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Pattern Matching under Polynomial Transformation∗
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Abstract

We consider a class of pattern matching problems where a normalising transfor-

mation is applied at every alignment. Normalised pattern matching plays a key role

in fields as diverse as image processing and musical information processing where

application specific transformations are often applied to the input. By considering

the class of polynomial transformations of the input, we provide fast algorithms and

the first lower bounds for both new and old problems.

Given a pattern of length m and a longer text of length n where both are assumed

to contain integer values only, we first show O(n logm) time algorithms for pattern

matching under linear transformations even when wildcard symbols can occur in the

input. We then show how to extend the technique to polynomial transformations of

arbitrary degree. Next we consider the problem of finding the minimum Hamming

distance under polynomial transformation. We show that, for any ε > 0, there

cannot exist an O(nm1−ε) time algorithm for additive and linear transformations

conditional on the hardness of the classic 3Sum problem. Finally, we consider a

version of the Hamming distance problem under additive transformations with a

bound k on the maximum distance that need be reported. We give a deterministic

O(nk log k) time solution which we then improve by careful use of randomisation to

O(n
√
k log k logn) time for sufficiently small k. Our randomised solution outputs

the correct answer at every position with high probability.

1 Introduction

We consider pattern matching problems where the task is to find the distance between
a pattern and every substring of the text of suitable length. In the class of problems
we consider, the values in the pattern can first be transformed so as to minimise this
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distance. Further, the selection of which transformation to apply, which is possibly dis-
tinct for each alignment, forms part of the problem that is to be solved. This class of
problems generalises the well known problem of exact matching with wildcards [CH02,
CC07] as well as the set of problems known previously as transposition invariant match-
ing [MNU05], both of which come from the pattern matching literature. However as we
will see, it is considerably broader than both with applications in both image processing
and musical information retrieval.

By way of a first motivation for our work, consider a fundamental problem in image
processing which is to measure the similarity between a small image segment or template
and regions of comparable size within a larger scene. It is well known that the cross-
correlation between the two can be computed efficiently at every position in the larger
image using the fast Fourier transform (FFT). In practice, images may differ in a number
of ways including being rotated, scaled or affected by noise. We consider here the case
where the intensity or brightness of an image occurrence is unknown and where parts
of either image contain don’t care or wildcard pixels, i.e. pixels that are considered to
be irrelevant as far as image similarity is concerned. As an example, a rectangular
image segment may contain a facial image and the objective is to identify the face in a
larger scene. However, some faces in the larger scene are in shadow and others in light.
Furthermore, background pixels around the faces may be considered to be irrelevant for
facial recognition and these should not affect the search algorithm.

In order to overcome the first difficulty of varying intensity within an image, a stan-
dard approach is to compute the normalised distance when comparing a template to part
of a larger image. Thus both template and image are transformed or rescaled in order
to make any matches found more meaningful and to allow comparisons between matches
at different positions. Within the image processing literature the accepted method of
normalisation is to scale the mean and variance of the template and image segments. We
take a slightly different although related approach to normalisation which will allow to
us to show a number of natural generalisations.

We start by defining measures of distance between a pattern P and text T , where P
is a string of length m and T is a string of length n > m, both over the integers. The
squared L2 or Euclidean distance between the pattern and the text at position i is

m−1∑

j=0

(
P [j]− T [i+ j]

)2
.

In this case, for each i ∈ {0, . . . , n − m}, the pattern can be normalised, or fitted as
closely as possible to the text, by transforming the input to minimise the distance.

In the case of degree one polynomial transformations, the normalised L2 distance
between the pattern and the text at position i can now be written as

min
α,β

m−1∑

j=0

(
α+ βP [j] − T [i+ j]

)2
,

where the minimisation is over rational values of α and β. The minimisation is per
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alignment of P and T , hence the values of α and β may (and probably will) differ
between the positions i.

We also consider the case when the input alphabet is augmented with the special
wildcard symbol, denoted “⋆”. A position where either the pattern or text has a wildcard
will not contribute to the distance. That is, the minimisation is carried out using the
sum of the remaining terms. Details are given in the problem definitions in the next
section.

1.1 Problems and our results

The words shift and scale are used to refer to additive and multiplicative transformations
of the pattern, respectively. The input to all our problems is a text T of length n and a
pattern P of length m, and the output is a problem specific distance d(i) between P and
T at every position i ∈ {0, . . . , n−m} of the text. To avoid overloading variable names,
we give the distance d(i) a unique name for each problem.

Problem 1 (Shift-L⋆
2). Normalised L2 distance under shifts. Wildcards are allowed.

d+2 (i)
def
= min

α

m−1∑

j=0

(
α+ P [j]− T [i+ j]

)2
.

When either P [j] = ⋆ or T [i + j] = ⋆, the contribution of the pair to the sum d+2 (i) is
taken to be zero. The minimisation is carried out using the sum of the remaining terms.

Next we define the normalised L2 distance under shifts and scaling, corresponding to
a degree one polynomial transformation of the values of the pattern.

Problem 2 (ShiftScale-L⋆
2). Normalised L2 distance under shifts and scaling. Wild-

cards are allowed.

d12(i)
def
= min

α,β

m−1∑

j=0

(
α+ βP [j] − T [i+ j]

)2
.

When either P [j] = ⋆ or T [i + j] = ⋆, the contribution of the pair to the sum d12(i) is
taken to be zero. The minimisation is carried out using the sum of the remaining terms.

We show that both Shift-L⋆
2 and ShiftScale-L⋆

2 can be solved in O(n logm) time
by the use of FFTs of integer vectors. Our results are stated in Theorems 10 and 11. We
assume the RAM model of computation throughout in order to be consistent with pre-
vious work on matching with wildcards. Further, our techniques also provide O(n logm)
time solutions (Theorems 12 and 13) to the problems of exact shift matching with
wildcards (Shift-Exact⋆) and exact shift-scale matching with wildcards (ShiftScale-

Exact
⋆), formally defined as follows.

Problem 3 (Shift-Exact⋆). Normalised exact matching under shifts. Wildcards are
allowed.

d+
E
(i)

def
=

{
1, ∃α st. α+ P [j] = T [i+ j] for all j ∈ {0, . . . ,m− 1};
0, otherwise.
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Every position j where either P [j] = ⋆ or T [i+ j] = ⋆ is ignored.

Problem 4 (ShiftScale-Exact⋆). Normalised exact matching under shifts and scal-
ing. Wildcards are allowed. The problem is defined similarly to Shift-Exact

⋆, only
that we check whether there exist α and β st. α + βP [j] = T [i + j] for all positions j
(except positions where P [j] = ⋆ or T [i+ j] = ⋆).

We will also discuss extensions to pattern transformations under polynomials of higher
degree in Section 2. In terms of normalised L2 distance we give the following definition.

Problem 5 (Poly-r-L⋆
2). Normalised L2 distance under degree-r polynomial transfor-

mation. Wildcards are allowed. Let f(x) = α0+α1x+α2x
2+ · · ·+αrx

r be a polynomial
of degree r with r > 1.

dr2(i)
def
= min

α0,...,αr

m−1∑

j=0

(
f(P [j])− T [i+ j]

)2
.

When either P [j] = ⋆ or T [i + j] = ⋆, the contribution of the pair to the sum dr2(i) is
taken to be zero. The minimisation is carried out using the sum of the remaining terms.

Note that the problem ShiftScale-L⋆
2 is the same problem as Poly-r-L⋆

2 with degree
r = 1. We will show that Poly-r-L⋆

2 can be solved in O(rn logm+ rwn) time, where w
is the exponent for matrix multiplication (e.g., w ≈ 2.38 when using the Coppersmith-
Winograd algorithm).

The second main topic of our work is on normalised pattern matching problems under
the Hamming distance. The Hamming distance is perhaps the most commonly considered
measure of distance between strings in the field of pattern matching. We therefore define
related normalised versions of our pattern matching problems in a similar way to before.

Problem 6 (Shift-Ham). Normalised Hamming distance under shifts. Wildcards are
not allowed.

d+
H
(i)

def
= min

α

∣∣ { j | α+ P [j] 6= T [i+ j] }
∣∣ .

Problem 7 (ShiftScale-Ham). Normalised Hamming distance under shifts and scal-
ing. Wildcards are not allowed.

d1H(i)
def
= min

α,β

∣∣ { j | α+ βP [j] 6= T [i+ j] }
∣∣ .

