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ANALYSIS OF A HMM TIME-DISCRETIZATION SCHEME FOR A SYSTEM

OF STOCHASTIC PDE’S

CHARLES-EDOUARD BREHIER

Abstract. We consider the discretization in time of a system of parabolic stochastic partial differ-
ential equations with slow and fast components; the fast equation is driven by an additive space-time
white noise. The numerical method is inspired by the Averaging Principle satisfied by this system,
and fits to the framework of Heterogeneous Multiscale Methods.

The slow and the fast components are approximated with two coupled numerical semi-implicit
Euler schemes depending on two different timestep sizes.

We derive bounds of the approximation error on the slow component in the strong sense -
approximation of trajectories - and in the weak sense - approximation of the laws. The estimates
generalize the results of [12] in the case of infinite dimensional processes.

1. Introduction

In this paper, we are interested in the numerical approximation of a randomly-perturbed system
of reaction-diffusion equations that can be written

(1.1)

∂xǫ(t, ξ)

∂t
=

∂2xǫ(t, ξ)

∂ξ2
+ f(ξ, xǫ(t, ξ), yǫ(t, ξ)),

∂yǫ(t, ξ)

∂t
=

1

ǫ

∂2yǫ(t, ξ)

∂ξ2
+

1

ǫ
g(ξ, xǫ(t, ξ), yǫ(t, ξ)) +

1√
ǫ

∂ω(t, ξ)

∂t
,

for t ≥ 0, ξ ∈ (0, 1), with initial conditions xǫ(0, ξ) = x(ξ) and yǫ(0, ξ) = ξ, and homogeneous Dirich-
let boundary conditions xǫ(t, 0) = xǫ(t, 1) = 0, yǫ(t, 0) = yǫ(t, 1) = 0. The stochastic perturbation
∂ω(t,ξ)

∂t is a space-time white noise and ǫ > 0 is a small parameter.
In the recent article [3], we have proved that an Averaging Principle holds for such a system, and

we have exhibited an order of convergence - with respect to ǫ - in a strong and in a weak sense:
the slow component xǫ is approximated thanks to the solution of an averaged equation. In this
article, we analyse a numerical method of time discretization which reproduces this averaging effect
at the discrete time level. More precisely, our aim is to build a numerical approximation of the slow
component xǫ, taking care of the stiffness induced by the time scale separation. The Heterogeneous
Multiscale Method - HMM - procedure can be used, as it is done in [12] for SDEs of the same
kind. First we recall the general principle of such a method, which has been developped in various
contexts, both deterministic and stochastic - see the review article [11] and the references therein,
as well as [9], [10], [15].

In system (1.1), the two components evolve at different time scales; xǫ is the slow component of
the problem, while the fast component yǫ has fast variations in time. We are indeed interested in
evaluating the slow component, which can be thought as the mathematical model for a phenomenon
appearing at the natural time scale of the experiment, whereas the fast component can often be
interpreted as data for the slow component, taking care of effects at a faster time scale. Instead
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of using a direct numerical method, which might require a very small time step size because of
the fast component, we use a different solver for each time scale: a macrosolver and a microsolver.
The macrosolver leads to the approximation of the slow component; it takes into account data
from the evolution at the fast time scale. The microsolver is then a procedure for estimating the
unknown necessary data, using the evolution at the microtime scale, which also depends on the
evolution at the macrotime scale. We emphasize a difference with the framework of [12]: instead of
analysing various numerical schemes, the infinite dimensional setting implies that we only focus on
a semi-implicit Euler scheme.

In Section 4.1, we state the two main Theorems of this article: we show a strong convergence
result - Theorem 4.1 - as well as a weak convergence result - Theorem 4.2 - which are similar
to the available results for SDEs. Compared to [12], we propose modified and simplified proofs
leading to apparently weaker error estimates; we made this choice for various reasons. First, even if
apparently we get weaker estimates, under an appropriate choice of the parameters the cost of the
method remains of the same order. Second, the generalization of the final dimensional results would
not yield the same bounds, due to the regularity assumptions we make on the nonlinear coefficients
of the equations. Finally, we can extend the weak convergence result to the situation where the fast
equation only satisfies a weak dissipativity assumption.

In the case of a linear fast equation - when g is equal to 0 - it is well-known that the second
equation in (1.1) is dissipative. In the general case, we make assumptions on g so that this property is
preserved for yǫ - see Assumptions 3.8 and 3.9 below. The fast equation with frozen slow component
- defined by (5.1) in the abstract framework - then admits a unique invariant probability measure,
which is ergodic and strongly mixing - with exponential convergence to equilibrium. Under the
strict dissipativity condition 3.8, we can prove that the averaging principle holds in the strong and
in the weak sense; moreover the “fast” numerical scheme has the same asymptotic behaviour as the
continuous time equation. If we only assume weak dissipativity of Assumption 3.9, the averaging
principle only holds in the weak sense, and we can not prove uniqueness of the invariant law of the
fast numerical scheme. Nevertheless, in the general setting [2] gives an approximation result of the
invariant law of the continuous time equation with the numerical method which is used to prove
Theorem 4.2; the order of convergence is 1/2 with respect to the timestep size - the precise result
is recalled in Theorem 5.11.

The paper is organized as follows. In Section 2, we give the definition of the numerical scheme.
We then state the main assumptions made on the system of equations. In Section 4.1 we state
the two main Theorems proved in this article, while in Section 4.2 we compare the efficiency of
the HMM scheme with a direct one in order to justify the use of a new method. Before proving
the theorems, we give some useful results on the numerical schemes. Finally the last two sections
contain the proof of the strong and weak convergence theorems.

2. Description of the numerical scheme

Instead of working directly with system (1.1), we work with abstract stochastic evolution equa-
tions in Hilbert spaces H:

(2.1)

dXǫ(t) = (AXǫ(t) + F (Xǫ(t), Y ǫ(t)))dt

dY ǫ(t) =
1

ǫ
(BY ǫ(t) +G(Xǫ(t), Y ǫ(t)))dt+

1√
ǫ
dW (t),

with initial conditions Xǫ(0) = x ∈ H, Y ǫ(0) = y ∈ H.
To get system (2.1) from (1.1), we take H = L2(0, 1); the linear operators A and B are Laplace

operators with homogeneous Dirichlet boundary conditions - see Example 3.2 - and the nonlinearities
F and G are Nemytskii operators - see Example 3.10. The process (W (t))t≥0 is a cylindrical Wiener
process on H - see Section 3.1. For precise assumptions on the coefficients, we refer to Section 3.
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We recall the idea of the Averaging Principle - proved in the previous article [3]: when ǫ goes to
0, Xǫ can be approximated by X defined by the averaged equation

(2.2)

dX(t)

dt
= AX(t) + F (X(t))

X(t = 0) = x ∈ H;

the error is controlled in a strong sense by Cǫ1/2−r and in a weak sense by Cǫ1−r, where r > 0 can
be chosen as small as necessary, and where C is a constant.

The averaged coefficient F - see (5.4) - satisfies

F (X) =

∫

H
F (X, y)µX (dy) = lim

s→+∞
E[F (X,YX(s, y))],

where µX is the unique invariant probability measure of the fast process YX with frozen slow
component - more details are given in Section 5.1.

To apply the HMM strategy, we need to define a macrosolver and a microsolver. We denote by
∆t the macrotime step size, and by δt the microtime step size. Let also T > 0 be a given final time.

The construction of the macrosolver is deeply based on the averaging principle: for n∆t ≤ T
Xǫ(n∆t) can be approximated by X(n∆t). If the averaged coefficient F was known, one could build
an approximation with a deterministic numerical scheme on the averaged equation; nevertheless in
general it is not the case, and the idea is to calculate an approximation of this coefficient on-the-fly,
by using the microsolver.

Therefore the macrosolver is defined in the following way: for any 0 ≤ n ≤ ⌊ T
∆t⌋ := n0,

Xn+1 = Xn +∆tAXn+1 +∆tF̃n,

with the initial condition X0 = x. F̃n has to be defined; before that, we notice that the above
definition leads to a semi-implicit Euler scheme - we use implicitness on the linear part, but the
nonlinear part is explicit. If we define a bounded linear operator on H by S∆t = (I −∆tA)−1, we
rather use the following explicit formula

(2.3) Xn+1 = S∆tXn +∆tS∆tF̃n.

We want F̃n to be an approximation of F (Xn). The role of the microsolver is to give an ap-
proximation of YXn - the fast process with frozen slow component Xn, when n is fixed; moreover
we compute a finite number M of independent replicas of the process, in order to approximate
theoretical expectations by discrete averages over different realizations of the random variables, in
a Monte-Carlo spirit. Therefore the microsolver is defined in the following way: we fix a realization
index j ∈ {1, . . . ,M}, and a macrotime step n; then for any m ≥ 0

Yn,m+1,j = Yn,m,j +
δt

ǫ
BYn,m+1,j +

δt

ǫ
G(Xn, Yn,m,j) +

√

δt

ǫ
ζn,m+1,j.

As above we can give an explicit formula

(2.4) Yn,m+1,j = R δt
ǫ
Yn,m,j +

δt

ǫ
R δt

ǫ
G(Xn, Yn,m,j) +

√

δt

ǫ
R δt

ǫ
ζn,m+1,j,

where for any τ > 0 Rτ = (I − τB)−1.
The noises ζn,m,j are defined by

ζn,m+1,j =
W

(n,j)
(m+1)δt −W

(n,j)
mδt√

δt
,

where (W (n,j))1≤j≤M,0≤n≤n0 are independent cylindrical Wiener processes on H. It is essential to
use independent noises at each macrotime step. It is important to remark that this equation is
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well-posed in the Hilbert space H - see the conditions required when a cylindrical Wiener process is
used in Section 3.1 - since Rτ is a Hilbert-Schmidt operator from H to H, under assumptions given
in Section 3.

