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Abstract

A rainbow graph is a graph that admits a vertex-coloring such that every color appears
exactly once in the neighborhood of each vertex. We investigate some properties of rainbow
graphs. In particular, we show that there is a bijection between the isomorphism classes of
n-rainbow graphs on 2n vertices and the switching classes of graphs on n vertices.

1 Introduction

Throughout this paper, we will use the term graph to refer to a graph on unlabeled vertices without
loops or multiple edges, and labeled graph to refer to a graph on labeled vertices without loops
or multiple edges. A vertex coloring (with n colors) of a graph is called an n-rainbow coloring if
every color appears once, and only once, in each neighborhood of a vertex. Note that an n-rainbow
coloring is not a proper coloring. A graph is called an n-rainbow graph if the graph admits an
n-rainbow coloring.

This term was initially coined by Woldar [7] but the same concept appeared earlier in Ustimenko
[6] and in Lazebnik and Woldar [3] under the name of parallelotopic graph and neighbor-complete
coloring. There are interesting instances of rainbow graphs appearing throughout mathematics and
theoretical computer science literature. For example, one can naturally construct a rainbow graph
from a group [7] or from a system of equations [3], and the structure of such rainbow graphs has
been shown to be closely related to the structure of the underlying algebraic structure.

We state here without proof some general facts about rainbow graphs, which are all easy to
verify. Many of these facts can be found in [7].

1. An n-rainbow graph is n-regular.

2. Each color occurs equally often in the vertex set of an n-rainbow graph.

3. An n-rainbow graph contains a perfect matching, which is constructed by choosing edges
whose endpoints have the same color.

4. The number of vertices of an n-rainbow graph is a multiple of 2n.

On the other hand, switching a vertex v of a labeled graph G means reversing the adjacency
of v and w for every other vertex w: If v and w are connected then we delete the edge, otherwise
we add an edge between them. This operation was defined by Seidel [5]. Two labeled graphs
are switching equivalent if one can be obtained from the other by a sequence of switching
operations. Two unlabeled graphs are switching equivalent if we can label the vertices so that
they become switching equivalent. The equivalent classes coming from this equivalence relation are
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Figure 1: The map that sends G to G̃.

called switching classes. Mallows and Sloane [4] and Cameron [1] showed that the number of
switching classes equals to the number of unlabeled Eulerian graphs.

The main result of this paper is the following theorem.

Theorem 1.1. The number of isomorphism classes of n-rainbow graphs with 2n vertices is the
same as the number of switching classes of graphs with n vertices.

Corollary 1.2. The number of isomorphism classes of n-rainbow graphs with 2n vertices is the
same as the number of unlabeled Eulerian graphs (every vertex has even degree) with n vertices.

We will explicitly construct a bijective map between the classes.

2 Map from switching classes to n-rainbow graphs

In this section, we introduce a map that sends a switching class of graphs having n vertices to an
isomorphism class of n-rainbow graphs having 2n vertices. This map will be shown to be a bijection
in Section 3.

Choose a graph G = (V,E) that has n vertices without loops and multiple edges. Label the
vertices from 1 to n. Now let G̃ = (Ṽ , Ẽ) be a graph having 2n vertices such that:

1. the vertices are labeled by {1, . . . , n, 1′, . . . , n′},

2. (i, i′) ∈ Ẽ,

3. (i, j), (i′, j′) ∈ Ẽ if (i, j) ∈ E,

4. (i′, j), (i, j′) ∈ Ẽ if (i, j) /∈ E.

Then the underlying unlabeled graph of G̃ is n-rainbow because we can color the vertices labeled
by i and i′ with the color i, and this is clearly a rainbow coloring. An example is given in Figure 1.

We denote by [G] the switching class of G. Now let us define the desired map ψ by sending [G]
to the underlying unlabeled graph of G̃. To see that ψ is well-defined, let H be the graph obtained
from G by switching at a vertex labeled by i. Let H̃ be the graph with 2n vertices obtained from H
by the previous method. Now if we interchange the labels of i, i′ in H̃, we recover G̃. An example
of this phenomenon is given in Figure 2.

