
ar
X

iv
:1

10
9.

33
23

v1
 [

m
at

h.
O

C
]

 1
5

Se
p

20
11

AN INEXACT PERTURBED PATH-FOLLOWING METHOD FOR

LAGRANGIAN DECOMPOSITION IN LARGE-SCALE SEPARABLE

CONVEX OPTIMIZATION

QUOC TRAN DINH∗†, ION NECOARA‡, CARLO SAVORGNAN∗ AND MORITZ DIEHL∗

Abstract. In this paper, we propose an inexact perturbed path-following algorithm in the
framework of Lagrangian dual decomposition for solving large-scale structured convex optimization
problems. Unlike the exact versions considered in literature, we allow one to solve the primal problem
inexactly up to a given accuracy. The inexact perturbed algorithm allows to use both approximate
Hessian matrices and approximate gradient vectors to compute Newton-type directions for the dual
problem. The algorithm is divided into two phases. The first phase computes an initial point which
makes use of inexact perturbed damped Newton-type iterations, while the second one performs the
path-following algorithm with inexact perturbed full-step Newton-type iterations. We analyze the
convergence of both phases and estimate the worst-case complexity. As a special case, an exact path-
following algorithm for Lagrangian relaxation is derived and its worst-case complexity is estimated.
This variant possesses some differences compared to the previously known methods. Implementation
details are discussed and numerical results are reported.

Key words. Smoothing technique, self-concordant barrier, Lagrangian decomposition, inexact
perturbed Newton-type method, separable convex optimization, parallel algorithm.

1. Introduction. Many optimization problems arising in networked systems,
image processing, data mining, economics, distributed model predictive control and
multi-stage stochastic optimization can be formulated as a separable convex opti-
mization problem, see, e.g. [6, 11, 13, 15, 20, 25, 26]. If the optimization problem has
moderate size or possesses sparsity structure, then it can be solved efficiently by stan-
dard optimization methods. In many practical situations, we can encounter problems
which may not be easy to solve by standard optimization algorithms due to the high
dimensionality or the distributed locations of the data and devices. However, many
problems can be reformulated as separable convex optimization problems such that
the subproblems generated from their components can be solved in a closed form or
more easier than the full problem.

In this paper, we are interested in the following convex separable optimization
problem:

(1.1)

max
x∈Rn

{

φ(x) :=

M
∑

i=1

φi(xi)
}

s.t. xi ∈ Xi, (i = 1, · · · ,M),
M
∑

i=1

Aixi = b,

where x = (xT1 , . . . , x
T
M)T with xi ∈ R

ni is a vector of decision variables, φi : R
ni → R

is concave, Xi is a nonempty, closed convex subset in R
ni , Ai ∈ R

m×ni , b ∈ R
m

for all i = 1, . . . ,M , and n1 + n2 + · · · + nM = n. The last constraint is usually
referred to as a coupling linear constraint. Problems of the form (1.1) were considered

∗Department of Electrical Engineering (ESAT-SCD) and Optimization in Engineering Center
(OPTEC), K.U. Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium ({quoc.trandinh,
carlo.savorgnan, moritz.diehl}@esat.kuleuven.be).
† Department of Mathematics-Mechanics-Informatics, Hanoi University of Science, Hanoi, Vietnam.
‡ Automation and Systems Engineering Department, University Politehnica Bucharest, 060042
Bucharest, Romania; (ion.necoara@upb.ro)

1

http://arxiv.org/abs/1109.3323v1

2 Q. Tran Dinh, I. Necoara, C. Savorgnan and M. Diehl

in many research papers, see, e.g. [2, 14, 15, 23]. Note that coupling linear inequality

constraints of the form
∑M
i=1 Bixi ≤ d can also be formulated into (1.1) by using slack

variables, see, e.g. [15].

Several methods solve problem (1.1) by decomposing it into small subproblems
that can be solved separately by standard optimization techniques. For instance, by
applying Lagrangian relaxation, the coupling constraint can be brought into the objec-
tive function and, by the separability, we can decompose the dual function into small
subproblems [2]. However, using such a Lagrangian relaxation technique generally
leads to a nonsmooth optimization problem. There are several attempts to overcome
this difficulty by smoothing the dual function. One can add an augmented Lagrangian
term or a proximal term to the objective function of the problem. Unfortunately, the
first approach breaks the separability of the original problem due to the cross terms
between the components. Therefore, the second approach is more suitable for this
type of problems.

Recently, smoothing techniques in convex optimization have attracted increasing
interest and found many applications [18]. In the framework of the Lagrangian dual
decomposition, there are two popular approaches. The first approach is regulariza-
tion. By adding a regularization term as a proximal term to the objective function, the
primal subproblem becomes strongly convex. Consequently, the master dual problem
is smooth which allows one to apply smoothing optimization techniques [3, 5, 14, 23].
The second approach is using barrier functions, this technique is suitable for prob-
lems with conic constraints [7, 10, 12, 15, 22, 27, 28, 29]. Several methods in this
direction are based on the fact that, by using a self-concordant log-barrier function,
the family of the dual functions which depend on a barrier parameter is strongly self-
concordant in the sense of Nesterov and Nemirovski [16] under certain assumptions.
Consequently, path-following methods can be used to solve the master dual problem.
Note that this technique is only applicable to the cases where either the objective
function is linear, quadratic and self-concordant or the problem is compatible in the
sense that it possesses a property that makes the smooth objective function of the
dual self-concordant. Several methods in this direction require a crucial assumption
that the primal subproblems are solved exactly. In practice, solving exactly the pri-
mal subproblems to compute the dual function is only conceptual. Any numerical
optimization method provides an approximate solution and, consequently, the dual
function is also approximated. This paper studies an inexact perturbed path-following
method in the framework of Lagrangian decomposition for solving (1.1).

Contribution. The contribution of this paper is fivefold.

1. By applying smoothing technique via self-concordant barrier functions, we
provide a local and a global smooth approximation to the dual function and
estimate the approximation error.

2. A new inexact perturbed path-following decomposition algorithm is proposed
for solving (1.1). The algorithm consists of two phases. Both phases allow
the primal subproblems to be solved approximately. Moreover, the algorithm
is highly parallelizable.

3. The convergence theory is investigated under standard assumptions used in
any interior point method and the worst-case complexity is estimated.

4. When the primal problem is assumed to be solved exactly, our method reduces
to the path-following method for Lagrangian decomposition considered in
[12, 15, 22, 29]. However, the variants presented in this papers possesses a
larger neighborhood of the analytic center where convergence is guaranteed.

An Inexact Perturbed Path-Following Method for Lagrangian Decomposition 3

5. The implementation details are discussed and numerical experiments are im-
plemented to confirm the theoretical development.

Let us emphasize some difference between the method presented in this paper and
the previously known methods.

1. Even though smoothing techniques based on self-concordant barriers are not
new, in this paper we do not only apply smoothing techniques to the dual
problem but also provide some properties of the smooth function. The smooth
approximation of the dual function only requires that the objective function
is convex (not necessarily smooth). However, the dual function is smooth,
which allows us to use any smooth optimization technique such as gradient-
based methods or sequential quadratic programming-based (SQP) methods
to solve the master problem.

2. The new algorithm allows us to solve the primal subproblems inexactly where
we can control the accuracy up to δ∗ ≈ 0.043286 (see Section 4 for more
details) such that at the early steps of the path-following algorithm, they can
be solved very inexactly. This point is significant if the primal subproblems
require high computational cost. Note that the algorithm developed in this
paper is different from the one considered in [27] for linear programming,
where the inexactness of the primal subproblems is defined in a different way.

3. Based on a recent monograph [17], we directly analyze the convergence of the
algorithm. This makes our theory self-contained. Moreover, it also allows us
to optimally choose the parameters and to trade-off between the convergence
rate of the master problem and the accuracy of the primal subproblems.

4. In the exact case, the variant in this paper still has some advantages com-
pared with the previous ones. Firstly, the radius of the neighborhood of the
analytic center is (3−

√
5)/2 ≈ 0.38197 which is larger than 2−

√
3 ≈ 0.26795

of previous methods. Secondly, since the performance of an interior point
algorithm crucially depends on the parameters of the algorithm, we analyze
directly the path-following iteration to select these parameters in an optimal
way.

The rest of this paper is organized as follows. In the next section, we briefly
describe the Lagrangian dual decomposition method applied to separable convex op-
timization. Section 3 deals with a smoothing technique for the dual function via self-
concordant barriers and investigates the main properties of the smooth dual function.
Section 4 presents an inexact perturbed path-following decomposition algorithm. The
convergence of the algorithm is analyzed and the worst-case complexity is estimated.
Section 5 considers an exact variant of the algorithm presented in Section 4. Section
6 discusses implementation details of the algorithms. Section 7 shows numerical tests
and a comparison. Concluding remarks are included in the last section. The proofs
of the technical statements are given in the appendix.

Notation and Terminology. Throughout the paper, we shall work on the Eu-
clidean space Rn endowed with an inner product xT y for x, y ∈ R

n and the Euclidian
norm ‖x‖ =

√
xTx. The notation x = (x1, . . . , xM) defines a vector in R

n formed
from M sub-vectors xi ∈ R

ni , i = 1, . . . ,M , where n1 + · · ·+ nM = n.

For a proper, lower semi-continuous convex function f , the notation dom(f) de-
notes the domain of f , dom(f) is the closure of dom(f) and ∂f(x) denotes the subd-
ifferential of f at x. For a concave function f we also denote by ∂f(x) as the “super-
differential” of f at x, where ∂f(x) := −∂{−f(x)} . Let f be twice continuously
differentiable and convex on R

n. For a given vector u, the local norm of u with respect

4 Q. Tran Dinh, I. Necoara, C. Savorgnan and M. Diehl

to f at x, where ∇2f(x) is positive definite, is defined as ‖u‖x :=
[

uT∇2f(x)u
]1/2

and its dual norm is ‖u‖∗x := max{uT v | ‖v‖x ≤ 1} =
[

uT∇2f(x)−1u
]1/2

. Clearly,
∣

∣uT v
∣

∣ ≤ ‖u‖x‖v‖∗x. Let F be a standard self-concordant function, W 0(x, r) :=
{z ∈ R

n | ‖z − x‖x < r} defines the Dikin ellipsoid of F at x, where ‖z − x‖x =
[(z − x)T∇2F (x)(z − x)]1/2.

For a given symmetric matrix P in R
n×n, the expression P � 0 (resp. P ≻ 0)

means that P is positive semi-definite (resp. positive definite); P � Q and P � Q
(resp. P ≻ Q and P ≺ Q) mean that P − Q and Q − P are positive semidefinite
(resp. positive definite), respectively.

The notation R+ and R++ define the set of non-negative and positive numbers,
respectively. The function ω : R+ → R is defined by ω(t) := t − ln(1 + t) and its
dual ω∗ : [0, 1] → R is defined by ω∗(t) := −t − ln(1 − t). Note that both functions
are convex, nonnegative and increasing. For a real number x, ⌊x⌋ denotes the largest
integer number which is less than or equal to x.

2. Lagrangian dual relaxation in convex optimization. A classical tech-
nique to address coupling constraints in separable convex optimization is based on
Lagrangian relaxation [2]. We briefly review such a technique in this section.

Without loss of generality we consider problem (1.1) with M = 2. The separable
convex optimization problem (1.1), with M = 2, can be expressed as:

(2.1) φ∗ :=

max
x:=(x1,x2)

{φ(x) := φ1(x1) + φ2(x2)}
s.t. A1x1 +A2x2 = b,

x ∈ X := X1 ×X2.

Let us define A := [A1, A2] and n := n1 + n2. The linear coupling constraint A1x1 +
A2x2 = b can be written as Ax = b. The Lagrange function for problem (2.1) with
respect to the coupling constraint A1x1 +A2x2 = b is defined as:

L(x, y) := φ(x) + yT (Ax− b) = φ1(x1) + φ2(x2) + yT (A1x1 +A2x2 − b),

where y ∈ R
m is the Lagrange multiplier associated with the coupling constraint. A

pair (x∗0, y
∗
0) ∈ X × R

m is called a saddle point of L if

L(x, y∗0) ≤ L(x∗0, y
∗
0) ≤ L(x∗0, y), ∀x ∈ X, ∀y ∈ R

m.

The dual problem of (2.1) is

(2.2) d∗0 := min
y∈Rm

d0(y),

where d0 is the dual function which is defined as

(2.3) d0(y) := max
x∈X

{

φ1(x1) + φ2(x2) + yT (A1x1 +A2x2 − b)
}

.

If strong duality holds at (x∗0, y
∗
0) with x∗0 := (x∗0,1, x

∗
0,2) ∈ X and y∗0 ∈ R

m, then we
have [4]:

d∗0 = d0(y
∗
0) = min

y∈Rm
d0(y) = max

x∈X
{φ(x) | Ax = b} = φ(x∗0) = φ∗.

Let us denote by X∗ the solution set of (2.1) and by Y ∗ the solution set of the
dual problem (2.2). It is well-known that if either the Slater condition holds, i.e.

An Inexact Perturbed Path-Following Method for Lagrangian Decomposition 5

ri(X) ∩ {x ∈ R
n | Ax = b} 6= ∅, where ri(X) is the relative interior of the convex set

X , or X is polyhedral, then Y ∗ is bounded [4].
Finally, it is important to notice that the dual function d0(·) can be computed

separately by

d0(y) = d0,1(y) + d0,2(y)− bT y,
where(2.4)

d0,i(y) := max
xi∈Xi

{

φi(xi) + yTAixi
}

, i = 1, 2.

Let x∗0,i(y) be a solution of the maximization problem in (2.3) (i = 1, 2), and x∗0(y) :=
(x∗0,1(y), x

∗
0,2(y)). Lagrangian relaxation generally leads to a nonsmooth optimization

problem in the dual form. Consequently, numerical solution to the dual problem
encounters many drawbacks.

3. Smoothing technique via self-concordant barriers. Let us assume that
the feasible set Xi is convex, has nonempty interiors and possesses a νi-self-concordant
barrier Fi for i = 1, 2. Theory of self-concordant functions and self-concordant barriers
can be found in [8, 16, 17]. Throughout the paper, we use the following assumptions.

Assumption A.1.
(a) The solution set X∗ of (2.1) is nonempty. Either the Slater condition for
(2.1) is satisfied or X is polyhedral.
(b) The feasible set Xi is bounded in R

ni with int(Xi) 6= ∅ and possesses a
self-concordant barrier Fi with parameter νi for i = 1, 2.
(c) The function φi is proper, upper semicontinuous and concave on Xi for
i = 1, 2.
(d) The matrix A is full-row rank.

Note that Assumptions A.1.a) and A.1.c) are standard in convex optimization,
which guarantee the solvability of the problem and strong duality. Assumption A.1.b)
can be satisfied by assuming that the set of the sample points generated by such an
optimization algorithm is bounded. Assumption A.1.d) is not restrictive since it can
be satisfied by applying standard linear algebra techniques to eliminate redundant
constraints.

Remark 1. As we can see in Section 6, the convex feasible set Xi can be given
as follows

Xi := Xc
i ∩Xa

i , Xa
i := {xi ∈ R

ni | Eixi = fi} ,
where int(Xc

i) is nonempty and Xc
i possesses a νi-self-concordant barrier Fi. Let

E = [E1, E2] be a matrix formed from Ei and A/E be a reduced form of

[

A
E

]

and

int(Xi) := int(Xi) ∩ Xa
i for i = 1, 2. In this case, the theory developed in the next

sections can be extended to the problem with this constraint, see, e.g. [15].
Let us denote by xci the analytic center of Xi, which is defined as:

xci := argmin
xi∈ri(Xi)

Fi(xi), i = 1, 2.