The missing definition can now be written: F̃n is given by

(2.5) F̃n =
1

MN

M
∑

j=1

nT+N−1
∑

m=nT

F (Xn, Yn,m,j).

nT is the number of microtime steps that are not used in the evaluation of the average in F̃n, while
N is the number of microtime steps that are then used for this evaluation. Each macrotime step
then requires the computation of m0 = nT +N − 1 values of the microsolver.

At each macrotime step Yn,m,j must be initialized at time m = 0. In our proofs, this is not as
important as in [12], but for definiteness we use the same method: we initialize with the last value
computed during the previous macrotime step: Yn+1,0,j = Yn,m0,j, while Y0,0,j = y.

The aim of the analysis for HMM schemes is to prove that under an appropriate choice of the
parameters nT , N,M of the scheme, we can bound the error by expressions of the following kind,
where r > 0 is chosen as small as necessary: for n = n0 = ⌊ T

∆t⌋, we have the strong error estimate

E|Xǫ(n∆t)−Xn| ≤ C

(

ǫ1/2−r +∆t1−r +

(

δt

ǫ

)1/2−r
)

,

and if Φ is a test function of class C2, bounded and with bounded derivatives, we have the weak
error estimate

|EΦ(Xǫ(n∆t))− EΦ(Xn)| ≤ C

(

ǫ1−r +∆t1−r +

(

δt

ǫ

)1/2−r
)

.

The origin of the three error terms appears clearly in the proofs - see Sections 6 and 7: the first
one is the averaging error, the second one is the error in a deterministic scheme with the macrotime
step, and the third one is the weak error in a scheme for stochastic equations with the microtime
step. We recall that in the SPDE case the strong order of the semi-implicit Euler scheme for the
microsolver used here is 1/4, while the weak order is 1/2, while in the SDE situation the respective
orders are 1/2 and 1. The macrosolver is deterministic, so that the order is 1. Precise results for any
choice of nT , N,M are given in Theorems 4.1 and 4.2 below, while the choice of these parameters
is explained in Section 4.2.

3. Assumptions

As mentioned above, System (2.1) satisfies an averaging principle, and strong and weak order
of convergence can be given. The HMM method relies on that idea. The natural assumptions
are basically the same as the hypothesis needed to prove those results, but must be strenghtened
sometimes. The typical kind of coefficients is specified in Examples 3.2 and 3.10.

3.1. The cylindrical Wiener process and stochastic integration in H. Here, we recall the
definition of the cylindrical Wiener process and of stochastic integral on a separable Hilbert space
H - its norm is denoted by |.|H or just |.|. For more details, see [6].

We first fix a filtered probability space (Ω,F , (Ft)t≥0,P). A cylindrical Wiener process on H is
defined with two elements:

• a complete orthonormal system of H, denoted by (qi)i∈I , where I is a subset of N;
• a family (βi)i∈I of independent real Wiener processes with respect to the filtration ((Ft)t≥0):

4



(3.1) W (t) =
∑

i∈I
βi(t)qi.

When I is a finite set, we recover the usual definition of Wiener processes in the finite dimensional
space R

|I|. However the subject here is the study of some Stochastic Partial Differential Equations,
so that in the sequel the underlying Hilbert space H is infinite dimensional; for instance when
H = L2(0, 1), an example of complete orthonormal system is (qk) = (sin(k.))k≥1 - see Example 3.2.

A fundamental remark is that the series in (3.1) does not converge in H; but if a linear operator
Ψ : H → K is Hilbert-Schmidt, then ΨW (t) converges in L2(Ω,H) for any t ≥ 0.

We recall that a linear operator Ψ : H → K is said to be Hilbert-Schmidt when

|Ψ|2L2(H,K) :=

+∞
∑

k=0

|Ψ(qk)|2K < +∞,

where the definition is independent of the choice of the orthonormal basis (qk) of H. The space of
Hilbert-Schmidt operators from H to K is denoted L2(H,K); endowed with the norm |.|L2(H,K) it
is an Hilbert space.

The stochastic integral
∫ t
0 Ψ(s)dW (s) is defined in K for predictible processes Ψ with values in

L2(H,K) such that
∫ t
0 |Ψ(s)|2L2(H,K)ds < +∞ a.s; moreover when Ψ ∈ L2(Ω× [0, t];L2(H,K)), the

following two properties hold:

E|
∫ t

0
Ψ(s)dW (s)|2K = E

∫ t

0
|Ψ(s)|2L2(H,K)ds, (Itô isometry),

E

∫ t

0
Ψ(s)dW (s) = 0.

A generalization of Itô formula also holds - see [6].
For instance, if v =

∑

k∈N vkqk ∈ H, we can define

< W (t), v >=

∫ t

0
< v, dW (s) >=

∑

k∈N
βk(t)vk;

we then have the following space-time white noise property

E < W (t), v1 >< W (s), v2 >= t ∧ s < v1, v2 > .

Therefore to be able to integrate a process with respect to W requires some strong properties
on the integrand; in our SPDE setting, the Hilbert-Schmidt properties follow from the assumptions
made on the linear coefficients of the equations.

3.2. Assumptions on the linear operators. First, we have to specify some properties of the
linear operators A and B coming into the definition of system (2.1); we assume that the linear parts
are of parabolic type, with space variable ξ ∈ (0, 1).

We assume that A and B are unbounded linear operators, with domains D(A) and D(B), which
satisfy the following assumptions:

Assumptions 3.1. (1) There exist complete orthonormal systems of H, (ek)k∈N and (fk)k∈N,
and (λk)k∈N and (µk)k∈N non-decreasing sequences of real positive numbers such that:

Aek = −λkek for all k ∈ N

Bfk = −µkfk for all k ∈ N.

We use the notations λ := λ0 > 0 and µ := µ0 > 0 for the smallest eigenvalues of A and B.
5



(2) For every k ∈ N, fk is Lipschitz continuous and bounded on [0, 1], with a uniform control
with respect to k: there exists C > 0 such that for any ξ1, ξ2 ∈ [0, 1]

|fk(ξ1)| ≤ C and |fk(ξ1)− fk(ξ2)| ≤ C
√
µk|ξ1 − ξ2|.

(3) The sequences (λk) and (µk) go to +∞; moreover we have some control of the behaviour of
(µk) given by:

+∞
∑

k=0

1

µα
k

< +∞ ⇔ α > 1/2.

Example 3.2. A = B = d2

dx2 , with domain H2(0, 1) ∩H1
0 (0, 1) ⊂ L2(0, 1) - homogeneous Dirichlet

boundary conditions: in that case λk = µk = π2k2, and ek(ξ) = fk(ξ) =
√
2 sin(kπξ) - see [1].

In the abstract setting, powers of −A and −B, with their domains can be easily defined:

Definition 3.3. For a, b ∈ [0, 1], we define the operators (−A)a and (−B)b by

(−A)ax =

∞
∑

k=0

λa
kxkek ∈ H,

(−B)by =

∞
∑

k=0

µb
kykfk ∈ H,

with domains

D(−A)a =

{

x =
+∞
∑

k=0

xkek ∈ H; |x|2(−A)a :=
+∞
∑

k=0

(λk)
2a|xk|2 < +∞

}

;

D(−B)b =

{

y =

+∞
∑

k=0

ykfk ∈ H, |y|2(−B)b :=

+∞
∑

k=0

(µk)
2b|yk|2 < +∞

}

.

On D(−A)a, the norm | . |(−A)a and the Sobolev norm of H2a are equivalent: when x belongs to
a space D(−A)a, the exponent a represents some regularity of the function x.

When a ≥ 0, we can also define a bounded linear operator (−A)−a in H with

(−A)−ax =

+∞
∑

k=0

λ−a
k xk ∈ H,

where x =
∑+∞

k=0 xkek ∈ H.
Under the previous assumptions on the linear coefficients, it is easy to show that the following

stochastic integral is well-defined in H, for any t ≥ 0:

(3.2) WB(t) =

∫ t

0
e(t−s)BdW (s).

It is called a stochastic convolution, and it is the unique mild solution of

dZ(t) = BZ(t)dt+ dW (t), Z(0) = 0.

Under the second condition of Assumption 3.1, there exists δ > 0 such that for any t > 0 we

have
∫ t
0

1
sδ
|esB |2L2(H)ds < +∞; it can then be proved that WB has continuous trajectories - via the

factorization method, see [6] - and that for any 1 ≤ p < +∞, any 0 ≤ γ < 1/4, there exists a
constant C(p, γ) < +∞ such that for any t ≥ 0

(3.3) E|WB(t)|p(−B)γ ≤ C(p, γ).
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3.3. Assumptions on the nonlinear coefficients. We now give the Assumptions on the nonlin-
ear coefficients F,G : H ×H → H. First, we need some regularity properties:

Assumptions 3.4. We assume that there exists 0 ≤ η < 1
2 and a constant C such that the following

directional derivatives are well-defined and controlled:

• For any x, y ∈ H and h ∈ H, |DxF (x, y).h| ≤ C|h|H and |DyF (x, y).h| ≤ C|k|H .
• For any x, y ∈ H, h ∈ H, k ∈ D(−A)η, |D2

xxF (x, y).(h, k)| ≤ C|h|H |k|(−A)η .

