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Abstract
We study the Approximate Nearest Neighbor problem for metric spaces where the
query points are constrained to lie on a subspace of low doubling dimension, while the
data is high-dimensional. We show that this problem can be solved efficiently despite
the high dimensionality of the data.

1 Introduction

The nearest neighbor problem is the following. Given a set P of n data points in a metric
space X, preprocess P, such that given a query point q € &', one can find (quickly) the point
ng € P closest to q. Nearest neighbor search is a fundamental task used in numerous domains
including machine learning, clustering, document retrieval, databases, statistics, and many
others.

Exact nearest neighbor. The (exact) nearest neighbor problem has a naive linear time
algorithm without any preprocessing. However, by doing some nontrivial preprocessing, one
can achieve a sublinear search time for the nearest neighbor. In d-dimensional Euclidean
space (i.e., ]Rd) this is facilitated by answering point location queries using a Voronoi diagram
[dBCvKOO08|]. However, this approach is only suitable for low dimensions, as the complexity
of the Voronoi diagram is © (nfd/ 21) in the worst case. Specifically, Clarkson [Cla88] showed

a data-structure with query time O(logn) time, and O(nfd/ 2”‘5) space, where 0 > 0 is a
prespecified constant (the O(-) notation here hides constants that are exponential in the
dimension). One can tradeoff the space used and the query time [AM93]. Meiser [Mei93]
provided a data-structure with query time O(d° logn), which has polynomial dependency on
the dimension, where the space used is O(nd+5). These solutions are impractical even for

data-sets of moderate size if the dimension is larger than two.
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Approximate nearest neighbor. In typical applications, it is usually sufficient to return
an approximate nearest neighbor (ANN). Given an ¢ > 0, a (1 + £)-ANN to a query
point q, is a point y € P, such that

d(q,y) < (1+¢)d(q,ng),

where ng € P is the nearest neighbor to q in P. Considerable amount of work was done on
this problem, see [Cla06] and references therein.

In high dimensional Euclidean space, Indyk and Motwani showed that ANN can be re-
duced to a small number of near neighbor queries [IM98, [HIM12]. Next, using locality sen-
sitive hashing they provide a data-structure that answers ANN queries in time (roughly)

5(711/(1*5)) and preprocessing time and space 6(n1+1/(1+5)>; here the O(:) hides terms
polynomial in logn and 1/e. This was improved to 5(711/ (1+5)2> query time, and pre-

processing time and space é(nl“/ (HE)Q) [AT06l [ATO8]. These bounds are near optimal
INMNP06, OWZL1].

In low dimensions (i.e., R?), one can use linear space (independent of €) and get ANN
query time O(logn + 1/e%71) [AMNT9S8| [Har11]. Interestingly, for this data-structure, the
approximation parameter ¢ is not prespecified during the construction; one needs to provide
it only during the query. An alternative approach is to use Approximate Voronoi Diagrams
(AVD), introduced by Har-Peled [HarO1], which are partition of space into regions, desirably
of low complexity, typically with a representative point for each region that is an ANN for
any point in the region. In particular, Har-Peled showed that there is such a decomposition
of size O((n/ %) log? n), such that ANN queries can be answered in O(log(n/e)) time. Arya

and Malamatos [AM02] showed how to build AVDs of linear complexity (i.e., O(n/e?)). Their
construction uses Well Separated Pair Decompositions [CK95]. Further tradeoffs between
query and space for AVDs were studied by Arya et al. [AMMOQ9].

Metric spaces. One possible approach for the more general case when the data lies in some
abstract metric space, is to define a notion of dimension and develop efficient algorithms
in these settings. This approach is motivated by the belief that real world data is “low
dimensional” in many cases, and should be easier to handle than true high dimensional data.
An example of this approach is the notion of doubling dimension [Ass83, [Hei01l, I(GKTLO03].
The doubling constant of metric space X is the maximum, over all balls b in the metric
space X', of the minimum number of balls needed to cover b, using balls with half the radius
of b. The logarithm of the doubling constant is the doubling dimension of the space. The
doubling dimension can be thought of as a generalization of the Euclidean dimension, as IR?
has doubling dimension ©(d). Furthermore, the doubling dimension extends the notion of
growth restricted metrics of Karger and Ruhl [KR02].

The problem of ANN in spaces of low doubling dimension was studied before, see [KR02,
HKMRO4]. Talwar [Tal04] presented several algorithms for spaces of low doubling dimension.
Some of them were however dependent on the spread of the point set. Krauthgamer and Lee
[KL04] presented a net navigation algorithm for ANN in spaces of low doubling dimension.
Har-Peled and Mendel [HMO0G] provided data-structures for ANN search that use linear space
and match the bounds known for R* [AMNT98]. Clarkson [Cla06] presents several algorithms
for nearest neighbor search in low dimensional spaces for various notions of dimensions.
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ANN in high and low dimensions. As indicated above, the ANN problem is easy in
low dimensions (either Euclidean or bounded doubling dimension). If the dimension is high
the problem is considerably more challenging. There is considerable work on ANN in high
dimensional Euclidean space (see [IM98, [KORO00, [HIM12]) but the query time is only slightly
sublinear if € is close to 0. In general metric spaces, it is easy to argue that (in the worst case)
the ANN algorithm must compute the distance of the query point to all the input points.

It is natural to ask therefore what happens when the data (or the queries) come from
a low dimensional subspace that lies inside a high dimensional ambient space. Such cases
are interesting as it is widely believed that in practice real world data usually lies on a low
dimensional manifold (or is close to lying on such a manifold). Such low-dimensionality
arises from the way the data is being acquired, inherent dependency between parameters,
aggregation of data that leads to concentration of mass phenomena, etc.

Indyk and Naor [INO7] showed that if the data is in high dimensional Euclidean space,
but lies on a manifold with low doubling dimension, then one can do a dimension reduction
into constant dimension (i.e., similar in spirit to the JL lemma [JL84]), such that (1 + ¢)-
ANN to a query point (the query point might lie anywhere in the ambient space) is preserved
with constant probability. Using an appropriate data-structure on the embedded space and
repeating this process sufficient number of times results in a data-structure that can answer
such ANN queries in polylog time (ignoring the dependency on ¢).

The problem. In this paper, we study the “reverse” problem. Here we are given a high
dimensional data set P, and we would like to preprocess it for ANN queries, where the queries
come from a low-dimensional subspace/manifold M. The question arises naturally when the
given data is formed by merging together a large number of data sets, while the ANN queries
come from a single data set.

In particular, the conceptual question here is whether this problem is low or high dimen-
sional in nature. Note that direct dimension reduction as done by Indyk and Naor would
not work in this case. Indeed, imagine the data lies densely on a slightly deformed sphere
in high dimensions, and the query is the center of the sphere. Clearly, a random dimension
reduction via projection into constant dimension would not preserve the (1 + €)-ANN.

Our results. Given a point set P lying in a general metric space X’ (which is not necessarily
Euclidean and is conceptually high dimensional), and a subspace M having low doubling
dimension 7, we show how to preprocess P such that given any query point in M we can
quickly answer (1 4 £)-ANN queries on P. In particular, we get data-structures of (roughly)
linear size that answer (1 + €)-ANN queries in (roughly) logarithmic time.

