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JOINT SPECTRAL RADIUS AND PATH-COMPLETE GRAPH
LYAPUNOV FUNCTIONS∗

AMIR ALI AHMADI† , RAPHAËL M. JUNGERS‡ , PABLO A. PARRILO§ , AND

MARDAVIJ ROOZBEHANI¶

Abstract. We introduce the framework of path-complete graph Lyapunov functions for ap-
proximation of the joint spectral radius. The approach is based on the analysis of the underlying
switched system via inequalities imposed among multiple Lyapunov functions associated to a labeled
directed graph. Inspired by concepts in automata theory and symbolic dynamics, we define a class of
graphs called path-complete graphs, and show that any such graph gives rise to a method for proving
stability of the switched system. This enables us to derive several asymptotically tight hierarchies
of semidefinite programming relaxations that unify and generalize many existing techniques such as
common quadratic, common sum of squares, path-dependent quadratic, and maximum/minimum-
of-quadratics Lyapunov functions. We compare the quality of approximation obtained by certain
classes of path-complete graphs including a family of dual graphs and all path-complete graphs with
two nodes on an alphabet of two matrices. We derive approximation guarantees for several families of
path-complete graphs, such as the De Bruijn graphs. This provides worst-case performance bounds
for path-dependent quadratic Lyapunov functions and a constructive converse Lyapunov theorem for
maximum/minimum-of-quadratics Lyapunov functions.
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1. Introduction. Given a finite set of square matrices A := {A1, . . . , Am}, their
joint spectral radius (JSR) ρ(A) is defined as

(1.1) ρ (A) = lim
k→∞

max
σ∈{1,...,m}k

‖Aσk
. . . Aσ2Aσ1‖1/k ,

where the quantity ρ(A) is independent of the norm used in (1.1). The joint spectral
radius is a natural generalization of the spectral radius of a single square matrix and
it characterizes the maximal growth rate that can be obtained by taking products,
of arbitrary length, of all possible permutations of A1, . . . , Am. This concept was
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688 AHMADI, JUNGERS, PARRILO, AND ROOZBEHANI

introduced by Rota and Strang [47] in the early 1960s and has since been the sub-
ject of extensive research within the engineering and mathematics communities alike.
Aside from a wealth of fascinating mathematical questions that arise from the joint
spectral radius, the notion emerges in many areas of application such as stability of
switched linear dynamical systems, Leontief input-output model of the economy with
uncertain data, computation of the capacity of codes, continuity of wavelet functions,
convergence of consensus algorithms, trackability of graphs, and many others. See [32]
and references therein for a recent survey of the theory and applications of the joint
spectral radius.

Motivated by the abundance of applications, there has been much work on efficient
computation of the joint spectral radius; see, e.g., [21], [11], [10], [35], [42], [37], [24],
[25], [23], [1], [2] and references therein. Unfortunately, the negative results in the
literature certainly restrict the horizon of possibilities. In [12], Blondel and Tsitsiklis
prove that even when the set A consists of only two matrices, the question of testing
whether ρ(A) ≤ 1 is undecidable. They also show that unless P = NP, one cannot
compute an approximation ρ̂ of ρ that satisfies |ρ̂ − ρ| ≤ ερ in a number of steps
polynomial in the bit size of A and the bit size of ε [49]. It is easy to show that the
spectral radius of any finite product of length k raised to the power of 1/k gives a
lower bound on ρ [32]. However, for reasons that we explain next, our focus will be
on computing upper bounds for ρ.

There is an attractive connection between the joint spectral radius and the sta-
bility properties of an arbitrarily switched linear system, i.e., dynamical systems of
the form

(1.2) xk+1 = Aσ(k)xk,

where σ : Z →{1, . . . ,m} is a map from the set of integers to the set of indices. It is
well known that ρ < 1 if and only if system (1.2) is absolutely asymptotically stable
(AAS), that is, (globally) asymptotically stable for all switching sequences. Moreover,
it is known [38] that absolute asymptotic stability of (1.2) is equivalent to absolute
asymptotic stability of the linear difference inclusion

(1.3) xk+1 ∈ coA xk,

where coA denotes the convex hull of the set A. Therefore, any method for obtaining
upper bounds on the joint spectral radius provides sufficient conditions for stability
of systems of type (1.2) or (1.3). Conversely, if we can prove absolute asymptotic
stability of (1.2) or (1.3) for the set Aγ := {γA1, . . . , γAm} for some positive scalar
γ, then we get an upper bound of 1

γ on ρ(A). (This follows from the scaling property

of the JSR: ρ(Aγ) = γρ(A).) One advantage of working with the notion of the
joint spectral radius is that it gives a way of rigorously quantifying the performance
guarantee of different techniques for stability analysis of systems (1.2) or (1.3).