• For any x, y ∈ H, h ∈ H, k ∈ D(−B)η, |D2
yyF (x, y).(h, k)| ≤ C|h|H |k|(−B)η .

• For any x, y ∈ H, h ∈ H, k ∈ D(−B)η, |D2
xyF (x, y).(h, k)| ≤ C|h|H |k|(−B)η .

• For any x, y ∈ H, h ∈ D(−A)η, k ∈ H, |D2
xyF (x, y).(h, k)| ≤ C|h|(−A)η |k|H .

We moreover assume that F is bounded.

We also need:

Assumptions 3.5. For η defined in the previous Assumption 3.4, we have for any x, y ∈ H and
h, k ∈ H

|(−A)−ηD2
xxF (x, y).(h, k)| ≤ C|h|H |k|H

|(−A)−ηD2
xyF (x, y).(h, k)| ≤ C|h|H |k|H

|(−A)−ηD2
yyF (x, y).(h, k)| ≤ C|h|H |k|H .

We assume that the fast equation is a gradient system: for any x the nonlinear coefficient G(x, .)
is the derivative of some potential U . We also assume regularity assumptions as for F .

Assumptions 3.6. The function G is defined through G(x, y) = ∇yU(x, y), for some potential
U : H ×H → R. Moreover we assume that G is bounded, and that the regularity assumptions given
in the Assumption 3.4 are also satisfied for G.

For G, we need a stronger hypothesis than for F - in order to get Proposition 5.5 . Assumption
3.5 becomes:

Assumptions 3.7. We have for any x, y ∈ H, h, k ∈ H, z ∈ L∞(0, 1)

| < DxxG(x, y).(h, k), z >H | ≤ C|h|H |k|H |z|L∞(0,1).

Finally, we need to assume some dissipativity of the fast equation. Assumption 3.8 is necessary
to obtain strong convergence in the Averaging Principle, while Assumption 3.9 is weaker and can
lead to the weak convergence.

Assumptions 3.8 (Strict dissipativity). Let Lg denote the Lipschitz constant of G with respect to
its second variable; then

(SD) Lg < µ,

where µ is defined in Assumption 3.1.

Assumptions 3.9 (Weak Dissipativity). There exist c > 0 and C > 0 such that for any y ∈ D(B)

(WD) < By +G(y), y >≤ −c|y|2 + C.

The second Assumption is satisfied as soon as G is bounded, while the first one requires some
knowledge of the Lipschitz constant of G.

Example 3.10. We give some fundamental examples of nonlinearities for which the previous as-
sumptions are satisfied:

• Functions F,G : H ×H → H of class C2, bounded and with bounded derivatives, such that
G(x, y) = ∇yU(x, y) and satisfying (SD) fit in the framework, with the choice η = 0.

7



• Functions F and G can be Nemytskii operators: let f : (0, 1) × R
2 → R be a measurable

function such that for almost every ξ ∈ (0, 1) f(ξ, .) is twice continuously differentiable,
bounded and with uniformly bounded derivatives. Then F is defined for every x, y ∈ H =
L2(0, 1) by

F (x, y)(ξ) = f(ξ, x(ξ), y(ξ)).

For G, we assume that there exists a function g with the same properties as f above, such
that G(x, y)(ξ) = g(ξ, x(ξ), y(ξ)). The strict dissipativity Assumption SD is then satisfied
when

sup
ξ∈(a,b),x∈R,y∈R

|∂g
∂y

(ξ, x, y)| < µ.

The conditions in Assumption 3.4 are then satisfied for F and G as soon as there exists
η < 1/2 such that D(−A)η and D(−B)η are continuously embedded into L∞(0, 1) - it is the
case for A and B given in Example 3.2, with η > 1/4. Assumptions 3.5 and 3.7 are also
satisfied.

We then deduce that the system (2.1) is well-posed for any ǫ > 0, on any finite time interval
[0, T ]. Under Assumptions 3.1, 3.4, 3.6, the nonlinearities F and G are Lipschitz continuous, and
the following Proposition is classical - see [6]:

Proposition 3.11. For every ǫ > 0, T > 0, x ∈ H, y ∈ H, system (2.1) admits a unique mild
solution (Xǫ, Y ǫ) ∈ (L2(Ω, C([0, T ],H)))2: for any t ∈ [0, T ],

(3.4)

Xǫ(t) = etAx+

∫ t

0
e(t−s)AF (Xǫ(s), Y ǫ(s))ds

Y ǫ(t) = e
t
ǫ
By +

1

ǫ

∫ t

0
e

(t−s)
ǫ

BG(Xǫ(s), Y ǫ(s))ds +
1√
ǫ

∫ t

0
e

(t−s)
ǫ

BdW (s).

4. Convergence results

4.1. Statement of the Theorems. We can now state the main results: the numerical process
(Xn) defined by (2.3) approximates the slow component Xǫ(n∆t) of system (2.1), with strong and
weak error estimates given in the Theorems.

If the Strict Dissipativity Assumption 3.8 is satisfied, we can prove the following:

Theorem 4.1 (Strong convergence). Assuming (SD), for any 0 < r < 1/2, 0 < κ < 1/2, T > 0,
ǫ0 > 0, ∆0 > 0, τ0 > 0, there exists C > 0 such that for any 0 < ǫ ≤ ǫ0, 0 < ∆t ≤ ∆0, δt > 0 such
that τ = δt

ǫ ≤ τ0 and 1 < n ≤ n0 = ⌊ T
∆t⌋

E|Xǫ(n∆t)−Xn| ≤ C

(

ǫ1/2−r +
1

n
+∆t1−r

)

+ C

(

(
δt

ǫ
)1/2−κ +

1
√

N δt
ǫ + 1

e−cnT
δt
ǫ

)

+ C

√
∆t

√

M(N δt
ǫ + 1)

.

Under the more general Weak Dissipativity Assumption 3.9, we can prove the following:

Theorem 4.2 (Weak convergence). Assume that x ∈ D((−A)θ) and y ∈ D((−B)β), with θ, β ∈
]0, 1]. Let Φ : H → H bounded, of class C2, with bounded first and second order derivatives. Then
with the weak dissipativity assumption (WD), for any 0 < r < 1, κ < 1/2, T > 0, ǫ0 > 0, ∆0 > 0,
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τ0 > 0, there exists C > 0 such that for any 0 < ǫ ≤ ǫ0, 0 < ∆t ≤ ∆0, δt > 0 such that τ = δt
ǫ ≤ τ0

and 1 < n ≤ n0 = ⌊ T
∆t⌋

|EΦ(Xǫ(n∆t))− EΦ(Xn)| ≤ C

(

ǫ1−r +
1

n
+∆t1−r

)

+ C

(

(
δt

ǫ
)1/2−κ(1 +

1

((nT − 1) δtǫ )
1/2−κ

) +
1

N δt
ǫ + 1

e−cnT
δt
ǫ

)

.

Moreover, if we assume (SD) in Theorem 4.2, the factor (1 + 1
((nT−1) δt

ǫ
)1/2−κ

) is replaced by 1.

If we look at the estimates of Theorems 4.1 and 4.2 at time n = n0, the factor 1
n−1 is of size

∆t = O(∆t1−r).

4.2. Some comments on the convergence results. The proofs rely on the following decompo-
sition, which explains the origin of the different error terms:

(4.1) Xǫ(n∆t)−Xn = Xǫ(n∆t)−X(n∆t) +X(n∆t)−Xn +Xn −Xn.

The numerical process (Xn) is defined in (5.12) below: it is the solution of the macrosolver with a

known F , while (Xn) is solution of the macrosolver using F̃n. The continuous processes X and Xǫ

are defined at the beginning of Section 2.
The first term is bounded thanks to the averaging result, using strong and weak order of conver-

gence results - see the article [3]. The second term is the error in a deterministic numerical scheme,
for which convergence results are classical; we recall the estimate in Proposition 5.13. The third
term is the difference between the two numerical approximations, and the main task is the control
of this part: we show that an extension of the averaging effect holds at the discrete time level, where
Xn plays the role of an averaged process for Xn.

When we look at the Theorems 4.1 and 4.2, we first remark that we obtain the same kind of
bounds as in the finite dimensional case of [12]. However we notice some differences; they are due
both to the infinite dimensional setting and to different proofs.

First, the weak order of the Euler scheme for SPDEs is only 1/2 - see [7] - while it is 1 for SDEs;
in the estimate, the strong order never appears, and this is one of the main theoretical advantages
of the method. For completeness, we recall that the strong order is 1/4 in the SPDE case - see [14]
- and 1/2 for SDEs. In fact, at least in the strictly dissipative case, we are comparing the invariant
measures of the continuous fast equation with the invariant measure of its numerical approximation
- see Theorem 5.11 and Corollary 5.12. In the weakly dissipative case, we use the weak error
estimates where the constants do not depend on the final time.

We need some regularity on the initial condition x in Theorem 4.2, since we apply the weak order
averaging Theorem of [3]; nonetheless the parameter θ > 0 does not appear in the different orders
of convergence, but only in the constant C.

In Theorem 4.2, we do not exactly obtain the same estimate as in [12], since M does not appear:
as a consequence, the estimate is not improved when M is increasing. Since we are looking at some
weak error estimate, this can seem natural; first M appeared in the estimate of [12] only because
of some strong error estimate used in the proof, while here to prove Theorem 4.2 we always think
with a weak error state of mind. Second, the corresponding term in the weak estimate of [12] is
easily controlled by ∆t, which already appears in another part of the error since we use a first order
scheme for the macrosolver - and not a general scheme - so that there is no need for getting a better
estimate.

