorem 4, each of the following condi-
tions is sufficient for existence of a risk market equilibrium:

1. Each ri is polyhedral convex and
⋂

i dom r∗i is nonempty.
2. Z is reflexive, e.g., either R

K or an Lp space for 1 < p < ∞, and
⋂

i sqri
(dom r∗i ) is nonempty.

3. [15, Theorem 2.5] Z is either R
K or a nonatomic Lp space for 1 ≤ p ≤ ∞,

each ri is law invariant, and
⋂

i dom r∗i is nonempty.
Sufficiency of statement 1 for existence of a risk equilibrium appears to be new.

It relies on the property of a linear program—in this case a reformulation of (6)—that
the problem has a solution when it is feasible and bounded below.

The sqri condition in statement 2 is motivated by [18], which studies risk markets
with finitely many contingencies (Z = R

K) and, hence, uses the equivalent notion
of relative interior, rint [29], rather than sqri. Nonemptiness of

⋂
i rint (dom r∗i ) is

shown [18, Proposition 4.2] to be equivalent to the existence of risk trades W↑ that
are balanced such that the adjusted list of assets Z↑ −W↑ satisfies a kind of Pareto
optimality given by [18, Definition 3.1]. It is shown in [10] that this condition is
sufficient for existence of a risk equilibrium; see Theorem 3.1, which has a Pareto
optimality framing, and the connection to both system optimization and the system
risk function vr in section 3.2 of that paper.

Statement 3, due to [15, Theorem 2.5] as already noted, is a more general version
of the prior existence result established for Z = L∞(Ω) in [14, Theorem 3.1].

Proof of Theorem 5. As already mentioned, we only need to prove sufficiency
of statements 1 and 2. Rather than dealing with an equilibrium in the risk market,
we use its characterization as a solution of the system optimization problem (6); see
Theorem 1.

Assume statement 1. In this case (6) can be written as a linear program whose
feasible set is nonempty. We will show that nonemptiness of

⋂
i dom r∗i implies that the

objective function of (6), hence of its linear programming reformulation, is bounded
below on its feasible set. Since a feasible linear program that is bounded has a solution,
even in infinite dimensions, the result follows.

By hypothesis, ri(Z), for any Z ∈ Z, can be written as the minimum value of α
such that α ≥ αi

j + ζij [Z] for j = 1, . . . , Ji, where Ji ∈ N and αi
j ∈ R, ζij ∈ Z∗5 for

each j. Thus ri(Z) = max
{
αi
j + ζij [Z] : j = 1, . . . , Ji

}
and, for any ζ ∈ Z∗,

r∗i (ζ) = sup
Z∈Z

(
ζ[Z]− max

j=1,...,Ji

αi
j + ζij [Z]

)
,

which, by inspection, is finite valued if and only if supZ ζ[Z]−maxj=1,...,Ji ζ
i
j [Z] <∞.

The last quantity is actually a support function −σDi−ζ(Z) where Di = conv{ζij :

5Since ri is a risk measure, each ζij is a probability density, but we will not use that fact here.
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2598 DANIEL RALPH AND YVES SMEERS

j = 1, . . . , Ji} and Di − ζ is its translation by −ζ. This is finite valued if and only if
σDi−ζ(Z) ≥ 0, which is equivalent to ζ ∈ Di. In short, dom r∗i = Di.

By hypothesis there exists ζ0 ∈ ⋂N
i=1 dom r∗i , hence ζ0 lies in each Di. For any

W↑ ∈ ZN ,

N∑
i=1

ri(Zi −Wi) ≥
N∑
i=1

(
σDi(Zi −Wi)− max

j=1,...,Ji

αi
j

)

≥
(

N∑
i=1

σDi(Zi −Wi)

)
− max

i=1,...,N
min

j=1,...,Ji

αi
j .

Now σDi(Zi −Wi) ≥ ζ0[Zi −Wi], hence
∑
σDi(Zi −Wi) ≥ ζ0

[∑
Zi

]
if W↑ is feasible

for (6). That is,
∑N

i=1 ri(Zi −Wi) is bounded below by a scalar that is independent
of W↑.

Assume statement 2. Existence of solutions of inf convolutions, sometimes called
exactness, is a very well studied problem in convex analysis and we appeal here to
the standard result [3]. Given a Banach space X and convex, lower semicontinu-
ous mappings f1, f2 : X → R∞, this result says for any x0 ∈ X that the inf con-
volution infx1,x2∈X {f∗

1 (x1) + f∗
2 (x2) : x1 + x2 = x0} is achieved as a minimum

if sqri(dom f1 − dom f2) 
= ∅, where the latter condition follows if sqri(dom f1)∩
sqri(dom f2) is nonempty. Without giving details of what are classical and elementary
arguments, exactness of the infimal convolution over N convex, lower semicontinuous
mappings fi : X → R∞ follows by induction if

⋂
i sqri(dom fi) 
= ∅. This result can

be applied when X = Z∗, fi = r∗i for i = 1, . . . , N , and f∗
i is the second conjugate

r∗∗i which is defined on Z∗∗. Since ri is continuous and convex, and Z is reflexive,
then Z∗∗ = Z and r∗∗i = ri. Thus

⋂
i sqri(dom r∗i ) 
= ∅ implies for any Z0 ∈ Z that

infZ↑
{∑

i ri(Zi) :
∑

i Zi = Z0

}
is achieved as a minimum. That is, there exists a

solution of (7) and hence of the system risk problem (6).
An immediate corollary is for the case when all agents use CRMs ri = σDi ;

hence, from Theorem 4, vr = σD0 where D0 =
⋂

iDi. It is elementary that the
convex conjugate of σDi takes the value 0 when Π ∈ Di and ∞ otherwise, that is,
dom r∗i = Di for i = 1, . . . , N and dom vr∗ = D0. The following result is, therefore,
merely a restatement of Theorem 4 and needs no proof.

Corollary 1. Let the assumptions of Theorem 4 hold. In addition suppose
each ri is a CRM with risk set Di and let D0 =

⋂
i Di. Then each of the following

conditions is sufficient for existence of a risk market equilibrium:
1. Each Di is the convex hull of a finite (nonzero) number of probability densities,

and D0 
= ∅.
2. Z is reflexive, e.g., either R

K or an Lp space with 1 < p < ∞, and
⋂

i

sqri(Di) 
= ∅.
3. Z is either R

K or a nonatomic Lp space with 1 ≤ p ≤ ∞, each ri is law
invariant, and D0 
= ∅.