Previously it has been shown that Shift-Ham, sometimes also referred to as trans-
position invariant matching, can be solved in O(nm logm) time [MNU05]. It has been
tempting to believe that it might be possible to improve this time complexity, particu-
larly as there exist algorithms for standard non-normalised pattern matching under the
Hamming distance which take O(n

√
m logm) time [Abr87, Kos87]. We show by reduc-

tions from the well known 3Sum problem that for both shift and shift-scale matching
under the Hamming distance there cannot exist an O(nm1−ε) time algorithm for any
ε > 0 (Theorems 18 and 20).
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To circumvent this new conjectured lower bound, we consider as our last problem
a shift version of the k-mismatch problem. In the k-mismatch problem, the Hamming
distance is to be reported at every alignment as long as it is at most k. If it is greater
than k then the algorithm is only required to report that the Hamming distance is large.
We define the problem as follows.

Problem 8 (Shift-k-Mismatch). Normalised k-mismatch under shifts. Wildcards are
not allowed.

d+
M
(i)

def
= min(d+

H
(i), k + 1) .

We first give a simple deterministic O(nk log k) time solution (Theorem 24). We then
consider a decision version of the problem where we output only the locations i where
d+
H
(i) 6 k but not the Hamming distance at those locations. The decision version is

defined as follows.

Problem 9 (Shift-k-Decision). Normalised k-mismatch decision problem under shifts.
Wildcards are not allowed.

d+
D
(i)

def
=

{
0, d+

H
(i) 6 k;

1, otherwise.

Using randomisation we show how to solve this problem in O(cn
√
k log k log n) time

for the case that k <
√

m/6 (Theorem 33). Here c is a constant that can be chosen
arbitrarily to fine tune the error probability. Namely, our algorithm outputs the correct
answer at every alignment with probability at least 1 − 1/nc. We therefore succeed
in breaking our newly introduced running time barrier provided by the reduction from
3Sum for a limited range of values of k.

1.2 Related work

Combinatorial pattern matching has concerned itself mainly with strings of symbolic
characters where the distance between individual characters is specified by some conven-
tion. For the k-mismatch problem, an O(nk) time algorithm was given in 1986 that uses
constant time lowest common ancestor queries on the suffix tree of the pattern and text
in a technique that has subsequently come to be known as ‘kangaroo hopping’ [LV86]. Al-
most 20 years afterwards, the asymptotic running time was finally improved in [ALP04]
to O(n

√
k log k) time by a method based on filtering, the suffix tree (with kangaroo hop-

ping) and FFTs. In 2002, a deterministic O(n logm) time solution for exact matching
with wildcards was given by Cole and Hariharan [CH02] and further simplified in [CC07].
In the same paper by Cole and Hariharan, an O

(
n log(max(m,N))

)
time algorithm for

the exact shift matching problem we consider in Section 2 was presented. Here N is the
largest value in the input. The approach we take to provide a simpler solution for this
problem is similar in spirit to that of [CC07].

There has also been some work in recent years on fast algorithms for distance cal-
culation and approximate matching between numerical strings. A number of different
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metrics have been considered, with for example, O(n
√
m logm) time solutions found for

the L1 distance [Ata01, CCI05, ALPU05] and less-than matching [AF95] problems and
an O(δn logm) time algorithm for the δ-bounded version of the L∞ norm first discussed
in [CI04] and then improved in [CCI05, LP05].

The most closely related work to ours comes under the heading of transposition
invariant matching [LU00]. The original motivation for this problem was within musical
information retrieval where musical search is to be performed invariant of pitch level
transposition. The transposition invariant distance between two equal lengthed strings
A and B is defined to be minα d(A + α,B), where A + α is the string obtained from A
by adding α to every value and the distance d between strings can be variously defined.
Algorithms for transposition invariant Hamming distance, longest common subsequence
(LCS) and Levenshtein (edit) distance amongst others were given in [MNU05] whose time
complexities are close to the known upper bounds without transposition. We show, in
Section 3, lower bounds for the special case of transposition invariant Hamming distance,
which we named Shift-Ham. Normalised pattern matching is also of central interest in
the image processing literature where normalisation is typically performed by scaling the
mean and standard deviation of the template and each suitably sized image segment to
be 0 and 1, respectively. An asymptotically fast method for performing normalised cross-
correlation for template matching, also using FFTs, was given in [Lew95]. The methods
we give in Section 2 have some broad similarity to their approach only in the use of
FFTs to provide fast solutions. Due to the differences in the definition of normalisation
between our work and theirs, the solutions we give are otherwise quite distinct.

As a general class of problems, pattern matching under polynomial transformation
is to the best of our knowledge new. However, if we allow the degree of the polynomial
transformation to increase to m, then determining for which alignment the normalised
distance equals zero is equivalent to the known problem of function matching. Function
matching has a deterministic O(n|ΣP | logm) time solution, where |ΣP | is the size of the
pattern alphabet, and a faster randomised algorithm which runs in O(n log n) time and
has failure probability 1/n [AALP06].

1.3 Basic notation

For a string X of length ℓ, we write X[i] to denote the ith character of X such that
X = X[0]X[1]X[2] · · ·X[ℓ − 1] (the first index is always zero). The s-length substring
of X starting at position i is denoted X[i . . . i + s − 1]. For two strings X and Y , the
notion X‖Y is used to denote the string formed by concatenating X and Y in that order.
All strings in this paper are over the integer alphabet. Therefore, X[j]Y [j] denotes the
product of the numerical characters X[j] and Y [j]. If strings X and Y are of equal
length, we use the notation X · Y for the string with characters (X · Y )[i] = X[i]Y [i].
This element-wise arithmetic is used similarly for addition, subtraction, division and
power. For example, the ith symbol of X2/Y is X[i]2/Y [i]. For a real value k, the scalar
multiplication kX is the string (kX)[i] = kX[i].

The notation Ham(X,Y ) will be used to denote the Hamming distance between equal
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lengthed strings X and Y :

Ham(X,Y )
def
=

∣∣ { i | X[i] 6= Y [i] }
∣∣ .

Throughout this paper we use T to denote the text and P for the pattern. We use n
to denote the length of T and m for the length of P .

Our algorithms in Section 2 make extensive use of FFTs. An important property of
the FFT is that the cross-correlation, defined as

(T ⊗ P )[i]
def
=

m−1∑

j=0

P [j]T [i + j] ,

can be calculated accurately and efficiently for all i ∈ {0, . . . , n − m} in O(n logm)
time (see e.g. [CLR90], Chapter 32). The time complexity is reduced from O(n log n)
to O(n logm) using a standard splitting trick which partitions the text into 2m length
substrings which overlap each other by m characters. When it is clear from the context
we use

∑
as an abbreviation for

∑m−1
j=0 .

We use “⋆” for the single character wildcard symbol. Under arithmetics on strings,
as defined above, we may think of a wildcard as having the value zero. This value
is, however, inconsequential for our purposes, as all expressions in this paper have the
property that whenever a wildcard symbol is involved in some arithmetics, it is multiplied
by a zero.

We write [n] to denote the set of integers {0 . . . n−1}. We also say that g(n) ∈ Ω̃(h(n))
if and only if g(n) ∈ Ω(h(n)/ logc n) for some constant c, i.e g(n) ∈ Ω(h(n)) up to log
factors.

1.4 Organisation

The reminder of the paper is organised as follows. In Section 2 we discuss normalised
pattern distance under L2 distance (Shift-L⋆

2 and ShiftScale-L⋆
2) and the decision

variants (Shift-Exact⋆ and ShiftScale-Exact⋆). We also show how to extend the
methods to transformations of higher degree polynomials (Poly-r-L⋆

2). Then in Sec-
tion 3 we give running time lower bounds for Shift-Ham and ShiftScale-Ham by
reduction from the 3Sum problem. In Section 4 we introduce our new deterministic
and randomised algorithms for Shift-k-Mismatch and Shift-k-Decision. Finally, we
conclude in Section 5 and set out some open problems.

2 Normalised L2 distance

We give O(n logm) time solutions for shift and shift-scale versions of the normalised L2

distance problem with wildcards. We further show that this enables us to solve the exact
shift matching and exact shift-scale matching problems in the same time complexity for
inputs containing wildcard symbols. Lastly we show how to extend our solutions to
normalisation under polynomials of arbitrary degree.
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Algorithm 1 Solution to Shift-L⋆
2.