The proofs of Theorems 4.1 and 4.2 are inspired by the ones in [12], but are different. The strong
error is analysed in a global way, as in the proof of the strong order Theorem in [3]. Moreover we do
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not need a counterpart of Lemma 2.6 in [12], and we thus think that our method is more natural.
For the control of the weak error, we introduce a new appropriate auxiliary function.

As explained in the introduction, we present here some simplified results and proofs. In the stricly
dissipative case, we could go further in the analysis of the error, thanks to the initialization procedure
of the scheme, and to additional exponential convergence results. But after a very technical work,
due to the regularity assumptions made on the nonlinear coefficients F and G we would only obtain
a factor ∆t1−r−η instead of ∆t in the finite dimensional case - where is any r > 0, which can be
chosen as small as necessary, and η is defined in Assumption 3.4 and depends on the regularity
properties of the nonlinearities F and G. Nevertheless, the cost of the scheme remains of the same
order even if we do not use those better estimates.

We consider that ǫ is fixed, and then the numerical method depends on several parameters
N,M,nT , δt,∆t; we would like to give some explicit choices of the parameters for which we have a
simple bound, and for which a direct scheme, where the stiffness of the system (2.1) is not treated,
is less efficient, for the cost defined by

cost =
Mm0

∆t
.

This is the total number of microtime steps for T = 1.
We take n = n0: then 1

n ≤ C∆t.
The time scale separation parameter ǫ is supposed to be very small, while we fix some tolerance

tol for the error in the numerical scheme: more precisely, we want the error to be

(4.2)
E|Xǫ(n∆t)−Xn| ≤ C(ǫ1/2−r + tol) (strong error)

|EΦ(Xǫ(n∆t))− EΦ(Xn)| ≤ C(ǫ1−r + tol) (weak error),

where r satisfies either r < rs - strong error - or r < rw - weak error - if the parameters rs and
rw are defined by the conditions ǫ1/2−rs = o(tol) (strong error) and ǫ1−rw = o(tol) (weak error):
the numerical error is dominant with respect to the averaging error. We want to show that we can
choose the parameters of the scheme such that each term of the estimate of the Theorem 4.1 are of
size tol, except the first one, and such that the cost of the scheme is lower than the cost of a direct
scheme.

• We first notice that the choice for ∆t and δt
ǫ is easy:

(4.3)
∆t ≈ tol

1
1−r

δt

ǫ
≈ tol

1
1/2−κ ,

where r < rs or r < rw, and κ < 1/2 are fixed. The choice of other parameters N,M,nT

changes when we look at the strong or at the weak error.
• We first focus on the strong convergence case. We consider the case when either M = 1 or
N = 1. We obtain

parameters cost

M = 1 N ≈ tol
−2+ 1

1−r
− 1

1/2−κ

nT ≈ tol
− 1

1/2−κ log(tol−1) tol
−2− 1

1/2−κ
+ 1

1−r

N = 1 M ≈ tol
1

1−r
−2

nT ≈ log(tol−1)tol
− 1

1/2−κ tol
−2− 1

1/2−κ
+ 1

1−r log(tol−1)

Unlike in the finite dimensional situation, the bound depends on a factor ∆t1−η−r -
where η is linked to the regularity of the nonlinear coefficients F and G. The charge of
this difference could be taken by either N or nT ; the advantage of choosing nT is that the
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difference only involves a logarithmic factor on the final cost. As a consequence, we can
make no difference between the choices N = 1 and M = 1.

We can now make a comparison with the cost coming from the use of a direct scheme:
since the strong order of Euler scheme for SPDEs is 1/4 − κ, the error can be bounded by

C( δtǫ )
1/4−κ for some constant C. Therefore to have a bound of size tol, the time step size

δt much satisfy δ
ǫ ≈ tol

1
1/4−κ . This leads to a cost

1

δt
≈ ǫ−1tol

− 1
1/4−κ ;

we conclude that in this situation the HMM numerical method is better, since the ratio of
the cost tends to 0 when ǫ → 0 - under the condition r < rs.

• We now focus on the weak error estimate. Here M plays no role, so that M = 1 is the good
choice! The time steps ∆t and δt are still given by (4.3). It remains to look for parameters
N and nT such that

1

N δt
ǫ + 1

e−cnT
δt
ǫ ≈ ∆t.

Once again, we need to choose nT and N such that N δt
ǫ or nT

δt
ǫ is large. Since exponential

decrease is faster than polynomial decrease, the best choice is e−cnT
δt
ǫ ≈ ∆t, and therefore

nT ≈ tol
− 1

1/2−κ log(tol−1), while N = 1.
We then see that 1

((nT−1) δt
ǫ
)1/2−κ

≤ C, so that the additional factor appearing when only

weak dissipativity is satisfied plays no role.

The corresponding cost of the scheme is then of order m0
∆t ≈ log(tol−1)tol

− 1
1−r

− 1
1/2−κ .

We can again compare this cost with the cost coming from the use of a direct scheme: the
weak order of Euler scheme for SPDEs is 1/2 − κ; to obtain the second estimate of (4.2),
we need a cost

1

δt
≈ ǫ−1tol

− 1
1/2−κ ,

and again the HMM scheme is better than the direct scheme for such a range of parameters.

5. Preliminary results

5.1. Known results about the fast equation and the averaged equation. In this section,
we just recall without proof the main results on the fast equation with frozen slow component and
on the averaged equation, defined below. Proofs can be found in [4] for the strict dissipative case,
and the extension to the weakly dissipative situation relies on arguments explained below.

If x ∈ H, we define an equation on the fast variable where the slow variable is fixed and equal to
x:

(5.1)
dYx(t, y) = (BYx(t, y) +G(x, Yx(t, y)))dt+ dW (t),

Yx(0, y) = y.

This equation admits a unique mild solution, defined on [0,+∞[.
Since Y ǫ is involved at time t > 0, heuristically we need to analyse the properties of Yx(

t
ǫ , y),

with ǫ → 0, and by a change of time we need to understand the asymptotic behaviour of Yx(., y)
when time goes to infinity.

Under the strict dissipativity Assumption 3.8, we obtain a contractivity of trajectories issued
from different initial conditions and driven by the same noise:

Proposition 5.1. With (SD), for any t ≥ 0, x, y1, y2 ∈ H we have

|Yx(t, y1)− Yx(t, y2)|H ≤ e−
(µ−Lg)

2
t|y1 − y2|H .
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Under the weak dissipativity Assumption 3.9, we obtain such an exponential convergence result
for the laws instead of trajectories. The proof of this result is not staightforward, and can be found
in [8] - see also [2] for further references.

Proposition 5.2. With (WD), there exist c > 0, C > 0 such that for any bounded test function φ,
any t ≥ 0 and any y1, y2 ∈ H

(5.2) |Eφ(Y (t, y1))− Eφ(Y (t, y2))| ≤ C‖φ‖∞(1 + |y1|2 + |y2|2)e−ct.

As a consequence, we can show that there exists a unique invariant probability measure associated
with Yx, and that the convergence to equilibrium is exponentially fast.

First, let ν = N (0, (−B)−1/2) be the centered Gaussian probability measure on H with the
covariance operator (−B)−1/2 - which is positive and trace-class, thanks to Assumption 3.1.

Then µx defined by

(5.3) µx(dy) =
1

Z(x)
e2U(x,y)ν(dy),

where Z(x) ∈]0,+∞[ is a normalization constant, is the unique probability invariant measure associ-
ated to Yx. This expression comes from the gradient structure of equation (5.1), given in Assumption
3.6.

Second, under any of the dissipativity assumptions, the convergence to equilibrium is exponential
in the following sense:

Proposition 5.3. If we assume (SD) or (WD), there exist constants C, c > 0 such that for any
bounded function φ : H → R or φ : H → H, t ≥ 0 and x, y ∈ H we have

|Eφ(Yx(t, y))−
∫

H
φ(z)µx(dz)| ≤ C‖φ‖∞(1 + |y|2H)e−ct.

Now we define the averaged equation. First we define the averaged nonlinear coefficient F :

Definition 5.4. For any x ∈ H,

(5.4) F (x) =

∫

H
F (x, y)µx(dy).

Using Assumptions 3.4, 3.6 and the expression of µx, it is easy to prove that F is bounded and
Lipschitz continuous.

Under Assumptions 3.4, 3.6, we can easily prove the following properties on F :

Proposition 5.5. There exists 0 ≤ η < 1 and a constant C such that the following directional
derivatives of F are well-defined and controlled:

• For any x ∈ H, h ∈ H, |DF (x).h| ≤ C|h|H .
• For any x ∈ H, h ∈ H, k ∈ D(−A)η, |D2F (x).(h, k)| ≤ C|h|H |k|(−A)η .

• For any x ∈ H, h, k ∈ H, |(−A)−ηD2F (x).(h, k)| ≤ C|h|H |k|H .

Moreover, F is bounded and Lipschitz continuous.

The last estimate above is a consequence of Assumptions 3.5 and 3.7, and of the following fact:
we have almost surely WB(t) ∈ L∞(0, 1) for any t ≥ 0, and

(5.5)

∫

H
|z|L∞(0,1)ν(dz) < +∞.

Moreover if η > 1/4 - which is the right condition in the case of linear Laplace operators and
of nonlinear Nemytskii operators - we have

∫

H |z|(−A)ην(dz) = +∞: we thus need the restrictive
condition in Assumption 3.7.

12



Remark 5.6. Even when F and G are Nemytskii operators, F is not such an operator in general.

Then the averaged equation (see (2.2) in the introduction) can be defined:

dX(t)

dt
= AX(t) + F (X(t)),

with initial condition X(0) = x ∈ H. For any T > 0, this deterministic equation admits a unique
mild solution X ∈ C([0, T ],H).