3. Risky design equilibrium problems and risky design games. We ex-
tend the framework of a risk market to risky design equilibrium problems and then
Nash games. Section 3.1 models our risky design equilibrium problem along with the
risk, convexity, and technical assumptions that are needed for later results. Section
3.2 gives a chain rule, Theorem 6, that is used to formulate the stationary conditions
of design agents. Section 3.3 contains our main result, Theorem 8, which shows how a
risky design equilibrium problem, where agents use risk measures, can be reformulated
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as a risky design game given in Definition 5. In the latter, design agents act as risk
neutral with respect to a probability density defined by an emergent system risk agent,
which shows stochastic-endogeneity of these systems. Theorem 8 also shows existence
of a risky design equilibrium under reasonable conditions. Corollary 2 specializes this
to the case of CRMs.

In this section and section 4 to follow, we restrict Lp spaces to those with 1 ≤
p <∞. The exclusion of p = ∞ is a limitation in the chain rule, Theorem 6.

3.1. Risky design equilibria and modeling assumptions. Let us motivate
the model for risky design equilibria in slightly more detail than the introduction.
Each agent is considering building a plant today for production tomorrow. Let xi ∈ R

n

denote agent i’s design variables6 for its prospective plant and Ii(xi) denote the cost
of that plant. For any design xi the cost of operations, tomorrow, is uncertain,
i.e., lies in the uncertain outcome space Z. Those costs are also affected by other
agents’ investments, x−i := (xj)j �=i ∈ R

n(N−1). Agent i’s risky asset is thus denoted
Ξi(xi, x−i), where Ξ : Rn × R

n(N−1) → Z.
Given an investment budget bi ≥ 0, agent i’s strategy set is

Xi = {xi ∈ R
n : xi ≥ 0, Ii(xi) ≤ bi}

and its strategy is determined by solving

min
xi

Ii(xi) + ri
(
Ξi(xi, x−i)

)
subject to xi ∈ Xi.

In fact Ii can depend on x−i and also can be absorbed, by translation invariance,
into Ξi(xi, x−i) via Ii(xi) + ri

(
Ξi(xi, x−i)

)
= ri

(
Ii(xi) + Ξi(xi, x−i)

)
. So we will

notionally simplify agent i’s problem, without loss of modeling generality, to

(10) min
xi

ri
(
Ξi(xi, x−i)

)
subject to xi ∈ Xi.

This constitutes a noncooperative Nash game, over agents i = 1, . . . , N , which is a
game theoretic extension of risk averse optimization [31].

We follow the introduction by including risk trading and restating (2) and (4)
below. Given the price of risk P r on Z, the ith agent finds xi ∈ R

n and Wi ∈ Z to
solve

(11) min
xi,Wi

P r[Wi] + ri
(
Ξi(xi, x−i)−Wi

)
subject to xi ∈ Xi.

Also, risk trades must be balanced:

(12)
N∑
i=1

Wi = 0.

Applying Definition 1, the system (11) (for i = 1, . . . , N) and (12) is a risky design
equilibrium problem.

Our goal is to extend the existence theory for Nash games under risk to the new
paradigm of risky design equilibrium problems. Our assumptions follow.

6To simplify notation we assume n does not depend on i. Our results hold when each xi has
a possibly different dimension ni by appropriate substitution of ni for n or embedding Rni in Rn,
where n = maxi ni.
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Risk assumptions.
1. By Z we denote an uncertain outcome space, i.e., either R

K or Lp(Ω) for
p ∈ [1,∞), where (Ω,F , μ) is nonnegative, nontrivial, finite measure space.

2. We study a risk market of N agents where each agent i assesses the cost
of uncertain outcomes by a (convex) risk measure ri : Z → R (section 2.2,
Definition 3).

3. The market for risk is perfectly competitive and, except for section 4, complete
(section 2.1.2).

Convexity assumptions.
1. For each i = 1, . . . , N let Xi be a nonempty compact convex set in R

n,

X↑ := X1 × . . .×XN ⊂ R
nN .

2. Given x↑ ∈ X↑, Ξiω(·, x−i) is real valued and convex on Xi for each i and ω.
Technical assumptions.
1. Each Ξi : X↑ → Z is continuous.
2. Assume further that, for any x↑ ∈ X↑, Ξi(·, x−i) is directionally differentiable

at xi in any direction x in the relative interior of TXi(xi), rintTXi(xi).
Note that these assumptions are sufficient for existence of a solution of the Nash

game (10), e.g., convexity of ri
(
Ξi(·, x−i)

)
follows from convexity of each Ξiω(·, x−i)

given monotonicity of ri [31], and ri
(
Ξi(xi, x−i)

)
is obviously continuous in (xi, x−i).

For clarity we state Nash’s theorem as Theorem 14 in the appendix, where, in
keeping with the original statement [24], agent i’s objective function is required to be
quasi-convex in its strategy xi. In this paper, we unavoidably require convexity in xi
in order to use equivalence between stationarity and global optimality.

3.2. Chain rule. Here we provide tools to derive the stationary conditions of
each agent’s optimization problem. Hence we consider a single agent only, omit the
index i, and modify and extend results developed for optimization under risk in [31,
33].

Let ρ denote the composite function r ◦ Ξ(x) := r
(
Ξ(x)

)
, where r : Z → R is

a risk measure, each Ξω : Rn → R∞ is lower semicontinuous and convex with the
same domain D, and ρ takes the value ∞ outside D. If we are minimizing ρ, then
we would like to formulate stationary conditions using gradients or subgradients of ρ
via a chain rule, Theorem 6 below, which will be used in section 3.3. To clarify what
is needed, we mention a result which follows from classical finite dimensional convex
analysis [29]. If Z = R

K , x̄ ∈ D, Z̄ = Ξ(x̄), and each Ξω is subdifferentiable at x̄,
then we have the chain rule

∂ρ(x̄) =
{
ζ[ξ] : ζ ∈ ∂r(Z̄), ξ ∈ ∂Ξ(x̄)

}
,

where ∂Ξ(x̄) := ∂Ξ1(x̄) × . . . × ∂ΞK(x̄). The fact that ∂r(Z̄) consists of probability
densities allows us to rewrite this as ∂ρ(x̄) =

{
EΠ[ξ] : Π ∈ ∂r(Z̄), ξ ∈ ∂Ξ(x̄)

}
.