Our construction uses ideas developed for handling the low dimensional case. Initially, we
embed P and M into a space with low doubling dimension that (roughly) preserves distances
between M and P. We can use the embedded space to answer constant factor ANN queries.
Getting a better approximation requires some further ideas. In particular, we build a data-
structure over M that is somewhat similar to approximate Voronoi diagrams [Har(O1]. By
sprinkling points carefully on the subspace M and using the net-tree data-structure [HMO06]
we can answer (14 £)-ANN queries in time O(e=9(") 4 20" log n).

To get a better query time requires some further work. In particular, we borrow ideas from



the simplified construction of Arya and Malamatos [AMO02] (see also [AMMO09]). Naively,
this requires us to use well separated pairs decomposition (i.e., WSPD) |[CK95| for P. Unfor-
tunately, no such small WSPD exists for data in high dimensions. To overcome this problem,
we build the WSPD in the embedded space. Next, we use this to guide us in the construction
of the ANN data-structure. This results in a data-structure that can answer (1 + ¢)-ANN
queries in O(2°() logn) time. See Section [5| for details.

We also present an algorithm for a weaker model, where the query subspace is not given
to us directly. Instead, every time an ANN query is issued, the algorithm computes a region
around the query point such that the returned point is a valid ANN for all the points in this
region. Furthermore, the algorithm caches such regions, and whenever a query arrives it first
checks if the query point is already contained in one of the regions computed, and if so it
answers the ANN query immediately. Significantly, for this algorithm we need no prespecified
knowledge about the query subspace. The resulting algorithm computes on the fly AVD on
the query subspace. In particular, we show that if the queries come from a subspace with
doubling dimension 7, then the algorithm would create at most n/c°(") regions overall. A
limitation of this new algorithm is that we do not currently know how to efficiently perform
a point-location query in a set of such regions, without assuming further knowledge about
the subspace. Interestingly, the new algorithm can be interpreted as learning the underlying
subspace/manifold the queries come from. See Section @ for the precise result.

Organization. In Section [2] we define some basic concepts, and as a warm-up exercise
study the problem where the subspace M is a linear subspace of R? — this provides us
with some intuition for the general case. We also present the embedding of P and M into
the subspace M’, which has low doubling dimension while (roughly) preserving distances
of interest. In Section [3| we provide a data-structure for constant factor ANN using this
embedding. In Section [, we use the constant ANN to get a data-structure for answering
(14 ¢)-ANN. In Section 5| we use WSPD to build a data-structure that is similar in spirit to
AVDs. This results in a data-structure with slightly faster ANN query time. The on the fly
construction of AVD to answer ANN queries without assuming any knowledge of the query
subspace is described in Section [6] Finally, conclusions are provided in Section [7]

2 Preliminaries

2.1 Problem and Model

The Problem. We look at the ANN problem in the following setting. Given a set P of n
data points in a metric space X, and a set M C X of (hopefully low) doubling dimension
7, and € > 0, we want to preprocess the points of P, such that given a query point q € M
one can efficiently find a (1 + ¢)-ANN of q in P.

Model. We are given a metric space X and a subset M C X of doubling dimension 7.
We assume that the distance between any pair of points can be computed in constant time
in a black-box fashion. Specifically, for any p,q € X we denote by d(p,q) the distance
between p and ¢q. We also assume that one can build nets on M. Specifically, given a



point p € M and a radius r > 0, we assume we can compute 27 points p; € M, such that
ball(p, 7)N.M C Uball(p;, 7/2). By applying this recursively we can compute an r-net N for
any ball(p, R) centered at p; that is, for any point v € ball(p, R) there exists a point u € N
such that d(v,u) < r. Let compNet(p, R, r) denote this algorithm for computing this r-net.
The size of N is (R/r)°(”), and we assume this also bounds the time it takes to compute
it. For example, in Euclidean space R, let p be the origin and consider the tiling of space
by a grid of cubes of diameter . One can compute an r-net, by simply enumerating all the
vertices of the grid cells that intersect the cube [—R, R]* surrounding ball(p, R) = ball(0, R).

Finally, given any point p € X we assume that one can compute, in O(1) time, a point
a(p) € M such that a(p) is the closest point in M to p. (Alternatively, a(p) might be
specified for each point of P in advance.)

max d(p,v)

Spread of a point set. For a point set P, the spread is the ratio %. The

p,vEP,pF£v
following result is elementary.

Lemma 2.1. Let M be a metric space of doubling dimension T and P C M be a point set
with spread X. Then |P| < XO),

Well separated pairs decomposition. For a point set P, a pair decomposition
of P is a set of pairs W = {{Al,Bl},...,{AS,BS}}, such that (I) A;, B; C P for ev-
ery 7, (I) A; N B; = 0 for every i, and (III) U{_;A;, ® B; = P®P. Here X @ Y =
{{x,y} }LL‘ e X,yeY, and m#y}.

A pair Q C P and R C P is (1/¢)-separated if max(diam(Q),diam(R)) < ¢-d(Q,R),
where d(Q, R) = minyeq,erd(p,v). For a point set P, a well-separated pair decompo-
sition (WSPD) of P with parameter 1/¢ is a pair decomposition of P with a set of pairs
W = {{A1, B},...,{A,, Bs}}, such that, for any 7, the sets A; and B; are £ '-separated
[CK95].

2.1.1 Net-trees

The net-tree [HMO6] is a data-structure that defines hierarchical nets in finite metric spaces.
Formally, a net-tree is defined as follows: Let P C M be a finite subset. A net-tree of P
is a tree T" whose set of leaves is P. Denote by P, the set of leaves in the subtree rooted
at a vertex v € T. With each vertex v is associated a point rep, € P,. Internal vertices
have at least two children. Each vertex v has a level [(v) € Z U {—oco}. The levels satisfy
l(v) < I(p(v)), where p(v) is the parent of v in T. The levels of the leaves are —oo. Let
be some large constant, say v = 11. The following properties are satisfied: (I) For every

vertex v € T, ball(repv, %7“”) D P,, (IT) For every vertex v € T that is not the root,

ball (repv, 2&151)7@(”))_1) NP C P, (IIT) For every internal vertex u € T, there exists a child

v € T of u such that rep, = rep,,.
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Figure 1: An example of embedding of space into two dimensions where M is the z-axis.

2.2 Warm-up exercise: Affine Subspace

We first consider the case where our query subspace is an affine subspace embedded in d
dimensional Euclidean space. Thus let X = R? with the usual Euclidean metric. Suppose
our query subspace M is an affine subspace of dimension k where k < d. We are also given
n data points P = {p1,pa,...,pn}. We want to preprocess P such that given a q € M we
can quickly find a point p; € P which is a (1 + £)-ANN of q in P.

We choose an orthonormal system of coordinates for M. Denote the projection of a
point p to M as a(p). Denote the coordinates of a point a(p) € M in the chosen coordinate
system as (p', p?, ..., p"). Let h(p) denote the distance of any p € R? from the subspace M.
Notice that h(p) = ||p — a(p)||, and consider the following embedding.

Definition 2.2. For the point p € R?, the embedded point is p’ = (pl, p2,...,p", h(p)) €
Rk+1.