5.2. Estimates on the numerical solutions. We can give uniform estimates on Xn and Yn,m,j,
defined by 2.3 and 2.4:

Lemma 5.7. There exists C > 0 such that we have P-almost surely

|Xn| ≤ C(1 + |x|),
for any 0 ≤ n ≤ n0.

Proof The linear operator S∆t satifies |S∆t|L(H) ≤ 1
1+λ∆t ; moreover F is bounded, so that by (2.5)

we almost surely have for any n ≥ 0 |F̃n| ≤ ‖F‖∞. The end of the proof is then straightforward;
we also notice that C does not depend on the final time T . �

Lemma 5.8. There exists C > 0 - which does not depend on T > 0, on N , on nT or on M - such
that for any ∆t > 0, τ = δt

ǫ > 0, 0 ≤ n ≤ n0, 0 ≤ m ≤ m0 and 1 ≤ j ≤ M , we have

E|Yn,m,j|2 ≤ C(|y|2 + 1).

Proof We introduce ωn,m,j defined by the fast numerical scheme with no nonlinear coefficient -

see (2.4) - with the notation τ = δt
ǫ : for any 0 ≤ j ≤ M , 0 ≤ n ≤ n0 and 0 ≤ m ≤ m0

(5.6) wn,m+1,j = Rτwn,m,j +
√
τRτζn,m+1,j,

with the initial condition wn,0,j = 0. wn,m,j is the numerical approximation - using the microsolver
scheme with a step size τ - of the process defined by

dZ(n,j)(t) = BZ(n,j)(t)dt+ dW̃ (n,j)(t)

Z(n,j)(0) = 0,

where W̃
(n,j)
t = 1√

ǫ
W

(n,j)
ǫt . Notice that the (W̃ (n,j)) are independent cylindrical Wiener processes,

and that

ζn,m+1,j =
W̃

(n,j)
(m+1)τ − W̃

(n,j)
mτ

√
τ

.

The Z(n,j) are independent realizations of Z(t) = WB(t) =
∫ t
0 e

(t−s)BdW (s). Using Theorem 3.2
of [14], giving the strong order 1/4 for the microsolver - when the initial condition is 0, with no
nonlinear coefficient, with a constant diffusion term and under the assumptions made here - we
get the following estimate: for any 0 < κ < 1/2, there exists Cκ > 0, such that for any τ > 0,
0 ≤ n ≤ n0, 1 ≤ j ≤ M and 0 ≤ m ≤ m0

(5.7) E|ωn,m,j − Z(n,j)(mτ)|2 ≤ Cκτ
1/2−κ.

Thanks to (3.3) and (5.7), for any τ0 > 0, there exists a constant C(τ0) such that for any 0 ≤ τ < τ0,
0 ≤ n ≤ n0, 1 ≤ j ≤ M and 0 ≤ m ≤ m0 we have

E|ωn,m,j|2 ≤ C(τ0).
13



Now for any 0 ≤ m ≤ m0 we define Dn,m,j = Yn,m,j − wn,m,j; it is enough to control |Dn,m,j|2,
P-almost surely. By (2.4), we have the following expression: for any 0 ≤ m ≤ m0

Dn,m+1,j = RτDn,m,j + τRτG(Xn, Yn,m,j).

Since G is bounded, and using the inequality |Rτ |L(H) ≤ 1
1+µτ , we get

|Dn,m+1,j| ≤
1

1 + µτ
|Dn,m,j|+ Cτ.

Therefore we have for any 0 ≤ m ≤ m0

(1 + µτ)m|Dn,m,j| ≤ |Dn,0,j|+C[(1 + µτ)m − 1].

But Dn,0,j = Dn−1,m0,j. So we get

(1 + µτ)m0 |Dn+1,0,j | ≤ |Dn,0,j |+ C[(1 + µτ)m0 − 1].

Therefore

(1 + µτ)nm0 |Zn,0,j| ≤ |D0,0,j |+ C(1 + µτ)nm0 = |y|+ C(1 + µτ)nm0 .

As a consequence, we get for any 0 ≤ n ≤ n0 and any 0 ≤ m ≤ m0, |Dn,0,j| ≤ C(1 + |y|), and then
|Zn,m,j| ≤ 2C(1 + |y|). �

5.3. Asymptotic behaviour of the “fast” numerical scheme. At the continuous time level,
the averaging principle proved in [3] comes from the asymptotic behaviour of the fast equation with
frozen slow component (5.1), as described in Section 5.1. The underlying idea of the HMM method
in our setting is to prove a similar averaging effect at the discrete time level: we therefore study
the asymptotic behaviour of the fast numerical scheme which defines the microsolver, with frozen
slow component - in other words we are looking at the evolution of the microsolver during one fixed
macrotime step.

In Section 5.1, we have seen that under the weak dissipativity Assumption 3.9 the fast equation
with frozen slow component admits a unique invariant probability measure µx. At the discrete time
level, this Assumption only yields the existence of invariant laws; to get a unique invariant law µx,τ ,
we need strict dissipativity SD, and we obtain:

Theorem 5.9. Under Assumption 3.8, for any τ > 0 and any x ∈ H; the numerical scheme
5.9 admits a unique ergodic invariant probability measure µx,τ . Moreover, we have convergence to
equilibrium in the following sense: for any τ0 > 0, there exist c > 0 and C > 0 such that for any
0 < τ ≤ τ0, x ∈ H, y ∈ H, any Lipschitz continuous function φ from H to R, and m ≥ 0, we have

(5.8) |E(φ(Y x
m(y))) −

∫

H
φ(z)µx,τ (dz)| ≤ C(1 + |y|)[φ]Lipe

−cmτ .

We recall the notation τ = δt
ǫ for the effective time step; the noise is defined with a cylindrical

Wiener process W̃ : ζ̃m+1 =
W̃(m+1)τ−W̃mτ√

τ
. If we fix the slow component x ∈ H, we define

(5.9) Y x
m+1(y) = RτY

x
m(y) + τRτG(x, Y x

m(y)) +
√
τRτ ζ̃m+1,

with the initial condition Y x
0 (y) = y.
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5.3.1. Existence of an invariant law. With Equation (5.9), we associate the transition semi-group
(P x,τ

m ): if φ is a bounded measurable function from H to R, if y ∈ H and m ≥ 0

(5.10) P x,τ
m φ(y) = E[φ(Y x

m(y))].

We also denote by νx,τm,y the law of Y x,τ
m (y): then

P x,τ
m φ(y) = E[φ(Y x,τ

m (y))] =

∫

H
φ(z)νx,τm,y(dz).

We notice that the semi-group (Pm) satisfies the Feller property: if φ is bounded and continuous,
then Pmφ ∈ is bounded and continuous.

The required tightness property is a consequence of the following estimate, which can be proved
thanks to regularization properties of the semi-group (Rm

τ )m: for any 0 < γ < 1/4, τ > 0, there
exists C(γ, τ) > 0 such that for any m ≥ 1 and τ ≤ τ0

E|Ym(y)|2(−B)γ ≤ C(γ, τ).

Moreover if 0 < γ < 1/4, the embedding of D(−B)γ in H is compact.

5.3.2. Uniqueness under strict dissipativity. The key estimate to prove uniqueness is the following
contractivity property, which holds thanks to Assumption 3.8:

Proposition 5.10. For any τ0 > 0, there exists c > 0 such that for any 0 < τ ≤ τ0, m ≥ 0,
y1, y2 ∈ H, x ∈ H we have P-almost surely

(5.11) |Y x
m(y1)− Y x

m(y2)| ≤ e−cmτ |y1 − y2|.

Proof If we define rm = Ym(y1)− Ym(y2), then we have the equation

rm+1 = rm + τBRm+1 + τ(G(x, Ym(y1))−G(x, Ym(y2))),

r0 = y1 − y2.

If we take the scalar product in H of this equation with rm+1, we get

|rm+1|2− < rm, rm+1 > = τ < Brm+1, rm+1 >

+ τ < G(x, Ym(y1))−G(x, Ym(y2)), rm+1 >;

The left hand-side is equal to 1
2 (|rm+1|2 − |rm|2) + 1

2 |rm+1 − rm|2, and we get

1

2
(|rm+1|2 − |rm|2) ≤ −τ |(−B)1/2rm+1|2 + τLg|rm||rm+1|

≤ −µτ |rm+1|2 +
1

2
τLg(|rm+1|2 + |rm|2).

Therefore we have (1 + τ(2µ − Lg))|rm+1|2 ≤ (1 + τLg)|rm|2. We remark that SD implies that for

any τ0 > 0, there exists c > 0 such that if τ ≤ τ0 we have ρ =
1+τLg

1+τ(2µ−Lg)
≤ e−2cτ ; therefore

|rm|2 ≤ ρm|y1 − y2|2 ≤ e−2cmτ |y1 − y2|2.

�

As a consequence, there exists a unique ergodic invariant probability measure µx,τ , which is
strongly mixing. Moreover one can prove that there exists C > 0 such that for any τ > 0 and any

15



x ∈ H
∫

H |y|µx,τ (dy) ≤ C; we therefore get

|E(φ(Y x
m(y)))−

∫

H
φ(z)µx,τ (dz)| = |E(φ(Y x

m(y))) −
∫

H
Eφ(Y x

m(z))µx,τ (dz)|

≤
∫

H
E|φ(Y x

m(y))− φ(Y x
m(z)|µx,τ (dz)

≤ [φ]Lip

∫

H
e−cmτ |y − z|µx,τ (dz)

≤ C[φ]Lipe
−cmτ .