We need to extend this chain rule by allowing, first, risk trading, i.e., composite
functions which map (x,W ) ∈ R

n×Z to r(Ξ(x)−W ), and, second, infinite dimensional
uncertainties, Z = Lp(Ω).

We give a chain rule that combines and extends two results given in [31], namely,
a chain rule Theorem 6.11 and disintegration result Theorem 7.47. We depart from
the former by studying compositions that may take the value ∞ and by showing
closedness of the set on the right-hand side of the subdifferential formula (14), below.

Theorem 6. Let Z be an uncertain outcome space and r : Z → R be a (con-
tinuous) risk measure. Let D be a nonempty closed convex set in R

n and, for each
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ω, let Ξω : Rn → R∞ be a convex and lower semicontinuous function with domain D
such that Ξ(x) :=

(
Ξω(x)

)
ω
defines a continuous mapping from D to Z. Define the

composite function ρ : Rn ×Z → R∞ by

ρ(x,W ) :=

{
r
(
Ξ(x) −W

)
for x ∈ D and W ∈ Z,

∞ otherwise.

1. The composition ρ is convex and lower semicontinuous and its domain is
D × Z.

2. Suppose in addition that x̄ ∈ D is such that there exists the directional
derivative Ξ′(x̄;x) ∈ Z for each x ∈ rintTD(x̄). Then for any W̄ ∈ Z
and Z̄ = Ξ(x̄)− W̄ ,
(a) if Z = R

K and ∂Ξ(x̄) := ∂Ξ1(x̄)× · · · × ∂ΞK(x̄) we have

(13) ∂ρ(x̄, W̄ ) =
{(

EΠ[ξ],−Π
)
: ξ ∈ ∂Ξ(x̄), Π ∈ ∂r(Z̄)

}
;

(b) if Z = Lp(Ω,F , μ), where 1 ≤ p <∞, we have

(14) ∂ρ(x̄, W̄ ) =
⋃

Π∈∂r(Z̄)

(
EΠ

[
∂Ξ(x̄)

] × {−Π}
)
,

where
(15)

EΠ

[
∂Ξ(x̄)

]
:=
{
EΠ[ξ] : ξω ∈ ∂Ξω(x̄) for all ω, (Πωξω)ω is integrable

}
.

Due to the highly technical nature of the proof, we postpone it to the appendix.
Note that, in the situation of Theorem 6, a sufficient condition for the direc-

tional differentiability property of Ξ required in part 2 is that x̄ lies in rintD [33,
Theorem 7.44].

3.3. Reformulation of a risky design equilibrium problem as a Nash
game.

3.3.1. A link to risk neutral Nash games via stochastic-endogeneity.
Recall the system risk function vr (see (7) in section 2.1.2), which is a risk measure
(Theorem 4 in section 2.2.1).

Theorem 7. Suppose the risk, convexity, and technical assumptions hold. Con-
sider the following two statements:

A. (x↑W↑,Π) is a risky design equilibrium, i.e., solves (11), (12), where P r = Π.
B. (x↑,Π) solves the equilibrium system (16), (17):

(16) min
xi

EΠ

[
Ξi(xi, x−i)

]
subject to xi ∈ Xi

and

(17) Π ∈ ∂vr

(
N∑
i=1

Ξi(xi, x−i)

)
.

Then A ⇒ B, and the converse holds (for appropriate W↑) if the risk market has an
equilibrium when each agent i holds the asset Zi = Ξi(xi, x−i).
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Theorem 7 stands without boundedness of Xi (i.e., replace compact by closed) in
Assumption 5.

Remark 1. The reformulation in statement B allows us to ignore risk trades. The
design agents (i = 1, . . . , N) are standard risk neutral optimizers, (16), and there is a
final equilibrium condition, (17), that determines the risk neutral probability density.
Hence this format is a stochastic-endogenous equilibrium problem. We contrast this
with the more traditional stochastic game in which (17) is dropped in favor of a fixed
probability density Π, given in advance, that results in a risk neutral Nash game (16).

Proof of Theorem 7. Extend Ξiω(xi, x−i) to take the value +∞ for x↑ 
∈ X↑, and
define ρi(xi,Wi) = ri

(
Ξi(xi, x−i)−Wi

)
for (xi,Wi) ∈ Xi×Z and ∞ otherwise. Then

the stationary condition of (11) can be formulated as 0 ∈ (0, P r)+∂ρi(xi,Wi), which,
by the chain rule Theorem 6, gives,7 for some Πi ∈ ∂ri

(
Ξi(xi, x−i)−Wi

)
,

0 ∈ EΠi

[
∂xiΞi(xi, x−i)

]
,

0 = P r −Πi.

This shows that P r is independent of i, and we simplify the conditions to

(18)
0 ∈ EΠ

[
∂xiΞi(xi, x−i)

]
,

Π ∈ ∂ri
(
Ξi(xi, x−i)−Wi

)
.

Suppose (x↑,W↑,Π) is a risky design Nash equilibrium so that (18) holds with
P r = Π. Obviously W↑ and Π form a risk equilibrium for the risky assets Zi =
Ξi(xi, x−i), i = 1, . . . , N , and hence Theorem 2 gives (17). Also, the first inclusion
of (18) is stationarity of (16) by the chain rule Theorem 6, i.e., xi solves this convex
problem.

Conversely take x↑, Π that solve (16), (17). We have seen that the stationary
condition of (16) is the first inclusion of (18). Assuming further that there exists a
risk equilibrium given Zi = Ξi(xi, x−i) for each i, Theorem 2 ensures that Π prices
risk for Z↑. Let W↑ be the equilibrium risk trades. Hence, by Theorem 1, the second
inclusion of (18) holds for each i when P r = Π. Thus we have solved (11). Since W↑
must also be balanced we are done.

3.3.2. A risky design equilibrium problem is equivalent to a Nash game.
Recall the convex conjugate of vr, the function vr∗ : Z∗ → R ∪ {∞} defined by

vr∗(ζ) := sup
Z
ζ[Z]− vr(Z).