1. Construct P ′ from P such that P ′[j] = 0 if P [j] = ⋆, and P ′[j] = 1 otherwise.
Construct T ′ from T similarly.

2. Compute the following six cross-correlations:

C1 = (T 2 · T ′)⊗ P ′

C2 = (T · T ′)⊗ (P · P ′)
C3 = T ′ ⊗ (P 2 · P ′)
C4 = (T · T ′)⊗ P ′

C5 = T ′ ⊗ (P · P ′)
C6 = T ′ ⊗ P ′

3. Return A = C1−2C2+C3−
(
(C4−C5)

2/C6

)
. We have d+2 (i) = A[i]. For positions i

where C6[i] = 0 we have d+2 (i) = 0.

2.1 Normalised L2 distance under shifts

In order to handle wildcards, we define two new strings P ′ and T ′ obtained from P and
T , respectively, such that P ′[j] = 0 if P [j] = ⋆, and P ′[j] = 1 otherwise. Similarly,
T ′[i] = 0 if T [i] = ⋆, and T ′[i] = 1 otherwise. We can now express the shift normalised
L2 distance at position i as

d+2 (i) = min
α

m−1∑

j=0

((
α+ P [j] − T [i+ j]

)2 · P ′[j] · T ′[i+ j]
)
.

Algorithm 1 shows how to compute d+2 (i) for all positions i. Correctness and running
time is given in the following theorem.

Theorem 10. The shift version of the normalised L2 distance with wildcards problem
(Shift-L⋆

2) can be solved in O(n logm) time.

Proof. Consider Algorithm 1. We first analyse the running time. Step 1 requires only
single passes over the input. Similarly, (P 2 · P ′), (P · P ′), (T · T ′) and (T 2 · T ′) can all
be calculated in linear time once T ′ and P ′ are known. Using the FFT, the six cross-
correlations in Step 2 can be calculated in O(n logm) time. The final vector of Step 3 is
obtained in linear time. Thus, O(n logm) is the overall time complexity of the algorithm.

To show correctness we consider the minimum value of

A[i] =

m−1∑

j=0

((
α+ P [j]− T [i+ j]

)2 · P ′[j] · T ′[i+ j]
)
. (1)

This can be obtained by differentiating with respect to α and obtaining the minimising
value. Solving

∂A[i]

∂α
= 2

m−1∑

j=0

((
α+ P [j] − T [i+ j]

)
· P ′[j] · T ′[i+ j]

)
= 0
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Algorithm 2 Solution to ShiftScale-L⋆
2.

1. Construct P ′ from P such that P ′[j] = 0 if P [j] = ⋆, and P ′[j] = 1 otherwise.
Construct T ′ from T similarly.

2. Compute the following six cross-correlations:

C1 = (T 2 · T ′)⊗ P ′

C2 = (T · T ′)⊗ (P · P ′)
C3 = T ′ ⊗ (P 2 · P ′)
C4 = (T · T ′)⊗ P ′

C5 = T ′ ⊗ (P · P ′)
C6 = T ′ ⊗ P ′

3. Compute

B1 = C3 ·C4−C2 ·C5 , B2 = C3 ·C6−C2
5 , B3 = C2−

C4 · C5

C6
, B4 = C3−

C2
5

C6

and compute α̂ = B1/B2 and β̂ = B3/B4. At positions i where C6[i] = 0, set
α̂[i] = β̂[i] = 0. At positions i where B2[i] = 0 and C6[i] 6= 0, set α̂[i] = C4/C6 and
β̂[i] = 0.

4. Return B = (α̂2 · C6) + 2(α̂ · β̂ · C5)− 2(α̂ · C4) + (β̂2 · C3)− 2(β̂ · C2) + C1.

We have d12(i) = B[i].

gives us the value

α̂ =

∑((
T [i+ j]− P [j]

)
· P ′[j] · T ′[i+ j]

)

∑
P ′[j] · T ′[i+ j]

=

(
(T · T ′)⊗ P ′

)
−

(
(P · P ′)⊗ T ′

)

P ′ ⊗ T ′
,

where α̂[i] is the minimising value at position i. Substituting α = α̂ into Equation (1),
expanding and collecting terms, we obtain the final answer as

A = C1 − 2C2 +C3 −
(C4 − C5)

2

C6
,

where C1, . . . , C6 are the correlations defined in Algorithm 1.
Lastly we observe that when C6[i] = (T ′ ⊗ P ′)[i] = 0 there is a wildcard at every

position in the alignment of P and T . Here the shift normalised L2 distance is defined
to be 0.

2.2 Normalised L2 distance under shift-scale

Similarly to the shift version of normalised L2 distance in the previous section, we can
now solve the shift-scale version. The solution is slightly more involved but the running
time remains the same. Algorithm 2 sets out the main steps to achieve this and the
result is summarised in the following theorem.

Theorem 11. The shift-scale version of the normalised L2 distance with wildcards prob-
lem (ShiftScale-L⋆

2) can be solved in O(n logm) time.

9



Proof. Consider Algorithm 2. Notice that the same six correlations as in Algorithm 1
have to be calculated. The additional strings in Step 3 require linear time, as well as
producing the output in Step 4. Hence the overall running time is O(n logm).

Similarly to Equation (1) we can express the shift-scale version of the normalised L2

distance at position i as

B[i] =

m−1∑

j=0

((
α+ βP [j] − T [i+ j]

)2 · P ′[j] · T ′[i+ j]
)
. (2)

By minimising this expression with respect to both α and β we get a system of two
simultaneous linear equations

∂B[i]

∂α
= 2

m−1∑

j=0

((
α+ βP [j]− T [i+ j]

)
· P ′[j] · T ′[i+ j]

)
= 0 ,

∂B[i]

∂β
= 2

m−1∑

j=0

((
α+ βP [j]− T [i+ j]

)
· P [j] · P ′[j] · T ′[i+ j]

)
= 0 .

By solving this system and using the definitions of B1, . . . , B4 in Algorithm 2, we get the
minimising values

α̂ =
B1

B2
and β̂ =

B3

B4
.

For some positions i, the solution to the system might not be unique. This happens at
alignments i for which every position i+j has a wildcard, hence C6[i] = 0. Here we avoid
illegal division by zero by simply setting both α̂[i] and β̂[i] to zero (any value would do).
A non-unique solution also occurs at alignments i where all P [j] are identical over every
non-wildcard position i+ j. This is characterised by B2[i] = 0. To see this, observe that
C5[i]

2 6 C3[i]C6[i] by Cauchy-Schwarz inequality. Here we set (arbitrarily) β̂[i] = 0 and
therefore obtain the minimising value α̂[i] = C4/C6.

At Stage 4, α̂ and β̂ contain the minimising values for α and β at every position. We
substitute these into Equation (2) and expand. This gives us the expression for B.

2.3 Exact shift and shift-scale matching with wildcards

For the exact shift matching problem with wildcards, Shift-Exact
⋆, a match is said

to occur at location i if, for some shift α and for every position j in the pattern, either
α + P [j] = T [i + j] or at least one of P [j] and T [i + j] is the wildcard symbol. Cole
and Hariharan [CH02] introduced a new coding for this problem that maps the string
elements into 0 for wildcards and complex numbers of modulus 1 otherwise. The FFT
is then used to find the (complex) cross-correlation between these coded strings, and
finally a shift match is declared at location i if the ith element of the modulus of the
cross-correlation is equal to (P ′ ⊗ T ′)[i].

Our Algorithm 1 provides a straightforward alternative method for shift matching
with wildcards. It has the advantage of only using simple integer codings. Since Algo-
rithm 1 finds the minimum L2 distance at location i, over all possible shifts, it is only
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necessary to test whether this distance is zero. The running time for the test is then
O(n logm) since it is determined by the running time of Algorithm 1.

Theorem 12. The problem of exact shift matching with wildcards (Shift-Exact
⋆) can

be solved in O(n logm) time.

The exact shift-scale matching problem with wildcards, ShiftScale-Exact
⋆, can

be solved similarly by applying Algorithm 2.

Theorem 13. The problem of exact shift-scale matching with wildcards (ShiftScale-

Exact
⋆) can be solved in O(n logm) time.