An example of the above embedding is shown in Figure[I] It is easy to see that for z € M
and y € IR?, by the Pythagorean theorem, we have ||z — y||* = ||z — a(y)||* + ||a(y) — y||* =
|z —a)|® +h(y)® = |2/ = | So, |z —y| = |z’ — /. That is, the above embedding
preserves the distances between points on M and any point in R%.

As such, given a query point q € M, let p} be its (1 +¢)-ANN in P’ € R*™. Then the
original point p; € P (that generated p!) is a (1 4 £)-ANN of q in the original space R?.

But this is easy to do using known data-structures for ANN JAMNTIS8], or the data-
structures for approximate Voronoi diagram [Har(01, [AMO02].

Thus, we have n points in R*™ to preprocess and, without loss of generality, we can
assume that p; are all distinct. Now given € < 1/2, we can preprocess the points {p},...,p,}
and construct an approximate Voronoi diagram consisting of O(ne’(k“) log 5’1) regions

[AMO2]. Each such region is the difference of two cubes. Given a point ' € RF™! we can
find a (1 + ¢)-ANN in O(log(n/e)) time, using this data-structure.

2.3 An Embedding

Here, we show how to embed the points of P (and all of X’) into another metric space M’ with
finite doubling dimension, such that the distances between P and M are roughly preserved.
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Figure 2: The quantities a(p) and h(p).

For a point p € X, let a(p) denote the closest point in M to p (for the sake of simplicity
of exposition we assume this point is unique). The height of a point p € X is the distance
between p and a(p); namely, h(p) = dx(p, a(p)). For a set B C X, let a(B) denote the set

{a(x) ‘ x € B}. An example is shown in Figure |2,

Definition 2.3 (M’ embedding.). Consider the embedding of X into M’ = M x R”"
induced by the distances of points of X from M. Formally, for a point p € X', the embedding
is defined as

o' = (alp), h(p)) € M.

The distance between any two points p’ = (a(p),h(p)) and v/ = (a(v),h(v)) of M’ is
defined as

dae(p',v) = dx(a(p), a(v)) + [h(p) — h(v)].

It is easy to verify that das(:,-) complies with the triangle inequality. For the sake of
simplicity of exposition, we assume that for any two distinct points p and v in our (finite)
input point set P it holds that p’ # v’ (that is, dyy¢ (p’, v') # 0). This can be easily guaranteed
by introducing symbolic perturbations.

Lemma 2.4. The following holds: (A) For any two points x,y € M, we have dpy¢(2',y) =
dX(xv y) :

(B) For any point x € M and y € X, we have dy(z,y) < dav(2,y") < 3dx(z,y).

(C) The space M’ has doubling dimension at most 2T + 2, where T is the doubling di-
mension of M.

Proof: (A) Clearly, for z,y € M, we have 2’ = (x,0) and 3 = (y,0). As such, dyy(2,y') =
(B) Let z € M and y € X. We have 2’ = (,0) and y’:( (y),d
dae(¢,9) = dx(a(z), a(y)) +10 = h(y)| = dx(z, a(y)) + dx(a(y),y) = dx(z,y),

by the triangle inequality. On the other hand, because dx(y, a(y)) = dx(y, M) < dx(z, ),
we have

dae (7', y) = da(a(w), a(y)) + [h(z) = h(y)] = dx (2, a(y)) +h(y)

h(y
= dx(z, a(y)) + dr(y, a(y) < (dv(z,y) + dx(y, a(y))) + dx(y, a(y))
= dx(z,y) +2dx(y, a(y)) < 3dx(z,y),

x(y,a(y))). As such,
);

~J



by the triangle inequality.

(C) Consider a point (p,7)) € M x R* = M’ and the ball b = ballyy((p,1),r) C

M’ of radius r centered at (p,®). Consider the projection of b into M; that is Py =
v |(v,h) € b}. Similarly, let Pr = {h |(v,h) € b}.

Clearly, ballyy/((p, %), r) C Py x PR, and P, is contained in ball ¢ (p, ) = ballx(p, 7)NM.
Since the doubling dimension of M is 7, this ball can be covered by 227 balls of the form
ball v (p;, 7/4) with centers p; € M.

Also since Pr C IR is contained in the interval [¢) — 7,9 + r] having length 2r, it can be
covered by at most 4 intervals Iy,...,I4 of length r/2 each, centered at values zy, ..., x4,
respectively. (Intuitively, each of the intervals I;, is a “ball” of radius r/4.) Then,

ballu ((p, 1), 1) € PuxPr C (UbaIIM pZ,T/4) ( )
C QUbaIIM (pi,r/4) x I;)  C QUbaler(pl,xj),rﬂ),

since the set ballpy¢(p;,7/4) x I; is contained in ballyy((ps, x;),7/2). We conclude that
ballpy ((p, %), ) can be covered using at most 22772 balls of half the radius. [ |

3 A Constant Factor ANN Algorithm

In this section we present a 6-ANN algorithm. We refine this to a (1 4+ ¢)-ANN in the next
section.

Preprocessing. In the preprocessing stage, we map the points of P into the metric space
M’ of Lemma . Build a net-tree for the point set P’ = {p’ ’ pE P} in M’ and preprocess

it for ANN queries using the net-tree data-structure (augmented for nearest neighbor queries)
of Har-Peled and Mendel [HMOG]. Let D denote the resulting data-structure.

Answering a query. Given q € M, we compute a 2-ANN to q' € M’ using D. Let this
be the point 3. Return dy(q,y), where y is the original point in P corresponding to %/

Correctness. Let nq be the nearest neighbor of q in P and let y be the point returned. As

q € M we have by Lemma that dy(q,y) < due(q,y') and dy (q’, n’q> < 3dx(q, ng).
As y/ is a 2-ANN for ¢’ it follows,

dv(q,y) < dae(q,y) < 2dae (' 0)) < 6dx(qng).-
We thus proved the following.

Lemma 3.1. Given a set P C X ofn points and a subspace M of doubling dimension T,
one can build a data-structure in 2°)nlogn expected time, such that given a query point
q € M, one can return a 6-ANN to q in P in 2°0) logn query time. The space used by this
data-structure is 2°7)n,



Proof: Since the doubling dimension of M’ is at most 27 + 2, building the net-tree and
preprocessing it for ANN queries takes 2°(Tnlogn expected time, and the space used is
20Ny, [AMO6]. The 2-ANN query for a point q takes time 2°(7) log n. ]

4 Answering (1 +¢)-ANN

Once we have a constant factor approximation to the nearest-neighbor in P it is not too hard
to boost it into (1 + &)-ANN. To this end we need to understand what the net-tree [HMOG]
provides us with. See Har-Peled and Mendel [HMO6] (see also Section for a precise
definition of the net-tree. Roughly speaking, the nodes at a given level [, define an ~-net for
Q. This means that one can compute an r-net for any desired r by looking at nodes whose
levels define the right resolution. Thus r-nets derived from the net-tree have a corresponding
set of nodes in the net-tree. Suppose one needs to find an r-net for the points of Q inside a
ball ballp¢(p, R). One computes an ANN y € Q of the center p. This determines a leaf node
[ of the net-tree. One then seeks out a vertex v of the net-tree on the [ to root path, such
that | € Q, and the v associated ball radius is roughly R. By adding appropriate pointers,
one can perform this hopping up the tree in logarithmic time. Now, exploring the top of the
subtree rooted at v, and collecting the representative points of the vertices in that traversal,
one can compute an r-net for the points in Q N bally(p, R). In particular, using the ANN
data-structure of Har-Peled and Mendel [HMOG] this operation is readily supported.