A standard result of convex conjugacy for lower semicontinuous convex functions like
vr is that ζ ∈ ∂vr(Z) if and only if Z ∈ ∂vr∗(ζ); see [29, Corollary 12A]. Thus the
inclusion (17) is equivalent to

∑
i Ξi(x

k
i , x

k
−i) being a member of ∂vr∗(Π), which, in

turn, is the stationary condition for

min
Π
vr∗(Π)−Π

[∑
i

Ξi(x
k
i , x

k
−i)

]
.

7The first inclusion could be written 0 ∈ EΠ

[
∂xiΞi(xi, x−i)

]
+ NXi

(xi), where NXi
(xi) is the

normal cone of Xi at xi. However, adding NXi
(xi) is superfluous because, due to the extended real

valued definition of each Ξiω and hence of EΠ

[
Ξi(xi, x−i)

]
, the subdifferential EΠ

[
∂xiΞi(xi, x−i)

]

contains NXi
(xi).
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There is no generality lost in restricting the decision set of this problem to the domain
of vr∗. Likewise, since any stationary point Π is a subgradient of the risk measure vr,
it is a probability density. Hence if Dr denotes domain of vr∗,

Dr = {Π ∈ P : vr∗(Π) <∞},

we consider

(19) min
Π
vr∗(Π)− EΠ

[∑
i

Ξi(x
k
i , x

k
−i)

]
subject to Π ∈ Dr,

which is equivalent to (17) but has the form required for an agent in a Nash game.
In fact (19) can be viewed as an N + 1st agent that prices risk, the so-called system
risk agent.

We summarize as follows: The risky design equilibrium problem (11) (for i =
1, . . . , N) and (12) in statement B of Theorem 7 can be equivalently written as the
Nash game that combines (16) (for i = 1, . . . , N) and (19). This gives part 1 of
Theorem 8 to follow, which, as a corollary of Theorem 7, needs no proof.

Definition 5. The Nash game (16), with design decisions xi for i = 1, . . . , N ,
and (19), with a risk pricing decision Π, is called a risky design game.

We say that the risk market always has an equilibrium to mean that risk can be
priced for any stream of assets Z↑ ∈ ZN .

Theorem 8. Let the risk, convexity, and technical assumptions hold and Dr be
the domain of vr∗.

1. Consider the following statements:
A. (x↑,W↑,Π) is a risky design equilibrium, i.e., solves (11), (12).
B. (x↑,Π) solves the risky design game (16), (19).

Then A =⇒ B and the converse holds, for some W↑, if the risk market has
an equilibrium when each agent i holds the asset Zi = Ξi(xi, x−i).

2. If Dr is closed, then statement B holds: there exists a Nash equilibrium
(x↑,Π).

Part 1 is already proved above. In finite dimensions, existence in part 2 is evi-
dently a direct application of Nash’s theorem because Dr inherits compactness from
its superset P . A complicating factor when Z = Lp(Ω) is that the dual elements lie
in Z∗ = Lq(Ω) and, consequently, we lack norm compactness of the closed convex set
P . This is overcome by using the weak∗ topology on Z∗, under which P is weak∗

compact.
Proof of Theorem 8. As noted above, we only need to prove part 2. This is an

application of Nash’s theorem, stated as theorem 14 in the appendix, to the game with
N + 1 agents given by (16) for i = 1, . . . , N , and (19) for i = N + 1. As well as the
norm, or strong, topology on Z∗ we need to consider the weak∗ topology on Z∗. We
need the standard result (Alaoglu’s theorem, or see [28, Chapter III.7, Theorem 6])
that weak∗ compactness holds for every set in Z∗ that is closed and bounded with
respect to the usual (dual) norm on Z∗. By the product topology we mean the
topology on R

nN ×Z∗ whose neighborhoods are Cartesian products of neighborhoods
in R

n and weak∗ neighborhoods in Z∗.
We list the immediate properties of the game: Each agent i = 1, . . . , N has

a strategy set Xi that is nonempty convex and compact (in R
n) and an objective

EΠ

[
Ξi(xi, x−i)

]
that is continuous and convex in xi given (xi,Π) and is also continuous

in all variables (xi, x−i,Π) with respect to the product topology. The last statement
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relies on continuity of Ξi as a mapping from the normed space R
nN to the normed

space Z. Agent N + 1 has as its strategy set the domain Dr of the conjugate vr∗

of the system risk function, and Dr is convex and closed (by hypothesis) but not
weak∗ compact because it is not in general bounded; we’ll return to this later. Its
objective function Φ(Π, x↑) := vr∗(Π) − EΠ[v

r(
∑N

i=1 Ξi(xi, x−i))] is the sum of a
convex function and a linear function of Π and hence is convex in Π. To show that Φ
is lower semicontinuous in (Π, x↑), we start by observing that the first term vr∗, being
a convex conjugate, is automatically weak∗ lower semicontinuous on Z∗.8 The second
(expectation) term is actually continuous in the product topology due to continuity
of vr and norm continuity of each Ξi. It follows that Φ is both lower semicontinuous
(in the product topology) and continuous in x↑ only.

To apply Nash’s theorem it is only left to show that the risk pricing problem (19)
can be written as optimization over a convex weak∗ compact set. Recall from previ-
ous discussion that Π lies in ∂vr(

∑N
i=1 Ξi(xi, x−i)) if and only if it solves (19); and

of course, such a vector Π lies in Dr. Since vr is continuous and convex, ∂vr(Z)
is uniformly bounded with respect to Z near any Z0 ∈ Z . Next, continuity of∑N

i=1 Ξi yields (norm) compactness of the image
{∑N

i=1 Ξi(xi, x−i) : x↑ ∈ X↑
}

of the compact set X↑. Combining these two facts gives norm boundedness of the set

∪x↑∈X↑∂v
r
(∑N

i=1 Ξi(xi, x−i)
)
. Let D be the closed convex hull of this set, which is

a weak∗ compact subset of Dr since the latter is closed by hypothesis. Thus for any
x↑ ∈ X↑, the strategy set Dr of (19) can replaced by D without changing the set of
optimal solutions.