Under Assumption A.1.b), xc := (xc1, x
c
2) is well-defined due to [19, Corollary 2.3.6].

To compute xc, one can apply the algorithms proposed in [17, pp. 204–205]. Moreover,
the following estimates hold:

Fi(xi)− Fi(x
c
i) ≥ ω(‖xi − xci‖xc

i
) and ‖xi − xci‖xc

i
≤ νi + 2

√
νi,(3.1)

for all xi ∈ dom(Fi) and i = 1, 2 [17, Theorems 4.1.13 and 4.2.6].

6 Q. Tran Dinh, I. Necoara, C. Savorgnan and M. Diehl

3.1. A smooth approximation of the dual function. Similarly to [10, 15,
22, 29], we construct a smooth approximation of the nonsmooth dual function d0
defined by (2.3) via self-concordant barriers.

Let us define the following functions:

di(y, t) := max
xi∈int(Xi)

{

φi(xi)+y
TAixi−t[Fi(xi)−Fi(xci)]

}

, i = 1, 2,

and(3.2)
d(y, t) := d1(y, t) + d2(y, t)− bT y,

where t > 0 is referred to as a smoothness or barrier parameter. Note that, due to
the strict concavity of the objective function, the maximization problem in (3.2) has
a unique solution, which is denoted by x∗i (y, t). Consequently, the functions di(·, t)
(i = 1, 2) and d(·, t) are well-defined and smooth on R

m for any t > 0. As in [29] we
refer to d as a smooth dual approximation of d0 and to the maximization problem in
(3.2) as a primal subproblem.

If we denote by x∗(y, t) := (x∗1(y, t), x
∗
2(y, t)), then we can write

d(y, t) = φ(x∗(y, t)) + yT (Ax∗(y, t)− b)− t[F (x∗(y, t))− F (xc)].

The optimality condition for (3.2) is

(3.3) 0 ∈ ∂φi(x
∗
i (y, t)) +ATi y − t∇Fi(x∗i (y, t)), i = 1, 2,

where ∂φi(x
∗
i (y, t)) is the super-differential of φi at x

∗
i (y, t) (i = 1, 2). Since problem

(3.2) is convex, this condition is necessary and sufficient.
Associated with the smooth dual function d(·, t), we consider the following master

problem:

d∗(t) := min
y∈Y

d(y, t).(3.4)

We denote by y∗(t) a solution of (3.4) if it exists and by x∗(t) := x∗(y∗(t), t).
For a given β ∈ (0, 1), we define a neighbourhood in R

m with respect to Fi and
t > 0 as

NFi

t (β) :=
{

y ∈ R
m | λFi

(x∗i (y, t)) := ‖∇Fi(x∗i (y, t))‖∗x∗

i (y,t)
≤ β

}

.

The following lemma provides a local estimate for d0(·), whose proof can be found
in the appendix.

Lemma 3.1. Under Assumption A.1 and β ∈ (0, 1), the function d(·, t) defined
by (3.2) satisfies:

0≤ t
[

2
∑

i=1

ω
(

‖x∗i (y, t)−xci‖xc
i

)

]

≤d0(y)−d(y, t)≤ t
2
∑

i=1

[ω∗(λFi
(x∗i (y, t)))+νi] ,(3.5)

for all y ∈ NF1

t (β) ∩ NF2

t (β).
From Lemma 3.1, we see that

0 ≤ d0(y)− d(y, t) ≤ t[2ω∗(β) + ν1 + ν2], ∀y ∈ NF1

t (β) ∩ NF2

t (β).

Hence, for t = tf > 0 sufficiently small, d(·, tf) is a local approximation to d0(·).

An Inexact Perturbed Path-Following Method for Lagrangian Decomposition 7

Under Assumption A.1, the dual optimal solution set Y ∗ is bounded. Without
loss of generality, we can assume that Y is bounded such that Y ∗ ⊂ Y . Let

dc(y) := φ(xc) + yT (Axc − b),

where xc is the analytic center of X . From (2.3) we have:

d0(y)− dc(y)= max
x∈X

{

φ(x) + yT (Ax− b)
}

−
[

φ(xc) + yT (Axc − b)
]

≥ 0, ∀y ∈ Y.

Furthermore,

0 ≤ d0(y)− dc(y) = max
x∈X

{φ(x) − φ(xc) + yTA(x− xc)}

φ is concave

≤
2
∑

i=1

max
xi∈Xi

{

max
ξi∈∂φi(xc

i)

{

[

ξi +ATi y
]T

(xi−xci)
}

}

≤
2
∑

i=1

max
xi∈Xi

{

max
ξi∈∂φi(xc

i)

{

‖ξi +ATi y‖∗xc
i
‖xi−xci‖xc

i

}

}

(3.6)

(3.1)

≤
2
∑

i=1

(νi + 2
√
νi) max

ξi∈∂φi(xc
i)

{

‖ξi +ATi y‖∗xc
i

}

≤ K1 +K2 < +∞, ∀y ∈ Y,

whereKi := (νi+2
√
νi)maxξi∈∂φi(xc

i)

{

‖ξi+ATi y‖∗xc
i

}

(i = 1, 2). The following lemma

shows that d(·, t) is a global approximation to d0(·). The proof can be found in the
appendix.

Lemma 3.2. Suppose that Assumption A.1 is satisfied. Then, for any t > 0 and
y ∈ Y , the following estimate holds:

0≤ t
2
∑

i=1

ω(‖x∗i (y, t)−xci‖xc
i
)≤d0(y)−d(y, t) ≤ t[ζ̄(K1; ν1, t)+ ζ̄(K2; ν2, t)],(3.7)

where ζ̄(τ ; a, b) := a
(

1 + max
{

0, ln
(

τ
ab

)})

and K1 and K2 are two constants given
in (3.6).

The proof of the following statement can also be found in the appendix.
Lemma 3.3. For a given tolerance εd > 0, if we choose t > 0 such that

(3.8) 0<t≤ t̄ :=min

K1

ν1
κ1/κ,

K2

ν2
κ1/κ, ε

1/(1−κ)
d

(

2
∑

i=1

νi + (Ki/νi)
κ

)−1/(1−κ)

,

for fixed κ ∈ (0, 1), then it follows from Lemma 3.2 that

d(y, t) ≤ d0(y) ≤ d(y, t) + εd.

In other words, if we fix tf ∈ (0, t̄) and minimize d(·, tf) over Y , then y∗(tf) is an
εd-solution of (2.2).

Since d(·, t) is continuously differentiable, smooth optimization techniques such
as gradient-based or SQP-based methods can be applied to solve problem (3.4). If we
choose tf > 0 sufficiently small, then according to Lemmas 3.1 and 3.2, we can obtain
an approximate solution of (2.2) with a desired accuracy.

8 Q. Tran Dinh, I. Necoara, C. Savorgnan and M. Diehl

3.2. The self-concordance of the smooth dual function. If the function
−φi is self-concordant on dom(−φi) with parameter Mφi

, then the family of the
functions φi(·, t) := tF (·) − φi(·) is also self-concordant on dom(−φi) ∩ dom(Fi).
Consequently, the smooth dual function d(·, t) is self-concordant as stated in the
following lemma. The proof of this lemma can be found, for instance, in [12, 15, 22, 29].

Lemma 3.4. Suppose that Assumption A.1 is satisfied. Suppose further that −φi
is Mφi

-self-concordant. Then, the function di(·, t) defined by (3.2) is self-concordant
with parameter Mdi := max{Mφi

, 2√
t
} for any t > 0 and i = 1, 2. Consequently, d(·, t)

is self-concordant with parameter Md = max{Mφ1
,Mφ2

, 2√
t
}.

Similar to standard path-following methods [16, 17], in the following discussion,
we assume that φi is linear as stated in Assumption A.2 below.

Assumption A.2. The function φi is linear, i.e. φi(xi) := cTi xi for i = 1, 2.
Let c := (c1, c2) be the vector formed from ci (i = 1, 2). Assumption A.2 implies that
tF − φ is 2√

t
-self-concordant. According to Lemma 3.4, di(·, t) is 2√

t
-self-concordant.

Since φi is linear, if we denote by F (x) := F1(x1)+F2(x2) the self-concordant barrier
of X with the parameter ν := ν1 + ν2, then the optimality condition (3.9) is reduced
to

c+AT y − t∇F (x∗(y, t)) = 0.(3.9)

The following lemma provides an explicit formula for the derivatives of d(·, t). The
proof can be found in [15, 29].

Lemma 3.5. Suppose that Assumptions A.1 and A.2 are satisfied. Then the first
and second order derivatives of d(·, t) on Y are respectively given as

∇d(y, t) = Ax∗(y, t)− b and ∇2d(y, t) =
1

t
A∇2F (x∗(y, t))−1AT ,(3.10)

where x∗(y, t) = (x∗1(y, t), x
∗
2(y, t)) is the solution of the primal subproblem in (3.2).

Note that since A is full-row rank and ∇2F (x∗(y, t)) is positive definite, matrix
∇2d(y, t) is nonsingular for any y ∈ Y . Moreover, since F (x) and φ are separable, the
Hessian matrix ∇2F is block diagonal and they can also be evaluated in parallel, see
Section 6 for more details about implementation issues.

Now, since d(·, t) is 2√
t
self-concordant, if we define

(3.11) d̃(y, t) :=
1

t
d(y, t),

then d̃(·, t) is standard self-concordant, i.e. Md̃ = 2, due to [17, Corollary 4.1.2]. For

a given vector v ∈ R
m, we define the norm ‖v‖y with respect to d̃(·, t) as ‖v‖y :=

[vT∇2d̃(y, t)v]1/2.

3.3. Recovering the optimality and the feasibility. It remains to show the
relations between the master problem (3.4), the dual problem (2.2) and the original
primal problem (2.1). We first prove the following lemma.

Lemma 3.6. Let Assumption A.1 be satisfied. Then:
a) d(y, ·) is non-increasing in R++ for a given y ∈ Y .
b) d∗(·) defined by (3.4) is differentiable and non-increasing in R++.
c) It holds that d∗(t) ≤ d∗0 and lim

t↓0+
d∗(t) = d∗0 = φ∗. Moreover, x∗(t) is feasible

for problem (2.1).

An Inexact Perturbed Path-Following Method for Lagrangian Decomposition 9

Proof. Since the function ξ(x, y, t) := φ(x)+yT (Ax−b)−t[F (x)−F (xc)] is strictly
concave and linear on t, it is well-known that d(y, t) = max

x∈int(X)
ξ(x, y, t) is differentiable

with respect to t and its derivative is given by η′(t) = −[F (x∗(y, t)) − F (xc)] ≤
−ω(‖x∗(y, t)−xc‖xc) ≤ 0 by (3.1). Thus d(y, ·) is nonincreasing in t which proves a).

Now, we prove b) and c). From the definitions of d∗(·), d(y, ·) and y∗(·) in (3.4),
by using strong duality, we have

d∗(t) = d(y∗(t), t) = min
y∈Y

d(y, t)

= min
y∈Y

max
x∈int(X)

{

φ(x) + yT (Ax− b)− t[F (x) − F (xc)]
}

= max
x∈int(X)

min
y∈Y

{

φ(x) + yT (Ax− b)− t[F (x) − F (xc)]
}

(3.12)

= max
x∈int(X)

{φ(x) − t[F (x) − F (xc)] | Ax = b}

= φ(x∗(t))− t[F (x∗(t))− F (xc)].

It follows from the forth line of (3.12) that d∗(·) is differentiable and nonincreasing
in R++. Moreover, since xc is the analytic center of X , we have F (x∗(t)) − F (xc) ≥
ω(‖x∗(t) − xc‖xc) due to (3.1). This inequality implies that d∗(t) ≤ φ(x∗(t)) ≤
φ∗ = d∗0. On the other hand, from the forth line of (3.12), we also deduce that
x∗(t) is feasible to (2.1). Furthermore, since d∗(·) is continuous on R++, we have
limt↓0+ d

∗(t) = d∗0 which proves c).

Let us define the Newton decrement of d̃(·, t) as follows:

λ = λd̃(·,t)(y) := ‖∇d̃(y, t)‖∗y =
[

∇d̃(y, t)∇2d̃(y, t)−1∇d̃(y, t)
]1/2

.(3.13)

The following lemma shows the gap between d(·, t) and d∗(t).
Lemma 3.7. Suppose that Assumption A.1 is satisfied. Then, for any y ∈ Y and

t > 0 such that λd̃(·,t)(y) < 1, one has

(3.14) 0 ≤ tω(λd̃(·,t)(y)) ≤ d(y, t)− d∗(t) ≤ tω∗(λd̃(·,t)(y)).

Consequently, it holds that

(3.15) d(y, t)− d∗0 = d(y, t)− φ∗ ≤ tω∗(λd̃(·,t)(y)).

Proof. Since d̃(·, t) is standard self-concordant, for any y ∈ Y such that λd̃(·,t)(y) <

1, and y∗(t) = argmin
y∈Y

d̃(y, t), by applying [17, Theorem 4.1.13, inequality 4.1.17], we

have

0 ≤ ω(λd̃(·,t)(y)) ≤ d̃(y, t)− d̃(y∗(t), t) ≤ ω∗(λd̃(·,t)(y)).

This inequality is indeed (3.14) due to (3.11). To prove (3.15), we note that d∗(t) −
d∗0 ≤ 0 by Lemma 3.5 c), adding this inequality to (3.14) and noting that d∗0 = φ∗ we
obtain (3.15).

We can also estimate a lower bound for d∗(t) − d∗0. Since F is convex, by using
(3.1), we have

F (x)− F (xc) ≤ ∇F (x)T (x− xc) ≤ ‖∇F (x)‖∗xc‖x− xc‖xc ≤ (ν + 2
√
ν)‖∇F (x)‖∗xc .

10 Q. Tran Dinh, I. Necoara, C. Savorgnan and M. Diehl

Since X is bounded and ∇F is continuous, using the above inequality, we have
cFX := maxx∈X ‖∇F (x)‖∗xc < +∞. Thus it follows from the last inequality that
maxx∈X{F (x) − F (xc)} ≤ (ν + 2

√
ν)cFX < +∞. Moreover, for any functions u, v on

Z, we have max
z∈Z

{u(z)− v(z)} ≥ max
z∈Z

u(z)−max
z∈Z

v(z). Finally, we estimate d∗(t)− d∗0
as

d∗(t) = min
y∈Y

d(y, t) = min
y∈Y

{

max
x∈int(X)

{L(x, y)− t[F (x)− F (xc)]}
}

≥ min
y∈Y

{

max
x∈int(X)

{L(x, y)} − t max
x∈int(X)

{F (x)− F (xc)}
}

≥ min
y∈Y

max
x∈X

L(x, y)− t max
x∈int(X)

{F (x) − F (xc)}

≥ d∗0 − t(ν + 2
√
ν)cFX .

Combining this inequality with (3.14) we obtain

d(y, t)− d∗0 ≥ t
[

ω(λd̃(·,t)(y))− (ν + 2
√
ν)cFX

]

.

Now, we define an approximate solution of the dual problem (2.2) as follows:
Definition 3.8. For a given tolerance εd > 0, a point y∗(t) is said to be an

εd-solution of (2.2) if 0 ≤ d∗0 − d∗(t) ≤ εd.
Let y∗(t) be an εd-solution of (2.2) and y ∈ Y such that λ = λd̃(·,t)(y) ≤ β for a

fixed β ∈ (0, 1). We have

0 ≤ d∗0 − d(y, t) ≤ |d(y, t)− d∗(t)|+ |d∗(t)− d∗0| ≤ εd + tω∗(λd̃(·,t)(y)) ≤ εd + ω∗(β)t.