Lemma 4.1 ([HMO06]). Given a net-tree for a set Q C M of n points in a metric space

with doubling dimension T, and given a point p € M and radius r < R, one can compute an

r-net N C Q of QN bally(p, R), such that the following properties hold:

(A) For any point v € QN ballp(p, R) there exists a point uw € N such that dap(v,u) <.

(B) |N| = (R/r)°0).

(C) Each point z € N corresponds to a node v(z) in the net-tree. Let Q,.y denote the subset
of points of Q stored in the subtree of v(z). The union U,cn Qu(z) covers QMbally(p, R).

(D) For any z € N, the diameter of the point set Qu(. is bounded by r.

(E) The time to compute N is 20 logn + O(|N|).

Construction. For every point p € P we compute an r(p)-net U(p) for bally(a(p), R(p)),
where r(p) = ch(p) /(20¢;) and R(p) = c1h(p) /e. Here ¢ is some sufficiently large constant.
This net is computed using the algorithm compNNet, see Subsection This takes 1/£°(7)
time to compute for each point of P.

For each point u of the net U(p) C M store the original point p it arises from, and the
distance to the original point p. We will refer to s(u) = dx(u, p) as the reach of .

Let Q € M be union of all these nets. Clearly, we have that |Q| = n/c°("). Build a
net-tree T for the points of Q. We compute in a bottom-up fashion for each node v of the
net-tree T the point with the smallest reach stored in Q,.

Answering a query. Given a query point q € M, compute using the algorithm of
Lemma a 6-ANN to q in P. Let A be the distance from q to this ANN. Let R = 20A,
and ' = eA/20. Using T and Lemma [4.1] compute an r’-net N of ballr(q, R) N Q.



Next, for each point p € N consider its corresponding node v(p) € J. Each such node
stores a point of minimum reach in Q). We compute the distance to each such minimum-
reach point and return the nearest-neighbor found as the ANN.

Theorem 4.2. Given a set P C X of n points and a subspace M of doubling dimension T,
and a parameter € > 0, one can build a data-structure in ne=°) logn expected time, such
that given a query point q € M, one can return a (1+¢)-ANN to q in P. The query time is
200 logn 4+ e=97) . This data-structure uses ne~°™) space.

Proof: We only need to prove the bound on the quality of the approximation. Consider the

nearest-neighbor nq to q in P.

(A) If there is a point z € U(nq) € Q within distance 7’ from q then there is a net point u of
N that contains z in its subtree of 7. Let w, be the point of minimum reach in Q, (),
and let y € P be the corresponding original point. Now, we have

dx(q,y) < dx(q, wy) + dX<wya y) < dx(q, wy) +dx(2, nq)

as the point w, has reach dx(w,,y), w, is the point of minimal reach among all the
points of Quu), 2 € Quy, and dx(2,ng) is the reach of z and thus an upper bound on
dy(wy,y). By the triangle inequality, we have

dx(q,y) < dx(q,wy) +dx(q,ng) +dx(z,q)
<(dx(q,2) +du(z,wy)) + dr(q,ng) +dx(z,q)
< dx(q,ng) + 37,

as z,wy € Quu), the diameter of Q,,) is at most ’, and by assumption dx(z,q) < 7.
So we have,
dx(q,y) < dx(q,ng) +3eA/20 < (1+¢)dx(q,ng) -

(B) Otherwise, it must be that, dx(q, U(ng)) > r’. Observe that it must be that r(ng) < 1’
as h(ng) < A. It must be therefore that the query point is outside the region covered
by the net U(ng). As such, we have

R(ng) = = hinq)

which means h(ng) < 2eA/¢;. Namely, the height of the point nq is insignificant in
comparison to its distance from q (and conceptually can be considered to be zero). In
particular, consider the net point u € N that contains in its subtree the point z € U(nq)
closest to a(ng) i.e. dag(a(ng),z) < r(ng). The point of smallest reach in this subtree
provides a (1+¢)-ANN as an easy but tedious argument similar to the one above shows

< dx(()é(nq)7 q) < d/\’(qa nq) + dX(nqa a(nq)) < 2dX(”q> q) < 2A7

5 Answering (1+ <)-ANN faster

In this section, we extend the approach used in the above construction to get a data-structure
which is similar in spirit to an AVD of P on M. Specifically, we spread a set of points C on
M and we associate a point of P with each one of them. Now, answering 2-ANN on C, and
returning the point of P associated with this point, results in the desired (1 + £)-ANN.
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algBuild ANN(P, M).
P {a' |z P} C
Compute a 8 WSPD W = {{A}, B{},...,{A,,B.}} of P/
for {A], B/} € W do
Choose points a; € A} and b; € B;.
ti =dae(a), b)), T =t + hyax(AY) + hpax(B))
RZ':CQE/FE, Tz‘IE,TZ'/CQ
N; = compNet(a(a;), R;,r;) UcompNet(a(b;), R;, 7).

C=N,U...UN,
N « Net-tree for C [HMO6]
for p € C do
Compute nn(p, P) and store it with p

Figure 3: Preprocessing the subspace M to answer (1 + £)-ANN queries on P. Here ¢ is a
sufficiently large constant.

algANN (ge M)
p< 2-ANN of qin C
(Use net-tree N [HMO6] to compute p.)
y < the point in P associated with p.
return y

Figure 4: Computing a (1 4+ O(e))-ANN in P for a query point q € M.

5.1 The construction

For a set Z' C P’ let
hmax(Z') = max h.
(p.h)ez’

The preprocessing stage is presented in Figure , and the algorithm for finding the (1+¢)-
ANN for a given query is presented in Figure [4

5.2 Analysis

Suppose the data-structure returned y and the actual nearest neighbor of q is ng. If y = nq
then the algorithm returned the exact nearest-neighbor to q and we are done. Otherwise,
by our general position assumption, we can assume that y’ # n;. Note that there is a WSPD
pair {A’, B'} € W that separates y' from n{ in M’; namely, y' € A" and n{ € B’ Let

t= dM/(a’, b/) s

where a’ and b’ are the representative points of A" and B’, respectively. Let a and b be the
points of P corresponding to a’ and ¥, respectively. Now, let

T = hpax(A") + hpax(B') + ¢, R=T/c and r=¢el/c.
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Observation 5.1. By the definition of a 8-WSPD and the triangle inequality, for any x’ € A’
and y' € B', we have that day (2, y') < diam(A’) + diam(B’) + dyy(a', V) < (5/4) t.

We study the two possible cases, q ¢ bally(a(a), R) U bally(a(b), R) (Lemma and
q € bally(a(a), R) U ballpy(ca(b), R) (Lemma [5.3)).

Lemma 5.2. Ifq ¢ bally(a(a), R)Ubally(a(b), R) then the algorithm from Figure[{] returns
a (1+¢)-ANN in P to the query point q (assuming ¢ is sufficient large). Restated informally
—if q is far from both y and ng (compared to the distance between them) then the ANN
computed is correct.