An immediate corollary is for the case when all agents use CRMs ri = σDi and
hence from Theorem 4, vr = σD0 , where D0 =

⋂
iDi. It is elementary that the convex

conjugate of σD0 takes the value 0 when Π ∈ D0 and ∞ otherwise, hence Dr = D0,
which is a closed set, and the system risk agent’s problem (19) reduces to

(20) max
Π

EΠ

[
N∑
i=1

Ξi(xi, x−i)

]
subject to Π ∈ D0.

Both parts of the next result also rely on sufficient conditions for existence of risk
equilibria given by Corollary 1 in section 2.3.

Corollary 2. In the situation of Theorem 8, suppose that all agents use CRMs
as in Definition 4 and the system risk set D0 =

⋂N
i=1 Di is nonempty. If either each

risk set Di is polyhedral and convex or the system risk set has interior relative to P,
then

1. the risky design equilibrium problem (11), (12) is equivalent to the risky design
game (16), (20);

2. an equilibrium exists for each of these systems.
Remark 2. A key point regarding existence of equilibria is that we are merely

exercising long established ideas and that standard extensions or elaborations are
equally possible. One extension asks when boundedness of the strategy sets Xi can
be dispensed with. If we can show that equilibria, should they exist, lie in a bounded
set, then the original proof holds trivially. (This idea is exemplified in the proof of
Theorem 8, part 2 in the appendix.) A more subtle approach imposes conditions on
the variational inequality that is formed by writing all agents’ stationary conditions in

8Let f : Z → R∞ and look at the epigraph of f∗, {(ζ, α) ∈ Z∗ × R : f∗(ζ) ≤ α}. This can be
written as the intersection, over all Z ∈ Z, of the weak∗ closed sets (half spaces) {(ζ, α) ∈ Z∗ × R :
ζ[Z]− f(Z) ≤ α}.
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one system; see [13, Chapter 2] or [17, section 7]. The direct analysis of the equilibrium
conditions may prove challenging since the associated variational inequality problem
has expectation-valued maps. Consequently, sufficiency conditions for existence are
by no means easy to ascertain, though some recent work [27] may assist with respect
to coercivity. Sufficiency conditions are a topic for further work.

4. Incomplete risky design equilibrium problems. Our final section takes
an introductory look at risky design problems when the risk market is incomplete.
Suppose risk trades are confined to a closed subspace W of Z, which is natural in
financial markets where there are several kinds of financial securities that define the
basis of W . This is the case in [22], which, however, confines itself to financial trades
to study hedging.

Adapting from the complete case (2) or (11), given x−i and P
r, agent i solves

(21) min
xi,Wi

P r[Wi] + ri

(
Ξi(xi, x−i)−Wi

)
subject to xi ∈ Xi, Wi ∈ W .

The price of risk P r is a dual element in W∗ (since it only acts on W).

Definition 6. The incomplete risky design equilibrium problem is the system
that combines (21) (for i = 1, . . . , N) with balanced risk trades,

∑
iWi = 0. An

incomplete risky design equilibrium is a solution of this system that comprises design
variables x↑ ∈ X↑, risk trades W↑ ∈ WN and a price of risk P r ∈ W∗.

The main results are Theorem 9, which is a straightforward extension of clas-
sical results such as Theorem 1 to incomplete risk markets (cf. [18]); Theorem 10,
which extends Corollary 1 on existence of risk equilibria when agents use CRMs to
the incomplete case (see, for example, [15]); Theorem 11, which shows—analogous to
Theorem 7—how an incomplete risky design equilibrium problem can be reformulated
as a combination of a risk neutral design game and a risk pricing process; and Theo-
rem 12—analogous to Corollary 2—which gives sufficient conditions for existence of
an incomplete risky design equilibrium when there are only finitely many stochastic
scenarios and agents use CRMs.

Theorems 11 and 12 show the stochastic-endogenous nature of incomplete risky
design equilibria but differ fundamentally from the case of complete markets in that
each design agent may select a different probability density or marginal price of risk
(see Definition 7).

4.1. Review of incomplete risk markets. Suppose there are N agents with
risky assets Z1, . . . , ZN ∈ Z. In the risk market, given P r, agent i faces the problem

(22) min
Wi

P r[Wi] + ri(Zi −Wi) subject to Wi ∈ W .

As above, P r ∈ W∗ is such that, at equilibrium, W↑ is balanced.

We give a straightforward extension of Theorem 2. Denote by Π↑ the list of
probability densities (Πi)

N
i=1. Let ζ|W denote the restriction of a dual element ζ ∈ Z∗

to W , so that ζ|W ∈ W∗. Likewise for a set S ⊂ Z∗, let S|W := {ζ|W : ζ ∈ S}.
Theorem 9. Suppose the risk, convexity, and technical assumptions hold, and W

is a nonempty closed subspace of Z. If an incomplete risk market equilibrium exists
for a given list Z↑ ∈ ZN of agents’ endowments, then the following are equivalent:

1. P r prices risk for the incomplete market.
2. W↑ solves the system risk problem,
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2606 DANIEL RALPH AND YVES SMEERS

min
W↑

N∑
i=1

ri(Zi −Wi) subject to W↑ ∈ WN ,

N∑
i=1

Wi = 0,

and P r is the Lagrange multiplier of the trade balance constraint.
3. W↑ is balanced and P r is such that

P r ∈
N⋂
i=1

(
∂ri(Zi −Wi)|W

)
.

A proof isn’t needed as it is more or less the same as in the complete case: As
in Theorem 1, the equivalence between statements 1 and 2 is classical economics,
and the equivalence between all statements can be directly derived by looking at the
stationary conditions of the convex optimization problems that are involved.

When investigating existence later we will assume agent risk preferences are repre-
sented by CRMs. The next result is a direct extension of Corollary 1 to the incomplete
case. The proofs of parts 1 and 2 replicate the proofs of their counterparts for Theo-
rem 7 by merely adding the constraintW↑ ∈ WN . The proof of part 3 is an adaptation
of [15, section 7].

Theorem 10. Let the assumptions of Theorem 9 hold. In addition suppose for
each i that ri is a CRM with closed convex risk set Di. Then each of the following
conditions is sufficient for existence of a risk market equilibrium:

1. Each Di is the convex hull of a finite (nonzero) number of probability densities,
and

⋂
i Di is nonempty.

2. Z is reflexive, e.g., either RK or an Lp space with 1 < p <∞, and
⋂

i sqri(Di)
is nonempty.