5.3.3. Approximation of the invariant law µx by the fast numerical scheme. We recall that µx de-
notes the invariant law of the continuous time fast equation with frozen slow component (5.1).
Thanks to the fast numerical scheme, we can get an approximation result, which is proved in [2]:
with test functions of class C2

b , we can control the weak error for any time with a convergence of
order 1/2 with respect to the time step τ . Moreover the estimate is easily seen to be independent
from the slow component x.

We define for any Φ of class C2
b

‖Φ‖(2) = sup
y∈H

|Φ(y)|+ sup
y∈H,h∈H,|h|=1

|DyΦ(y).h| + sup
y∈H,h,k∈H,|h|=|k|=1

|D2
yyΦ(y).(h, k)|.

Theorem 5.11. With the dissipativity condition (WD), for any 0 < κ < 1/2, for any τ0 > 0, there
exists C, c > 0 such that for any Φ of class C2

b , for any x, y ∈ H, for any 0 < τ ≤ τ0 and any integer
2 ≤ m < +∞

|E[Φ(Yx(mτ, y))]− E[Φ(Y x
m(y))]| ≤ C‖Φ‖(2)(1 + |y|3)(((m − 1)τ)−1/2+κ + 1)τ1/2−κ.

As explained in Section 5.3, in general the fast numerical scheme does not admit a unique invariant
probability measure, but when the strict dissipativity Assumption 3.8 is satisfied, it admits a unique
invariant law µx,τ .

Corollary 5.12. Under the assumptions of Theorem 5.11:
(i) if only (WD) is satisfied, we have for any m ≥ 2

|
∫

H
Φdµx − E[Φ(Y x

m)]| ≤ C‖Φ‖(2)(1 + |y|3)(((m− 1)τ)−1/2+κ + 1)τ1/2−κ + CN(Φ)(1 + |y|2)e−cmτ .

(ii) if moreover (SD) is satisfied,

|
∫

H
Φdµx −

∫

H
Φdµx,τ | ≤ C‖Φ‖(2)τ1/2−κ.

We recall that in the case of Euler scheme for SDEs this kind of results holds with the order of
convergence 1.

5.4. Error in the deterministic scheme (5.12). We define a scheme based on the macrosolver,
for theoretical purpose, in the situation when F is known:

(5.12)
Xn+1 = S∆tXn +∆tS∆tF (Xn)

X0 = x.

We can look at the error between Xn, defined by (5.12), and X(n∆t), defined by (2.2). Here
quantities are deterministic, and the following result is classical - see [13], [5], or the details of the
proofs in [14]:
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Proposition 5.13. For any 0 < r < 1, ∆t0 > 0 and T > 0, there exists C > 0, such that for any
0 < ∆t ≤ ∆t0 and 1 ≤ n ≤ ⌊ T

∆t⌋

|Xn −X(n∆t)| ≤ C

n
+ C(1 + |x|)∆t1−r.

6. Proof of the strong convergence Theorem 4.1

Thanks to the following remark on the construction of the scheme, we can consider that Yn,m,j

corresponds to a process evaluated at time m + nm0. The idea is to build noise processes ζ(j) by
concatenation of the ζ(n,j) for the different n.

Remark 6.1. To compute Yn,m,j with the microsolver, the total number of microtime steps used is

nm0 +m. It is then natural to use only one noise process ζ(j). , for each 1 ≤ j ≤ M , and to make
an evaluation involving time nm0 +m. More precisely, we can use

ζ
(j)
k+1 =

W
(j)
(k+1)δt −W

(j)
kδt√

δt
,

with (W (j))1≤j≤M being M independent cylindrical Wiener processes on H.
Then one can define for 0 ≤ t ≤ m0δt and for 0 ≤ m ≤ m0 − 1

W (n,j)(t) = W (j)(t+ nm0δt)−W (j)(nm0δt)

ζn,m+1,j = ζ
(j)
nm0+m+1.

We also introduce the following notation: En denotes conditional expectation with respect to the
σ-field

(6.1) Gn = σ(ζk,m,j, 0 ≤ k ≤ n− 1, 1 ≤ m ≤ m0, 1 ≤ j ≤ M) = σ(ζ(j)m , 1 ≤ m ≤ nm0).

We notice that Xn is Gn-measurable, but that F̃n is not.
The final time T is fixed and we recall the notation n0 = ⌊ T

∆t⌋.
To simplify notations, we do not always precise the range of summation in the expressions below:

the indices j, j1, j2 belong to {1, . . . ,M}, and m,m1,m2 belong to {nT , . . . , nT +N − 1 = m0}.
We recall that according to the decomposition of the error (4.1), we have to control

(6.2)

E|Xǫ(n∆t)−Xn| ≤ E|Xǫ(n∆t)−X(n∆t)|
+ |X(n∆t)−Xn|
+ E|Xn −Xn|.

The first part is controlled thanks to the strong order Theorem of [3]: for any 0 < r < 1/2, we have
for any 0 ≤ n ≤ n0

E|Xǫ
n∆t −Xn∆t| ≤ Cǫ1/2−r.

The second part is deterministic and is controlled thanks to Proposition 5.13:

|Xn −X(n∆t)| ≤ C

n
+ C(1 + |x|)∆t1−r,

where C depends on T, r, x, y.
It remains to focus on the third part en = Xn −Xn. Instead of analyzing the local error like in

[12], we adopt a global point of view, and we follow the idea of the proof of Theorem 1.1 in [3]: for
any 0 ≤ n ≤ n0

(6.3) Xn −Xn = Sn
∆tx+∆t

n−1
∑

k=0

Sn−k
∆t F̃k − Sn

∆tx−∆t
n−1
∑

k=0

Sn−k
∆t F (Xk).
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The averaged coefficient F is Lipschitz continuous, and |S∆t|L(H) ≤ 1; moreover we can define the

averaged coefficient F
τ

with respect to the invariant measure µx,τ of the fast numerical scheme -
which is unique since we assume strict dissipativity (SD): for any x ∈ H

(6.4) F
τ
(x) =

∫

H
F (x, y)µx,τ (dy).

The error in (6.3) can then be decomposed in the following way - the idea of looking at the square
of the norm in the second expression is an essential tool of the proof:

(6.5)

E|Xn −Xn| ≤ C∆t

n−1
∑

k=0

E|Xk −Xk|

+

(

E|∆t

n−1
∑

k=0

Sn−k
∆t F̃k − Sn−k

∆t F
τ
(Xk)|2

)1/2

+∆t

n−1
∑

k=0

E|Sn−k
∆t F (Xk)− Sn−k

∆t F
τ
(Xk)|.

If we can control the two last terms by a certain quantity Q, by a discrete Gronwall Lemma we get
for any 0 ≤ k ≤ n0 E|Xn −Xn| ≤ eCTQ.

First, the third term in (6.5) is linked to the distance between the invariant measures µx and
µx,τ - since we assume strict dissipativity for this strong estimate - which is evaluated thanks to
Theorem 5.11 and Corollary 5.12 for test functions of class C2

b . Since |(−A)ηSn−k
∆t |L(H) ≤ C

((n−k)∆t)η ,

using Assumption 3.5, we can apply Corollary 5.12 to obtain

|Sn−k
∆t F (Xk)− Sn−k

∆t F
τ
(Xk)| ≤

C

((n− k)∆t)η
τ1/2−κ,

and summing we get

∆t

n−1
∑

k=0

E|Sn−k
∆t F (Xk)− Sn−k

∆t F
τ
(Xk)| ≤ Cτ1/2−κ.

The other term is more complicated; in order to get a precise estimate, we expand the square of
the norm of the sum. We can then use some conditional expectations, which allow to use exponential
convergence to equilibrium via Theorem 5.9. Therefore we obtain the following expansion:

E|∆t

n−1
∑

k=0

Sn−k
∆t F̃k − Sn−k

∆t F
τ
(Xk)|2 = ∆t2

n−1
∑

k=0

E|Sn−k
∆t (F̃k − F

τ
(Xk))|2

+ 2∆t2
∑

0≤k1<k2≤n−1

E < Sn−k1
∆t (F̃k1 − F

τ
(Xk1)), S

n−k2
∆t (F̃k2 − F

τ
(Xk2)) >

=: Σ1 +Σ2.

(i) We first treat Σ1.
By (2.5), for any 0 ≤ k ≤ n− 1 we have

F̃k =
1

MN

M
∑

j=1

nT+N−1
∑

m=nT

F (Xk, Yk,m,j);

18



therefore we can see that

E|Sn−k
∆t (F̃k − F

τ
(Xk))|2

=
1

M2N2

∑

j1,j2

∑

m1,m2

EEk < Sn−k
∆t (F (Xk, Yk,m1,j1)− F

τ
(Xk)), S

n−k
∆t (F (Xk, Yk,m2,j2)− F

τ
(Xk)) >,

with the conditional expectation Ek with respect to Gk - see (6.1).

When j1 6= j2, ζ
(j1)
m and ζ

(j2)
m are independent, so that we treat differently the cases j1 = j2 and

j1 6= j2 in the above summation, and we obtain

M2N2
E|Sn−k

∆t (F̃k − F
τ
(Xk))|2

=
∑

j1 6=j2

E <
∑

m1

EkS
n−k
∆t (F (Xk, Yk,m1,j1)− F

τ
(Xk)),

∑

m2

EkS
n−k
∆t (F (Xk, Yk,m2,j2)− F

τ
(Xk)) >

+

M
∑

j=1

∑

m1,m2

E < Sn−k
∆t (F (Xk, Yk,m1,j)− F

τ
(Xk)), S

n−k
∆t (F (Xk, Yk,m2,j)− F

τ
(Xk)) > .