Consequently, if we choose t such that t ≤ ω∗(β)−1εd then

(3.16) 0 ≤ d∗0 − d(y, t) = φ∗ − d(y, t) ≤ 2εd.

The algorithms presented in the next sections aim to find a 2εd-approximate solution
of the dual problem (2.2) in the sense of (3.16). Thus d(y, t) is a 2εd-approximation
of the optimal value φ∗.

It remains to quantify the feasibility gap of the original problem (2.1) with respect
to the coupling equality constraint Ax = b. We define this feasibility gap with respect
to x∗(y, t) as follows:

(3.17) Gfeas(y, t) := ‖Ax∗(y, t)− b‖∗y.

Here, x∗(y, t) ∈ int(X). From (3.17), (3.11) and (3.13) and noting that λ ≤ β, we
have:

Gfeas(y, t) = ‖∇d(y, t)‖∗y = tλ ≤ tβ.

Therefore, with t ≤ ω∗(β)−1εd the feasibility gap reaches:

Gfeas(y, t) ≤ βω∗(β)
−1εd.

4. Inexact perturbed path-following method for Lagrangian decom-

position. This section presents an inexact perturbed path-following algorithm for
solving approximately (2.2).

An Inexact Perturbed Path-Following Method for Lagrangian Decomposition 11

4.1. Inexact solution of the primal subproblem. Firstly, we define an in-
exact solution of (3.2) by using local norms. For given y ∈ Y and t > 0, suppose that
we allow to solve approximately (3.2) up to a given accuracy δ̄ ≥ 0. More precisely,
we define this approximate solution as follows:

Definition 4.1. A vector x̄δ̄(y, t) is said to be a δ̄-approximate solution of x∗(y, t)
if

(4.1) ‖x̄δ̄(y, t)− x∗(y, t)‖x∗(y,t) ≤ δ̄.

Associated with x̄δ̄(·), we define the following function:

dδ̄(y, t) := cT x̄δ̄(y, t) + yT (Ax̄δ̄(y, t)− b)− t[F (x̄δ̄(y, t))− F (xc)].(4.2)

This function can be considered as an inexact smooth dual version of d0. Next, we
introduce two quantities:

(4.3) ∇dδ̄(y, t) := Ax̄δ̄(y, t)− b, and ∇2dδ̄(y, t) :=
1

t
A∇2F (x̄δ̄(y, t))

−1AT .

Since x∗(y, t) ∈ dom(F) = int(X), we can choose an appropriate δ̄ ≥ 0 such that
x̄δ̄(y, t) ∈ dom(F). Hence, ∇2F (x̄δ̄(y, t)) is positive definite which means that ∇2dδ̄ is
well-defined. Note that ∇dδ̄ and ∇2dδ̄ are not the gradient vector and Hessian matrix
of dδ̄(·, t). However, due to Lemma 3.5 and (4.1), we can consider these quantities as
an approximate gradient vector and Hessian matrix of d(·, t), respectively.

Let

(4.4) d̃δ̄(y, t) :=
1

t
dδ̄(y, t),

and λ̄ be the inexact Newton decrement of d̃δ which is defined by

λ̄ = λ̄d̃δ̄(·,t)(y) := |‖∇d̃δ̄(y, t)‖|∗y =
[

∇d̃δ̄(y, t)∇2d̃δ̄(y, t)
−1∇d̃δ̄(y, t)

]1/2

.(4.5)

Here, we use the norm |‖ · ‖|y to distinguish it from ‖ · ‖y.
4.2. The algorithmic framework. From Lemma 3.7 we see that if we can

generate a sequence {(yk, tk)}k≥0 such that λk := λd̃(·,tk)(y
k) ≤ β < 1, then

d(yk, tk) ↑ d∗0 = φ∗ and Gfeas(y
k, tk) → 0, as tk ↓ 0+.

The aim of the algorithm is to generate {(yk, tk)}k≥0 such that λk ≤ β < 1. First,
we fix t = t0 > 0 and find a point y0 ∈ Y such that λd̃(·,t0)(y

0) ≤ β. Then we
simultaneously update y and t such that t tends to zero. The algorithmic framework
is presented as follows.

Inexact-Perturbed Path-following algorithmic framework.
Initialization. Choose an appropriate β ∈ (0, 1) and a tolerance εd > 0.
Fix t = t0 > 0.
Phase 1: (Determine a starting point y0 ∈ Y such that λd̃(·,t0)(y

0) ≤ β).

Choose an initial vector y0,0 ∈ Y . Set j = 0.
For j = 0, 1, . . . perform

1. If λj := λd̃(·,t0)(y
0,j) ≤ β then set y0 := y0,j and terminate.

2. Solve the primal subproblems (3.2) in parallel to obtain an approx-
imation of x∗(y0,j , t0).

12 Q. Tran Dinh, I. Necoara, C. Savorgnan and M. Diehl

3. Evaluate ∇dδ̄(y0,j, t0) and ∇2dδ̄(y
0,j , t0) by (4.3).

4. Perform an inexact-perturbed damped Newton iteration: y0,j+1 :=
y0,j − λj(1 + λj)

−1∇2dδ̄(y
0,j , t0)

−1∇dδ̄(y0,j, t0).
End For

Phase 2. Path-following iterations
Compute σ ∈ (0, 1). Set k := 0.
For k = 0, 1, . . . perform:

1. If tk ≤ εd/ω∗(β) then terminate.
2. Update tk+1 := (1− σ)tk.
3. Solve (3.2) in parallel to obtain an approximation of x∗(yk, tk+1).
4. Evaluate the quantities ∇dδ̄(yk, tk+1) and ∇2dδ̄(y

k, tk+1).
5. Perform an inexact-perturbed full-step Newton iteration yk+1 :=
yk −∇2dδ̄(y

k, tk+1)
−1∇dδ̄(yk, tk+1).

End For

Output. A 2εd-approximate solution yk of (2.2).
This algorithm is still conceptual. In the following subsections, we shall specify each
step of this algorithmic framework in detail.

Let us emphasize an important point. In order to compute d(y, t) we have to
solve exactly the maximization problem in (3.2) or equivalently, to solve the system
of nonlinear equations (3.9). This requirement is impractical. In practice, we can
only solve this problem up to a desired accuracy δ̄ > 0. Therefore, the theory of
the path-following algorithm presented in [10, 12, 15, 22, 29] for solving (3.4) may no
longer be satisfied. Here, we propose an inexact perturbed path-following algorithm
for solving (3.4). This algorithm allows us to solve inexactly the primal subproblem
(3.2). Consequently, inexact-perturbed Newton-type iterations are performed, which
means that not only inexact gradient but also inexact Hessian of d(·, t) are used.

4.3. Computing inexact solution x̄δ̄. Note that condition (4.1) can not be
used in practice to compute x̄δ̄ since x∗(y, t) is unknown. We show how to compute
x̄δ̄ such that (4.1) holds based on the optimality condition (3.9).

For sake of notational simplicity, we abbreviate by x̄δ̄ := x̄δ̄(y, t) and x∗ :=
x∗(y, t). The error of the approximate solution x̄δ̄ to x∗ is defined as

δ(x̄δ̄, x
∗) := ‖x̄δ̄(y, t)− x∗(y, t)‖x∗(y,t).(4.6)

It follows from the definitions of d(·, t) and dδ̄(·, t), and (3.9) that

d(y, t)− dδ̄(y, t) = [c+AT y](x∗ − x̄δ̄)− t[F (x∗)− F (x̄δ̄)]

= −t[F (x∗) +∇F (x∗)T (x̄δ̄ − x∗)− F (x̄δ̄)].

Since F is self-concordant, by applying [17, Theorems 4.1.7 and 4.1.8], and the defi-
nition of δ(x̄δ̄ , x

∗), the above equality implies

(4.7) 0 ≤ tω(δ(x̄δ̄, x
∗)) ≤ d(y, t)− dδ̄(y, t) ≤ tω∗(δ(x̄δ̄ , x

∗)).

Here, the last inequality holds if δ(x̄δ̄, x
∗) < 1.

Next, using again the optimality condition (3.9) we have

Ecδ̄ := ‖c+AT y − t∇F (x̄δ̄)‖∗xc

(3.9)
= t‖∇F (x̄δ̄)−∇F (x∗)‖∗xc

≥ t

ν + 2
√
ν
‖∇F (x̄δ̄)−∇F (x∗)‖∗x∗ ,

An Inexact Perturbed Path-Following Method for Lagrangian Decomposition 13

where the last inequality follows from [17, Corollary 4.2.1]. Combining this inequality
and [17, Theorem 4.1.7], we obtain

δ(x̄δ̄, x
∗)2

1 + δ(x̄δ̄, x
∗)

≤ [∇F (x̄δ̄)−∇F (x∗)]T (x̄δ̄ − x∗)

≤ ‖∇F (x̄δ̄)−∇F (x∗)‖∗x∗‖x̄δ̄ − x∗‖x∗

≤ (ν + 2
√
ν)Ec

δ̄

t
δ(x̄δ̄, x

∗).

Hence, we get

(4.8) δ(x̄δ̄, x
∗) ≤

(ν + 2
√
ν)Ec

δ̄

t− (ν + 2
√
ν)Ec

δ̄

,

provided that t > (ν+2
√
ν)Ec

δ̄
. Let us define an accuracy εp for the primal subproblem

(3.2) as

(4.9) εp :=
δ̄t

(ν + 2
√
ν)(1 + δ̄)

≥ 0.

Then it follows from (4.8) that if

(4.10) Ecδ̄ = ‖c+AT y − t∇F (x̄δ̄)‖∗xc ≤ δ̄t

(ν + 2
√
ν)(1 + δ̄)

then x̄δ̄(y, t) satisfies (4.1).
It remains to consider the distance from dδ to d∗0 when t is sufficiently small.

Suppose that t ≤ ω∗(β)−1εd. Then, by combining (3.16) and (4.7) we have

(4.11) |dδ̄(y, t)− φ∗| = |dδ̄(y, t)− d∗0| ≤ 2
[

1 + ω∗(β)
−1ω∗(δ̄)

]

εd,

provided that δ̄ < 1.
Remark 2. Since Eδ̄ := ‖c+ATy−t∇F (x̄δ̄)‖∗x̄δ̄

≥ (1− δ̄)‖c+ATy−t∇F (x̄δ̄)‖∗x∗.

By the same argument as before, we can show that if Eδ̄ ≤ ε̂p, where ε̂p := δ̄(1−δ̄)t
1+δ̄

then (4.1) holds. This rule can be used to terminate the algorithms presented in the
next sections.

4.4. Phase 2 - The path-following scheme with inexact-perturbed full-

step Newton iterations. Now, we analyze Steps 2-5 in Phase 2 of the algorithmic
framework. In the path-following fashion, we only perform one inexact-perturbed
full-step Newton (IPFNT) iteration for each value of parameter t. In other words, the
IPFNT iteration and the update of t are simultaneously carried out. The parameter
t is decreased by t+ := t−∆t, where ∆t > 0. Hence, one step of the path-following
method is performed as follows:

(4.12)

{

t+ := t−∆t,

y+ := y −∇2dδ̄(y, t+)
−1∇dδ̄(y, t+).

Since Newton method is invariant under linear transformations, by (4.2), the second
line of (4.12) is equivalent to

(4.13) y+ := y −∇2d̃δ̄(y, t+)
−1∇d̃δ̄(y, t+).

14 Q. Tran Dinh, I. Necoara, C. Savorgnan and M. Diehl

For sake of notational simplicity, we denote all the functions at (y+, t+) and (y, t+)
by the sub-index “+” and “1”, respectively, and at (y, t) without index in the following
analysis. More precisely, we denote by

λ̄+ := λ̄d̃δ̄(·,t+)(y+), δ+ := δ(x̄δ̄+, x
∗
+) = ‖x̄δ̄(y+, t+)− x∗(y+, t+)‖x∗(y+,t+),

λ̄1 := λ̄d̃δ̄(·,t+)(y), δ1 := δ(x̄δ̄1, x
∗
1) = ‖x̄δ̄(y, t+)− x∗(y, t+)‖x∗(y,t+),

λ̄ := λ̄d̃δ̄(·,t)(y), δ := δ(x̄δ̄, x
∗) = ‖x̄δ̄(y, t)− x∗(y, t)‖x∗(y,t),

and by

∆ := ‖x̄δ̄(y, t+)− x̄δ̄(y, t)‖x̄δ̄(y,t)
and ∆∗ := ‖x∗(y, t+)− x∗(y, t)‖x∗(y,t).

Note that the above notation does not cause any confusion since it can be recognized
from the context.

4.4.1. The main estimate. Using the above notation, we provide a main es-
timate which will be used to analyze the convergence of the algorithm presented in
Subsection 4.4.4. The proof of this result is postponed to Subsection 4.6.

Lemma 4.2. Let y ∈ Y be given and t > 0. Let (y+, t+) be a pair generated by

(4.12). Suppose that δ1 + 2∆+ λ̄ < 1, δ+ < 1 and ξ := ∆+λ̄
1−δ1−2∆−λ̄ . Then

λ̄+ ≤ 1

(1− δ+)

{

δ+ + δ1 + ξ2 + δ1
[

(1 − δ1)
−2 + 2(1− δ1)

−1
]

ξ
}

.(4.14)

Moreover, the right-hand side of (4.14) is nondecreasing with respect to all variables
δ+, δ1, ∆ and λ̄.

In particular, if we set δ+ = 0 and δ1 = 0, i.e. (3.2) is solved exactly, then
λ̄+ = λ+, λ̄ = λ and (4.14) collapses to

(4.15) λ+ ≤
(

λ+∆∗

1− 2∆∗ − λ

)2

,

provided that λ+ 2∆∗ < 1.

4.4.2. Finding the maximum centering parameter β∗. The key point of
the path-following algorithm is to determine the maximum value of β ∈ (0, β∗) ⊆ (0, 1)
and appropriate values of δ̄ and ∆ such that if λ̄ ≤ β, then λ̄+ ≤ β. We analyze the
estimate (4.14) to find these parameters.

First, let β ∈ (0, 1) such that λ̄ ≤ β. Since the right-hand side of (4.14) is
nondecreasing with respect to all variables, if we define

ϕδ̄(ξ̄) :=
1

1− δ̄

{

2δ̄ + ξ̄2 + δ̄[(1− δ̄)−2 + 2(1− δ̄)−1]ξ̄
}

,

and ξ̄ := ∆+β
1−δ̄−β−2∆

, then λ̄+ ≤ β if ϕδ̄(ξ̄) ≤ β. This condition leads to 0 ≤ ξ̄ ≤√
p2+4q−p

2 and 0 ≤ δ̄ ≤ β
β+2 , where p := δ̄[(1− δ̄)−2+2(1− δ̄)−1] and q := (1− δ̄)β−2δ̄.

Now, let θ :=

√
p2+4q−p

2 > 0. Since ξ̄ = β+∆
1−δ̄−β−2∆

≤ θ, we have (1+2θ)∆ ≤ θ(1−

δ̄ − β)− β. Thus, in order to ensure ∆ > 0, we require that θ =

√
p2+4q−p

2 > β
1−δ̄−β .

This condition leads to

(4.16) P(β) := c0 + c1β + c2β
2 + c3β

3 > 0,

An Inexact Perturbed Path-Following Method for Lagrangian Decomposition 15

where c0 := −2δ̄(1−δ̄)2 ≤ 0, c1 := (1−δ̄)[(1+δ̄)2−p] ≥ 0, c2 := p−3−2δ̄2+2δ̄ ≤ 0 and
c3 := 1− δ̄ > 0. By well-known characteristics of the cubic polynomial, we know that
P(β) has three real roots if 18c0c1c2c3−4c32c0+c

2
2c

2
1−4c3c

3
1−27c23c

2
0 ≥ 0. By numerical

solution, the last condition leads to 0 ≤ δ̄ ≤ δ̄max, where δ̄max ≈ 0.0432863855.
Finally, we summarize the above analysis into the following theorem.
Theorem 4.3. Let δ̄max = 0.0432863855 and 0 ≤ δ̄ ≤ δ̄max. Then P defined by

(4.16) has three nonnegative real roots 0 ≤ β∗ < β∗ < β3. Suppose that β ∈ (β∗, β∗)

and ∆̄ := θ(1−δ̄−β)−β
1+2θ > 0 where θ :=

√
p2+4q−p

2 , and p and q are defined as above.