3. Z is either R
K or a nonatomic Lp space with 1 ≤ p ≤ ∞, each ri is law

invariant, and
⋂

iDi is nonempty.

4.2. Reformulation and existence of solutions of incomplete risky de-
sign equilibrium problems. Recall the risk neutral design problem (1) or (16) that
we adapt here to account for different probability densities Πi:

(23) min
xi

EΠi

[
Ξi(xi, x−i)

]
subject to xi ∈ Xi.

We couple this with a risk market characterization derived from statement 3 of The-
orem 9.

Definition 7. Given risky assets Z↑ ∈ ZN , we say Π↑ ∈ W∗ is a marginal risk
equilibrium for Z↑ if there exist a balanced list W↑ ∈ ZN and P r ∈ W∗ such that, for
all i,

(24)
Πi ∈ ∂ri

(
Zi −Wi

)
,

P r = Πi|W .

Theorem 11. In the setting of Theorem 9, let Ξ↑(x↑) :=
(
Ξi(xi, x−i)

)N
i=1

for
x↑ ∈ X↑. Then (x↑,W↑, P r) is an incomplete risky design equilibrium if and only if
x↑ solves the risk neutral Nash design equilibrium (23), where Π↑ is a marginal risk
equilibrium for Z↑ = Ξ↑(x↑) and P r = Πi|W for any i.

Proof. Following the proof of Theorem 7 we extend Ξiω(xi, x−i) to take the
value +∞ for x↑ 
∈ X↑, define ρi(xi,Wi) = ri

(
Ξi(xi, x−i)−Wi

)
for (xi,Wi) ∈ Xi ×Z
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and ∞ otherwise, and use the chain rule Theorem 6 to give the stationary condition
of (21) as the existence of Πi ∈ ∂ri

(
Ξi(xi, x−i)−Wi

)
such that

0 ∈ EΠi

[
∂xiΞi(xi, x−i)

]
,

0 = P r −Πi|W .

Thus if (x↑,W↑, P r) is an incomplete risky design equilibrium then xi solves (23) for
each i, (24) holds, and

∑
iWi = 0. The converse follows with the help of Theo-

rem 9.
Theorem 11 puts the incomplete risky design equilibrium problem into a form

suitable for application of Kakutani’s fixed point theorem, stated as Theorem 13
in the appendix. This leads to our final existence result, which is limited to finite
dimensions.

As in [22], we need an interiority condition on D0 =
⋂

i Di. Given D ⊂ P we
write intP(D) for the interior of D relative to P , which the set of Π ∈ D such that D
contains a neighborhood of Π intersected with P . Nonemptiness of intP(D0) ensures
boundedness of risk trades; the analogous condition [22, Assumption B] plays the
same role in that paper.

Theorem 12. In the setting of Theorem 9, suppose Z = R
K ; each ri is a CRM

with a closed convex risk set Di; and intP(D0) 
= ∅. Then there exists an incomplete
risky design equilibrium.

Proof. For each i = 1, . . . , N , given x−i ∈ X−i and Πi ∈ Di, let Φi(x−i,Πi) be
the set of optimal solutions xi of (23) which is nonempty, compact, and convex.

Given x↑ ∈ X↑, consider the risk market corresponding to risky assets Zi =
Ξi(xi, x−i) for i = 1, . . . , N . Since sqri(Di) contains intP(Di) for each i, we appeal
to statement 2 of Theorem 10 to get a risk equilibrium corresponding to Z↑. Hence
there exists a marginal risk equilibrium Π↑ for Z↑ from statement 3 of Theorem 9.
Let ΦN+1(x↑) be the set of such Π↑. Then ΦN+1(x↑) is a nonempty, convex, and
compact set in D↑ which denotes the Cartesian product D1 × . . .×DN .

We see that Φ(x↑,Π↑) :=
(
Φ1(x1,Π1), . . . ,ΦN (xN ,ΠN ),ΦN+1(x↑)

)
defines a set

mapping from the nonempty compact convex setX↑×D↑ to nonempty convex compact
subsets of X↑ × D↑. If the graph of this set mapping is closed, then Kakutani’s
fixed point theorem, reproduced in the appendix as Theorem 13, gives a fixed point
(x̄↑, Π̄↑). That is, x̄↑ solves the Nash game (23) and Π̄↑ is a marginal risk equilibrium
for
(
Ξi(x̄i, x̄−i)

)
i
. In this case, Theorem 11 completes the proof.

To show that the graph of Φ is closed, suppose
{
(x̂k↑ , Π̂

k
↑)
}
is a sequence in X↑×D↑

that converges to (x̂↑, Π̂↑); write Ẑk
↑ =

(
Ξi(x̂

k
i , x̂

k
−i)
)
i
and Ẑ↑ =

(
Ξi(x̂i, x̂−i)

)
i
so that

Ẑk
↑ → Ẑ↑. Suppose further that (x̌k↑ , Π̌

k
↑) ∈ Φ(x̂k↑ , Π̂

k
↑) converges to (x̌↑, Π̌k

↑) as k → ∞.

Since EΠi

[
Ξi(xi, x−i)

]
is continuous in (x↑,Πi), it follows that x̌i solves (23) when

Πi = Π̂i and x−i = x̂−i. It is only left to show that Π̌↑ is a marginal risk equilibrium

for Ẑ↑.
From Theorem 9, statement 3, there exist W̌ k

↑ and P̌ rk that satisfy (24) for Z↑ =

Ẑk
↑ and Π↑ = Π̌k

↑ . Since W̌
k
↑ is a solution of the inf convolution problem in statement 2

of Theorem 9, for Z↑ = Zk
↑ , the assumption intP(D0) 
= ∅ means that {W̌ k

↑ } inherits

boundedness from {Ẑk
↑}. Since P is bounded, so are {Π̌k

↑} and {P̌ rk = Π̌k
i |W}. Thus{

(W̌ k
↑ , P̌

rk, Π̌k
↑)
}
has a limit point (W̌↑, P̌ r, Π̌↑). Since Π̌k

i ∈ ∂ri(Ẑ
k
i − W̌ k

i ), then, in

the limit, Π̌i ∈ ∂ri(Ẑi − W̌i) for each i. The balance equation
∑
W̌ k

i = 0 also holds
in the limit, as does the identity P̌ rk = Π̌k

i |W , that is,
∑
W̌i = 0 and P̌ r = Π̌i|W .
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By Theorem 9 again, Π̌↑ is a marginal risk equilibrium for Ẑ↑, and the proof is
complete.