For the first part, we can directly use the exponential convergence to equilibrium result of (5.8)
to have a bound with

(
1

N

m0
∑

m=nT

e−cmτ )2 ≤ (
1

N

e−cnT τ − e−c(N+nT )τ

1− e−cτ
)2

≤ (Ce−cnT τ 1− e−cNτ

Nτ
)2

≤ (
Ce−cnT τ

Nτ + 1
)2.

For the second part, we see that we can treat only the case m1 ≤ m2, and we introduce the

conditional expectation Ek,m1,j with respect to the σ-field generated by Gk and (ζ
(j)
km0+m)0≤m≤m1−1,

when m1 ≤ m2. We get a bound with

2

MN2

∑

nT≤m1≤m2≤m0

e−c(m2−m1)τ ≤ C

M(Nτ + 1)
.

We therefore get

(6.6) Σ1 ≤ C∆t
(

(
e−cnT τ

Nτ + 1
)2 +

1

M(Nτ + 1)

)

.

(ii) We now consider Σ2, which corresponds to the cross-terms in the expansion of the square of

the norm of the quantity Sn−k
∆t (F̃k−F

τ
(Xk)). By the definition of F̃k, the general term with indices

k1 < k2 in |Σ2| is bounded by

|E < Sn−k1
∆t (F̃k1 − F

τ
(Xk1)), S

n−k2
∆t (F̃k2 − F

τ
(Xk2)) > |

≤ ∆t2

M2N2
|
∑

mi,ji

E < Sn−k1
∆t (F (Xk1 , Yk1,m1,j1)− F

τ
(Xk1)), S

n−k2
∆t (F (Xk2 , Yk2,m2,j2)− F

τ
(Xk2)) > |

≤ C
∆t2

MN

m0
∑

m=nT

E|Ek2 [S
n−k2
∆t (F (Xk2 , Yk2,m,j)− F

τ
(Xk2)]|,

using conditional expectation Ek2 and the boundedness of F .
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Using the exponential convergence result of (5.8) and Lemma 5.8, we get the bound

E|Ek2 [S
n−k2
∆t (F (Xk2 , Yk2,m,j)− F

τ
(Xk2)]| ≤ Ce−mτ ,

so that the previous quantity is bounded by

C
∆t2

MN

m0
∑

m=nT

M
∑

j=1

e−cmτ ≤ C∆t2
e−cnT τ

Nτ + 1
.

Summing on k1 < k2, we can now conclude that

(6.7) Σ2 ≤ C
e−cnT τ

Nτ + 1
;

then by (6.6) and (6.7)

E|∆t

n−1
∑

k=0

Sn−k
∆t F̃k − Sn−k

∆t F
τ
(Xk)|2 ≤ C

( e−cnT τ

Nτ + 1
+∆t(

e−cnT τ

Nτ + 1
)2 +

∆t

M(Nτ + 1)

)

,

and the result of Theorem 4.1 now follows from (6.5).

7. Proof of the weak convergence Theorem 4.2

In order to get a better bound for the weak error than for the strong error, we use an auxiliary
function which is solution of a Kolmogorov equation.

The proof is valid under the general dissipativity Assumption 3.9.
We divide the proof in two parts: the first one contains the elements of the proof, while the

second one is devoted to two technical lemmas.

7.1. Proof of the Theorem. According to the decomposition (4.1), we want to control for any
0 ≤ n ≤ n0

(7.1)

|EΦ(Xǫ(n∆t))− EΦ(Xn)| ≤ |EΦ(Xǫ(n∆t))− EΦ(X(n∆t))|
+ |Φ(X(n∆t))− Φ(Xn)|
+ |Φ(Xn)− EΦ(Xn)|.

Thanks to the averaging Theorem of [3], which is proved under the weak dissipativity assumption
(WD), the first term above can be controlled by Crǫ

1−r, where Cr is a constant - depending on
r,Φ, x, y, T , for any 0 < r < 1.

For the second term, since we look at the error made by using a deterministic scheme to approxi-
mate a deterministic equation, there is no difference between the strong and the weak orders - since
the test function Φ is Lipschitz continuous; so we again use Proposition 5.13.

For the third term, we see that we have to control some error between two different numerical
schemes, in a weak sense. The usual strategy is to decompose this error by means of an auxiliary
function satisfying some kind of Kolmogorov equation.

More precisely, we use the deterministic scheme defining Xk in order to define for any 0 ≤ k ≤ n

(7.2) un(k, x) = Φ(Xn−k(x)),

where we explicitly mention dependence of the numerical solution Xk on the initial condition x.

Remark 7.1. We can easily prove that we have

un(n, x) = Φ(x)

un(k, x) = u(k + 1, S∆tx+∆tS∆tF (x)) for any k < n.

This is the way this function is defined in [12].
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We now analyse the error by identifying a telescoping sum:

(7.3)

|Φ(Xn)− EΦ(Xn)| = |un(0, x) − Eun(n,Xn)|

= |
n−1
∑

k=0

(Eun(k,Xk)− Eun(k + 1,Xk+1))|

≤
n−1
∑

k=0

|Eun(k,Xk)− Eun(k + 1,Xk+1)|.

According to Lemma 7.2 below, un is of class C2
b , and we can control the first and second order

derivatives:

Lemma 7.2. For any 0 < T < +∞, there exists CT > 0 such that for any 0 ≤ n ≤ n0 = ⌊ T
∆t⌋ and

0 ≤ k ≤ n, we have, for any x ∈ H, h ∈ H, h1, h2 ∈ H:

|Dxun(k, x).h| ≤ CT |h|,
|D2

xxun(k, x).(h1, h2)| ≤ CT |h1||h2|.
Moreover for any 0 ≤ k ≤ n− 1 and any x ∈ H, h ∈ H,

|Dxun(k, x).h| ≤ CT (∆t|h|+
|h|(−A)−η

((n − k)∆t)η
),

where η is defined in Assumption 3.4.

Since the auxiliary functions un are linked to the deterministic discrete-time process (Xn)n≥0,
the proof does not use stochastic tools.

Moreover the second and the third estimates of this Lemma reveal some smoothing effect in the
equation, due to the semi-group (Sn

∆t)n∈N. These results are specific to the infinite dimensional
framework; if we only use the first estimate above, and a simple one like

|D2
xxun(k, x).(h1, h2)| ≤ CT |h1||h2|(−A)η ,

we would not obtain an optimal convergence result.
To make the proof of Theorem 4.2 clearer, we postpone the proof of Lemma 7.2 in Section 7.2.
In the general term of (7.3), we proceed with a Taylor expansion and we get

(7.4)

|Eun(k,Xk)−Eun(k + 1,Xk+1)|
= |Eun(k + 1, S∆tXk +∆tS∆tF (Xk))− Eun(k + 1, S∆tXk +∆tS∆tF̃k)|
≤ ∆t|EDxun(k + 1, S∆tXk +∆tS∆tF (Xk)).(S∆tF (Xk)− S∆tF̃k)|
+ C∆t2E|F̃k − F (Xk)|2.

The second term is controlled by using the second estimate of the previous Lemma 7.2. Under the
assumption that F is bounded, we therefore get a O(∆t2) term; when summing over 0 ≤ k ≤ n− 1,
we get a O(∆t) term, which is already dominated in the final estimate.

When k = n− 1, since un(n, .) = Φ,

(7.5) |Eun(n− 1,Xn−1)− Eun(n,Xn)| ≤ C∆t.

In the rest of the proof, we focus on the general case 0 ≤ k < n− 1.
For the first term, we do not exactly follow the proof of [12]; we rather define auxiliary functions

for 0 ≤ k ≤ n in order to keep on looking at a weak error term:

(7.6) Ψn(k, x, y) = Dxun(k, S∆tx+∆tS∆tF (x)).(S∆tF (x, y)).
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Then if we define Ψn(k + 1, x) =
∫

H Ψn(k + 1, x, y)µx(dy) we have

|EDxun(k + 1, S∆tXk +∆tS∆tF (Xk)).(S∆tF (Xk)− S∆tF̃k)|

≤ 1

MN

nT+N−1
∑

m=nT

M
∑

j=1

|EΨn(k + 1,Xk, Yk,m,j)− EΨn(k + 1,Xk)|.

By using conditional expectation Ek with respect to Gk defined by (6.1),

EΨn(k + 1,Xk, Yk,m,j) = EEkΨn(k + 1,Xk, Yk,m,j)

does not depend on j, so that in the sequel we fix j ∈ {1, . . . ,M}.
The following Lemma gives the regularity results for the auxiliary functions:

Lemma 7.3. For any 0 < T < +∞ and ∆t0 > 0, there exists a constant C, such that for any
0 < ∆t ≤ ∆t0, any 1 ≤ n ≤ n0 = ⌊ T

∆t⌋ and any 0 ≤ k ≤ n − 1, the following derivatives exist and
are controlled: for any x, y ∈ H, h, k ∈ H,

|DyΨn(k, x, y).h| ≤ C|h|H ,

|D2
yyΨn(k, x, y).h| ≤ C(1 +

C

((n− k)∆t)η
)|h|H |k|H .

Like in Lemma 7.2, the proof relies smoothing effect of the semi-group (Sn
∆t)n∈N. The Lemma is

proved below in Section 7.2.
We can then apply Theorem 5.11, valid with the weak dissipativity condition (WD), using the

conditional expectation Ek: for any nT ≤ m ≤ m0 and k < n− 1

|EΨn(k + 1,Xk, Yk,m,j)− EΨn(k + 1,Xk)| ≤ Ce−cmτ + C(1 +
1

((m− 1)τ)1/2−κ
)τ1/2−κ.