2.4 Normalised L2 distance under higher degree transformations

We can now consider the problem of computing the normalised L2 distance under general
polynomial transformations. The problem, which we termed Poly-r-L⋆

2, was defined in
Problem 5. Recall that we let

f(x) = α0 + α1x+ α2x
2 + · · ·+ αrx

r

be a polynomial of degree r > 1. Similarly to the shift and shift-scale versions of the
normalised L2 distance we consider the minimum value of

D[i] =
m−1∑

j=0

((
f(P [j]) − T [i+ j]

)2 · P ′[j] · T ′[i+ j]
)
. (3)

By differentiating with respect to each αk in turn, giving

∂D[i]

∂αk

= 2

m−1∑

j=0

((
f(P [j]) − T [i+ j]

)
· P [j]k · P ′[j] · T ′[i+ j]

)
= 0 ,

we obtain a system of r+1 linear equations in r+1 unknowns for each alignment i of the
pattern and text. We need to solve these equations and then substitute the minimising
αk values back into Equation (3) as we did in the proof of Theorem 11. This procedure
is captured by the following theorem.

Theorem 14. The normalised L2 distance problem with wildcards under polynomial
transformations of degree r (Poly-r-L⋆

2) can be solved in O(rn logm+ r2.38n) time.

Proof. To compute the coefficients for the first linear equation for α0 we need to perform
O(r) cross-correlations. However, for each subsequent equation for α1 . . . αr we only need
to perform a constant number of new cross-correlations. Therefore the total number of
cross-correlations is O(r) to give the coefficients of all the equations, taking O(rn logm)
time overall. The time to solve the systems of O(r) equations in O(r) unknowns is O(rw)
per alignment i, where w is the exponent for matrix multiplication. This gives O(nrw)
time or O(nr2.38) using the algorithm of Coppersmith and Winograd [CW90].
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Once the equations have been solved, and the minimising values of αk calculated, they
are then substituted into the expression for D in Equation (3). To calculate the final
values D[i] we require O(r) cross-correlations to be computed as well as O(r2) products
of vectors of length m. The overall time complexity is therefore O(rn logm + r2.38n +
r2m).

This method is of particular relevance for low degree polynomials, or at least poly-
nomials whose degree is less than the number of distinct values in the pattern. How-
ever, if the degree r is greater than the number of distinct values in the pattern, then
there exists a suitable polynomial f for any mapping we should choose. This gives us a
straightforward O(nm) time solution by considering each position of the pattern in the
text independently and ignoring any values aligned with wildcards in either the pattern
or text. For each such position we need only set f(P [j]) to be the mean of the values in
the text that align with a value equal to P [j] in the pattern.

3 Lower bounds for Hamming distance

In this section we will show that no O(nm1−ε) time algorithm can exist for neither Shift-

Ham or ShiftScale-Ham conditional on the hardness of the classic 3Sum problem. One
formulation of the 3Sum problem is given below.

Definition 15 (3Sum). Given a set of s positive integers, determine whether there are
three elements a, b, c in the set such that a+ b = c.

The 3Sum problem can be solved in O(s2) time and it is a long standing conjecture
that this is essentially the best possible. The problem has been extensively discussed
in the literature, where Gajentaan and Overmars [GO95] were the first to introduce the
concept of 3Sum-hardness (see definition below) to show that a wide range of problems
in computational geometry are at least as hard as the 3Sum problem. One example is
the GeomBase problem, defined below, which we will use in one of our reductions in
this section. See [Kin04] for a survey of problems from computational geometry whose
hardness relies on that of 3Sum.

Definition 16 (GeomBase). Given a set of s points with integer coordinates on three
horizontal lines y = 0, y = 1 and y = 2, determine whether there exists a non-horizontal
line containing three of the points.

Although an Ω̃(s2) lower bound for 3Sum is only conjectured, it has been shown that
under certain restricted models of computation, Ω(s2) is a true lower bound (see [ES95,
Eri99a, Eri99b]). Under models that allow more direct manipulation of numbers instead
of just real arithmetic, such as the word-RAM model, an almost log2 s factor improvement
to the standard O(s2) solution has been shown to be possible under the Las Vegas model
of randomisation (see [BDP05]). Nevertheless, a 3Sum-hardness result for a problem is a
strong indication that finding an O(s2−ε) time solution is going to be a challenging task.

Before we show that Shift-Ham and ShiftScale-Ham are both 3Sum-hard, we
provide a brief but formal discussion about reductions and define 3Sum-hardness.
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3.1 3Sum reductions

Following the definitions of [GO95] where 3Sum-hardness was first introduced, we say
that a problem A is g(s)-solvable using a problem B if and only if every instance of A of
size s can be solved using a constant number of instances of B of at most O(s) size and
O(g(s)) additional time. We denote this as A ≪g(s)B. When g(s) is sufficiently small,
lower bounds for A carry over to B. A problem B is 3Sum-hard if 3Sum ≪g(s)B and
g(s) = o(s2−ε) for some constant ε > 0. In the definition of 3Sum-hardness of [GO95],
the requirement was that g(s) = o(s2), however, to scale with more powerful models of
computation, we require that g(s) = o(s2−ε). If A ≪g(s)B and B ≪g(s)A then we say
that A and B are g(s)-equivalent.

In the following section we will show that 3Sum ≪s log s Shift-Ham where the
instance size of Shift-Ham is a text of length n = 5s and a pattern of length m = 3s.

In the literature there are a variety of definitions of the 3Sum problem. They differ
only slightly in their formulations and are all equivalent. One common definition, used
as the “base problem” in [GO95], is formulated as follows. Given a set of s integers,
determine whether there are three elements a, b, c in the set such that a + b + c =
0. Without too much work, one can show that this definition is O(s)-equivalent with
Definition 15 of 3Sum above (small modifications of the proof of Theorem 3.1 in [GO95]
can be used to prove this). Further, it was shown in [GO95] that GeomBase is O(s)-
equivalent to 3Sum.

3.2 3Sum-hardness of Shift-Ham

In this section we show that Shift-Ham is 3Sum-hard.

Lemma 17. 3Sum ≪s log sShift-Ham where the instance size of Shift-Ham is a text
of length 5s and a pattern of length 3s.

Proof. Let the set S be an instance of 3Sum of size s = |S|. First we sort all elements
of S so that S = {x1, . . . , xs} where x1 < x2 < · · · < xs. Let y1 = 2xs + 1 and for
i ∈ {2, . . . , 2s}, let yi = yi−1 + 1. Thus, xs < y1 < · · · < y2s. We define the following
s-length strings over the alphabet {x1, . . . , xs} ∪ {y1, . . . , y2s} ∪ {0}.

S0 = 00 · · · 0 (s zeros) S3 = ys+1 ys+2 · · · y2s
S1 = x1 x2 · · · xs S4 = xs xs−1 · · · x1
S2 = y1 y2 · · · ys

We now construct an instance of Shift-Ham specified by

T = S0‖S1‖S2‖S1‖S3 and P = S4‖S0‖S0 .

The text T has length n = 5s and the pattern P has length m = 3s. First we show
that if there are elements a, b, c ∈ S such that a + b = c then there is a position i such
that the shift-normalised Hamming distance between P and T [i . . . i+m− 1] is at most
m− 2. We will then show that if no such three elements exist then the shift-normalised
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Hamming distance between P and every m-length substring of T is strictly greater than
m− 2.

As an illustrative example, suppose that S contains seven elements and suppose that
x4 + x3 = x6. Consider the alignment of P and T where x4 in P is aligned with x6 in T :

T: 0 0 0 0 0 0 0 x1 x2 x3 x4 x5 x6 x7 y1 y2 y3 y4 y5 y6 y7 x1 x2 x3 x4 x5 x6 x7 y8 y9 y10 y11 y12 y13 y14

P: x7 x6 x5 x4 x3 x2 x1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

We observe that shifting the pattern by x3 will induce two matches, marked with the
squares above. Thus, the shift-normalised Hamming distance is at most m− 2 (in fact,
it is exactly m − 2). It should be easy to see how this generalises to any size of S and
any three elements a, b, c ∈ S such that a+ b = c. Namely, the alignment in which a is
aligned with c has Hamming distance at most m − 2 since there must also be a match
at the position where 0 aligned with b. The construction of P and T ensures that there
is always an alignment that captures these matches.