Note that since the proof assumes existence of strong limit points of bounded
sequences in Z × Z∗ ×Z∗, it only covers the case Z = R

K .

Appendix A.

Proof of Theorem 6. We start with some minor results of convex analysis that
we state without proof.

Lemma 1. Let X be a Banach space with topological dual X ∗ and f : X → R∞
be convex with domain D = {x : f(x) <∞}. Let x̄ ∈ D.

1. For any x ∈ R
n, f ′(x̄;x) exists as an extended value in [−∞,+∞] such that

f ′(x̄; ·) is positively homogeneous and sublinear.
2. If f is subdifferentiable at x̄, then the support function σ∂f(x̄) is the lower

semicontinuous hull of f ′(x̄; ·). In particular, f ′(x̄;x) = σ∂f(x̄)(x) ∈ R for
x ∈ rint (domσ∂f(x̄)), while f

′(x̄;x) = ∞ for x 
∈ domσ∂f(x̄).
3. Let S be a nonempty set in X ∗ that is convex but not necessarily closed, K

be a closed convex cone in X with nonempty relative interior, and K◦ :=
{ξ ∈ X ∗ : ξ[x] ≤ 0 for all x ∈ K}. If f ′(x̄;x) ≤ σS(x) for x ∈ rintK, then
∂f(x̄) ⊂ cl (S+K◦). If f ′(x̄;x) = σS(x) ∈ R for x ∈ rintK and f ′(x̄;x) = ∞
for x 
∈ K, then ∂f(x̄) = cl (S +K◦).

Parts 1 and 2 are directly given by [30, Theorem 11 and prior discussion]. Part 3
follows from the previous parts using the standard facts of convex analysis.

Proof of Theorem 6. If Z = R
K , then standard convex analysis [29] gives the

results. For the remainder of the proof let Z = Lp(Ω,F , μ), where 1 ≤ p < ∞.
Convexity of ρ(x,W ) is an easy extension of [33, Proposition 6.7] to account for
possibly infinite values.

Take any x ∈ rintTD(x̄) and W ∈ Z. Since there exists Ξ′(x̄;x) ∈ Z, then there
also exists the directional derivative of ρ at (x̄, W̄ ) in the direction (x,W ), denoted
ψ(x,W ), that satisfies

ψ(x,W ) = r′
(
Z̄; Ξ′(x̄;x)−W

)
= sup

Π∈∂r(Z̄)

EΠ

[
Ξ′(x̄;x)−W

] ∈ R,

where the first equality is built on the facts that r is Hadamard directionally differ-
entiable (e.g., [33, (6.44)]) and Ξ is directionally differentiable; the second uses the
standard fact that r′(Z̄; ·) is the support function of ∂r(Z̄) (Lemma 1, part 2) because
the latter is real valued (due to boundedness of ∂r(Z̄) which relies on continuity of
r); and membership in R immediately follows.

Take any Π ∈ P . Applying the above discussion of ρ and its directional derivative
ψ to the particular case of r = EΠ, where EΠ ◦ Ξ takes the value ∞ for Z 
∈ D, gives

(25) EΠ

[
Ξ′(x̄;x)

]
= (EΠ ◦ Ξ)′(x̄;x) = σ∂(EΠ◦Ξ)(x̄)(x) ∈ R for x ∈ rintTD(x̄).

We can also apply [33, Theorem 7.47] to EΠ ◦ Ξ to get

(26) ∂(EΠ ◦ Ξ)(x̄) = EΠ

[
∂Ξ(x̄)

]
+ND(x̄),

where EΠ

[
∂Ξ(x̄)

]
is defined by (15) and ND(x̄) := {v ∈ R

n : v�(x − x̄) ≤ 0

for all x ∈ D} is the normal cone to D at x̄, and, moreover, that EΠ

[
Ξ′(x̄;x)

]
=∫

ΠωΞ
′
ω(x̄;x)dμ(ω), which justifies the identity Ξ′(x̄;x)ω = Ξ′

ω(x̄;x) a.e.
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Let K = TD(x̄)×Z, so that its polar is K◦ = ND(x̄)× {0}, and

S =
⋃

Π∈∂r(Z̄)

(
EΠ

[
∂Ξ(x̄)

]× {−Π}
)
.

Combining (25) and (26) with the above characterization of ψ(x,W ) yields

ψ(x,W ) = σS(x,W ) ∈ R for (x,W ) ∈ rintK.

It is straightforward to show convexity of the union of EΠ[∂Ξ(x̄)] over Π ∈ ∂r(Z̄),
and hence convexity of S, using convexity of ∂r(x̄) and each ∂Ξω(x̄). It is also clear,
from first principles, that ψ(x,W ) = ∞ for (x,W ) 
∈ K. So part 3 of Lemma 1 gives
∂ρ(x̄, W̄ ) = cl (S +K◦).

Next we show that S + K◦ is closed. Since it is convex, we will show weak∗

closure. Take an element (u, ζ) of w∗-cl (S + K◦), i.e., ζ is the weak∗ limit of a net
{−Πν} where Πν ∈ ∂r(Z̄) for each index ν, and u = limEΠν [ξν ] + wν for some nets
{ξν}, where EΠν [ξν ] ∈ EΠν

[
∂Ξ(x̄)

]
for each ν, and {wν} ⊂ ND(x̄). Hence {Πν} weak∗

converges to −ζ and, since ∂r(Z̄) is weak∗ closed, its weak∗ limit is some Π ∈ ∂r(Z̄),
thus ζ = −Π. Take x ∈ rintTD(x̄) as above. Of course w�

ν x ≤ 0, which gives the first
inequality in the following chain:

u�x ≤ lim
ν

((
EΠν [ξν ]

)�
x
)

= lim
ν

(
EΠν

[
(ξνω

�x)ω
])

(27)

≤ lim sup
ν

EΠν

[
Ξ′(x̄;x)

]
(28)

= EΠ

[
Ξ′(x̄;x)

]
= σEΠ[∂Ξ(x̄)](x),(29)

where (27) moves x inside the integral that defines EΠν [ξν ]; the inequality (28) re-
lies a.e. on having Πνω ≥ 0, the inequality ξ �

ων x ≤ σ∂Ξω(x̄)(x) (since ξνω ∈ ∂Ξω(x̄)),
and σ∂Ξω(x̄)(x) = Ξ′

ω(x̄;x) (Lemma 1, part 2); and in (29), the first equality is due to
weak∗ convergence of {Πν}, while the final inequality is from (25). Lemma 1, part 3,
with K = TD(x̄) gives u ∈ cl

(
EΠ[∂Ξ(x̄)]+ND(x̄)

)
. But EΠ[∂Ξ(x̄)]+ND(x̄) is already

closed because it is the subdifferential of the convex function EΠ ◦Ξ at x̄ as given by
(26). Thus (u, ζ) ∈ S +

(
ND(x̄)× {0}) as needed.