Then, for 0 ≤ δ+ ≤ δ̄, 0 ≤ δ1 ≤ δ̄ and 0 ≤ ∆ ≤ ∆̄, if λ̄ ≤ β then λ̄+ ≤ β.
Proof. Note that the cubic polynomial P(β) has three real roots if 18c0c1c2c3 −

4c32c0 + c22c
2
1 − 4c3c

3
1 − 27c23c

2
0 ≥ 0. Numerically, this condition leads to 0 ≤ δ̄ ≤

δ̄max = 0.0432863855. Moreover, one can show that three roots β∗ < β∗ < 1 < β3
of P are nonnegative and P(β) > 0 if β ∈ (β∗, β∗). However, P(β) > 0 implies

θ(1 − δ̄ − β) − β > 0, where θ :=

√
p2+4q−p

2 . Thus, from the definition of ξ̄, we have

0 ≤ ∆ ≤ ∆̄ := θ(1−δ̄−β)−β
1+2θ > 0.

In order to see the values of β∗, β∗ and ∆̄ varying with respect to the accuracy δ̄,
we illustrate them in Figure 4.1, where the left-hand side shows the values of β∗ (solid)
and β∗ (dash) and the right-hand side shows the value of ∆̄ varying with respect to

δ̄ when β is chosen by β := β∗+β
∗

2 (dash) and β := β∗

4 (solid), respectively.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

δ
b

β* (d
as

h)
 a

nd
 β

*(s
ol

id
)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.02

0.04

0.06

0.08

0.1

0.12

δ
b

∆ b

β*

β
*

∆
b
, r.w.t 0.5(β

*
+β*)

∆
b
, w.r.t 0.25β*

Fig. 4.1. The values of β∗, β
∗ and ∆̄ varying w.r.t δ̄.

4.4.3. The update rule for the barrier parameter t. It remains to quantify
the decrement ∆t of the barrier parameter t. From (3.9) we have

c+AT y − t∇F (x∗) = 0 and c+AT y − t+∇F (x∗1) = 0,

where x∗ := x∗(y, t) and x∗1 := x∗(y, t+) are defined as before. Subtracting these
equalities and then using t+ = t −∆t, we have t+[∇F (x∗1) −∇F (x∗)] = ∆t∇F (x∗).
Using this relation together with [17, Theorem 4.1.7] and ‖∇F (x∗)‖∗x∗ ≤ √

ν (see [17,
inequality 4.2.4]), we have

t+‖x∗1 − x∗‖2x∗

1 + ‖x∗1 − x∗‖x∗

≤ t+[∇F (x∗1)−∇F (x∗)]T (x∗1 − x∗) = ∆t∇F (x∗)T (x∗1 − x∗)

≤ ∆t‖∇F (x∗)‖∗x∗‖x∗1 − x∗‖x∗ ≤ ∆t
√
ν‖x∗1 − x∗‖x∗ .

By the definition of ∆∗, if t > (
√
ν + 1)∆t, then the above inequality leads to

(4.17) ∆∗ ≤ ∆̄∗ :=

√
ν∆t

t− (
√
ν + 1)∆t

.

16 Q. Tran Dinh, I. Necoara, C. Savorgnan and M. Diehl

Note that (4.17) implies

(4.18) ∆t =
∆̄∗t√

ν + (
√
ν + 1)∆̄∗ .

On the other hand, using the definitions of ∆ and δ, we have

∆ := ‖x̄δ̄1 − x̄δ̄‖x̄δ̄

(4.41)

≤ 1

(1− δ)

[

‖x̄δ̄1 − x∗1‖x∗ + ‖x∗1 − x∗‖x∗ + ‖x∗ − x̄δ̄‖x∗

]

≤ 1

(1 − δ)

[

δ1
1−∆∗ +∆∗ + δ

]

(4.19)
(4.17)

≤ 1

(1− δ)

[

δ1
1− ∆̄∗ + ∆̄∗ + δ

]

δ,δ1≤δ̄
≤ 1

(1− δ̄)

[

δ̄

1− ∆̄∗ + ∆̄∗ + δ̄

]

.

Now, we need to find a condition such that ∆ ≤ ∆̄, where ∆̄ is given in Theorem 4.3.
This condition holds if δ̄

1−∆∗
+∆∗ ≤ (1 − δ̄)∆̄− δ̄ due to (4.19). Since ∆∗ ≤ ∆̄∗ due

to (4.17), we impose a more relaxed condition

(4.20) 0 ≤ ∆̄∗ ≤ 1

2

[

(1− δ̄)∆̄− δ̄ + 1−
√

((1− δ̄)∆̄− δ̄ − 1)2 + 4δ̄

]

,

provided δ̄ ≤ ∆̄
1+∆̄

. Thus, we can fix ∆̄∗ at

(4.21) ∆̄∗ =
1

2

[

(1− δ̄)∆̄− δ̄ + 1−
√

((1− δ̄)∆̄− δ̄ − 1)2 + 4δ̄

]

.

The update rule for the barrier parameter t becomes

t+ := (1− σ)t =

(

1− ∆̄∗
√
ν + (

√
ν + 1)∆̄∗

)

=

√
ν(∆̄∗ + 1)t√

ν(∆̄∗ + 1) + ∆̄∗ ,

where σ := ∆̄∗

√
ν+∆̄∗(

√
ν+1)

∈ (0, 1).

Finally, we show that the conditions given in Theorem 4.3, (4.20) and (4.21) are
well-defined. Indeed, let us fix δ̄ := 0.01. Then we can compute the values of β∗ and
β∗ as

β∗ ≈ 0.021371 < β∗ ≈ 0.356037.

Therefore, if we choose β := β∗

4 ≈ 0.089009 > β∗ then

∆̄ ≈ 0.089012, and ∆̄∗ ≈ 0.067399.

4.4.4. The algorithm and its convergence. Now, we are at the point to
present the algorithm and its convergence. Before presenting the algorithm, we need
to find a stopping criterion for the algorithm. By using Lemma 4.6c), we have

λ ≤ (1− δ)−1(λ̄+ δ),(4.22)

provided that δ < 1 and λ̄ ≤ β < 1. Consequently, if λ̄ ≤ (1− δ̄)−1(β+ δ̄) then λ ≤ β.
Let us define ϑ := (1 − δ̄)−1(β + δ̄). It follows from Lemma 3.7 that if tω∗(ϑ) ≤ εd
for a given tolerance εd > 0, then y is a 2εd-solution of (2.2).

An Inexact Perturbed Path-Following Method for Lagrangian Decomposition 17

The algorithmic framework presented in Subsection 4.2 is now described in detail
as follows.

Algorithm 1. (Path-following algorithm with IPFNT iterations)

Initialization: Perform the following steps:

1. Choose δ̄ ∈ [0, δ̄max] and compute β∗ and β∗ as the first and second roots of
P defined by (4.16), respectively.

2. Fix some β ∈ (β∗, β∗) (e.g. β = 1
4β

∗).
3. Choose an initial value t = t0 > 0.

Phase 1. Apply Algorithm 2 presented in Subsection 4.5 to find y0 ∈ Y such that
λd̃δ̄(·,t0)(y

0) ≤ β.

Phase 2.

Initialization: Perform the following steps:

1. Given a tolerance εd > 0.
2. Compute ∆̄ as in Theorem 4.3. Then, compute ∆̄∗ by (4.21).

3. Compute the factor σ := ∆̄∗

√
ν+(

√
ν+1)∆̄∗

.

4. Compute the accuracy factor γ := δ̄
(ν+2

√
ν)(1+δ̄)

.

Iteration: Perform the following loop.
For k = 0, 1, · · · do

1. If tk ≤ εd
ω∗(ϑ)

, where ϑ := (1− δ̄)−1(β + δ̄), then terminate.

2. Compute an accuracy for the primal subproblem εk := γtk.
3. Update tk+1 := (1− σ)tk.
4. Solve approximately (2.3) in parallel up to the given tolerance εk to obtain
x̄δ̄(y

k, tk+1).
5. Compute ∇dδ̄(yk, tk+1) and ∇2dδ̄(y

k, tk+1) according to (4.3).
6. Update yk+1 as yk+1 := yk −∇2dδ̄(y

k, tk+1)
−1∇dδ̄(yk, tk+1).

End of For.

The core step of Phase 2 in Algorithm 1 is Step 4, where we need to solve
two convex optimization problems to compute the gradient vector and the Hes-
sian matrix of dδ̄(·, tk+1) at Step 5. These quantities require an approximate so-
lution x̄δ̄(y

k, tk+1), the gradient vector ∇F (x̄δ̄(yk, tk+1)) and the Hessian matrix
∇2F (x̄δ̄(y

k, tk+1)), which can also be computed in parallel. Note that Step 4 ac-
tually requires to solve a system of nonlinear equations (3.9) (see Section 6 for more
details). The update rule of t at Step 3 can be done in an adaptive way, where we
can use ‖∇F (x̄δ̄)‖∗x̄δ̄

instead of its upper bound
√
ν. For example, we can use ∆t :=

∆̄∗t
Rδ̄+(Rδ̄+1)∆̄∗

instead of (4.18), where Rδ̄ := (1 − δ̄)−1
[

δ̄(1 − δ̄)−1 + ‖∇F (x̄δ̄)‖∗x̄δ̄

]

.

The stopping criterion at Step 1 can be replaced by ω∗(ϑk)tk ≤ εd, where ϑk :=
(1− δ̄)−1[λd̃δ̄(·,tk)(y

k) + δ̄] due to Lemma 3.7.

Let us define λk+1 := λd̃δ̄(·,tk+1)
(yk+1) and λk := λd̃δ̄(·,tk)(y

k). Then the local
convergence of Algorithm 1 is stated in the following theorem.

Theorem 4.4. Let {(yk, tk)} be a sequence generated by Algorithm 1. Then the
number of iterations kmax to obtain a 2εd-solution of (2.2) does not exceed

(4.23) kmax :=

ln
(

εd
t0ω∗(ϑ)

)

ln(1− σ)

+ 1,

18 Q. Tran Dinh, I. Necoara, C. Savorgnan and M. Diehl

where σ = ∆̄∗

√
ν+(

√
ν+1)∆̄∗

∈ (0, 1) and ϑ = (1− δ̄)β − δ̄ ∈ (0, 1).

Proof. Note that yk is a 2εd-solution of (2.2) if tk ≤ εd
ω∗(ϑ)

due to Lemma 3.7,

where ϑ = (1 − δ̄)β − δ̄. Since tk = (1 − σ)kt0 due to Step 3, we require (1 − σ)k ≤
εd

t0ω∗(ϑ)
. Consequently, we obtain (4.23).

Remark 3 (The worst-case complexity). Since (1− σ) =
[

1 + ∆̄∗

√
ν(∆̄∗+1)

]−1

which implies − ln(1−σ) ∼ ∆̄∗

√
ν(∆̄∗+1)

. It follows from Theorem 4.4 that the complexity

of Algorithm 1 is O(
√
ν ln t0

εd
).

Remark 4 (Linear convergence). The rate of convergence of the sequence {tk}
is linear and the contraction rate is not greater than 1−σ. Note that if λd̃δ̄(·,t)(y) ≤ β,

then it follows from (3.11) that λdδ̄(·,t)(y) ≤ β
√
t. Therefore, the sequence of Newton

decrement {λd(·,tk)(yk)}k of d also converges linearly to zero with the contraction

factor less than or equal to
√
1− σ.

Remark 5 (Recovering the feasibility). Since ∇dδ̄(y, t) = Ax̄δ̄(y, t) − b =
t∇d̃δ̄(y, t), we have |‖Ax̄δ̄(y, t) − b‖|∗y = t|‖∇d̃δ̄(y, t)‖| = tλ̄ ≤ tβ. If we define the
inexact feasibility gap at x̄δ̄(y, t) as

Ḡfeas(y, t) := |‖Ax̄δ̄(y, t)− b‖|∗y,

then Ḡfeas(y, t) ≤ tβ, which shows that Ḡfeas(y, t) converges linearly to zero with the
same rate as t.

Remark 6 (The inexactness in the IPFNT direction (4.12)). Note that
we can apply an inexact method to solve the linear system (4.12). Under appropriate
assumptions of the inexact term, we can still prove the convergence of the algorithm.
For more detail on inexact Newton methods, one can refer to the reference [24].

4.5. Phase 1 - Finding a starting point. Phase 1 of the algorithmic frame-
work aims to find y0 ∈ Y such that λd̃δ̄(·,t)(y

0) ≤ β. In this subsection, we consider

an inexact perturbed damped Newton (IPDNT) method for finding such a point y0.

4.5.1. Inexact perturbed damped Newton iteration. Let us fix t = t0 > 0
and choose an accuracy δ̄ ≥ 0. We assume that the current iterate y ∈ Y is given,
and we compute the next iterate y+ by applying the IPDNT iteration to dδ̄(·, t0) as

(4.24) y+ := y − α(y)∇2dδ̄(y, t0)
−1∇dδ̄(y, t0),

where α := α(y) > 0 is the step size which will be chosen appropriately. Note that
since (4.24) is invariant under linear transformation, it is equivalent to

(4.25) y+ := y − α(y)∇2d̃δ̄(y, t0)
−1∇d̃δ̄(y, t0),

It follows from (3.11) that d̃(·, t0) is standard self-concordant, by [17, Theorem 4.1.8],
we have

(4.26) d̃(y+, t0) ≤ d̃(y, t0) +∇d̃(y, t0)T (y+ − y) + ω∗(‖y+ − y‖y),

provided that ‖y+ − y‖y < 1. On the other hand, from (4.7), it implies that

(4.27) 0 ≤ ω(δ(x̄δ̄, x
∗)) ≤ d̃(y, t0)− d̃δ̄(y, t0) ≤ ω∗(δ(x̄δ̄, x

∗)),

An Inexact Perturbed Path-Following Method for Lagrangian Decomposition 19

which is an approximation between d̃(·, t0) and d̃δ̄(·, t0). In order to analyze the
convergence of the IPDNT iteration (4.24) we denote by

δ̂+ := ‖x̄δ̄(y+, t0)− x∗(y+, t0)‖x∗(y+,t0),

δ̂ := ‖x̄δ̄(y, t0)− x∗(y, t0)‖x∗(y,t0),(4.28)

λ̄0 := λd̃δ̄(·,t0)(y) = α(y)|‖y+ − y‖|y,

the solution differences of d(·, t0) and dδ̄(·, t0) and the Newton decrement of d̃δ̄(·, t0),
respectively.

4.5.2. Finding the step size α(y). Now, we find an appropriate step size
α(y) ∈ (0, 1] such that the sequence generated by (4.25) converges to y0. Let p :=
y+ − y. From (4.26) and (4.27), we have

d̃δ̄(y+, t0)
(4.26)

≤ d̃(y+, t0)
(4.27)

≤ d̃(y, t0) +∇d̃(y, t0)T (y+ − y) + ω∗(‖y+ − y‖y)
(4.26)

≤ d̃δ̄(y, t0) +∇d̃(y, t0)T (y+ − y) + ω∗(‖y+ − y‖y) + ω∗(δ̂)

= d̃δ̄(y, t0)+∇d̃δ̄(y, t0)Tp+
[

∇d̃(y, t0)−∇d̃δ̄(y, t0)
]T
p+ ω∗(‖p‖y) + ω∗(δ̂)(4.29)

(4.24)

≤ d̃δ̄(y, t0)− αλ̄20 + ‖∇d̃(y, t0)−∇d̃δ̄(y, t0)‖∗y‖p‖y + ω∗(‖p‖y) + ω∗(δ̂)

(4.39)

≤ d̃δ̄(y, t0)− αλ̄20 + δ̂‖p‖y + ω∗(‖p‖y) + ω∗(δ̂).