Perhaps the most well-established technique for proving stability of switched
systems is the use of a common (or simultaneous) Lyapunov function. The idea
here is that if there is a continuous, positive, and homogeneous (Lyapunov) function
V : Rn → R that for some γ > 1 satisfies

(1.4) V (γAix) ≤ V (x) ∀i = 1, . . . ,m, ∀x ∈ R
n,

(i.e., V (x) decreases no matter which matrix is applied), then the system in (1.2) (or
in (1.3)) is AAS. Conversely, it is known that if the system is AAS, then there exists
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a convex common Lyapunov function (in fact a norm); see, e.g., [32, p. 24]. However,
this function is not in general finitely constructable. A popular approach has been
to try to approximate this function by a class of functions that we can efficiently
search for using convex optimization and in particular semidefinite programming.
Semidefinite programs (SDPs) can be solved with arbitrary accuracy in polynomial
time and lead to efficient computational methods for approximation of the JSR. As
an example, if we take the Lyapunov function to be quadratic (i.e., V (x) = xTPx),
then the search for such a Lyapunov function can be formulated as the following SDP:

P � 0,(1.5)

γ2AT
i PAi � P ∀i = 1, . . . ,m.

The quality of approximation of common quadratic Lyapunov functions is a well-
studied topic. In particular, it is known [11] that the estimate ρ̂V2 obtained by this
method1 satisfies

(1.6)
1√
n
ρ̂V2(A) ≤ ρ(A) ≤ ρ̂V2(A),

where n is the dimension of the matrices. This bound is a direct consequence of
John’s ellipsoid theorem and is tight [7]. Moreover, it is known that applying the
common quadratic method to products of increasing length from the set A gives an
asymptotically exact method for the computation of the JSR [7], [9].

In [42], the use of sum of squares (SOS) polynomial Lyapunov functions of degree
2d was proposed as a common Lyapunov function for the switched system in (1.2).
The search for such a Lyapunov function can again be formulated as an SDP. This
method does considerably better than a common quadratic Lyapunov function in
practice and its estimate ρ̂VSOS,2d satisfies the bound

(1.7)
1

2d
√
η
ρ̂VSOS,2d(A) ≤ ρ(A) ≤ ρ̂VSOS,2d(A),

where η = min{m,
(
n+d−1

d

)}. Furthermore, as the degree 2d goes to infinity, the
estimate ρ̂VSOS,2d converges to the true value of ρ [42].

The semidefinite programming based methods for approximation of the JSR have
been recently generalized and put in the framework of conic programming [44]. We
shall also remark that there are powerful techniques for approximation of the JSR
that do not use semidefinite programming, such as approaches based on computation
of a polytopic norm [23], [24], [25]. Research in the computation of the JSR continues
to be an active area and each novel technique has the potential to enhance not only
our ability to solve certain instances more efficiently, but also our understanding of
the relations between the different approaches. An increasing number of the currently
available methods for JSR approximation are being (or have been) implemented in the
JSR toolbox, a MATLAB based software package freely available for download [17].
Extensive numerical experiments comparing some of the different approaches have
been carried out using this toolbox and recently reported in [14].

1The estimate ρ̂V2 is the reciprocal of the largest γ that satisfies (1.5) and can be found by
bisection.
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690 AHMADI, JUNGERS, PARRILO, AND ROOZBEHANI

1.1. Contributions and organization. It is natural to ask whether one can
develop better approximation schemes for the joint spectral radius by using multiple
Lyapunov functions as opposed to requiring simultaneous contractibility of a single
Lyapunov function with respect to all the matrices. More concretely, our goal is to
understand in what ways we can write inequalities among, say, k different Lyapunov
functions V1(x), . . . , Vk(x) that imply absolute asymptotic stability of (1.2) and can
be checked via semidefinite programming.