Now suppose there are no elements a, b, c ∈ S such that a+ b = c. Consider a fixed
alignment of P and T . We will show that there can be at most one match under any shift.
By construction of P and T , the zeros in P are all aligned with distinct symbols in T .
Hence for any shift, at most one of these zeros can be involved in a match. The non-zero
symbols of P (i.e., the s-length prefix of P ) appear in strictly decreasing order and are
aligned with an s-length substring of T whose elements appear in non-decreasing order.
Therefore, under any shift, at most one of the non-zero symbols in P can be involved in
a match. It remains to show that there is no shift such that both a zero and a non-zero
symbol in P are simultaneously involved in a match. First, we observe that if there is
a match between a 0 in P and some yj in T then there can be no other match as every
non-zero symbol in P is aligned with a value that is less than yj. Suppose therefore that
there is a match between a 0 in P and some xj in T (i.e., the shift is xj). We need to
consider three possible cases: there is also a match that involves some xk in P aligned
with either (i) a 0 in T , (ii) some yℓ in T or (iii) some xℓ in T . In case (i) the shift must be
negative, hence is not compatible with the shift xj . In case (ii) we can see that the shift
must be greater that xs (the largest elements in the set S), hence is not compatible with
the shift xj. In case (iii) we have that xk + xj = xℓ, which contradicts the assumption
that there are no elements a, b, c ∈ S such that a + b = c. Thus, the shift-normalised
Hamming distance is at least m− 1 for any alignment of P and T .

Finally, we observe that the most time consuming part of the reduction is the sorting
of S which could take O(s log s) time. This concludes the proof.

Theorem 18. Shift-Ham has no O(nm1−ε) time algorithm, for any ε > 0, conditional
on the hardness of the 3Sum problem.

Proof. Given a 3Sum instance of size s, by Lemma 17 we construct a Shift-Ham instance
of size n = 5s and m = 3s in O(s log s) time. If Shift-Ham has an O(nm1−ε) time
algorithm then 3Sum can be solved in O(s2−ε) time.

Notice that Shift-Ham has an O(nm logm) time solution [MNU05]. See Section 4.1
for details.
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3.3 3Sum-hardness of ShiftScale-Ham

In this section we show that ShiftScale-Ham is 3Sum-hard.

Lemma 19. 3Sum ≪s ShiftScale-Ham where the instance size of Shift-Ham is a
pattern and text of length s each.

Proof. We reduce from the GeomBase problem which is O(s)-equivalent to 3Sum. Be-
fore we describe the reduction we adopt a formulation of the GeomBase problem that
differs slightly in notation. Instead of insisting on the points being on the horizontal lines
y = 0, y = 1 and y = 2, we assume that the points are on the vertical lines x = 0, x = 1
and x = 2 and we want to determine whether there is a (non-vertical) line containing
three points. Under this formulation, let S be an instance of GeomBase that contains
the integer points (x1, y1), (x2, y2), . . . , (xs, ys), where every xj ∈ {0, 1, 2}.

We construct an instance of ShiftScale-Ham that is specified by the text T =
y1 y2 · · · ys and the pattern P = x1 x2 · · · xs, both of length s. It should now be clear
that ShiftScale-Ham returns the shift-and-scale normalised Hamming distance s − 3
(for the only alignment of P and T ) if and only if there are two values α and β such
that βxj + α = yj for three distinct positions j, which is equivalent to fitting a line
through three points. Note that we minimise α and β over the rationals, and any line
going through three points is indeed specified by rational values of α and β. Since the
reduction takes linear time, we have proved the lemma.

Theorem 20. ShiftScale-Ham has no O(nm1−ε) algorithm, for any ε > 0, conditional
on the hardness of the 3Sum problem.

Proof. Given a 3Sum instance of size s, by Lemma 19 we construct a ShiftScale-

Ham instance of size n = m = s in O(s) time. If ShiftScale-Ham has an O(nm1−ε)
algorithm then 3Sum can be solved in O(s2−ε) time.

4 Normalised k-mismatch under shifts

In this section we consider two versions of the normalised k-mismatch problem under
shifts, defined as Problems 8 and 9 in the introduction. Both problems are parameterised
by an integer k. In the first problem, Shift-k-Mismatch, the output is the shift-
normalised Hamming distance between P and T at every position for which the distance
is k or less. Where the distance is larger than k, only k+1 is outputted. Recall from the
introduction that the shift-normalised Hamming distance between P and T [i . . . i+m−1]
is denoted d+

H
(i) and defined by

d+
H
(i)

def
= min

α

∣∣ { j | α+ P [j] 6= T [i+ j] }
∣∣ .

In Section 4.2 we give a deterministic algorithm that solves Shift-k-Mismatch in
O(nk log k) time.

In Section 4.3 we consider the the second version of shift-normalised k-mismatch,
Shift-k-Decision, which unlike the previous problem only indicates with yes or no
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whether the shift-normalised Hamming distance is k or less. We give a randomised
solution to this decision problem with the improved running time O(cn

√
k log k log n).

The parameter c is a constant that can be chosen arbitrarily to fine tune the error
probability. Namely, the probability that our algorithm outputs the correct answer at
every alignment is at least (1 − 1/nc). The errors are one-sided such the algorithm will
never miss reporting an alignment for which the shift-normalised Hamming distance is
indeed k or less. Our algorithm requires that k <

√
m/6, hence it is suited to situations

where the locations of text substrings similar to the pattern are required but the distances
themselves are not needed.

4.1 The unbounded case

In [MNU05], Mäkinen, Navarro and Ukkonen gave an O(nm logm) time algorithm for the
shift-normalised Hamming distance problem, Shift-Ham, which by definition solves the
bounded, k-mismatch variant in O(nm logm) time also. We briefly recap their method
by way of an introduction. First observe that the maximum number of matches for any
alignment is exactly

m− d+
H
(i) = max

α
{ j | T [i+ j]− P [j] = α } .

For each alignment i, this value can be obtained by creating an m-length array Ai, which
we refer to as the shift array, defined by

Ai[j] = T [i+ j]− P [j] (4)

for all j ∈ [m]. This shift array is then sorted to find the most frequent value, which is
the α that minimises d+

H
(i). The number of times it occurs is m − d+

H
(i). Computing

this requires O(m logm) time per alignment and hence O(nm logm) time overall. In the
next section we will reconsider Ai and demonstrate that it can be run-length encoded in
O(k) runs whenever d+

H
6 k.

4.2 A deterministic solution

The deterministic algorithm makes use of the notion of difference strings which were
introduced in [LU00] and are defined as follows.

Definition 21. Let S be a string of length s. The difference string of S, denoted Sδ, is
defined by

Sδ[j] = S[j + 1]− S[j]

for all j ∈ [s− 1]. The length of Sδ is s− 1.

We will also make use of a generalisation of the difference string when we present
our randomised algorithm in Section 4.3. The core of our deterministic shift-normalised
k-mismatch algorithm is the relationship between the number of mismatches between Pδ

and Tδ[i . . . i+m− 2] and the value of d+
H
(i). We begin in Lemma 22 below by showing
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that if d+
H
(i) is small then the number of mismatches between the difference strings Pδ

and Tδ is also small. In [MNU05] a related result was used to reduce the shift-normalised
exact matching problem to the conventional exact matching problem. Specifically, they
observed that in the special case that k = 0, the implication becomes an equivalence,
i.e., d+

H
(i) = 0 if and only if Pδ = Tδ[i . . . i +m− 2]. Unfortunately, this is not the case

in general.

Lemma 22. Let P be a pattern and T a text. For all i,

d+
H
(i) 6 k =⇒ Ham

(
Pδ , Tδ[i . . . (i+m− 2)]

)
6 2k .

Proof. Let i be such that d+
H
(i) 6 k and therefore there exists an α such that for at most

k distinct position j ∈ [m] we have that P [j]+α 6= T [i+ j]. Further, at most 2k distinct
positions j ∈ [m − 1] have either P [j] + α 6= T [i + j] or P [j + 1] + α 6= T [i + j + 1].
This implies that there are at least (m− 1)− 2k distinct positions j ∈ [m− 1] such that
P [j]+α = T [i+j] and P [j+1]+α = T [i+j+1]. By rearranging these equations, for any
such j we have that P [j + 1]−P [j] = T [i+ j +1]− T [i+ j] and hence by Definition 21,
Pδ[j] = Tδ[1+ j]. As required there are at most 2k mismatches (recall |Pδ| = m−1).

Lemma 22 suggests the following strategy. First we find the leftmost up to 2k + 1
mismatches between Pδ and Tδ[i . . . i+m− 2] at each alignment i. By Lemma 22 we can
disregard any alignments with more than 2k mismatches. Finally we use the locations of
these mismatches to infer d+

H
(i) at the remaining alignments.

The first step can be done using any k-mismatch (strictly 2k-mismatch) algorithm
which returns the locations of the mismatches. The well-known ‘kangaroo’ method
of [LV86] achieves this in optimal O(nk) time. The method is so named as it uses
longest common extensions to ‘hop’ between mismatches in constant time. The discard-
ing phase is trivial and therefore we only focus on computing d+

H
(i) from the locations of

the (at most 2k) mismatches between Pδ and Tδ[i . . . (i+m− 2)], where i is an arbitrary
non-discarded alignment.