Furthermore, from (4.42) and the definition of ∇2d̃ and ∇2d̃δ̄, we have

(1− δ̂)∇2d̃δ̄(y, t0) � ∇2d̃(y, t0) � (1− δ̂)−2∇2d̃δ̄(y, t0).

This inequality implies that

(1 − δ̂)|‖p‖|y ≤ ‖p‖y ≤ (1 − δ̂)−1|‖p‖|y.

Combining this inequality, (4.25) and the definition of λ̄0 in (4.28) we get

α(1− δ̂)λ̄0 ≤ ‖p‖y ≤ α(1 − δ̂)−1λ̄0.

Let us assume that αλ̄0+ δ̂ < 1. By substituting the right-hand side of this inequality
into (4.29) and observing that the right hand side of (4.29) is nondecreasing with
respect to ‖p‖y, we get

d̃δ̄(y+, t0) ≤ d̃δ̄(y, t0)− αλ̄20 +
αλ̄δ̂

1− δ̂
+ ω∗

(

αλ̄0

1− δ̂

)

+ ω∗(δ̂).(4.30)

Now, let us simplify the last terms of (4.30) which we denote by T as follows.

T := −αλ̄20 +
αλ̄0δ̂

1− δ̂
+ ω∗

(

αλ̄0

1− δ̂

)

+ ω∗(δ̂)

= −αλ̄20 +
αλ̄0δ̂

1− δ̂
− αλ̄0

1− δ̂
− ln

(

1− αλ̄0

1− δ̂

)

− δ̂ − ln(1− δ̂)

= −αλ̄20 − (αλ̄0 + δ̂)− ln
[

1− (αλ̄0 + δ̂)
]

(4.31)

= −αλ̄20 + ω∗(αλ̄0 + δ̂).

20 Q. Tran Dinh, I. Necoara, C. Savorgnan and M. Diehl

Suppose that we can choose η > 0 such that αλ̄20 − ω∗(αλ̄0 + δ̂) = ω(η). This

requirement leads to αλ̄20 = (αλ̄0 + δ̂)
[

α(λ̄0 + λ̄0) + δ̂
]

which is equivalent to

(4.32) α =
(1− δ̂)λ̄0 − 2δ̂ +

√

(1− δ̂)2λ̄20 − 4δ̂λ̄0

2λ̄0(1 + λ̄0)
,

provided that 0 ≤ δ̂ <
¯̂
δ :=

2+λ̄0−2
√

1+λ̄0

λ̄0
. Consequently, we deduce

(4.33) η =

λ̄0

[

(1− δ̂)λ̄0 − 2δ̂ +

√

(1− δ̂)2λ̄20 − 4δ̂λ̄0

]

(1 + δ̂)λ̄0 +
√

(1− δ̂)2λ̄20 − 4δ̂λ̄0

.

Note that if δ̂ = 0, then α = 1
1+λ̄0

and η = λ̄0. The IPDNT iteration (4.24) becomes

the exact damped Newton iteration as in [17].

We assume that λ̄0 ≥ β for a given β ∈ (0, 1). Let us fix
¯̂
δ such that

(4.34) 0 <
¯̂
δ < δ̂∗ :=

2 + β − 2
√
1 + β

β
=

β

2 + β + 2
√
1 + β

.

Next, we choose step size α as

(4.35) α(y) :=
(1− ¯̂

δ)λ̄0 − 2
¯̂
δ +

√

(1 − ¯̂
δ)2λ̄20 − 4

¯̂
δλ̄0

2λ̄0(1 + λ̄0)
∈ (0, 1).

Then the IPDNT iteration (4.24) with α(y) given as (4.35) generated a new point y+
such that

d̃δ̄(y+, t0) ≤ d̃δ̄(y, t0)− ω(η),(4.36)

where

(4.37) η :=

β

[

(1 − ¯̂
δ)β − 2

¯̂
δ +

√

(1− ¯̂
δ)2β2 − 4

¯̂
δβ

]

(1 +
¯̂
δ)β +

√

(1− ¯̂
δ)2β2 − 4

¯̂
δβ

∈ (0, 1).

Finally, let us estimate the constant η for the case β ≈ 0.089009. We first obtain

δ̂∗ ≈ 0.02131. Let
¯̂
δ = 1

2 δ̂
∗ ≈ 0.010657. Then we get η ≈ 0.0754963. Consequently,

ω(η) ≈ 0.003002.

4.5.3. The algorithm and its worst-case complexity. In summary, the al-
gorithm for finding y0 ∈ Y is presented in detail as follows.

Algorithm 2. (Finding a starting point y0 ∈ Y)

Initialization: Perform the following steps:
1. Input β ∈ (β∗, β∗) and t0 > 0 as desired (e.g. β = 1

4β
∗ ≈ 0.089009).

2. Take an arbitrary point y0,0 ∈ Y .

3. Compute δ̂∗ := β
2+β+2

√
1+β

and fixed
¯̂
δ ∈ (0, δ̂∗) (e.g. ¯̂

δ = 0.5δ̂∗).

An Inexact Perturbed Path-Following Method for Lagrangian Decomposition 21

4. Compute an accuracy εp :=
t0

¯̂
δ

2(ν+2
√
ν)(1+

¯̂
δ)
.

Iteration: Perform the following loop.
For j = 0, 1, · · · do

1. Solve approximately the primal subproblem (3.2) in parallel up to the accu-
racy εp to obtain x̄δ̄(y

0,j, t0).
2. Compute λ̄j := λ̄d̃δ̄(·,t0)(y

0,j) .

3. If λ̄j ≤ β then set y0 := y0,j and terminate.
4. Update y0,j+1 as y0,j+1 := y0,j −αj∇2dδ̄(y

0,j , t0)
−1∇dδ̄(y0,j , t0), where αj ∈

(0, 1] is computed by

αj :=
(1− ¯̂

δ)λ̄j − 2
¯̂
δ +

√

(1− ¯̂
δ)2λ̄2j − 4

¯̂
δλ̄j

2λ̄j(1 + λ̄j)
.

End of For.

The convergence of this algorithm is stated in the following theorem.
Theorem 4.5. The number of iterations to terminate Algorithm 2 does not exceed

(4.38) Jmax :=

⌊

dδ̄(y
0,0, t0)− d∗(t0) + ω∗(

¯̂
δ)

t0ω(η)

⌋

+ 1,

where d∗(t0) = min
y∈Y

d(y, t0) and η is given by (4.37).

Proof. Summing up (4.36) from j = 0 to j = k and then using (4.27) we have

0 ≤ d̃(y0,k, t0)− d̃∗(t0) ≤ d̃δ̄(y
0,k, t0) + ω∗(

¯̂
δ)− d̃∗(t0)

≤ d̃δ̄(y
0,0, t0) + ω∗(

¯̂
δ) − d̃∗(t0)− kω(η).

This inequality together with (3.11) and (4.4) imply

k ≤ dδ̄(y
0,0, t0)− d∗(t0) + ω∗(

¯̂
δ)

t0ω(η)
.

Hence, the maximum number of iterations in Algorithm 2 does not exceed Jmax defined
by (4.38).

Since d∗(t0) is not available, the number Jmax in (4.38) only gives an upper
bound for Algorithm 2. However, in this algorithm, we do not use Jmax as a stopping
criterion.

4.6. The proof of Lemma 4.2. First, we prove the following lemma which will
be used to prove the main inequality in Lemma 4.2.

Lemma 4.6. Suppose that Assumptions A.1 and A.2 are satisfied. Then
a) ∇2d̃ and ∇2d̃δ̄ defined by (3.10) and (4.3), respectively, guarantee

(1− δ+)
2∇2d̃(y+, t+) � ∇2d̃δ̄(y+, t+) � (1− δ+)

−2∇2d̃(y+, t+),

where δ+ < 1 defined by (4.6).
b) Moreover, one has

(4.39) ‖∇d̃δ̄(y, t)−∇d̃(y, t)‖∗y ≤ ‖x̄δ̄ − x∗‖x∗ .

22 Q. Tran Dinh, I. Necoara, C. Savorgnan and M. Diehl

c) If ∆ < 1 then

(4.40) λ̄1 ≤ ∆+ λ̄

1−∆
.

Proof. Since F is standard self-concordant, for any z ∈ W 0(x, 1), it follows from
[17, Theorem 4.1.6] that

(4.41) (1− ‖z − x‖x)2∇2F (x) � ∇2F (z) � 1

(1− ‖z − x‖x)2
∇2F (x).

Since ∇2F (x) is symmetric positive definite, by applying [1, Proposition 8.6.6] to
two matrices 1

(1−‖z−x‖x)2
∇2F (x) and ∇2F (z), and then to two matrices (1 − ‖z −

x‖x)2∇2F (x) and ∇2F (z) we obtain

(1− ‖z − x‖x)2A∇2F (x)−1AT� A∇2F (z)−1AT

(4.42)
� (1− ‖z − x‖x)−2A∇2F (x)−1AT .

Using again [1, Proposition 8.6.6] for (4.42) we get

(1− ‖z − x‖x)2AT [A∇2F (x)−1AT]−1A � AT [A∇2F (z)−1AT]−1A
(4.43)

� (1− ‖z − x‖x)−2AT [A∇2F (x)−1AT]−1A.

Now, using (3.10) and (3.11), we have ∇2d̃(y, t) = 1
t2A∇2F (x∗)−1AT . Alternatively,

using (4.3) and (4.4), we get ∇2d̃δ̄(y, t) = 1
t2A∇2F (x̄δ̄)

−1AT . Substituting these
relations with x = x∗+ and z = x̄δ̄+ into (4.42) and noting that δ+ = δ(x̄+, x

∗
+)

defined by (4.6), we obtain (4.39).
Next, we prove b). For any x ∈ dom(F), the Hessian matrix ∇2F (x) is symmetric

positive definite. Let us define

M(x) :=

[

∇2F (x) AT

A A∇2F (x)−1AT

]

.

First, we show that M(x) is positive definite. Indeed, for any z = (u, v) ∈ R
n × R

m,
we have

zTM(x)z= uT∇2F (x)u + uTAT v + vTAu+ vTA∇2F (x)−1AT v

= ‖∇2F (x)1/2u‖2 + 2(∇2F (x)1/2u)T (∇2F (x)−1/2AT v) + ‖∇2F (x)−1/2AT v‖2
= ‖∇2F (x)1/2u+∇2F (x)−1/2AT v‖2 ≥ 0,

which shows that M(x) � 0. Now, since A is full-row rank, A∇2F (x)−1AT is also
symmetric positive definite. By applying Schur’s complement to M(x) [1], we obtain

(4.44) AT [A∇2F (x)−1AT]−1A � ∇2F (x).

To prove (4.39) we note that ∇dδ̄(y, t) − ∇d(y, t) = A(x̄δ̄ − x∗). Thus ∇d̃δ̄(y, t) −
∇d̃(y, t) = 1

tA(x̄δ̄ − x∗). This implies

[

‖∇d̃δ̄(y, t)−∇d̃(y, t)‖∗y
]2

=
1

t2
(x̄δ̄ − x∗)TAT∇2d̃(y, t)−1A(x̄δ̄ − x∗)

(3.10),(3.11)
= (x̄δ̄ − x∗)TAT [A∇2F (x∗)−1AT]−1A(x̄δ̄ − x∗)

(4.44)

≤ (x̄δ̄ − x∗)T∇2F (x∗)(x̄δ̄ − x∗)

= ‖x̄δ̄ − x∗‖2x∗ ,

An Inexact Perturbed Path-Following Method for Lagrangian Decomposition 23

which is indeed (4.39).
Finally, we prove (4.40). By using the definitions of ∇d̃δ̄(·, t+) and ∇2d̃δ̄(·, t+) in

(4.3), of d̃δ̄(·, t+) in (4.4), for any feasible point x̂ of (2.1), it follows from the definition
of λ̄1 in (4.5) and Ax̂ = b that

λ̄21=
[

|‖∇d̃δ̄(y, t+)‖|∗y
]2

(4.5)
= ∇d̃δ̄(y, t+)∇2d̃δ̄(y, t+)

−1∇d̃δ̄(y, t+)
(4.45)

(4.4)
=

1

t+
∇dδ̄(y, t+)∇2dδ̄(y, t+)

−1∇dδ̄(y, t+)

(4.3)
= (x̄δ̄1 − x̂)TAT

[

A∇2F (x̄δ̄1)
−1AT

]−1
A(x̄δ̄1 − x̂).

Since ∆ = ‖x̄δ̄1− x̄δ̄‖x̄δ̄
< 1 by assumption, it implies that x̄δ̄1 ∈W 0(x̄δ̄ , 1). Applying

the right-hand side of (4.43) with x = x̄δ̄ and z = x̄δ̄1, it implies that

λ̄21 ≤ 1

(1−∆)2
(x̄δ̄1 − x̂)TAT

[

A∇2F (x̄δ̄)
−1AT

]−1
A(x̄δ̄1 − x̂).(4.46)

Now, for any symmetric positive semidefinite matrix Q in R
n×n and u, v ∈ R

n, one
can easily show that

(u+ v)TQ(u+ v) ≤
[

√

uTQu+
√

vTQv
]2

.(4.47)

Since Hδ̄ := AT
[

A∇2F (x̄δ̄)
−1AT

]−1
A is symmetric positive semidefinite, applying

(4.47) with Q = Hδ̄, u = x̄δ̄1 − x̄δ̄ and v = x̄δ̄ − x̂, we have

λ̄21 ≤ 1

(1−∆)2

{

[

(x̄δ̄1−x̄δ̄)THδ̄(x̄δ̄1−x̄δ̄)
]1/2

+
[

(x̄δ̄−x̂)THδ̄(x̄δ̄−x̂)
]1/2
}2

.(4.48)

Note that Hδ̄ � ∇2F (x̄δ̄) due to (4.44). The first term of the right-hand side of (4.48)
satisfies

(4.49) [· · ·] ≤ (x̄δ̄+ − x̄δ̄)
T∇2F (x̄δ̄)(x̄δ̄1 − x̄δ̄) = ∆2.

On the other hand, by substituting x̄δ̄1 by x̄δ̄ into (4.45), we get

λ̄2 = (x̄δ̄−x̂)TAT
[

A∇2F (x̄δ̄)
−1AT

]−1
A(x̄δ̄−x̂)=(x̄δ̄−x̂)THδ̄(x̄δ̄−x̂).(4.50)

Combining (4.48), (4.49) and (4.50), we obtain

λ̄21 ≤ (∆ + λ̄)2

(1−∆)2
,

which is equivalent to (4.40).
The proof of Lemma 4.2. Since δ1 + 2∆+ λ̄ < 1, it implies that δ1 < 1, ∆ < 1/2

and λ̄ < 1. The proof of Lemma 4.2 is divided into several steps as follows.