The general idea of using several Lyapunov functions for analysis of switched sys-
tems is a very natural one and has already appeared in the literature (although to our
knowledge not in the context of the approximation of the JSR); see, e.g., [31], [13], [15],
[35], [37], [34], [36], [29], [28], [20]. Perhaps one of the earliest references is the work on
“piecewise quadratic Lyapunov functions” in [31]. However, this work is in the differ-
ent framework of state-dependent switching, where the dynamics switches depending
on which region of the space the trajectory is traversing (as opposed to arbitrary
switching). In this setting, there is a natural way of using several Lyapunov func-
tions: assign one Lyapunov function per region and “glue them together.” Closer to
our setting, there is a body of work in the literature that gives sufficient conditions
for existence of piecewise Lyapunov functions of the type max{xTP1x, . . . , x

TPkx},
min{xTP1x, . . . , x

TPkx}, and conv{xTP1x, . . . , x
TPkx}, i.e., the pointwise maximum,

the pointwise minimum, and the convex envelope of a set of quadratic functions [29],
[28], [20], [30]. These works are mostly concerned with analysis of linear differential
inclusions in continuous time, but they have obvious discrete-time counterparts. The
main drawback of these methods is that in their greatest generality, they involve solv-
ing bilinear matrix inequalities, which are nonconvex and in general NP-hard. One
therefore has to turn to heuristics, which have no performance guarantees and their
computation time quickly becomes prohibitive when the dimension of the system in-
creases. Moreover, these methods solely provide sufficient conditions for stability with
no performance guarantees.

Another body of work which utilizes multiple Lyapunov functions and is of partic-
ular interest for us appears in [35], [37], [34], [36]. In these papers, several fundamen-
tal control problems (e.g., stability, feedback stabilizability, detectability, disturbance
attenuation, output regulation) are addressed for discrete-time switched systems us-
ing multiple Lyapunov functions and hierarchies of linear matrix inequality (LMI)
conditions. The special case of these results that handles the stability question for
arbitrarily switched linear systems is directly relevant for our purposes. This includes
some of the LMIs associated with the so-called path-dependent quadratic Lyapunov
functions [35] and another family of LMIs that are in a certain sense dual to those
of path-dependent quadratic Lyapunov functions; see [37]. In contrast to the piece-
wise Lyapunov functions discussed previously, these techniques, being naturally SDP-
based, do not suffer from computational difficulties associated with solving bilinear
matrix inequalities. Moreover, just like the case of sums of squares Lyapunov func-
tions, the hierarchies of LMIs in [35], [37] are asymptotically exact for computation
of the JSR. In other words, the infinite family of the LMIs provides necessary and
sufficient conditions for switched stability. We will revisit some of these LMIs in
this paper, prove approximation guarantees for them, and relate them to common
min/max-of-quadratics Lyapunov functions.

Motivated by the premise that techniques combining multiple Lyapunov func-
tions and convex optimization provide powerful tools for stability analysis of switched
systems, we believe it is important to establish a systematic framework for deriving
convex inequalities among multiple Lyapunov functions that imply stability. More-
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over, it is naturally desired to understand the performance of the resulting convex
programs in terms of approximation of the JSR, just like we do for several classes
of common Lyapunov functions (e.g., common quadratic or common SOS). In more
concrete terms, the questions that motivate our paper are as follows: (i) With a
focus on conditions that are amenable to convex optimization, what are all the dif-
ferent ways to write a set of inequalities among k Lyapunov functions that imply
absolute asymptotic stability of (1.2)? Can we give a unifying framework that in-
cludes all the previously proposed Lyapunov functions in the literature? Are there
new sets of inequalities that have not appeared before? (ii) Among the different
sets of inequalities that imply stability, can we identify some that are more powerful
than others? (iii) The available (finite) convex programs based on multiple Lyapunov
functions solely provide sufficient conditions for stability with no guarantee on their
approximation quality for the JSR. Can we give converse theorems that guarantee the
existence of a feasible solution to our search for a given accuracy of approximation?