Proof: We have dx(a(ng), a(y)) < dar (né,g/) < 5/4t by Observation . So, by the triangle
inequality, we have dy(ng, y) < h(ng)+dx(a(ng), @(y))+h(y) < hpax(A")+(5/4)t+hpax(B') <
(5/4)T.

Since ng,b" € B’, we have dx(a(ng), a(b)) < dM/(nfl,b’> < diam(B’') < t/8 < T/8.
Therefore,

dx(q, a(ng)) > dx(q, (b)) — dx(a(ng), a(b)) > R — diam(B’) = CQZ — diam(B")

assuming ¢ < 1 and ¢ > 1. Now, dx(q,ng) > dx(ng, M) = dx(ng, (nq)), and thus by the
triangle inequality, we have

dx(q, ng) + da(ng, a(ng)) > dx(q, a(ng)) _ &T

d > > .

x(qnq) = 2 = 2 = Az

This 1mphes that dX(q7 y) S dX(qv nq) + dX(ncp y) S dX(qv nq) + (5/4)T S (1 + E)d;{((]_, nq)a
assuming ¢y > 5. ]

Lemma 5.3. Ifq € bally(a(a), R)Ubally(a(b), R) then the algorithm returns a (1+¢)-ANN
in P to the query point q.

Proof: Since the algorithm covered the set bally(a(a), R) U ballp(c(b), R) with a net of
radius 7 = €7/ ¢, it follows that dx(q,C) < r. Let € be the point in the 2-ANN search to q
in NVz. We have dy(q,c) < 2r. Now, the algorithm returned the nearest neighbor to ¢ as the
ANN; that is, y is the nearest neighbor of € in P.

Now,

dx(q,y) <dx(c,y) +dx(q,¢) < dx(C,y) +2r <dx(c,ng) + 2r

T
S dX(q7 nq) + dx(é, Q) + 2r S dX<q7 nq) + 4r = dX((L nq) + 466 )
2

by the triangle inequality. Therefore, if dx(q,y) > T7'/40 then,

el
dX(q7 nq) 2 dX(q7 y) - 4T2 Z (1 - S/Z)dx(q, y) ;
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assuming ¢ > 320. Since 1/(1 —¢/2) <1+ ¢, we have that dy(q,y) < (1 +¢)dx(q,ng).
Similarly, if dx(q,nq) > 77/40 then,

eT
dx(q,y) <dx(q,ng) + 4—< (14 ¢)dx(q,ng),
2

assuming ¢ > 160.

We prove by contradiction that the case dx(q, ng) < 7'/40 and dx(q,y) < 7'/40 is impos-
sible. That is, intuitively, T" is roughly the distance between nq to y, and there is no point that
can be close to both nq and y. Indeed, under those assumptions, h(ng) < dx(q,nq) < 7/40
and h(y) < dx(q,y) < T/40. Observe that

3T

t
hmax(A") < h(y) + diam(A") < T/40 + - 3 < — 50"

and similarly hp,.x(B’") < 37/20. This implies that

Gor=t(1-5 )

< d(d, V) — diam(A") — diam (B’ /(ng, Z/)
)

) <
= [h(ng) — h(y)| + dx(a(ng), a(y)) < T/40 + dx(a(ng),ng) + dx(ng, y) + dx(y, a(y))
< T/40 + h(ng) + (dx(ng, @) + dx(a, 9)) + h(y)
< T/40 + 3T/20 + T /40 + T/40 + 3T /20 < 3T/8

This implies that ¢ < T/2 and thus T' =t + hyax (A") + hmax (B") < T/2 + 3T/20 + 3T/20 =
(4/5)T. This implies that 7" < 0. We conclude that dyy(a’,0) =t < T < 0. That implies
that @’ = ', which is impossible, as no two points of P get mapped to the same point in M.
(And of course, no point can appear in both sides of a pair in the WSPD.) [ ]

The preprocessing time of the above algorithm is dominated by the task of computing for
each point of C its nearest neighbor in P. Observe that the algorithm would work even if we
only use (1 + O(e))-ANN. Using Theorem 4.2 to answer these queries, we get the following
result.

Theorem 5.4. Given a set of P C X of n points, and a subspace M of doubling dimension
T, one can construct a data-structure requiring space ne_O(T), such that given a query point
q € M one can find a (1 + €)-ANN to q in P. The query time is 2°(7 log(n/e), and the
preprocessing time to build this data-structure is ne=°) logn.

6 Online ANN

The algorithms of Section 4| and Section [5| require that the subspace of the query points is
known, in that we can compute the closest point a(p) on M given a p € X, and that we
can find a net for a ball on M using compNet, see Subsection [2.1] In this section we show
that if we are able to efficiently answer membership queries in regions that are the difference
of two balls, then we do not need such explicit access to M. We construct an AVD on M
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algBuildAVD(P, R, q).
// p is an arbitrary fixed point in P.
// D' is a 2-approximation to diam(P).
if dy(q,p) > 4D’/e then return p.
if 3C' € R with q € C then
return the point associated with C.
Compute (1 +¢/10)-ANN y; of g in P.
ry < dx(q, yl)-
if there is no point in P\ bally(y1,£71/3) then
Cq < bally(q,D'/4).
else
f1 « furthest point from y; in P N bally(yi,er1/3).
p1<dx(yi, f1). [/ pr<er/3.

// One can use any ANN algorithm, or even brute-force to compute ¥s.
Yo < (1 +¢/10)-ANN of q in P\ bally(y1,er1/3).
ry < dx(q,12).
Oq — balIX(q, 87“2/5) \ baIIX(yl, 5p1/48)
Associate y; with Cg.
R+~ RUC,.
return y; as the ANN for q.

Figure 5: Answering (1 + ¢)-ANN and constructing AVD.

in an online manner as the query points arrive. When a new query point arrives, we test
for membership among the existing regions of the AVD. If a region contains the point we
immediately output its associated ANN that is already stored with the region. Otherwise we
use an appropriate algorithm to find a nearest neighbor for the query point and add a new
region to the AVD.

Here we present our algorithm to compute the AVD in this online setting and prove that
when the query points come from a subspace of low doubling dimension, the number of
regions created is linear.

6.1 Online AVD Construction and ANN Queries

The algorithm algBuild AVD(P, R, q) is presented in Figure [f] The algorithm maintains a
set of regions R that represent the partially constructed AVD. Given a query point q it returns
an ANN from P and if needed adds a region Cy to R. The quantity D’ is a 2-approximation
to the diameter D of P, and can be precomputed in O(n) time. Let p be an arbitrary fixed
point of P.

The regions created by the algorithm in Figure |5 are the difference of two balls. An
example region when the balls bally(q,ers/5) and bally(yi,5p1/4¢€) intersect is shown in
Figure[6] The intuition as to why y; is a valid ANN inside this region is as follows. Since the
distance of q to y; is 71, the points inside bally(y,er;/3) are all roughly the same distance
from q when q is far enough from y;. The next distance of interest, dx(q,y2) = ro, is the
distance to a ANN of points outside this ball. As long as we are inside bally(q,er2/5) and
far enough from y; i.e. dx(q,y1) > 5p1/4e, the points outside bally(y1,er1/3) are too far and
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Figure 6: Examples of a computed AVD region C.

cannot be a (1 4+ €)-ANN. But if we get too close to y; we can no longer be certain that i
is a valid (1 + ¢)-ANN, as it is no more true that distances to points inside bally(yy,er1/3)
look all roughly the same. In other words, there may be points much closer than y;, when
we are close enough to y;. Thus in a small enough neighborhood around 1; we need to zoom
in and possibly create a new region.