Step 1. First, we prove the following inequality:

λ̄+ ≤ 1

(1− δ+)

{

δ+ +
1

(1− ‖p‖y)

[

δ1 +
(2δ1 − δ21)

(1− δ1)2
‖p‖y +

‖p‖2y
1− ‖p‖y

]}

,(4.51)

24 Q. Tran Dinh, I. Necoara, C. Savorgnan and M. Diehl

where p := y+ − y. Indeed, it follows (4.39) that

λ̄+ = |‖∇d̃δ̄(y+, t+)‖|∗y+ =
[

∇d̃δ̄(y+, t+)∇2d̃δ̄(y+, t+)
−1∇d̃δ̄(y+, t+)

]1/2

(4.39)

≤ 1

(1− δ+)

[

∇d̃δ̄(y+, t+)∇2d̃(y+, t+)
−1∇d̃δ̄(y+, t+)

]1/2

(4.52)

≤ 1

(1 − δ+)
‖∇d̃δ̄(y+, t+)‖∗y+ .

Next, using (4.39) we have

‖∇d̃δ̄(y+, t+)‖∗y+≤ ‖∇d̃(y+, t+)‖∗y+ + ‖∇d̃δ̄(y+, t+)−∇d̃(y+, t+)‖∗y+
(4.53)

(4.39)

≤ ‖∇d̃(y+, t+)‖∗y+ + δ+.

Since d̃(·, t+) is standard self-concordant according to Lemma 3.4, one has

‖∇d̃(y+, t+)‖∗y+≤
1

1− ‖y+ − y‖y
‖∇d̃(y+, t+)‖∗y

(4.54)

=
1

1− ‖p‖y
‖∇d̃(y+, t+)‖∗y.

Plugging (4.54) and (4.53) into (4.52) we obtain

(4.55) λ̄+ ≤ 1

(1 − δ+)

[

‖∇d̃(y+, t+)‖∗y
1− ‖p‖y

+ δ+

]

.

On the other hand, from (4.13), we have

∇d̃(y+, t+)
(4.13)
= ∇d̃(y+, t+)−

[

∇d̃δ̄(y, t+) +∇2d̃δ̄(y, t+)(y+ − y)
]

=
[

∇d̃(y, t+)−∇d̃δ̄(y, t+)
]

(4.56)
+
{

[∇2d̃(y, t+)−∇2d̃δ̄(y, t+)](y+ − y)
}

+
[

∇d̃(y+, t+)−∇d̃(y, t+)−∇2d̃(y, t+)(y+ − y)
]

.

By substituting t by t+ in (4.39), we obtain an estimate of the first term of (4.56) as

‖∇d̃(y, t+)−∇d̃δ̄(y, t+)‖∗y ≤ ‖x̄δ̄1 − x∗1‖x∗

1
= δ1.(4.57)

Next, we consider the second term of (4.56). It follows from (4.39) that

[

(1− δ1)
2 − 1

]

∇2d̃(y, t+)� ∇2d̃δ̄(y, t+)−∇2d̃(y, t+)
(4.58)

�
[

(1 − δ1)
−2 − 1

]

∇2d̃(y, t+).

If we defineG :=
[

∇2d̃δ̄(y, t+)−∇2d̃(y, t+)
]

andH := ∇2d̃(y, t+)
−1/2G∇2d̃(y, t+)

−1/2

then

‖[∇2d̃(y, t)−∇2d̃δ̄(y, t+)](y+ − y)‖∗y = ‖Gp‖∗y ≤ ‖H‖‖p‖y,(4.59)

An Inexact Perturbed Path-Following Method for Lagrangian Decomposition 25

where, by virtue of (4.58) and the condition δ1 < 1, one has

‖H‖ ≤ max

{

1− (1− δ1)
2,

1

(1 − δ1)2
− 1

}

=
2δ1 − δ21
(1− δ1)2

.

Hence, (4.59) leads to

‖[∇2d̃(y, t)−∇2d̃δ̄(y, t+)](y+ − y)‖∗y ≤
(2δ1 − δ21)

(1− δ1)2
‖p‖y.(4.60)

Furthermore, since d̃(·, t) is standard self-concordant, similar to the proof of [17,
Theorem 4.1.14], we have

‖∇d̃(y+, t+)−∇d̃(y, t+)−∇2d̃(y, t+)(y+ − y)‖∗y ≤
‖p‖2y

1− ‖p‖y
.(4.61)

Now, we apply the triangle inequality ‖a+ b+ c‖∗y ≤ ‖a‖∗y+ ‖b‖∗y+ ‖c‖∗y to (4.56) and
then plugging (4.57), (4.60) and (4.61) into the resulted inequality to obtain

‖∇d̃δ̄(y+, t+)‖∗y ≤ δ1 +
(2δ1 − δ21)

(1− δ1)2
‖p‖y +

‖p‖2y
1− ‖p‖y

.

Finally, by substituting this inequality into (4.55) we get (4.51).

Step 2. Next, we estimate (4.51) in terms of λ̄1 to obtain

λ̄+ ≤ 1

(1−δ+)

[

(

λ̄1

1−δ1−λ̄1

)2

+
(2δ1−δ2)
(1−δ1)2

(

λ̄1

1−δ1−λ̄1

)

+
(1−δ1)δ1
1−δ1−λ̄1

+δ+

]

.(4.62)

Indeed, by using (4.42) with x = x̄δ̄1 and z = x∗1 and then (3.10) we have

(1− δ1)
2∇2d̃δ̄(y, t+) � ∇2d̃(y, t+) � (1− δ1)

−2∇2d̃δ̄(y, t+).

This inequality together with the definition of |‖ · ‖| imply

(1 − δ1)|‖p‖|y ≤ ‖p‖y =
[

pT∇2d(y, t+)p
]1/2 ≤ (1 − δ1)

−1|‖p‖|y.

Moreover, since |‖p‖|y = |‖∇d̃δ̄(y, t+)‖|∗y = λ̄1 due to (4.13), the last inequality is
equivalent to

(4.63) ‖p‖y ≤
λ̄1

1− δ1
.

Note that the right-hand side of (4.51) is nondecreasing w.r.t. ‖p‖y in [0, 1). Substi-
tuting (4.63) into (4.51) we finally obtain (4.62).

Step 3. We further estimate (4.62) in terms of ∆ and λ̄. First, we can easily check
that the right-hand side of (4.62) is nondecreasing with respect to λ̄1, δ1 and δ+.
Now, by using the definitions of ∆ and λ̄, it follows from Lemma 4.6 c) that

λ̄1 ≤ λ̄+∆

1 −∆
.

26 Q. Tran Dinh, I. Necoara, C. Savorgnan and M. Diehl

Since δ+ < 1 and δ1 + 2∆+ λ̄ < 1, substituting this inequality into (4.62), we obtain

λ̄+≤
1

(1 − δ+)

[

δ+ +

(

λ̄+∆

1− δ1 − 2∆− λ̄

)2

+
(2δ1 − δ21)

(1− δ1)2

(

λ̄+∆

1− δ1 − 2∆− λ̄

)

(4.64)

+
δ1(1 − δ1)(1−∆)

1− δ1 − 2∆− λ̄

]

.

The right-hand side of (4.64) is well-defined and also nondecreasing with respect to
all variables.

Step 4. Finally, we facilitate the right-hand side of (4.64) to obtain (4.14). Since
λ̄ ≥ 0, we have

(1− δ1)(1 −∆) = 1−∆− δ1 + δ1∆ = [1− δ1 − 2∆− λ̄] + (λ̄+∆) + δ1∆

≤ [1− δ1 − 2∆− λ̄] + (λ̄1 +∆) + δ1(∆ + λ̄)

= [1− δ1 − 2∆− λ̄] + (1 + δ1)(λ̄+∆).

Therefore, this inequality implies

(4.65)
δ1(1− δ1)(1−∆)

1− δ1 − 2∆− λ̄
≤ δ1 + δ1(1 + δ1)

[

∆+ λ̄

1− δ1 − 2∆− λ̄

]

.

Alternatively, since 0 ≤ δ1 < 1, we have 1 + δ1 ≤ 1
1−δ1 . Thus

2δ1 − δ21)

(1− δ1)2
+ δ1(1 + δ1) = δ1

[

1

(1− δ1)2
+

1

(1− δ1)
+ (1 + δ1)

]

≤ δ1

[

1

(1− δ1)2
+

2

1− δ1

]

.

Substituting inequality (4.65) into (4.64) and then using the last inequality and ξ :=
λ̄+∆

1−δ1−2∆−λ̄ , we obtain (4.14).

Step 5. The nondecrease of the right-hand side of (4.14) is obvious. The inequality
(4.15) follows directly from (4.14) by noting that λ̄ ≡ λ and x̄δ̄ ≡ x∗. �

5. Path-following decomposition algorithm with exact Newton itera-

tions. In Algorithm 1, if we set δ̄ = 0, then this algorithm collapses to the ones
considered in [10, 15, 22, 28, 29]. However, we emphasize the following points.

1. We consider this variant as a special case of the algorithm presented in the
previous sections which is called path-following decomposition algorithm with
exact Newton iterations.

2. In [10, 15, 22, 28, 29], since the primal subproblem (3.2) is solved exactly, the
family {d(·, t)}t>0 of the smooth dual functions is strongly self-concordant due
to Legendre transformation. Consequently, the standard theory of interior
point methods in [16] can be applied to minimize this function. In contrast
to those, in this paper we analyze directly the path-following iterations to
select appropriate parameters for implementation.

Note that the radius of the neighbourhood of the analytic center in Algorithm 3 below
is β∗ = 1

2 (3−
√
5) ≈ 0.381966 compared to the one used in literature, β∗ = 2−

√
3 ≈

0.26795.

An Inexact Perturbed Path-Following Method for Lagrangian Decomposition 27

5.1. Analyzing the exact path-following iteration. Let us assume that the
primal subproblem (3.2) is solved exactly, i.e. δ̄ = 0. Then, we have x̄δ̄ ≡ x∗

and δ(x̄δ̄, x
∗) = 0 for all y ∈ Y and t > 0. Moreover, it follows from (4.17) that

∆ = ∆∗ = ‖x∗(y, t+) − x∗(y, t)‖x∗(y,t). We consider one step of the path-following
scheme with exact full-step Newton iterations:

(5.1)

{

t+ := t−∆t, ∆t > 0,

y+ := y −∇2d(y, t+)
−1∇d(y, t+) ≡ y −∇2d̃(y, t+)

−1∇d̃(y, t+).

For sake of notation simplicity, we denote by λ̃ := λd̃(·,t)(y), λ̃1 := λd̃(·,t+)(y) and

λ̃+ := λd̃(·,t+)(y+). It follows from (4.15) of Lemma 4.2 that

(5.2) λ̃+ ≤
(

λ̃+∆∗

1− 2∆∗ − λ̃

)2

.

Now, we fix β ∈ (0, 1) such that λ̃ ≤ β. We need to find a condition on ∆ such that
λ̃+ ≤ β. Indeed, since the right-hand side of (5.2) is nondecreasing with respect to λ̃,

it implies that λ̃+ ≤
(

∆∗+β
1−2∆∗−β

)2

. Thus λ̃+ ≤ β if ∆∗+β
1−2∆∗−β ≤ √

β which leads to

(5.3) 0 ≤ ∆∗ ≤ ∆̄∗ :=

√
β(1 −√

β − β)

1 + 2
√
β

,

provided that

(5.4) 0 < β < β∗ :=
3−

√
5

2
≈ 0.381966.

Since ∆ ≡ ∆∗, according to (4.18), we can choose

(5.5) ∆t := σt =
∆̄∗t√

ν + (
√
ν + 1)∆̄∗ ,

where σ := ∆̄∗

√
ν+(

√
ν+1)∆̄∗

. Therefore, t is updated by t+ := t −∆t = (1 − σ)t. Note

that t decreases linearly with the contraction factor (1− σ).

In particular, if we choose β = β∗

4 ≈ 0.095492 then ∆̄∗ ≈ 0.113729, which leads

to (1 − σ) =
√
ν(∆̄∗+1)√

ν(∆̄∗+1)+∆̄∗
≈ 1.1137

√
ν

1.1137
√
ν+0.1137

.

5.2. The algorithm and its convergence. Let us fix an initial value t = t0 > 0
and β ∈ (0, β∗), where β∗ is given in (5.4). First, we apply Phase 1 to find a starting
point y0 ∈ Y such that λ̃0 := λd̃(·,t0)(y

0) ≤ β. This phase is carried out by applying

the damped Newton iteration scheme proposed in [17]. Then we perform the path-
following algorithm. From Definition 3.8, we can see that if tk ≤ εd

ω∗(β)
then yk is a

2εd-solution of (2.2). The algorithm is presented in detail as follows.

Algorithm 3. (Path-following algorithm with exact Newton iterations)

Initialization: Perform the following steps:

1. Fix a constant β ∈ (0, β∗) (e.g. β = 1
4β

∗), where β∗ = 3−
√
5

2 ≈ 0.381966.

2. Compute ∆̄ :=
√
β(1−√

β−β
1+2

√
β

and σ := ∆̄√
ν+(

√
ν+1)∆̄

.

28 Q. Tran Dinh, I. Necoara, C. Savorgnan and M. Diehl

3. Fix a tolerance εd > 0 and choose an initial value t0 > 0.

Phase 1. (Finding a starting point).

1. Choose an arbitrary starting point y0,0 ∈ Y .

For j = 0, 1, · · · do
1. Solve exactly the primal subproblem (3.2) in parallel to obtain x∗(y0,j, t0).
2. Evaluate ∇d(y0,j , t0) and ∇d(y0,j , t0) by (3.10) and (3.10), respectively.
3. Compute the Newton decrement λ̃j = λd̃(·,t0)(y

0,j).

4. If λ̃j ≤ β then set y0 := y0,j and terminate.
5. Update y0,j+1 as y0,j+1 := y0,j−αj∇2d(y0,j , t0)

−1∇d(y0,j , t0), where the step
size αj :=

1
1+λ̃j

∈ (0, 1].

End of For.
Phase 2. (Path-following iterations).
For k = 0, 1, · · · do

1. If tk ≤ εd
ω∗(β)

then terminate.

2. Update tk as tk+1 := (1 − σ)tk.
3. Solve exactly the primal subproblem (3.2) in parallel to obtain a solution
x∗(yk, tk+1).

4. Evaluate ∇d(yk, tk+1) and ∇d(yk, tk+1) by (3.10) and (3.10), respectively.
5. Update yk+1 as yk+1 := yk +∆yk = yk −∇2d(yk, tk+1)

−1∇d(yk, tk+1).

End of For.

As in Algorithm 1, the main task of this algorithm is Step 1 in Phase 1 and
Step 3 in Phase 2, which can be carried out in parallel, and Step 5 in Phase 1 and
Step 4 in Phase 2, which require a centralized computation to solve the linear system
∇2d(yk, tk+1)∆y = −∇d(yk, tk+1) (see Section 6). In an implementation, the primal
subproblem can not be solved exactly but it must be solved up to a very high accuracy.

Since d̃(·, t0) is standard self-concordant due to Lemma 3.4. By [17, Theorem
4.1.12], the number of iterations to obtain y0 ∈ Y such that λd̃(·,t0)(y

0) ≤ β does not
exceed

(5.6) J̄max :=

⌊

d̃(y0,0, t0)− d̃∗(t0)
ω(β)

⌋

+ 1 =

⌊

d(y0,0, t0)− d∗(t0)
t0ω(β)

⌋

+ 1.

The number J̄max not only depends on the distance d(y0,0, t0)−d∗(t0) but also on t0. If
we choose t0 small then J̄max is large, while the number of iterations in Algorithm 3 is
small. Therefore, in the implementation, we need to balance between these quantities
to get a good performance.

The convergence of Phase 2 in Algorithm 3 is stated in the following theorem.

Theorem 5.1. Let t0 > 0 and y0 ∈ Y such that λd̃(·,t0)(y
0) ≤ β. Then the

maximum number of iterations k needed by Algorithm 3 to obtain a 2εd - solution yk

of (2.2) does not exceed

(5.7) k̄ :=

ln
(

t0ω∗(β)
εd

)

ln
(

1 + ∆̄∗√
ν(∆̄∗+1)

)

+ 1,

where ∆̄∗ is defined by (5.3).