The contributions of this paper to these questions are as follows. We propose a
unifying framework based on a representation of Lyapunov inequalities with labeled
graphs and by making some connections with basic concepts in automata theory.
This is done in section 2, where we define the notion of a path-complete graph (Def-
inition 2.2) and prove that any such graph provides an approximation scheme for
the JSR (Theorem 2.4). In section 3, we give examples of families of path-complete
graphs and show that the previously proposed techniques come from particular classes
of path-complete graphs whose path-completeness is easy to detect (e.g., Corollary 3.4,
Corollary 3.5, and Remark 3.2).2 We also show that the concept of path-completeness
can easily produce new stability proving LMIs not previously present in the literature
(e.g., Proposition 3.6 and Remark 3.3).

In section 4, we characterize all the path-complete graphs with two nodes for
the analysis of the JSR of two matrices. We present a full characterization of the
partial order induced on these graphs according to their relative performance in ap-
proximation of the JSR (Proposition 4.2). In section 5, we study in more depth the
approximation properties of a particular pair of “dual” path-complete graphs that
seem to perform very well in practice. The LMIs associated with these dual graphs
appear in [15], [35], [37]. Subsection 5.1 contains more general results about duality
within path-complete graphs and its connection to transposition of matrices (Theo-
rem 5.1). Subsection 5.2 gives an approximation guarantee for the graphs studied in
section 5 (Theorem 5.4). Subsection 5.3 contains several numerical examples, in par-
ticular some that come from three application domains: (i) asymptotics of overlap-free
words, (ii) computation of the Euler ternary partition function, and (iii) continuity of
wavelet functions. In section 6, we prove a converse theorem for the method of max-
of-quadratics Lyapunov functions (Theorem 6.1) which tell us how many quadratic
Lyapunov functions suffice in the worst case to achieve a given approximation qual-
ity on the JSR. We also derive approximation guarantees for a new class of stability
proving LMIs that involve matrix products from the set A with different lengths
(Theorem 6.2). Finally, our conclusions and some future directions are presented in
section 7.

2Although there may be other LMIs in the literature that we are unaware of, it is safe for us
to assume that they too must form special cases of our framework. In recent work to be reported
elsewhere (see [5] for a preliminary version), we have shown that all stability proving Lyapunov
inequalities in our setting come from path-complete graphs.
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Fig. 2.1. Graphical representation of Lyapunov inequalities. The edge in the graph above
corresponds to the Lyapunov inequality Vj(Alx) ≤ Vi(x). Here, Al can be a single matrix from A
or a finite product of matrices from A.

2. Path-complete graphs and the joint spectral radius. In what follows,
we will think of the set of matrices A := {A1, . . . , Am} as a finite alphabet and we
will often refer to a finite product of matrices from this set as a word. We denote the
set of all words Ait . . . Ai1 of length t by At. Contrary to the standard convention
in automata theory, our convention is to read a word from right to left. This is in
accordance with the order of matrix multiplication. The set of all finite words is
denoted by A∗; i.e., A∗ =

⋃
t∈Z+ At.

The basic idea behind our framework is to represent through a graph all the
possible occurrences of products that can appear in a run of the dynamical system in
(1.2) and to assert via some Lyapunov inequalities that no matter what occurrence
appears, the product must remain stable. A convenient way of representing these
Lyapunov inequalities is via a directed labeled graph G(N,E). Each node of this
graph is associated with a (continuous, positive definite, and homogeneous) Lyapunov
function Vi : R

n → R, and each edge is labeled by a finite product of matrices, i.e., by
a word from the set A∗. As illustrated in Figure 2.1, given two nodes with Lyapunov
functions Vi(x) and Vj(x) and an edge going from node i to node j labeled with the
matrix Al, we write the Lyapunov inequality:

(2.1) Vj(Alx) ≤ Vi(x) ∀x ∈ R
n.

The problem that we are interested in is to understand which sets of Lyapunov
inequalities imply stability of the switched system in (1.2). We will answer this
question based on the corresponding graph.