Recall from Section 4.1 the definition of the shift array Ai in Equation (4), and recall
that the value of m−d+

H
(i) is the number of occurrences of the most frequent entry in Ai.

We will now use the locations of the mismatches between Pδ and Tδ[i . . . i+m−2] to obtain
a run-length encoded version of Ai containing O(k) runs. The key property we require
is given in Lemma 23 which states that a matching substring in Pδ and Tδ[i . . . i+m− 2]
corresponds to a run (a substring of equal values) in Ai. This immediately implies that
Ai can be decomposed into at most 4k+1 runs. Specifically, one run of length 1 for each
mismatch and an additional run for each stretch between mismatches.

Lemma 23. If Pδ [ℓ . . . r] = Tδ[(i+ ℓ) . . . (i+ r)] then Ai[j] = Ai[ℓ] for all j ∈ {ℓ, . . . , r}.

Proof. Suppose that Pδ[ℓ . . . r] = Tδ[(i + ℓ) . . . (i + r)]. We proceed by induction on
j ∈ {ℓ, . . . , r}. The base case j = ℓ is tautologically true. For the inductive step, let
j ∈ {ℓ+ 1, . . . , r}. By the inductive hypothesis, we have that Ai[j − 1] = T [i+ j − 1]−
P [j − 1] = Ai[ℓ]. As Pδ [j − 1] = Tδ[i + j − 1], by Definition 21 (and rearranging the
equation), we have Ai[j] = T [i+ j]− P [j] = T [i+ j − 1]− P [j − 1] = Ai[ℓ].
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Algorithm 3 Overview of deterministic solution to Shift-k-Mismatch.

1. Compute the difference strings Pδ and Tδ by scanning P and T .

2. Run a 2k-mismatch algorithm on Pδ and Tδ in order to find all alignments where
the number of mismatches is at most 2k. The 2k-mismatch algorithm must also
return the locations of the mismatches at any alignment where there are at most
2k mismatches.

3. Discard all alignments with more than 2k mismatches.

4. For each undiscarded alignment i, decompose Ai into at most 4k+1 runs (substrings
with a common value). The start and end points of the runs are determined by
scanning the locations of the mismatches between Pδ and Tδ[i . . . i+m− 1].

5. Sort the runs in Ai by value in order to find the most frequent entry α in Ai. Then
output m−

∣∣ { j | Ai[j] = α }
∣∣, which is the value d+

H
(i).

In Section 4.1 we discussed that the value of d+
H
(i) equals m−maxα

∣∣ { j | Ai[j] = α }
∣∣,

which could be found by sorting and scanning Ai in O(m logm) time. However, we now
have Ai in run-length encoded form (with O(k) runs), therefore the time taken to find
d+
H
(i) is reduced to O(k log k). Over all alignments, this gives O(nk log k) time as desired.
We can now give an overview of our deterministic algorithm for Shift-k-Mismatch.

The steps are described in Algorithm 3 and the overall running time is given in Theo-
rem 24 below.

Theorem 24. The shift-normalised k-mismatch problem (Shift-k-Mismatch) can be
solved deterministically in O(nk log k) time.

Proof. The solution is outlined in Algorithm 3. Correctness follows directly from the dis-
cussion in this section. The time complexity of the five steps is as follows. By inspection
of the definition, the difference strings computed in Step 1 require O(n) time. Step 2
uses a 2k-mismatch algorithm as a black box and can be performed in O(nk) time by
using for example the algorithm in [LV86]. Step 3 makes a single pass of the output of
the 2k-mismatch algorithm in O(n) time. Step 4 constructs a run length encoded ver-
sion of Ai for each undiscarded i. This requires scanning the O(k) mismatches at each
undiscarded alignment. Therefore Step 4 takes O(nk) time. Step 5 scans and sorts each
Ai which takes O(k log k) time per alignment as Ai is encoded by O(k) runs. Overall the
algorithm requires O(nk log k) time as claimed.

4.3 An improved, randomised solution

We now present an improved solution to the shift-normalised k-mismatch problem which
runs in O(cn

√
k log k log n) time. The improved algorithm is for the case that k <

√
m/6

and is randomised. The errors are one-sided (false-positives) and it outputs the correct
answer at all alignments with probability at least 1− 1/nc for any constant c. For each
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position i, the algorithm gives a yes/no answer to the question “is d+
H
(i) 6 k?”. The

algorithm does not output the actual distance d+
H
(i). Throughout this section, we use Ti

as shorthand for T [i . . . i+m− 1].
In Section 4.2 our deterministic algorithm made use of the locations of mismatches

in the difference strings Pδ and Tδ[i . . . i + m − 1]. Recall that the difference string Sδ

was defined to give the differences between consecutive positions in a string S. That is,
Sδ[j] = S[j + 1] − S[j] for all j. A key observation was that Pδ[j] = Tδ[i + j] if and
only if P [j] − T [i + j] = P [j + 1] − T [i + j + 1] = −α, i.e., the positions of P [j] and
P [j +1] require the same shift α to match. However, there is no reason to consider only
consecutive differences. In fact, as we will see, one may consider differences under any
arbitrary permutation of the position set. This notion is formalised as follows.

Definition 25. Let S be a string of length s and π : [m] → [m] be a permutation. The
permuted difference string of S under π, denoted Sπ, is defined by

Sπ[j] = S[π(j)] − S[j]

for all j ∈ [s]. The length of Sπ is s.

Note that the permuted difference string Sπ has length |S| in contrast to the difference
string Sδ of Definition 21 which has length |S| − 1.

The central idea of our improved algorithm is to use the value of Ham(Pπ, (Ti)π)
to directly determine whether d+

H
(i) 6 k at each alignment i. In Definition 26 below

we introduce the notion of a permutation being k-tight for some P, Ti. Intuitively, π is
k-tight for P, Ti if we can infer directly from Ham(Pπ, (Ti)π) whether d+

H
(i) 6 k.

Definition 26. Let π be a permutation, P a pattern and Ti a text substring. We say
that π is k-tight for P, Ti if

d+
H
(i) 6 k ⇐⇒ Ham(Pπ, (Ti)π) 6 2k .

It would of course be highly desirable to find a permutation π which is k-tight for all
P, Ti and any k. However, we will see that this is in general not possible.

We begin by showing that any π has the property that d+
H
(i) 6 k implies that

Ham(Pπ, (Ti)π) 6 2k for all P, Ti. To do so we first prove a general lemma which will
also be useful later. Lemma 28 then gives the desired property and is a generalisation of
Lemma 22 to arbitrary permutations.

Lemma 27. Let π be a permutation, P a pattern and Ti a text substring. For all j ∈ [m],

P [j]− Ti[j] = P [π(j)] − Ti[π(j)] ⇐⇒ Pπ[j] = (Ti)π[j] .

Proof. The left-hand side of the arrow is the same as P [π(j)] − P [j] = Ti[π(j)] − Ti[j],
which by Definition 25 is equivalent to the right-hand side of the arrow.

Lemma 28. Let π be a permutation, P a pattern and Ti a text substring.

d+
H
(i) 6 k =⇒ Ham(Pπ, (Ti)π) 6 2k .
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Proof. Let P and Ti be such that d+
H
(i) 6 k. By definition there exists an α such that

the set J = { j | P [j] + α 6= Ti[j] } has size at most k. As π is a permutation, there
are at most 2k positions j ∈ [m] such that either j ∈ J or π(j) ∈ J . Therefore, for
all (at least) m − 2k remaining positions j′ ∈ [m] we have that P [j′] + α = Ti[j

′] and
P [π(j′)] + α = Ti[π(j

′)]. For each such position j′, by rearranging the two equations it
follows from Lemma 27 that Pπ[j

′] = (Ti)π[j
′]. Thus, there are at most 2k mismatches

between Pπ and (Ti)π.

A logical next step would be to attempt to find a permutation π with the property
that Ham(Pπ, (Ti)π) 6 2k implies that d+

H
(i) 6 k for all P, Ti. Unfortunately, Lemma 29

below shows that no such permutation can exist. As Corollary 30 states, this immediately
implies that there is no permutation which is k-tight for all P, Ti. Instead we will select
our permutation at random and show that we can obtain a permutation that is k-tight
for a given P, Ti with constant probability.