Therefore

|EDxun(k + 1, S∆tXk +∆tS∆tF (Xk)).(S∆tF (Xk)− S∆tF̃k)|

≤ 1

MN

nT+N−1
∑

m=nT

M
∑

j=1

|EΨn(k + 1,Xk, Yk,m,j)− EΨn(k + 1,Xk)|

≤ C
e−cnT τ

Nτ + 1
+Cτ1/2−κ + C

τ1/2−κ

((nT − 1)τ)1/2−κ
.

To conclude, it remains to use (7.3) and (7.1).

Remark 7.4. When the strict dissipativity Assumption is satisfied, we can indeed obtain a bound
without 1

((m−1)τ)1/2−κ : we can control the distance between the invariant measures of the continuous

and discrete time processes, thanks to the second part of Corollary 5.12.

7.2. Proof of the auxiliary Lemmas 7.2 and 7.3.

Proof of Lemma 7.2 We use the following expression for Xn(x):

Xn(x) = Sn
∆tx+∆t

n−1
∑

k=0

Sn−k
∆t F (Xk(x)).

By definition, for any 0 ≤ k ≤ n we have un(k, x) = Φ(Xn−k(x)); we see that the derivatives in
directions h, h1, h2 ∈ H are given by

Dxun(k, x).h = DΦ(Xn−k(x)).(
d

dx
Xn−k(x).h),
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and

D2
xxun(k, x).(h1, h2) = DΦ(Xn−k(x)).(

d2

dx2
Xn−k(x).(h1, h2))

+D2Φ(Xn−k(x)).(
d

dx
Xn−k(x).h1,

d

dx
Xn−k(x).h2).

Φ is of class C2 on H, with bounded derivatives; therefore we just need to control d
dxXn−k(x).h and

d2

dx2Xn−k(x).(h1, h2). We use the following estimates of the derivatives of F , given in Proposition
5.5: for any x ∈ H, h ∈ H, h1, h2H,

|DF (x).h| ≤ C|h|
|(−A)−ηD2F (x).(h1, h2)| ≤ C|h1||h2|.

(i) For any 0 ≤ n ≤ n0, we can write

d

dx
Xn(x).h = Sn

∆th+∆t

n−1
∑

k=0

Sn−k
∆t DF (Xk(x))(

d

dx
Xk(x).h);

therefore

| d
dx

Xn(x).h| ≤ |h| +C∆t
n−1
∑

k=0

| d
dx

Xk(x).h|,

and a discrete Gronwall Lemma then yields

| d
dx

Xn(x).h| ≤ |h|eCn∆t ≤ |h|eCT .

(ii) For any 0 ≤ n ≤ n0, we can write

d2

dx2
Xn(x).(h1, h2) = ∆t

n−1
∑

k=0

Sn−k
∆t (−A)η(−A)−ηD2F (Xk(x)).(

d

dx
Xk(x).h1,

d

dx
Xk(x).h2)

+ ∆t

n−1
∑

k=0

Sn−k
∆t DF (Xk(x)).(

d2

dx2
Xk(x).(h1, h2)).

Since |Sn−k
∆t (−A)η | ≤ C

((n−k)∆t)η when k < n, and thanks to the previous estimates on d
dxXk(x).h

and D2F , we get

|Sn−k
∆t (−A)η(−A)−ηD2F (Xk(x)).(

d

dx
Xk(x).h1,

d

dx
Xk(x).h2)| ≤

C

((n − k)∆t)η
|h|1|h|2.

Therefore

| d
2

dx2
Xn(x).(h1, h2)| ≤ C|h1||h2|

+ C∆t

n−1
∑

k=0

| d
2

dx2
Xk(x).(h1, h2)|,

and a discrete Gronwall Lemma then yields

| d
2

dx2
Xn(x).(h1, h2)| ≤ C|h1||h2|.
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(iii) To prove the last estimate of the Lemma, we write

| d
dx

Xn(x).h| = |Sn
∆th+∆t

n−1
∑

k=0

Sn−k
∆t DF (Xk(x))(

d

dx
Xk(x).h)|

≤ C

(n∆t)η
|h|(−A)−η + C∆t

n−1
∑

j=0

| d
dx

Xk(x).h|.

We obtain

(n∆t)η| d
dx

Xn(x).h| ≤ C|h|(−A)−η +C∆t(n∆t)η|h|H

+ C(n∆t)η∆t

n−1
∑

j=1

1

(j∆t)η
(j∆t)η | d

dx
Xj(x).h|;

To conclude, we use Gronwall Lemma, to get

(n∆t)η| d
dx

Xn(x).h| ≤ CT (|h|(−A)−η +∆t(n∆t)η).

�

Proof of Lemma 7.3
(i) The first derivative with respect to y is easy to control: we have for any h ∈ H

DyΨn(k, x, y).h = Dxun(k, S∆tx+∆tS∆tF (x)).(S∆tDyF (x, y).h),

and we get |DyΨn(k, x, y).h| ≤ C|h|H .
(ii) When we look at the second-order derivative, we see that

D2
yyΨn(k, x, y).(h, k) = Dxun(k, S∆tx+∆tS∆tF (x)).(S∆tD

2
yyF (x, y).(h, k)).

Thanks to the last estimate of Lemma 7.2, we can control the expression by

C

(

∆t|S∆tD
2
yyF (x, y).(h, k)|H +

|S∆tD
2
yyF (x, y).(h, k)|(−A)−η

((n − k)∆t)η

)

,

We then notice that

∆t|S∆tD
2
yyF (x, y).(h, k)|H ≤ C∆t1−η|(−A)−ηD2

yyF (x, y).(h, k)|
≤ C|h|H |k|H ,

since η < 1 and ∆t is bounded, and thanks to Assumption 3.5; the other part is controlled thanks
to Assumption 3.5. �

References

[1] Haim Brézis. Functional analysis. Theory and applications. (Analyse fonctionnelle. Théorie et applications.).
Collection Mathématiques Appliquées pour la Maîtrise. Paris: Masson. 248 p. , 1994.

[2] Charles-Edouard Bréhier. Approximation of the invariant measure via an euler scheme for stochastic pde’s driven
by space-time white noise. in preparation.

[3] Charles-Edouard Bréhier. Strong and weak order in averaging for spdes. submitted.
[4] Sandra Cerrai and Mark Freidlin. Averaging principle for a class of stochastic reaction-diffusion equations. Probab.

Theory Relat. Fields, 144(1-2):137–177, 2009.
[5] Michel Crouzeix and Vidar Thomée. On the discretization in time of semilinear parabolic equations with non-

smooth initial data. Math. Comput., 49:359–377, 1987.
[6] Giuseppe Da Prato and Jerzy Zabczyk. Stochastic equations in infinite dimensions. Encyclopedia of Mathematics

and Its Applications. 44. Cambridge etc.: Cambridge University Press. xviii, 454 p. , 1992.

24



[7] Arnaud Debussche. Weak approximation of stochastic partial differential equations: the nonlinear case. Math.
Comput., 80(273):89–117, 2011.

[8] Arnaud Debussche, Ying Hu, and Gianmario Tessitore. Ergodic BSDEs under weak dissipative assumptions.
[9] Weinan E. Analysis of the heterogeneous multiscale method for ordinary differential equations. Commun. Math.

Sci., 1(3):423–436, 2003.
[10] Weinan E and Bjorn Engquist. The heterogeneous multiscale methods. Commun. Math. Sci., 1(1):87–132, 2003.
[11] Weinan E, Bjorn Engquist, Xiantao Li, Weiqing Ren, and Eric Vanden-Eijnden. Heterogeneous multiscale meth-

ods: a review. Commun. Comput. Phys., 2(3):367–450, 2007.
[12] Weinan E, Di Liu, and Eric Vanden-Eijnden. Analysis of multiscale methods for stochastic differential equations.

Commun. Pure Appl. Math., 58(11):1544–1585, 2005.
[13] Marie-Noelle Le Roux. Semidiscretization in time for parabolic problems. Math. Comput., 33:919–931, 1979.
[14] Jacques Printems. On the discretization in time of parabolic stochastic partial differential equations. Monte

Carlo Methods Appl., 7(3-4):359–368, 2001.
[15] Eric Vanden-Eijnden. Numerical techniques for multi-scale dynamical systems with stochastic effects. Commun.

Math. Sci., 1(2):385–391, 2003.

ENS Cachan Bretagne - IRMAR, Université Rennes 1, Avenue Robert Schumann, F-35170 Bruz,

France

E-mail address: charles-edouard.brehier@bretagne.ens-cachan.fr

25


	1. Introduction
	2. Description of the numerical scheme
	3. Assumptions
	3.1. The cylindrical Wiener process and stochastic integration in H
	3.2. Assumptions on the linear operators
	3.3. Assumptions on the nonlinear coefficients

	4. Convergence results
	4.1. Statement of the Theorems
	4.2. Some comments on the convergence results

	5. Preliminary results
	5.1. Known results about the fast equation and the averaged equation
	5.2. Estimates on the numerical solutions
	5.3. Asymptotic behaviour of the ``fast'' numerical scheme
	5.4. Error in the deterministic scheme (??)

	6. Proof of the strong convergence Theorem ??
	7. Proof of the weak convergence Theorem ??
	7.1. Proof of the Theorem
	7.2. Proof of the auxiliary Lemmas ?? and ??

	References