Proposition 2.1. ψ is surjective.
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Figure 2: The exchange equivalence.

Proof. For any n-rainbow graph G̃ on 2n vertices, assign an n-rainbow coloring on its vertex set.
Now let G be an induced subgraph of G̃ having n vertices on which each color appears once. Clearly,
ψ([G]) = G̃.

Remark 2.2. A similar map was constructed in [2], with a different coloring of graphs, to prove
that the switching equivalence problem is polynomial time equivalent to the graph isomorphism
problem.

3 The main proof

In this section, we will prove our main result, Theorem 1.1. To do so, let us recall the definition of
Seidel matrices, originally defined in [5].

Definition 3.1. Let G be a graph over n vertices. The Seidel matrix of G is a symmetric n× n
matrix with entries aij such that:

• aii = 0 for all i ∈ [n],

• aij = aji = 1 if (i, j) ∈ E(G),

• aij = aji = −1 if (i, j) /∈ E(G).

Definition 3.2. For a Seidel matrix A we define Ã as

Ã :=

(
A I −A

I −A A

)
.
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Note that Ã is also a Seidel matrix. In particular, if A is the Siedel matrix of G, then Ã is the
Siedel matrix of G̃.

Let A and B be Seidel matrices of some graphs G and G′, respectively. Then G and G′ are
isomorphic if and only if B = PAP−1 for some permutation matrix P . Recall that the signed
permutation matrices are the matrices we get from permutation matrices by replacing 1’s with
±1’s. Since switching at vertex i of a graph corresponds to changing signs of entries in i-th row
and i-th column of its Seidel matrix, G and G′ are switching equivalent if and only if B = QAQ−1

for some signed permutation matrix Q.
In order to prove Theorem 1.1, it only remains to prove that ψ is injective, since surjectivity is

given by Proposition 2.1. We need to show that if G̃ is isomorphic to G̃′, then G and G′ are in the
same switching class. This can be restated in the following linear algebra language:

Proposition 3.3. If two Seidel matrices A and B satisfy Ã = PB̃P−1 where P is a 2n × 2n
permutation matrix, then there exists an n×n signed permutation matrix Q such that A = QBQ−1.

We prove this proposition by a sequence of lemmas given below.

Lemma 3.4. Let P =

(
P1 P2

P3 P4

)
be a 2n × 2n permutation matrix, where P1, . . . , P4 are n × n

matrices. The following equations hold:

1) P1P
T
3 = 0, P2P

T
4 = 0, P3P

T
1 = 0, P4P

T
2 = 0.

2) P1P
T
1 + P2P

T
2 = I, P3P

T
3 + P4P

T
4 = I.

Proof. From PP T = I we have(
P1P

T
1 + P2P

T
2 P1P

T
3 + P2P

T
4

P3P
T
1 + P4P

T
2 P3P

T
3 + P4P

T
4

)
=

(
I 0
0 I

)
.

The claim follows from the fact that every entry of each of Pi’s is nonnegative.

Lemma 3.5. In the assumption of Proposition 3.3 and Lemma 3.4, let Z denote (P1 − P2 − P3 +
P4)/2. Then, we have

A− I = Z(B − I)ZT .

Proof. Ã = PB̃P−1 implies(
A I −A

I −A A

)
=

(
P1 P2

P3 P4

)(
B I −B

I −B B

)(
P T
1 P T

3

P T
2 P T

4

)
.

It follows from Lemma 3.4 that:

A = XBXT + I −XXT ,

A = XBY T + I −XY T ,

A = Y BY T + I − Y Y T ,

A = Y BXT + I − Y XT ,
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where X = P1 − P2 and Y = P4 − P3. Summing these four equations, we get:

4A = (X + Y )B(X + Y )T + 4I − (X + Y )(X + Y )T .

Hence,

A− I =

(
X + Y

2

)
(B − I)

(
X + Y

2

)T

.

Definition 3.6. Let S be an m × m matrix. We call S a signed half-permutation matrix if
every row and column of S has either

1) exactly one nonzero entry α with α = ±1 , or

2) exactly two nonzero entries α and β with α = ±1
2 , β = ±1

2 .