Lemma 29. Let π be any permutation and 6 6 k < m/4. There exists a pattern P and
text substring Ti such that

d+
H
(i) > k and Ham(Pπ, (Ti)π) 6 2k .

Proof. We define P to be an m-length string of zeros. In order to define the m-length
string Ti we first introduce some notation.

Let k′ = ⌊k/2⌋+1. We identify a set of k′ locations ℓ0, ℓ1, . . . , ℓk′−1 ∈ [m] as follows.
Location ℓ0 = 0. For q ∈ {1, . . . , k′ − 1}, location ℓq is the smallest position in [m] that
is not any of the preceding locations ℓ0, . . . , ℓq−1 or any location that is mapped to or
from by any of these preceding locations (under π). Formally, ℓq is the smallest location
which is not in the set Lq =

{
ℓq′ , π(ℓq′), π

−1(ℓq′)
∣∣ q′ ∈ [q]

}
. Observe that the set Lq

has size at most 3k′ 6 3(k/2 + 1) < 3k < m (since k < m/4), hence such a location
always exists.

We can now define Ti as follows. For all q ∈ [k′], let Ti[ℓq] = 1 and Ti[π(ℓq)] = 1. At all
other locations j, Ti[j] = 0. Observe that by construction, the locations ℓ0, . . . , ℓk′−1 and
π(ℓ0), . . . , π(ℓk′−1) are all distinct. Therefore, Ti contains exactly 2k′ ones and m− 2k′

zeros. As 2k′ 6 k + 2 < m/2, more than half the locations have Ti[j] = P [j] = 0, and
therefore d+

H
(i) is minimised by the shift α = 0. Thus, d+

H
(i) = 2k′ > k.

We proceed by showing that the alignment of Pπ and (Ti)π contains at least m− 3k′

matches. There are m− 2k′ locations j in Ti such that Ti[j] = 0. Of these locations, at
most 2k′ have Ti[π(j)] = 1. Therefore, there are at least m − 4k′ locations j such that
Ti[j] = Ti[π(j)] = 0. As P [j] = P [π(j)] = 0, we have by Lemma 27 that Pπ[j] = (Ti)π[j]
at m − 4k′ locations. Now consider locations ℓq for q ∈ [k′]. By construction, Ti[ℓq] =
Ti[π(ℓq)] = 1 and therefore Pπ[ℓq] = (Ti)π[ℓq] by Lemma 27. This implies a further k′

matching locations. There are therefore at least at least m− 3k′ matches or at most 3k′

mismatches between Pπ and (Ti)π. Since 3k′ 6 3(k/2 + 1) 6 2k for all k > 6 we have
that Ham(Pπ, (Ti)π) 6 2k.

Corollary 30. Let π be any permutation and 6 6 k < m/4. There exists a pattern P
and text substring Ti for which π is not k-tight.
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Proof. Immediate from Definition 26 and Lemma 29.

4.3.1 Random permutations

We will choose a permutation uniformly at random from a simple family of permutations.
On first inspection, we could have chosen from the family of all permutations. We claim
without proof that a permutation chosen uniformly at random from the family of all
permutations is k-tight for any P, Ti with constant probability. However, we must be
able to efficiently compute Ham(Pπ, (Ti)π) for all i under our chosen permutation. The
key problem being that in general (Ti)π is not easily obtained from T . As i varies, (Ti)π
could change drastically, even when i is only incremented by one. Therefore we must be
careful in selecting our family of permutations.

We will use the family of cyclic permutations, denoted Cm (for patterns of length m),
defined as follows.

Definition 31. The set Cm contains the m − 1 cyclic permutations π1, π2, . . . , πm−1,
where

πq(j) = j + q mod m.

We now show in Lemma 32 that Cm has the desired property of k-tightness when
m > 6k2. There is a corner case when k ∈ {0, 1} which is easily solved in O(n) time
using our deterministic algorithm from Section 4.2. For Lemma 32 we require that k > 2.

Lemma 32. Let P be a pattern and Ti a text substring. When m > 6k2 and k > 2,
∣∣ { π | π ∈ Cm is k-tight for P, Ti }

∣∣
|Cm| >

1

6
.

Proof. Let ρ =
∣∣ { π | π ∈ Cm is k-tight for P, Ti }

∣∣/|Cm|. We will show that ρ > 1/6.
Note that |Cm| = m−1. We let h = d+

H
(i) be the minimal number of mismatches between

P and Ti, and α̂ be the shift which minimises d+
H
(i).

Assume first that h 6 k. By Lemma 28 and Definition 26 we have that that every
π ∈ Cm is k-tight for P, Ti and therefore ρ = 1. Assume second that that h > k. We
split the proof into three cases:

Case 1. k < h 6 2k Case 2. 2k < h 6
m

3
Case 3.

m

3
< h

First we introduce some notation. There are exactly m−h positions j where α̂+P [j] =
Ti[j]. We call such a position an α̂-match. Similarly, any position with α+P [j] = Ti[j] for
some α is called an α-match. Positions which are not α-matches are called α-mismatches.
Hence there are h distinct α̂-mismatches. We will refer to π(j) as the position that j is
mapped to (by π).

Case 1 (k < h 6 2k). Let j be an arbitrary α̂-mismatch. Position j is mapped to
another α̂-mismatch in exactly h − 1 distinct permutations of Cm. This holds for each
of the h distinct α̂-mismatches. Hence there are at most (h − 1)h permutations under
which some α̂-mismatch is mapped to another α̂-mismatch. The remaining (at least)
(m− 1)− (h− 1)h permutations π in Cm immediately have the following two properties:
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(i) if position j is an α̂-mismatch then π(j) is an α̂-match;

(ii) if position π(j) is an α̂-mismatch then position j is an α̂-match.

There are h positions j with property (i) and another (disjoint) h positions j with prop-
erty (ii). That is, for each α̂-mismatch there are two positions j that meet one of the two
properties above. By Lemma 27, each such j implies that Pπ[j] 6= (Ti)π[j]. Therefore,
in each of these (m − 1) − (h − 1)h permutations π, Ham(Pπ, (Ti)π) > 2h > 2k and so
each such permutation is k-tight for P, Ti. By the assumption of Case 1, h 6 2k, and the
assumptions that m > 6k2 and k > 2, we have that (m−1)− (h−1)h > m−4k2 > m/3.
Thus, ρ > (m/3)/(m − 1) > 1/6.

Case 2 (2k < h 6 m/3). Let K be an arbitrary set of 2k distinct α̂-mismatches. For
any permutation π, let

K−1
π = { j | π(j) ∈ K } .

We define

HamK(Pπ, (Ti)π) =
∣∣ { j

∣∣ j ∈ (K ∪K−1
π ) ∧ Pπ[j] 6= (Ti)π[j]

} ∣∣

to be the number of mismatch positions between Pπ and (Ti)π that are also in K or K−1
π .

We now consider the total number of mismatches between Pπ and (Ti)π (that are in K
or K−1

π ) summed over all permutations in Cm. Let

HK(P, Ti) =
∑

π∈Cm

HamK(Pπ, (Ti)π) .

Since h 6 m/3 by the assumption of Case 2, there are at least 2m/3 α̂-matches. A
permutation π that maps a position j ∈ K to an α̂-match creates a mismatch Pπ[j] 6=
(Ti)π[j] by Lemma 27 (as j is an α̂-mismatch). For a fixed j ∈ K, the number of
permutations in Cm that map j to an α̂-match equals the number of α̂-matches, which
is at least 2m/3. Thus, the set K of 2k α̂-mismatches contributes at least 2k · (2m/3) to
HK(P, Ti).

Similarly, any position j which is an α̂-match creates a mismatch Pπ[j] 6= (Ti)π[j]
by Lemma 27 if it is mapped to an α̂-mismatch in K. This occurs under exactly 2k
permutations. Recall that any j which is mapped to a position in K under π belongs
to K−1

π . Therefore, given that there are at least 2m/3 α̂-matches, the contribution is at
least 2k · (2m/3) further distinct mismatches to HK(P, Ti).