6.2 Correctness

Lemma 6.1. Ifdx(q,p) > 2D’ + 2D'/e then p is a valid (1 4 €)-ANN.

Proof: Since D’ is a 2-approximation to the diameter of P, so 2D’ > D = diam(P). This
means dy(q,p) > D+ D/e. Let ny € P be the closest point to q. By the triangle inequality,

D+D/e <dx(q,p) < dx(q,ng) +dx(ng, p) < dx(q,ng) +D.
As such D < edx(q,nq). We conclude dx(q,p) < dx(q,ng) +dx(ng,p) < (14+¢)dx(q,ng). m

Lemma 6.2. If there is no region in R containing q then the algorithm outputs a valid
(14 ¢/10)-ANN.

Proof: We output y; which is a (1 +¢/10)-ANN of q. n

Lemma 6.3. The (1+¢/10)-ANN y; found in the algorithm is a (1+ €)-ANN for any point
geC,.

Proof: Let r1 = dx(q,y1) and 7o = dx(q, y2). There are two possibilities.
If the region Cj is the ball ballx(q,D’/4) constructed when there is no point in P\
ballx(y1,er1/3), then D = diam(P) < 2er; /3. As such,

dx(q, 1) T 3D 3D D
x(aP) = 1+2/10 1+¢/10 = 2e(1+¢/10)  2c+e2/5 = (4/3)2
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It is not hard to see that in this case, y; is a valid (1 + €)-ANN for any point inside
ballx(q,D’/4) C ballx(q,D/4), as dx(ballx(q,D/4),P) > D/g, for € sufficiently small.

Otherwise, if the set P\ ballx(y1,£71/3) is nonempty then let y» be a (1 4+ ¢/10)-ANN of
q in P\ ballx(y1,er1/3) and let 75 = dx(q,y2). We break the analysis into two cases.

(i)

(i)

If ro < 27y, then let @ be any point in Cy and let ng € P be its nearest neighbor.
If ng = vy there is nothing to show. Otherwise dx(q,q) < ery/5 and by the triangle
inequality we have

dx(qng) > dx(q,ng) — dx(q,q) = d(q,ng) —er2/5
>dx(q,y1) /(1 +¢/10) —e2r /5
Z (]_ —6/2)7“1,

as dx(q,ng) > dx(q,P) > dx(q,41) /(1 +¢/10) and r1 = dx(q,41). Again, by the
triangle inequality and the above, we have

dx(q,y1) < dx(q,y1) +dr(q, @) <dx(q,y1) +2er1 /5= (1 +2¢/5)r

1+2/5, _
mdx(q, ng) < (1 +¢€)dx(q, ng),

<
for e < 1/5.

If ro > 2r; then let f; be the furthest point from 7, inside bally(yi,er;/3) and let
p1 = dx(y1, f1). Let @ be any point in Cy and as before let ng € P be its nearest
neighbor. We claim that the nearest neighbor of g in P lies in ballx(y1, p1). To see this,
let z be any point in P\ bally(y1, p1). Noting that the distance from q to the closest
point in P outside ballx(y1, p1) is at least r5/(1 + £/10) and by triangle inequality we
have,

dX<Q7z)2dX(q7 )_dX(q7 )>d/\’( )—87’2/5
>1ry/(14¢/10) —ery/5 > (1 — 3¢/10)r,.

On the other hand, as 1 = dy(q,y1) and r; < ry/2, we have

dX(Q? ?/1) < d (qa yl) + dX(q7 ) < dX(qv yl) + €T2/5 =+ 57’2/5 < T2/2 + 6T2/5
< (1—3e/10)ry < dx(q, 2),

by the above. As such, no point in P\ bally(y;, p1) can be the nearest neighbor of g
for e < 1. As such ng € ballx(y1, p1). Now,

dx(q, y1) < dx (g, ng) + da(ng,y1) < dx(q ng) + p1- (1)

Now g € Cy = bally(q,era/5) \ ballx(y1,5p1/4¢), and thus dx(q, y1) > 5p1/4e. Thus,

dx(q,ng) > dx(q, y1) — dx(y1,ng) > da(q 1) — p1 > <45€ - 1) p1- (2)
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Therefore from and , we have

_ _ 1 _ 4e _
dx(q,41) < da(q,ng) + o1 < (1 + 5/45_1> dx(q, ng) = <1 tso 45) dx(q; ng)

< (14 £)dn(q ng).

for e < 1/4.

6.3 Bounding the number of regions created

The online algorithm presented in Figure [5]is valid for any general metric space X', without
any restriction on the subspace of query points. However, when the query points are re-
stricted to lie in a subspace M of low doubling dimension 7, then one can show that at most
ne~O(7) regions are created overall, where n = |P|. There are two types of regions created.
The outer regions are created when P \ bally(y1,er1/3) is empty and the inner regions
are created when this condition does not hold. An example of an inner region is shown in

Figure [6]

6.3.1 Bounding the number of outer regions

First we show that there are at most e~ °(") outer regions created.

Lemma 6.4. When all the queries to the algorithm come from a subspace of doubling di-
mension T, then at most e~ outer regions are created overall.

Proof: Any two query points creating distinct outer regions occur at a distance of at least
D’/4 from each other. However all of them occur inside a ball of radius 4D’/e around p.
Thus the spread of the set containing all these query points is bounded by (4D'/¢) / (D’/4) =
O(1/¢). As such, there are at most =9 such points. u

6.3.2 Bounding the number of inner regions

We now consider the inner regions created by the algorithm. Consider the mapped point
set P’ in the space M’, see Section . Fix a ¢-WSPD {{A’I,Bi},...,{A;,Bg}} of P/

where ¢ is a constant to be specified shortly and s = ¢°7n is the number of pairs. Let

A;, B; C P denote the corresponding “unmapped” points corresponding to A}, B, that is,
A;={peP|peA}and B, ={peP|p € B/}. If aquery point q creates a new inner
region we shall assign it to a set U; associated with the pair {A}, B/}, if the pair of points
Y}, vy of the algorithm satisfy v} € A} and ¢}, € B.. Similarly assign q to the set V; if y; € B!
and y5 € A

Thus, the query points that gave rise to new regions are now associated with pairs of the
WSPD. Our analysis bounds the size of the sets U; and V; associated with a pair {A}, B!},

for i =1,...,s, thus bounding the total number of regions created.
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Let U = {q’ ‘qe Ui} C M and V; = {q’ ’qe Vi}, fori=1,...,s. For a pair {A], B/}
of the WSPD we define the numbers hy(A}) = maxpear h. Similarly let hy..(B;) =
max(;nep, h. Also, let

l; = max dxy(a(u),a(z)) and Li = l; + hpax (A)) + hiax(BY) -

/ /
W EA;,2'EB]

The following sequence of lemmas establish our claim. The basic strategy is to show that
the set U, has spread O(1/&?). This holds analogously for V' and so we will only work with
U.. We will assume that c is a sufficiently large constant and ¢ is sufficiently small.