An Inexact Perturbed Path-Following Method for Lagrangian Decomposition 29

Proof. From Step 2 of Algorithm 3, we have tk = (1−σ)kt0 =
(

1 + ∆̄∗

√
ν(∆̄∗+1)

)k

t0.

Algorithm 3 is terminated if tk ≤ εd
ω∗(β)

. Thus
(

1 + ∆̄∗

√
ν(∆̄∗+1)

)k

≤ εd
t0ω∗(β)

, which leads

to (5.7).

Remark 7 (The worst-case complexity). Since ln
(

1 + ∆̄∗

√
ν(∆̄∗+1)

)

∼ ∆̄∗

√
ν(∆̄∗+1)

,

the worst-case complexity of Algorithm 3 is O(
√
ν ln(t0/εd)).

Remark 8 (Damped Newton iteration). Note that, at Step 5 of Algorithm 3,
we can use a damped Newton iteration yk+1 := yk − αk∇2d(yk, tk+1)

−1∇d(yk, tk+1)
instead of the full-step Newton iteration, where αk = (1 + λd̃(·,tk+1)

(yk))−1. In this

case, with the same argument as before, we can compute β∗ = 0.5 and ∆∗ =
√
0.5β−β

1+
√
0.5β

.

6. Discussion on implementation. In this section, we first show how to han-
dle a general concave objective function. Next, we discuss on solving the primal
subproblem (3.2) including local equality constraints. Finally, we briefly describe a
parallel method to compute the Newton-type direction for the master problem.

6.1. Handling general objective function. If φi is nonlinear, concave and its
epi-graph is endowed with a self-concordant barrier for some i ∈ IM := {1, . . . ,M},
then we propose to use slack variables to move the objective function into constraints.
Let us denote by x̂i := (xTi , si)

T and

X̂i := {(xi, si) | xi ∈ Xi, si ≥ si, φi(xi) ≥ si} ,
for a sufficiently small value si such that the constraint si ≥ si is inactive. Let F̂i
be a self-concordant barrier of X̂i and let ĉi := (0T , 1)T ∈ R

ni+1. Then problem
(1.1) can be transformed into a convex separable optimization problem with linear
objective function. In this case, the algorithms developed in the previous sections can
be applied to solve the resulting problem.

If φi is concave quadratic then, according to [16, Theorem 3.3.1], we can construct
a self-concordant barrier Gi(x̂i) := − ln(φi(xi)− si) for the epi-graph of φi. Particu-
larly, the optimality condition for this problem is ĉ + ÂT y − t∇F̂ (x̂) = 0, which can
be written as

{

AT y − t∇F (x)− tdiag(fi(xi)− si)
−1∇f(x) = 0,

tdiag(fi(xi)− si)
−1 = 1.

By substituting the second line into the first line of the above expression, we obtain

AT y − t∇F (x) +∇f(x) = 0.

However, this condition is indeed the optimality condition of the following problem

d(y, t) := max
x∈int(X)

{

f(x) + yT (Ax− b)− t[F (x)− F (xc)]
}

.(6.1)

Consequently, the algorithms developed in the previous sections can be applied to
solve (1.1) without moving φi into the constraints.

Several examples of convex problems for which the logarithmic function Gi(x̂i)
is self-concordant can be found in [8]. Note that, in some problems, we may need to
reformulate the epi-graph of fi to obtain a self-concordant barrier. For example, many
optimization problems in network use an objective function of the form φi(xi) =

xi

1−xi
,

where 0 ≤ xi < 1. The inequality presented the epi-graph of φi is
xi

1−xi
≤ si, which

is equivalent to
√

(xi + si)2 + 4 ≤ xi − si − 2. The last inequality is indeed a second
order cone constraint endowed with a 2-self-concordant barrier [16].

30 Q. Tran Dinh, I. Necoara, C. Savorgnan and M. Diehl

6.2. Solving the primal subproblems. Let us recall the primal subproblem in
(6.1) with a nonlinear objective function. We need to solve this problem inexactly up

to a desired accuracy ε(t) > 0, e.g. ε(t) = δ̄t
(ν+2

√
ν)(1+δ̄)

. Note that the approximate

optimality condition of (3.4) becomes

(6.2) ‖∇f(x) +AT y − t∇F (x̄)‖∗xc ≤ ε(t).

By separability, this approximate problem can be solved in parallel as

(6.3) ‖∇fi(x) +ATi y − t∇Fi(x̄i)‖∗xc
i
≤ εi(t), εi(t) ≥ 0, i = 1, . . . ,M,

where
∑M
i=1 εi(t) = ε(t). In principle, we can choose εi(t) =

ε(t)
M . However, in some

practical situations, it is important to choose different εi(t) for different components,
especially, when some component problems can be solved analytically in a closed form.

Since Fi is standard self-concordant, the function ψi(xi; y, t) := Fi(xi)−t−1(fi(xi)+
yTAixi) is also standard self-concordant. Moreover,∇ψi(xi; y, t) = ∇Fi(xi)−t−1(∇fi(xi)+
ATi y) and ∇2ψi(xi; y, t) = ∇2Fi(xi)−∇2fi(xi). Since ∇2ψi(xi; y, t) ≻ 0, we define

λψi
(xi) :=

[

∇ψi(xi; y, t)∇ψi(xi; y, t)−1∇ψi(xi; y, t)
]−1/2

,

the Newton decrement of ψi.
Now, let us apply Newton method to solve problem (6.2). First, we fix βi ∈ (0, β∗),

where β∗ := 1
2 (3 −

√
5), and choose x0i ∈ int(Xi). Then, we generate a sequence

{xji}j≥0 as

xj+1
i := xji + αij∆x

j
i ,

where(6.4)
∆xji := −∇2ψi(x

j
i ; y, t)

−1∇ψi(xi; y, t) and αij ∈ (0, 1].

Theoretically, the step-size αij can be chosen as αij := 1 if λψi
(xji) ≤ βi and αij :=

(1 + λψi
(xji))

−1, otherwise. However, this choice is usually too conservative and not
preferable in practice. Thus one can use an appropriate line-search procedure to select
αij . Note that in linear programming, Fi is diagonal, e.g. Fi(xi) = diag(− ln(xi)),
so that computing the Newton iteration (6.4) requires a low computational cost. In
general, we have to solve a linear system of the form

∇2ψi(x
j
i ; y, t)∆x

j
i = −∇ψi(xi; y, t)

to obtain a Newton direction ∆xji . The convergence of the Newton scheme (6.4)
can be found in [17]. Note that in Algorithms 1 and 2, (6.3) is solved repeatedly at
different tk. It is important to warm-start the Newton iteration (6.4) by using the
finally approximate solution of the previous iterate tk−1 as a starting point for the
current one tk.

Finally, if the local equality constraints Eixi = fi are available in (1.1) for some
i ∈ {1, . . . ,M}, then the KKT condition of the primal subproblem i becomes

(6.5)

{

ci +ATi y + ETi zi − t∇Fi(xi) = 0,

Eixi − fi = 0.

Instead of the full KKT system (6.5), we consider a reduced KKT condition as follows

(6.6) ZTi (ci +ATi y)− tZTi ∇Fi(Zixzi +R−T
i fi) = 0.

An Inexact Perturbed Path-Following Method for Lagrangian Decomposition 31

Here, (Qi, Ri) is a QR-factorization of ETi and [Yi, Zi] = Qi is a basis of the range
space and the null space of ETi , respectively. Due to the invariance of the norm ‖·‖x∗ ,
we can show that ‖x̄δ̄−x∗‖x∗ = ‖x̄z

δ̄
−x∗z‖x∗z . Therefore, the condition (4.1) coincides

with ‖x̄z
δ̄
− x∗z‖x∗z ≤ δ̄. However, the last condition is satisfied if

(6.7) ‖ZTi (ci +ATi y)− tZTi ∇Fi(Zixzi +R−T
i fi)‖∗xcz

i
≤ εi,

where
∑M
i=1 εi = εp and εp is defined by (4.9). Note that the QR-factorization of ETi

can be computed one time, a priori.

6.3. Computing the inexact perturbed Newton direction. Let us rewrite
the inexact-perturbed Newton direction in Algorithms 1 and 2 in a unified formula:

∆yk := −∇2dδ̄(y
k, t)−1∇dδ̄(yk, t),

where t can be tk+1 or t0. We discuss in this subsection how to compute ∆yk in an
appropriate way by taking into account the specific structure of problem (1.1). Note
that ∆yk is the solution of the following linear system:

(6.8) ∇2dδ̄(y
k, t)∆yk = −∇dδ̄(yk, t).

The gradient vector ∇dδ̄(yk, t) is computed as

∇dδ̄(yk, t) = Ax̄δ̄(y
k, t)− b =

M
∑

i=1

Aix̄i(y
k, t)− b := gk,

and the Hessian matrix ∇2dδ̄(y
k, t) is obtained from

∇2dδ̄(y
k, t) =

1

t

M
∑

i=1

Ai∇2Fi(x̄i(y
k, t))−1ATi :=

M
∑

i=1

AiG
k
iA

T
i .

Note that each block Aix̄i(y
k, t) as well as Ai∇2Fi(x̄i(y

k, t))−1ATi can be computed
in parallel. Then, the linear system (6.8) can be written as

(6.9)

(

M
∑

i=1

AiG
k
iA

T
i

)

∆yk = −gk.

Sine matrix Gki � 0 and
∑M
i=1 AiG

k
iA

T
i ≻ 0, one can apply either Cholesky-type

factorizations or conjugate gradient (CG) methods to solve this problem. Note that
the CG method only requires matrix-vector operations. More details on parallel
solution of (6.8) can be found, e.g., in [15, 29].

7. Numerical Tests. In this paper, we test the algorithms developed in the
previous sections by solving a routing problem with congestion cost. This problem
appears in the area of telecommunications and in other network flow problems such
as transportation [9]. Let us consider a network G = (N ,A), where N is the set of
nodes and A is the set of links. Let C be a set of commodities to be sent through the
network G. Each commodity k ∈ C has a source sk ∈ N , a destination dk ∈ N and
a certain amount of demand dk ≥ 0. Each link (i, j) ∈ A has a maximum capacity
bij ≥ 0 in which no congestion is assumed to be appeared, and a linear cost per unit
cij . The variable uijk denotes the amount of commodity k that is sent through the

32 Q. Tran Dinh, I. Necoara, C. Savorgnan and M. Diehl

link (i, j). Flow exceeding bij may be sent through the link (i, j) but will then causes
congestion with an additional nonlinear cost function gij depending on the exceeded
value vij considered as a variable. We denote by Ns and Nd the sets of sources and
destinations, respectively. Let Nc := N\(Ns ∪Nd) and assume that each node in Nc

has at least one ingoing link and one outgoing link.
Mathematically, the optimization model of the routing problem with congestion

(RPC) can be formulated as, see, e.g. [9]:

(7.1)

min
uijk,vij

∑

k∈C

∑

(i,j)∈A
cijuijk +

∑

(i,j)∈A
wijgij(vij)

s.t.
∑

j:(i,j)∈A
uijk −

∑

j:(j,i)∈A
ujik =

dk if i ∈ Ns,

−dk if i ∈ Nd,

0 otherwise,
∑

k∈C
uijk − vij = bij , (i, j) ∈ A,

uijk ≥ 0, vij ≥ 0, (i, j) ∈ A,

where wij ≥ 0 is the weighting of the additional cost function gij for (i, j) ∈ A.
In this example we assume that the additional cost function gij is given by one

of the following functions: a) gij(vij) = − ln(vij), the logarithmic function or b)
gij(vij) = vij ln(vij), the entropy function. With these choices, it was shown in [17],
the self-concordant barrier function corresponding to the epi-graph

Egij := {(vij , s) ∈ R+ × R | gij(vij) ≤ s}

of gij is given by: a) Fij(vij , sij) = − ln vij − ln(ln vij + sij) with parameter νij = 2
or b) Fij(vij , sij) = − ln vij − ln(sij − vij ln vij) with parameter νij = 2, respectively.
Now, by using slack variables sij , we can move the nonlinear terms of the objective
function to the constraints. The objective function of the resulting problem becomes

(7.2) f(u, v, s) :=
∑

k∈C

∑

(i,j)∈A
cijuijk +

∑

(i,j)∈A
wijsij ,

with additional constraints gij(vij) ≤ sij , (i, j) ∈ A.
It is clear that problem (7.1) is separably convex with respect to M components,

n variables uijk, vij and sij and m coupling constraints, where M := nA, n :=
nCnA + 2nA and m := nCnN , where nA := |A|, nC := |C| and nN := |N |. Let

(7.3) Xij :=

{

vij≥0,
∑

k∈C
uijk−vij=bij , gij(vij)≤sij , (i, j) ∈ A, k ∈ C

}

, (i, j) ∈ A.

Then problem (7.1) can be reformulated in the form of (1.1) with linear objective
function (7.2) and the local constraint set (7.3). Note that each primal subproblem
of the form (3.2) has nC + 2 variables and one equality constraint.

The aim is to compare the effect of the parameters on the performance of the
algorithms. We consider two variants of Algorithm 1, where we set δ̄ = 0.5δ̄∗ and
δ̄ = 0.25δ̄∗ in Phase 1 and δ̄ = 0.01 and δ̄ = 0.005 in Phase 2, respectively. We
denote these variants by A1-v1 and A1-v2, respectively. For Algorithm 3, we also
consider two cases. In the first case we set the tolerance of the primal subproblem
to εp = 10−6, and the second one is 10−10, where we call them as A3-v1 and A3-v2,

An Inexact Perturbed Path-Following Method for Lagrangian Decomposition 33

respectively. All variants are terminated with the same tolerance εd = 10−4. The
initial barrier parameter value is set to t0 := 0.25.

The algorithms are implemented in C++ running on a PC Desktop Intel R© Core(TM)2
Quad CPU Q6600 with 2.4GHz and 3Gb RAM. The algorithms are paralellized by
using OpenMP. The input data is generated randomly, where the nodes of the net-
work are generated in a rectangle [0, 100]× [0, 300], the demand dk is in [50, 500], the
weighting vector w is set to 10, the congestion vector is in [10, 100] and the linear cost
cij is the Euclidean length of the link (i, j) ∈ A. The nonlinear cost function gij is
chosen randomly between two functions in a) and b) defined above.

We test the algorithms on a collection of 150 random problems, where 108 prob-
lems are solve successfully. The size of these problems varies from M = 6 to 14.280
components, n = 84 to 77.142 variables and m = 15 to 500 coupling constraints.

The performance profiles are shown in Figures 7.1 and 7.2. The first figure shows
the performance profile of 4 variants which consists of the total CPU time, the total
time of solving the primal subproblems in two phases, the CPU time of Phase 1 and
the CPU time of Phase 2 separately in second. As we can see from this figure that

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

τ (Total CPU time of Phase 1 and Phase 2)

P{
 lo

g 2(r p,
s) ≤

 τ:
 1

 ≤
s

≤
n s }

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

τ (Total CPU time of the solving primal subproblems)

P{
 lo

g 2(r p,
s) ≤

 τ:
 1

 ≤
s

≤
n s }

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

τ (CPU time of Phase 1 in second)

P{
 lo

g 2(r p,
s) ≤

 τ:
 1

 ≤
s

≤
n s }

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

τ (CPU time of Phase 2 in second)

P{
 lo

g 2(r p,
s) ≤

 τ:
 1

 ≤
s

≤
n s }

A1−v1
A1−v2
A3−v1
A3−v2

Fig. 7.1. The CPU time performance profile of four variants.