For instance, a matrix 
0 −1

2 0 1
2

−1
2 −1

2 0 0
0 0 −1 0
1
2 0 0 1

2


is a signed half-permutation matrix.

Definition 3.7. Let S be an m×m signed half-permutation matrix. We say that an m×m matrix
T is an integration of S if the following conditions hold for all i = 1, . . . ,m.

1) If the i-th row(resp. column) of S has only one nonzero entry(which is ±1), then the i-th
row(resp. column) of T is the same as the i-th row(resp. column) of S.

2) If the i-th row(resp. column) of S has two nonzero entries, so that it is of form

[· · · (−1)p
2 · · · (−1)q

2 · · · ], then the i-th row(resp. column) of T is obtained by doubling one
of the nonzero entries and setting the other entry to zero. In other words, the i-th row(resp.
column) of T should look like either [· · · (−1)p · · · 0 · · · ] or [· · · 0 · · · (−1)q · · · ].

Clearly an integration of a signed half-permutation matrix is a signed permutation matrix. For
instance, the following matrix 

0 −1 0 0
−1 0 0 0
0 0 −1 0
0 0 0 1


is an integration of the following signed half-permutation matrix

0 −1
2 0 1

2
−1

2 −1
2 0 0

0 0 −1 0
1
2 0 0 1

2

 .

Lemma 3.8. Every signed half-permutation matrix has an integration.
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Proof. We can find an integration T of the signed half-permutation matrix S by the following
method:

First, pick an entry α1 of S with value α1 = ±1
2 in S. Replace α1 by sgn(α1), where sgn(α) is

1 if α is positive and is −1 if α is negative. Let α2 = ±1
2 be the other nonzero entry in the same

row as α1. Replace α2 by 0. Let α3 = ±1
2 be the other nonzero entry in the same column as α2.

Replace α2 by sgn(α2). By continuing this process, alternating row and column, we will end up at
α1 again since there are only finite number of entries. If there is no entry with value ±1

2 then we
are done. Otherwise, we repeat this process until there is no entry with value ±1

2 .
Let T be the matrix we get after performing this algorithm to S. Then, T satisfies the two

conditions of Definition 3.7.

Lemma 3.9. Let M , N be m×m matrices such that each entry mij of M satisfies −1 ≤ mij ≤ 1
and every entry of N is either 1 or −1. If MZ = N for some signed half-permutation matrix Z,
then every entry of M is either 1 or −1. Furthermore, if Q is an integration of Z then we have
MQ = N .

Proof. If j-th column of Z has an entry zij = ±1, then mki = ±nkj = ±1 for all k = 1, . . . ,m.
Otherwise, it has two nonzero entries, zi1j = ±1

2 and zi2j = ±1
2 for some i1 and i2. In this

case, −1 ≤ mki1zi1j + mki2zi2j ≤ 1, and the equalities are satisfied only if mki1 = 2nkjzi1 and
mki1 = 2nkjzi1 . Hence every entry of M is either 1 or -1. Moreover, if Q is an integration of Z,
then it’s a signed permutation matrix with qij = zij if zij = ±1 and qij = 2zij or 0 if zij = ±1

2 .
Therefore mkiqij = nkj , and we have MQ = N .

Now we are ready to prove Proposition 3.3, which would finish off the proof of Theorem 1.1.

Proof of Proposition 3.3. By Lemma 3.5, A− I = Z(B− I)ZT , where Z = (P1−P2−P3 +P4)/2.
We can see that Z is a signed half-permutation matrix. Let Q be an integration of Z. Obviously
QT is an integration of ZT . Since A,B are Seidel matrices, every entry of A− I is either 1 or −1,
and every entry of Z(B− I) is between −1 and 1. By Lemma 3.9, every entry of Z(B− I) is either
1 or −1, and A− I = Z(B − I)QT . Using Lemma 3.9 again on the transpose of Z(B − I), we get
Z(B − I) = Q(B − I). Therefore A− I = Q(B − I)QT = QBQT − I, hence A = QBQT .
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