So ∂ρ(x̄, W̄ ) = S+
(
ND(x̄)×{0}) and it only remains to show that S+

(
ND(x̄)×

{0}) = S. Let Π ∈ P . We have EΠ

[
∂Ξ(x̄)

]
+ ND(x̄) ⊃ EΠ

[
∂Ξ(x̄)

]
since 0 ∈ ND(x̄)

and will show that the reverse inclusion also holds. Choose any EΠ[ξ] ∈ EΠ

[
∂Ξ(x)

]
and v ∈ ND(x̄). For each ω define ξ′ω = ξω+v ∈ ∂Ξω(x̄)+ND(x̄). For a.a. ω, since Ξω

takes the value ∞ outside D, it is clear from first principles that ∂Ξω(x̄) +ND(x̄) ⊂
∂Ξω(x̄), hence ξ

′
ω ∈ ∂Ξω(x̄). Moreover EΠ[ξ

′] = EΠ[ξ] + v, which shows integrability
of (Πωξ

′
ω)ω, i.e., EΠ[ξ] + v = EΠ[ξ

′] ∈ EΠ

[
∂Ξ(x̄)

]
. Therefore EΠ

[
∂Ξ(x̄)

]
+ND(x̄) =

EΠ

[
∂Ξ(x̄)

]
and we are done.

Kakutani’s and Nash’s theorems. Combining the usual norm topology on
R

nN with the weak∗ topology on Z∗ will allow us to apply the following infinite
dimensional fixed point theorem to the Hausdorff locally convex topological vector
space R

nN ×Z∗.
Theorem 13 (Kakutani). Let C be a nonempty, convex, compact set in a Haus-

dorff locally convex topological vector space, and let Ψ : C → C be a set-valued map-
ping. If Ψ(c) is a nonempty and convex set (in C) for all c ∈ C, and the graph

D
ow

nl
oa

de
d 

01
/0

5/
16

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2610 DANIEL RALPH AND YVES SMEERS

{(c, d) : c ∈ C, d ∈ Ψ(c)} is closed, then Ψ has a fixed point: there exists c∗ ∈ C such
that c∗ ∈ Ψ(c∗).

Theorem 13 is obtained from [19, p. 186], in which the closed graph property is
replaced by upper semicontinuity, by noting that in Hausdorff (or separated) topo-
logical spaces, a set-valued mapping is upper semicontinuous if (and only if) it has a
closed graph.

Given Theorem 13 we state the corresponding infinite dimensional version of
Nash’s theorem [24] whose proof is identical to the original. We specify topologi-
cal properties of the objective function fi that were not mentioned in the original,
however.

Theorem 14 (Nash). For i = 1, . . . , N , let fi : Si×S−i → R, where Si is a set in
a Hausdorff locally convex topological vector space Si and S−i denotes the Cartesian
product of sets Sj for j 
= i, j = 1, . . . , N . Similarly, let s−i denote the stacked vector
consisting of sj for j 
= i.

Consider the (noncooperative pure strategy) Nash game. Each agent i is given
others’ strategies s−i and wishes to solve minsi∈Si fi(si, s−i). Suppose each Si is a
nonempty convex compact set; the lower level set {si ∈ Si : fi(si, s−i) ≤ α} is convex
for each s−i ∈ S−i and scalar α; fi(si, ·) is continuous on S−i given si ∈ Si , and fi
is lower semicontinuous on Si × S−i . Then there is a Nash equilibrium (s∗1, . . . , s

∗
N ):

each s∗i solves minsi∈Si fi(si, s
∗
−i).
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[14] D. Filipović and M. Kupper, Equilibrium prices for monetary utility functions, Int. J. Theor.
Appl. Finance, 11 (2008), pp. 325–343.
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[21] A. Jofré, R. T. Rockafellar, and R. J.-B. Wets, Convex Analysis and Financial Equi-
librium, manuscript, https://www.math.ucdavis.edu/∼rjbw/mypage/Equilibirum files/
JfRW13 fincial.pdf (2013).

[22] G. de Maere dAertrycke and Y. Smeers, Liquidity risks on power exchanges, Math. Pro-
gram., 140 (2013), pp. 381–414.

[23] M. Magill and M. Quinzii, Incomplete Markets. Volume 1: Finite Horizon Economies, In-
ternational Library of Critical Writings in Economics Series, Edward Elgar Publishing,
Cheltenham, UK, 2008.

[24] J. F. Nash, Equilibrium points in n-person games, Proc. Natl. Acad. Sci. USA, 36 (1950),
pp. 48–49.

[25] A. Philpott, M. Ferris, and R. Wets, Uncertainty and risk in hydro-thermal electricity
systems, Math. Program., to appear.

[26] D. Ralph and Y. Smeers, Pricing Risk under Risk Measures: An Introduction to Stochastic-
Endogenous Equilibria, working paper, http://papers.ssrn.com/sol3/papers.cfm?abstract
id=1903897 (2011).

[27] U. V. Ravat and U. V. Shanbhag, On the Existence of Solutions to Stochastic Quasi-
Variational Inequality and Complementarity Problems, working paper, 2014.

[28] W. J. Robertson and A. P. Robertson, Topological Vector Spaces, Cambridge University
Press, Cambridge, UK, 1973.

[29] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[30] R. T. Rockafellar, Conjugate Duality and Optimization, SIAM, Philadelphia, 1974.
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