Algorithm 1 works better than Algorithm 3 in terms of the total CPU time and the
CPU time for solving the primal subproblems. Moreover, the accuracy in solving the
primal subproblems also affects the performance of the algorithms. We also observe
that the number of iterations for solving the master problem in Phase 1 for all four
variants are almost similar, while they are different in Phase 2. However, Phase 2 is
performed when the iteration point is in the quadratic convergence region, it only takes
few steps toward the desired approximate solution. Therefore, the computational time
of Phase 1 dominates the one in Phase 2. Moreover, in this example, the structure of
the master problem is almost dense, we do not use any sparse linear algebra solver.
Consequently, the algorithms developed in this paper are recommended to the class
of problems with many variables and few coupling constraints in the case the master
dual problem possesses dense structure. In other applications, the efficient methods
for sparse linear algebra should be taken into account.

34 Q. Tran Dinh, I. Necoara, C. Savorgnan and M. Diehl

We also compare the total number of iterations for solving the primal subproblems
in Figure 7.2. It can be seen from this figure that Algorithm 1 is superior in terms
of iterations compared to Algorithm 3, although the accuracy of solving the primal
subproblem in Algorithm 3 is set to 10−6, which is not too high in interior point
methods. The performance profiles also reveal the effect of the parameters on the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

τ (Total of number of iterations for solving the primal subproblems)

P
{ l

og
2(r

p,
s)≤

 τ
: 1

 ≤
 s

 ≤
 n

s }

A1−v1
A1−v2
A3−v1
A3−v2

Fig. 7.2. The iteration performance profile of four variants.

number of iterations and computational time. Consequently, in practice, it is valuable
to carefully choose appropriate parameters for a specific implementation.

8. Concluding remarks. We have proposed a smoothing technique for La-
grangian decomposition using self-concordant barriers in large-scale convex separable
optimization. We provided global and local approximations to the dual function.
Then, we proposed a path-following algorithm with inexact perturbed Newton iter-
ations. The convergence of the algorithm has been analyzed and its complexity has
been estimated. The theory presented in this paper is significant in practice, since it
allows to solve the primal subproblem inexactly. Moreover, we allow one to balance
between the accuracy of solving the primal subproblem and the convergence rate of the
path-following algorithm. Even in the exact case, we also obtained a direct analysis
for the convergence of the path-following algorithm which was presented by Mehrotra
[12] et al and Shida [22]. The details of implementation and numerical tests have also
been presented. Extensions to the inexactness of linear algebra and to distributed
implementation are an interesting and significant future research direction.

Acknowledgments. This research was supported by Research Council KUL: CoE EF/05/006

Optimization in Engineering(OPTEC), GOA AMBioRICS, IOF-SCORES4CHEM, several

PhD/postdoc & fellow grants; the Flemish Government via FWO: PhD/postdoc grants,

projects G.0452.04, G.0499.04, G.0211.05, G.0226.06, G.0321.06, G.0302.07, G.0320.08 (con-

vex MPC), G.0558.08 (Robust MHE), G.0557.08, G.0588.09, research communities (IC-

CoS, ANMMM, MLDM) and via IWT: PhD Grants, McKnow-E, Eureka-Flite+EU: ERNSI;

FP7-HD-MPC (Collaborative Project STREP-grantnr. 223854), Contract Research: AM-

INAL, HIGHWIND, and Helmholtz Gemeinschaft: viCERP; Austria: ACCM, and the

Belgian Federal Science Policy Office: IUAP P6/04 (DYSCO, Dynamical systems, control

and optimization, 2007-2011), European Union FP7-EMBOCON under grant agreement no

248940; CNCS-UEFISCDI (project TE231, no. 19/11.08.2010); ANCS (project PN II, no.

80EU/2010); Sectoral Operational Programme Human Resources Development 2007-2013

of the Romanian Ministry of Labor, Family and Social Protection through the Financial

An Inexact Perturbed Path-Following Method for Lagrangian Decomposition 35

Agreement POSDRU/89/1.5/S/62557.

Appendix A. The proof of the technical statements. In this appendix, we
provide a complete proof of Lemmas 3.1, 3.2 and 3.3.

A.1. The proof of Lemma 3.1. Proof. Since Fi is standard self-concordant,
according to [17, Theorem 4.1.7, inequality 4.1.8] we have

Fi(yi) ≥ Fi(xi) +∇Fi(xi)T (yi − xi) + ω(‖yi − xi‖xi
)

≥ Fi(xi)− ‖∇Fi(xi)‖∗xi
‖yi − xi‖xi

+ ω(‖yi − xi‖xi
).

This inequality implies

Fi(xi)− Fi(yi) ≤ ‖∇Fi(xi)‖∗xi
‖yi − xi‖xi

− ω(‖yi − xi‖xi
)

≤ max
xi∈dom(Fi)

{

‖∇Fi(xi)‖∗xi
‖yi − xi‖xi

− ω(‖yi − xi‖xi
)
}

≤ max
ξ:=‖yi−xi‖xi

≥0

{

‖∇Fi(xi)‖∗xi
ξ − ω(ξ)

}

= ω∗(‖∇Fi(xi)‖∗xi
).

Here, the last equality follows from [17, Lemma 4.1.4] and the assumption that
λFi

(x∗i (y, t)) < 1. Using the above inequality with yi = xci and xi = x∗i (y, t) we
have

Fi(x
∗
i (y, t))− Fi(x

c
i) ≤ ω∗(λFi

(x∗i (y, t)).(A.1)

Now, we prove (3.5). Let xi(α) := x∗i (y, t) +α(x∗i (y)− x∗i (y, t)) with α ∈ [0, 1). Since
x∗i (y, t) ∈ int(Xi) and α < 1, xi(α) ∈ int(Xi). By applying [16, inequality 2.3.3], we
have

Fi(xi(α)) ≤ Fi(x
∗
i (y, t))− νi ln(1− α),

which is equivalent to

(A.2) Fi(xi(α)) − Fi(x
c
i) ≤ Fi(x

∗
i (y, t))− Fi(x

c
i)− νi ln(1− α).

Now, from the definition of di(y, t), the concavity of φi and di(y), and (A.1) we have

di(y, t)= max
xi∈int(Xi)

{

φi(xi) + yTAixi − t[Fi(xi)− Fi(x
c
i)]
}

≥ max
α∈[0,1)

{

φi(xi(α)) + yTAixi(α)− t[Fi(xi(α)) − Fi(x
c
i)]
}

≥ max
α∈[0,1)

{

α[φi(x
∗
i (y)) + yTAix

∗
i (y)] + (1− α)[φi(x

∗
i (y, t)) + yTAix

∗
i (y, t)]

(A.3)
−t[Fi(xi(y, t))− Fi(x

c
i)] + νit ln(1− α)

}

= max
α∈[0,1)

{

αdi(y) + (1 − α)di(y, t)− αt[Fi(xi(y, t))− Fi(x
c
i)] + νit ln(1− α)

}

(A.1)

≥ max
α∈[0,1)

{

αdi(y) + (1 − α)di(y, t) + tνi ln(1− α)− αtω∗(λFi
(x∗i (y, t)))

}

.

Rearranging (A.3), we obtain

(A.4) di(y, t) ≥ di(y)− tω∗(λFi
(x∗i (y, t))) + tνi

ln(1− α)

α
, ∀α ∈ [0, 1).

36 Q. Tran Dinh, I. Necoara, C. Savorgnan and M. Diehl

Since ln(1−α)
α ≤ −1 for all α ∈ (0, 1) and limα→0+

ln(1−α)
α = −1. Inequality (A.4)

implies that

di(y, t)− di(y) ≥ −t[ω∗(λFi
(x∗i (y, t))) + νi].

which is the right-hand side of (3.5). The left-hand side of (3.5) follows from the
relation Fi(xi)− Fi(x

c
i) ≥ ω(‖xi − xci‖xc

i
) ≥ 0 due to (3.1).

A.2. The proof of Lemma 3.2. Proof. The second inequality in (3.7) is proved
in Lemma 3.1. We now prove the third one. Let us denote by xτi (y) := xci + τ(x

∗
i (y)−

xci), where τ ∈ [0, 1]. Since Fi is νi-self-concordant, it follows from [16, inequality
(2.3.3)] that

Fi(x
τ
i (y)) ≤ Fi(x

c
i)− νi ln(1− τ), τ ∈ [0, 1).

Combining this inequality and the concavity of φi we have

di(y, t)= max
xi∈int(Xi)

{

φi(xi) + yTAixi − t[Fi(xi)− Fi(x
c
i)]
}

≥ max
τ∈[0,1)

{

φi(x
τ
i (y)) + yTAix

τ
i (y)− t[Fi(x

τ
i (y))− Fi(x

c
i)]
}

(A.5)
≥ max
τ∈[0,1)

{

(1−τ)[φi(xci)+yTAixci]+τ [φi(x∗i (y))+yTAix∗i (y)]+tν1 ln(1−τ)
}

= max
τ∈[0,1)

{(1 − τ)dci (y) + τdi(y) + tνi ln(1− τ)} .

Now, we maximize the function ξ(τ) := (1 − τ)dci (y) + τdi(y) + tνi ln(1 − τ) in last

line of (A.5) with respect to τ ∈ [0, 1) to obtain τ∗ =
[

1− tνi
di(y)−dci (y)

]

+
, where

[a]+ := max{0, a}. Therefore, if di(y)−d
c
i (y)

tνi
≤ 1, i.e. τ∗ = 0, then di(y)− dci (y) ≤ tνi.

Otherwise, by substituting τ∗ into the last line of (A.5), we obtain

di(y) ≤ di(y, t) + tνi

(

1 +

[

ln
di(y)− dci (y)

tνi

]

+

)

.

Summing up this inequality for i = 1, 2 we get (3.7).

A.3. The proof of Lemma 3.3. Proof. Let us fix κ ∈ (0, 1), it is trivial that
ln(x−1) ≤ x−κ for 0 < x ≤ κ1/κ. Therefore, we have

νit(1+[ln(Ki/(νit)]+) ≤ νit(1+(Ki/(νit))
−κ) ≤ [νi+νi(Ki/νi)

κ]t1−κ, ∀t ≤ νi
Ki
κ1/κ.

Consequently, if t ≤ min
{

νi
Ki
κ1/κ,

(

ε
2[νi+νi(Ki/νi)κ

)1/(1−κ)}
then νit(1+[ln(Ki/(νit)]+) ≤

0.5ε. Summing up this inequality for i = 1, 2, we get (3.8) in Lemma 3.3.

REFERENCES

[1] Bernstein, D.S.: Matrix mathematics: Theory, facts and formulas with application to linear

systems theory. Princeton University Press, Princeton and Oxford (2005).
[2] Bertsekas, D.P., and Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Meth-

ods. Englewood Cliffs, NJ: Prentice-Hall, (1989).
[3] Bertsekas, D.P.: Incremental proximal methods for large-scale convex optimization. Report

LIDS - 2847 (2010).

An Inexact Perturbed Path-Following Method for Lagrangian Decomposition 37

[4] Boyd, S. and Vandenberghe, L.: Convex Optimization. University Press, Cambridge (2004).
[5] Chen, G., and Teboulle, M.: A proximal-based decomposition method for convex minimization

problems. Math. Program., 64, 81–101 (1994).
[6] Connejo, A. J., Mı́nguez, R., Castillo, E. and Garćıa-Bertrand, R.: Decomposition Techniques

in Mathematical Programming: Engineering and Science Applications. Springer-Verlag,
(2006).

[7] Fukuda, M., Kojima, M. and Shida, M.: Lagrangian dual interior-point methods for semidefinite
programs. SIAM J. Optim. 12, 1007–1031 (2002).

[8] Hertog, D.D.: Interior point approach to linear, quadratic and convex programming: Algo-

rithms and complexity. PhD Thesis, Delf University, Netherland (1992).
[9] Holmberg, K. and Kiwiel, K.C.: Mean value cross decomposition for nonlinear convex problem.

Optim. Methods and Softw. 21(3), 401–417 (2006).
[10] Kojima, M., Megiddo, N. and Mizuno, S. et al: Horizontal and vertical decomposition in

interior point methods for linear programs. Technical Report. Information Sciences, Tokyo
Institute of Technology (1993).

[11] Komodakis, N., Paragios, N., and Tziritas, G.: MRF Energy Minimization & Beyond via
Dual Decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence (in
press).

[12] Mehrotra, S. and Ozevin, M. G.: Decomposition Based Interior Point Methods for Two-Stage
Stochastic Convex Quadratic Programs with Recourse. Operation Research, 57(4), 964–
974 (2009).

[13] Neveen, G., Jochen, K.: Faster and simpler algorithms for multi-commodity flow and other
fractional packing problems. SIAM J. Comput. 37(2), 630–652 (2007).

[14] Necoara, I. and Suykens, J.A.K.: Applications of a smoothing technique to decomposition in
convex optimization, IEEE Trans. Automatic control, 53(11), 2674–2679 (2008).

[15] Necoara, I. and J.A.K. Suykens, J.A.K.: Interior-point Lagrangian decomposition method for
separable convex optimization. J. Optim. Theory Appl., 143, 567–588 (2009).

[16] Nesterov, Y. and Nemerovskii, A.: Interior point polynomial methods in convex programming:

Theory and applications. SIAM, Philadenphia (1994).
[17] Nesterov, Y.: Introductory Lectures on Convex Optimization. Kluwer, Boston (2004).
[18] Nesterov, Y.: Smooth minimization of nonsmooth functions. Math. Program., 103(1):127–152,

(2005).
[19] Renegar, J.: A Mathematical View of Interior-Point Methods in Convex Programming. Society

for Industrial and Applied Mathematics, Philadelphia, 2001.
[20] Samar, S., Boyd, S., and Gorinevsky,D.: Distributed Estimation via Dual Decomposition.

Proceedings European Control Conference (ECC), 1511–1516, Kos, Greece, (2007).
[21] Shapiro, A., Dentcheva, D. and Ruszczyński, A: Lectures on Stochastic Programming: Modeling

and Theory. SIAM, Philadelphia (2009).
[22] Shida, M.: An interior-point smoothing technique for Lagrangian relaxation in large-scale con-

vex programming. Optimization, 57(1), 183–200 (2008).
[23] Tran Dinh, Q., Savorgnan, C. and Diehl, M.: Combining Lagrangian Decomposition and Ex-

cessive Gap Smoothing Technique for Solving Large-Scale Separable Convex Optimization
Problems. http://arxiv.org/abs/1105.5427 , (2011) (submitted).

[24] Wei, E, Ozdaglar, A. and Jadbabaie, A.: A Distributed Newton Method for Network Util-
ity Maximization. LIDS report 2832, http://web.mit.edu/asuman/www/publications.htm,
(2011) (submitted).

[25] Venkat, A., Hiskens, I., Rawlings, J., and Wright, S.: Distributed MPC strategies with appli-
cation to power system automatic generation control. IEEE Trans. Control Syst. Technol.
16(6), 1192–12-6 (2008).

[26] Xiao, L., Johansson, M. and Boyd, S.: Simultaneous routing and resource allocation via dual
decomposition. IEEE Trans. Commun. 52(7), 1136–1144 (2004).

[27] Zhao, G.: Interior point methods with decomposition for solving large-scale linear programs.
J. Optim. Theory Appl. 102, 169–192 (1999).

[28] Zhao, G.: A Log-barrier with Benders decomposition for solving two-stage stochastic programs.
Math. Progam. 90, 507–536 (2001).

[29] Zhao, G.: A Lagrangian dual method with self-concordant barriers for multistage stochastic
convex programming. Math. Progam. 102, 1–24 (2005).

http://arxiv.org/abs/1105.5427
http://web.mit.edu/asuman/www/publications.htm