Summing up the previous two paragraphs, we have shown that HK(P, Ti) > (8/3)mk.
Each permutation π that is not k-tight for P, Ti has Ham(Pπ, (Ti)π) 6 2k (since h > k).
Therefore, m · 2k is a generous upper bound on the number of mismatches across all
permutations which are not k-tight. This leaves at least (8/3)mk − 2mk = (2/3)mk
mismatches among the k-tight permutations of Cm. Since |K ∪ K−1

π | 6 4k, we have
that HamK(Pπ, (Ti)π) 6 4k for any π, hence each permutation contributes at most 4k
mismatches to HK(P, Ti). Therefore there are at least (2/3)mk/(4k) = m/6 distinct
k-tight permutations. Thus, ρ > (m/6)/(m − 1) > 1/6.
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Case 3 (m/3 < h). Similarly to Case 2, we consider the total number of mismatches
between Pπ and (Ti)π summed over all permutations in Cm. Let

H(P, Ti) =
∑

π∈Cm

Ham(Pπ, (Ti)π) .

Since h > m/3 the number of α-mismatches is more than m/3 for all α. Fix an arbitrary
position j and choose an α such that j is an α-match. There are at least m/3 permu-
tations π in Cm that map position j to an α-mismatch. By Lemma 27, Pπ[j] 6= (Ti)π[j]
for each of these permutations. Hence position j will contribute with at least m/3 to
H(P, Ti). By considering all m positions j, we have that H(P, Ti) > m · (m/3).

Similarly to the reasoning in Case 2, each permutation π that is not k-tight for P, Ti

has Ham(Pπ, (Ti)π) 6 2k (since h > k). Again, m · 2k is a generous upper bound on
the number of mismatches across all permutations which are not k-tight. This leaves
at least m2/3 − 2mk mismatches among the k-tight permutations of Cm. As certainly
Ham(Pπ, (Ti)π) 6 m, we have that there are at least m/3− 2k distinct k-tight permuta-
tions for P, Ti. Therefore,

ρ >
m/3− 2k

m− 1
>

k − 1

3k
>

1

6
,

where the second inequality follows from m > 6k2 and the last inequality from k > 2,
both assumptions in the statement of the lemma.

4.3.2 The algorithm

Before describing the randomised algorithm we turn our attention to the problem of
finding all positions i ∈ [n −m + 1] such that Ham(Pπ, (Ti)π) 6 2k under an arbitrary
cyclic permutation π ∈ Cm. We will describe a simple deterministic algorithm that
computes Ham(Pπ, (Ti)π) by reduction to the conventional k-mismatch problem.

Let πq ∈ Cm be a fixed but arbitrary permutation (q ∈ [1, . . . ,m − 1]). Recall that
πq(j) = j + q mod m. We define

P+
q = Pπq

[0 . . . (m− q − 1)] ,

P−
q = Pπq

[(m− q) . . . (m− 1)] .

Thus, Pπq
= P+

q ‖P−
q . We have |P+

q | = m− q and |P−
q | = q. Now define T+

q and T−
q such

that

T+
q [j] = T [j + q]− T [j] ,

T−
q [j] = T [j + q −m]− T [j] ,

for all j ∈ [n] (except those that take the indices “out of range”). Observe that

(Ti)πq
= T+

q [i . . . (i+m− q − 1)] ‖ T−
q [(i+m− q) . . . (i+m− 1)] ,
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Algorithm 4 Overview of randomised solution to Shift-k-Decision.

1. Pick a cyclic permutation πq ∈ Cm uniformly at random.

2. Construct the strings P+
q , P−

q , T+
q and T−

q .

3. Run a 2k-mismatch algorithm on the pairs (P+
q , T+

q ) and (P−
q , T−

q ) as a black box.

4. Using the results from Step 3 and Equation (5), compute Ham(Pπq
, (Ti)πq

) for all i.

5. Any alignment i with Ham(Pπq
, (Ti)πq

) 6 2k is declared to have d+
H
(i) 6 k.

where the first substring has length m− q and the second substring has length q. From
these definitions it now follows directly that

Ham(Pπq
, (Ti)πq

) = Ham
(
P+
q , T+

q [i . . . (i+m− q − 1)]
)

(5)

+Ham
(
P−
q , T−

q [(i+m− q) . . . (i+m− 1)]
)
.

Thus, in order to determine which positions i have Ham(Pπq
, (Ti)πq

) 6 2k, we first
construct P+

q , P−
q , T+

q and T−
q , and then we run a standard 2k-mismatch algorithm on

the pairs (P+
q , T+

q ) and (P−
q , T−

q ) and use the previous formula.
We can now finally give an overview of our randomised algorithm for the Shift-k-

Decision problem. The steps are described in Algorithm 4. The overall running time
and proof of correctness is given in Theorem 33 below. The algorithm makes one-sided
errors and outputs a false match (incorrectly reports d+

H
(i) 6 k) with constant probability

per alignment. As we will see in the proof of Theorem 33, by running the algorithm a
logarithmic number of times drastically reduces the probability of an error occurring at
one or more alignments.

Theorem 33. For any choice of constant c, Shift-k-Decision can be solved randomised
in O(cn

√
k log k log n) (deterministic) time when k <

√
m/6. The algorithm makes only

false-positive errors (incorrectly declares the Hamming distance is at most k). With
probability at least 1− 1/nc, the algorithm is correct at every alignment.

Proof. As discussed in Section 4.3.1, if k ∈ {0, 1} then we can use the deterministic
algorithm from Section 4.2 and achieve time complexity of O(n) and no errors. Therefore,
we focus on the case that k > 2.

We first consider correctness. It follows from the discussion above that Algorithm 4
does indeed determine, for every alignment i, whether Ham(Pπq

, (Ti)πq
) 6 2k. We first

show that

(i) Ham(Pπq
, (Ti)πq

) 6 2k when d+
H
(i) 6 k;

(ii) the probability that Ham(Pπq
, (Ti)πq

) 6 2k when d+
H
(i) > k is at most 5/6.

By Lemma 28 we have that if d+
H
(i) 6 k then Ham(Pπq

, (Ti)πq
) 6 2k. This proves

property (i). By Definition 26, Ham(Pπq
, (Ti)πq

) > 2k if d+
H
(i) > k for all permutations
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πq that are k-tight for P, Ti. The permutation πq is selected uniformly at random from
Cm in Step 1, hence by Lemma 32 it is k-tight for P, Ti with probability at least 1/6.
This proves property (ii). Note that we can apply Lemma 32 since we have assumed that
m > 6k2 and k > 2.

As Algorithm 4 only makes false-positive errors, we can amplify the probability of
giving correct outputs by repeating the algorithm. We repeat it 4(c + 1)⌈log n⌉ times,
where c is a constant, and output any alignment which is reported by all repeats. More
precisely, let i be some alignment such that d+

H
(i) > k. The probability that one run

of Algorithm 4 incorrectly reports position i as a match is at most 5/6. Thus, the
probability that all runs output i as a match is at most

(5/6)4(c+1)⌈log n⌉ < (1/2)(c+1) logn < 1/nc+1 .

By the union bound over all positions i, the probability of the multi-run algorithm
outputting a false match in at least one alignment is at most n · 1/nc+1 = 1/nc as
required.

We now consider the time complexity of Algorithm 4 (without amplification). Step 1
requires only constant time to pick a permutation at random. Step 2 requires O(n) time
by inspection of the definitions. Step 3 makes two calls to a 2k-mismatch algorithm. For
both calls the input is a pattern of length O(m) and a text of length O(n). Using the
fastest known k-mismatch algorithm of Amir et al. [ALP04], this step takes O(n

√
k log k)

time. Steps 4 and 5 require only scanning the output of Step 3 and therefore take O(n)
time. This gives a time complexity of O(n

√
k log k) time. However, we repeat the

algorithm O(c log n) times to reduce the error probability, hence O(cn
√
k log k log n) is

the total time complexity.

5 Discussion

We have shown how to derive both new upper and lower bounds for a variety of pattern
matching problems under polynomial transformations. In some cases we have improved
on known results and in others introduced new problem definitions and solutions. There
remain however a number of open questions. First, we suspect that the true complexity
of Poly-r-L⋆

2 is unresolved, particularly for higher polynomial transformations. For
example, when r = m there exists a straightforward O(nm) time solution by considering
the problem independently at each alignment. It is also still uncertain if the normalised
Hamming distance problem is 3Sum-hard for polynomials of degree greater than one.
For Shift-k-Decision, our fast randomised algorithm applies only when k <

√
m/6.

However, our lower bound for the same problem applies to the case where we want to
determine if the Hamming distance is at most m− 2. This leaves a range of values of k
where the complexity is not yet determined. It is also an interesting question whether
our randomised solution can be efficiently modified to output the Hamming distance at
each alignment rather than simply a decision about whether it is greater or less than k or
indeed if a new fast method can be found for this problem which will allow the presence
of wildcards in the input.
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