Lemma 6.5. For any i, we have diamay (A}) < L;/c and diampy(B]) < L;/c.

Proof: By the construction of the WSPD, we have that diama (A}) < dae (AL, Bl) /c. More-
over, we have

dave(AL B) = min da(p',0') = min (dx(a(p),a()) + |h(p) — h(v)])

p'€Al v eB] p'€ Al v'eB]
<+ min_ (h(p)| + [h(©)]) < b+ hmax (A]) + himax(B) = L.
pEA W EB]
This implies that diam e (A}) < L;/c, and similarly diamy (Bf) < L;/c. n
Lemma 6.6. We have diam(U}) = O(L;/¢).

Proof: Let q be a (query) point in U;. By assumption we have y; € A} and y5 € B.. By the
triangle inequality,

dx(y1,92) < dx(yr, a(yr)) + dx(a(y), alyz)) + dx(@(y2), 12) < hmax(A7) +1i + hmax (B7)
<L

= L

On the other hand, since the point y, is outside ballx(y1,e71/3), we have that dy(y1,y2) >
er1/3, where 71 = dx(q,y1). This gives us 71 < (3/e)dx(y1,y2) < 3L;/e. By Lemma 2.4
dae (9, y)) < 3dx(q,y1) = 3r < 9L;/e. Also, we have,

dM’(yia y;) = dX(a(yl)v a(y2)) + |h(y1) - h(y2)| S Iz + hmaX(A;) + hmaX(Bz{) = I—z (3)

Let g be any other point in U;, and let the points 7; and 5 be the points found by the
algorithm such that y{ € A} and 7’ € Bj. Since yj is also in A}, we have by Lemma[6.5] that
dae (y1,91) < diamag (A;) < Li/c. As such,

diam(U;) = max due(q,q) < max (dae(q,91) + dae (1, 71) + dae (T, 77))
q',q' €l 9,9 €l

for € small enough. n

Lemma 6.7. For a query point q, the associated distances ro and L; satisfy ro > L;/18.
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Proof: Let v be the point with maximum height in Al; that is h(u) = hyac(A4)). By
Lemma [6.5 we have day (w,y}) < L;/c. The definition of the distance in M, gives
hinax (A7) = h(y1) < [hmax (A7) —h(y)] = [h(w) —h(y)| < dae (W', 1) < Li/e,

and so h(y;) > hpax(AS) — L;/e. Similarly we have, h(ys) > hpax(B)) — L;/c. We have
ri = dx(q,y1) = da(yr, M) = da(yr,a(y1)) = h(y1) and similarly o = dx(q,52) = h(y2).
Noting that, 7 > dx(q,P) > /(1 +¢/10) > (10/11)r, we get,

2L,
o

(4)

Let 2’ € A} and w' € B} be such that dy(a(z), a(w)) = 1;. Observing that dyy(q,y;) <
3dx(q,y1) = 3ry and similarly dae(q',95) < 3dx(q,y2) = 3re, we have by the triangle
inequality that

11
2.1rg =1y + TOTQ > 1o+ 71 > h(y2) + h(y1) > hmax(A%) + hpax(B]) —

dar(q,2") < dae(qd,9y) + dae(yy, 2') < 3rp + diam(AY) < 3r + Ly/c,
and dae (@, w") <dmr(d, yg) + dar (v, w') < 3ry + diam(B;) < 3ry + L, /¢,

by Lemma By the triangle inequality, we have

7
)

2L,
|i < dM’(Zlu U},) < dM’(Zlv q/) + dM'(ql7 w/> < 3T1 + 3T2 + 7 < 6-3T2 +

c
as r; < (11/10)ry. Thus we have,
2L,
By Eq. and Eq. (B]), we have, for ¢ > 8, that
2L, 2L,
97”2 2 2.17’2 + 6.37’2 Z (hmaX(A;) + hmax(B;) — > + (I,L — )
c c
4L, L, L;
= hmax(A;) + hmax(BZ{) + |1 - 2 i T A T A
2 2
which implies L; < 18r,. [ |

Suppose g was added to U; after g. We want to show that for q, € U; we must have
dae (9, @) > ery/b where o = dx(q,y2). We establish this through a sequence of lemmas.
The proof is essentially by contradiction, and the next four lemmas assume the contrary to
derive a contradiction. Roughly speaking, the assumption that dy¢(q',q') = dx(q,q) < ery/5
places q in the chipped off region of the crescent region Cy. It turns out that q is far from both
the approximate nearest neighbor of q, which is y; and the approximate nearest neighbor of
q outside an environ of y;, which is y,. Under the assumption q,q € U; we should however
be able to find the corresponding approximate nearest neighbors for g close to those of q.
Enforcing the constraint that the approximate nearest neighbor of g cannot be the second
approximate nearest neighbor of q, which is y,, leads to either counting discrepancies or
geometric contradictions arising from the triangle inequality.
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Lemma 6.8. Let q,q be two points of U;, such thatq was added after q. Ifdx(q,q) < ery/5,
then (i) dx(q,y1) < (5/4¢e)p1, and (ii) ro > (2/e)r.

Proof: Since q created a new region it lies outside Cy = ballx(q,er2/5) \ ballx(y1,5p1/4€).
Since by assumption g € bally(q,er2/5), it must be the case that g € ballx(yy, 5p1/4¢), as
otherwise g € Cy. Thus, these two balls intersect, and

3

5
- —p; >d =7
57“2 + 45/)1 >dx(q,y1) =1

But p; <ery/3 and so r; > (3/¢)p;, implying

€ " 5 € " 5 3 € n 5 S S 35 S 2
-7 —ry > =T — =P = =T — r — r —T -Tq.
2 2 501 2 4€P1 =T 2 =2 19¢ 1 1

1 = -
521275712 e .

Lemma 6.9. Let q,q be two points in U; such that § was added after q. If dx(q,q) < ery/5
then, for sufficiently small € and sufficiently large ¢, we have that

(A) 1 < 8|_

( ) d)((yl, ) < 5T1/12 < EL

(C) dx(g, B;) > L;/120.

Proof: (A) By Eq. (B) we have dav(yi, y5) < L;. Now, by Lemma [6.8 we have 5 > (2/£)r
As such, by the triangle inequality, and by Lemma we have

I—i > d./\/l’(ylla yé) > dM’<q/7 y;) - d./\/l’(q/7 yi) > dX(qa y2) - 3dX(q> yl) (6)
Z ro — 37”1 Z 27“1/6 — 3T1 2 7"1/5,

for e <1/3. Thus L; > r/e.
(B) In terms of 75, by Eq. (6)), we have

3er T L,
durlhsh) 22 =3 2 =8 2 5 2 "

since by Lemma ro > L;/18 for ¢ < 1/3 and by Lemma r1 < ery/2. Now q lies inside
ballx (y1, (5/4¢)p1) and as p1 < (¢/3)r; (see Figure [6)), we have

dx(y1,q) < (5/4e)pr < (5/4e)(e/3)r1 < 5ri /12 <1y <ely,

by (A).
(C) Let z be an arbitrary point in B; and notice that by Eq. and the triangle inequality
we have,

dM' (q/7 ZI) > dM'(ZA? Z/) - dM’(qla yi) > dM’<y/17 yé) - dM’(yé7 Z/) - dM'(q/7 yll)

L; L, L L
> — — diam(B]) — 3dx(q > = - = 3el; >
by Lemma and Lemma for sufficiently small ¢ and sufficiently large ¢. Thus,
Lemma (B)), implies that dx(q, z) > dav(q, 2') /3 > L;/120. u
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Lemma 6.10. Let q,q be two points in U; such that q was added after q, and suppose
dx(q,q) < ery/b. Let A7 = A; U{fi}, where fi is the furthest point from y, in the set
ballx (y1,e71/3)NP. Then, for sufficiently small e and sufficiently large ¢, we have B;N A} =
0. In particular, we have dx(q, B;) > 2max, ¢ s+ dx(q,u).

Proof: First, let u be any point in A;. Then, by Lemma , the triangle inequality,
Lemma [6.5{ and Lemma we have, for ¢ sufficiently large and ¢ sufficiently small, that
dx(q u) < dae (@) < dae (@, 9) + dae (01, ) < 3da(q, y1) + diame (A7)

%

L,
§3€Li‘|‘*< .
C

We also have by the triangle inequality,

2

19 19 ;
d+(g < dx(g d <eli+-r <el + —L; < —=,
2@ fi) <dx(@y1) +dx(y, f1) <e +37’1 <el;+ 5 < 510

since d (y1, f1) < er1/3 and by Lemmal[6.9] As such, for sufficiently large ¢ and small e, we
have

_ Li

On the other hand, for any z € B;, we have by Lemma that dv(q, z) > L;/120. As
such, by Eq. , we have

L.
2—= > 2maxdy(q,u).

dv(q, B;) = mindx(q, ) > = =
(@ Bi) = mipdu(@,2) 2 355 = 25,5 > 2 max

We conclude that B; N A = 0. m

Remark 6.11. A subtle (but minor) technicality is that we require p; # 0, where p; =
dx(y1, f1). This can be enforced by replicating every point of P, and assigning infinitesimally
small positive to the distance between a point and its copy. Clearly, for this modified point
set this condition holds.

Lemma 6.12. Let q,q be two points in U;, such that q was added after q. For a sufficiently
small € and a sufficiently large ¢, we have that dx(q,q) > era/5.

Proof: We assume for the sake of contradiction that dx(q,q) < ere/5. Let 73 € A; be the
(1 + £/10)-ANN found by the algorithm for g, and let 75 be the (1 4+ £/10)-ANN of g in
P\ ballx (7, 71/3), where 71 = dx(q, 77). We have

€ € 5 15 3
H=dv(a.7) <14+ —)dy(a.P)<(1+ —)d+(g < —(14+ — —
I x(q,yl)_( +10) x(q, )_( +10> x(q,yl)_4€( +10> 1< oo

by Lemma (i) and as 77 is a (1 + €/10)-ANN of g in P. The strict inequality follows
under the assumption p; > 0, see Remark [6.11} As in Lemma let A = A;U{fi}. By

Lemma [6.10, we have

dx(q, Bi) > (1+¢/10) max dx(q, u),

u€A;
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as dx(q, B;) > 2max, e 4+ dx(q,u). If A is not contained in bally (7, e71/3), then there is a
point in A\ bally (71, e71/3) that is, by a factor of (14 &/10), closer to g than B;. But this
implies that 75 ¢ B;, and this is a contradiction to the definition of q (g by definition has
1€ A; and 75 € B;). Thus, A is contained in bally (71, e77/3).

As such, we have y; € A; C A} C bally (7, e71/3) (and, by definition f; € Af, and thus
f1 also belongs to this ball). We conclude

er; 2 3

pr=dx(yr, f1) < da(y, 70) +da (7, f1) < 2? <5 g T AL

for € sufficiently small. This is a contradiction. ]

Lemma 6.13. Let q,q be two points in U;, such that § was added after q. Then for suffi-
ciently small € and sufficiently large ¢ we have, dypy (9, @) = dx(q,q) > er2/5 = Q (cLy).

Proof: Since q,g € M it follows from Lemmal[2.4]that dy¢(q', @) = dx(q,q). By Lemmal6.12]
we have dy(q,q) > erp/5. From Lemma [6.7]it follows that ery/5 = Q (eL;). m

Lemma 6.14. We have that max(|Uy|, |V;]) = 7).

Proof: From Lemma[6.6| and Lemma it follows that the spread of the set U, is bounded

by
Li/e 1
o =E) = 0() .
( el > g2
Since U; € M’ which is a space of doubling dimension O (7) it follows that |W}| = ¢=9(7).
The same argument works for V,. For any q € M,q = (q,0) and it is easy to see that the

mapping q — q' is bijective. As such |U;| = |U;|, and similarly |V}| = |V;|, and the claimed
bounds follow. n

The next lemma bounds the number of regions created.

Lemma 6.15. The number of regions created by the algorithm is n/e9).

Proof: As shown in Lemma the number of outer regions created is bounded by ¢ 9(7),
Consider an inner region Cq. For this point q the algorithm found a valid y; and y,. Now
from the definition of a WSPD there is some i such that v} € Al vy} € Bl or y| € Bl,y5 € Al.
In other words there is some ¢ such that g € U; or q € V;. As shown in Lemma the
size of each of these is bounded by £~ °("). Since the total number of such sets is 2m where
m = nc®") is the number of pairs of the WSPD, it follows that the total number of inner
regions created is bounded by (¢/e)°™ n < ne=°®)_ for ¢ sufficiently small. n

6.4 The result

We summarize the result of this section.

Theorem 6.16. The online algorithm presented in Figure E5] always returns a (1 + €)-ANN.
If the query points are constrained to lie on a subspace of doubling dimension T, then the
maximum number of regions created for the online AVD by the algorithm throughout its
execution is n /),

22



7 Conclusions

In this paper, we considered the ANN problem when the data points can come from an
arbitrary metric space (not necessarily an Euclidean space) but the query points come from
a subspace of low doubling dimension. We demonstrate that this problem is inherently low
dimensional by providing fast ANN data-structures obtained by combining and extending
ideas that were previously used to solve ANN for spaces with low doubling dimensions.

Interestingly, one can extend Assouad’s type embedding to an embedding that (1 + ¢)-
preserves distances from P to M (see [HMO06] for an example of a similar embedding into
the /o, norm). This extension requires some work and is not completely obvious. The target
dimension is roughly 1/°() in this case. If one restricts oneself to the case where both P
and M are in Euclidean space, then it seems one should be able to extend the embedding of
Gottlieb and Krauthgamer [GK11] to get a similar result, with the target dimension having
only polynomial dependency on 7. However, computing either embedding efficiently seems
quite challenging. Furthermore, even if the embedded points are given, the target dimension
in both cases is quite large, and yields results that are significantly weaker than the ones
presented here.

The on the fly construction of AVD without any knowledge of the query subspace (Sec-
tion @ seems like a natural candidate for a practical algorithm for ANN. Such an implemen-
tation would require an efficient way to perform point-location in the generated regions. We
leave the problem of developing such a data-structure as an open question for further re-
search. In particular, there might be a middle ground between our two ANN data-structures
that yields an efficient and practical ANN data-structure while having very limited access to
the query subspace.
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