For reasons that will become clear shortly, we would like to reduce graphs whose
edges have arbitrary labels from the set A∗ to graphs whose edges have labels from
the set A, i.e., labels of length one. This is explained next.

Definition 2.1. Given a labeled directed graph G(N,E), we define its expanded
graph Ge(Ne, Ee) as the outcome of the following procedure. For every edge (i, j) ∈ E
with label Aik . . . Ai1 ∈ Ak, where k > 1, we remove the edge (i, j) and replace it with
k new edges (sq, sq+1) ∈ Ee \ E : q ∈ {0, . . . , k − 1}, where s0 = i and sk = j.3

(These new edges go from node i through k − 1 newly added nodes s1, . . . , sk−1 and
then to node j.) We then label the new edges (i, s1), . . . , (sq, sq+1), . . . , (sk−1, j) with
Ai1, . . . , Aik, respectively.

An example of a graph and its expansion is given in Figure 2.2. Note that if a
graph has only labels of length one, then its expanded graph equals itself. The next
definition is central to our development.

Definition 2.2. Given a directed graph G(N,E) whose edges are labeled with
words from the set A∗, we say that the graph is path-complete if for all finite words
Aσk

. . . Aσ1 of any length k (i.e., for all words in A∗), there is a directed path in its

3It is understood that the node index sq depends on the original nodes i and j. To keep the

notation simple we write sq instead of sijq .
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Fig. 2.2. Graph expansion: edges with labels of length more than one are broken into new edges
with labels of length one.

Fig. 2.3. Examples of path-complete graphs for the alphabet {A1, A2}. If Lyapunov functions
satisfying the inequalities associated with any of these graphs are found, then we get an upper bound
of unity on ρ(A1, A2).

expanded graph Ge(Ne, Ee) such that the labels on the edges of this path are the labels
Aσ1 up to Aσk

.

In Figure 2.3, we present seven path-complete graphs on the alphabet A =
{A1, A2}. The fact that these graphs are path-complete is easy to see for graphs
H1, H2, G3, and G4 but perhaps not so obvious for graphs H3, G1, and G2. One way
to check if a graph is path-complete is to think of it as a finite automaton by introduc-
ing an auxiliary start node (state) with free transitions to every node and by making
all the other nodes be accepting states. Then, there are well-known algorithms (see,
e.g., [27, Chap. 4]) that check whether the language accepted by an automaton is A∗,
which is equivalent to the graph being path-complete. Similar algorithms exist in the
symbolic dynamics literature; see, e.g., [39, Chap. 3]. Our interest in path-complete
graphs stems from Theorem 2.4 below that establishes that any such graph gives a
method for approximation of the JSR. We introduce one last definition before we state
this theorem.

Definition 2.3. Let A = {A1, . . . , Am} be a set of matrices. Given a path-
complete graph G (N,E) and |N | functions Vi(x), we say that {Vi(x) | i = 1, . . . , |N |}
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is a graph Lyapunov function (GLF) associated with G (N,E) if

Vj (L ((i, j))x) ≤ Vi (x) ∀x ∈ R
n, ∀ (i, j) ∈ E,

where L ((i, j)) ∈ A∗ is the label associated with edge (i, j) ∈ E going from node i to
node j.

Theorem 2.4. Consider a finite set of matrices A = {A1, . . . , Am}. For a scalar
γ > 0, let Aγ := {γA1, . . . , γAm}. Let G(N,E) be a path-complete graph whose edges
are labeled with words from A∗

γ . If there exist positive, continuous, and homogeneous4

functions Vi(x), one per node of the graph, such that {Vi(x) | i = 1, . . . , |N |} is a GLF
associated with G(N,E), then ρ(A) ≤ 1

γ .
Proof. We will first prove the claim for the special case where the edge labels

of G(N,E) belong to Aγ and therefore G(N,E) = Ge(Ne, Ee). The general case
will be reduced to this case afterward. Let d be the degree of homogeneity of the
Lyapunov functions Vi(x), i.e., Vi(λx) = λdVi(x) for all λ ∈ R. (The actual value of d
is irrelevant.) By positivity, continuity, and homogeneity of Vi(x), there exist scalars
αi and βi with 0 < αi ≤ βi for i = 1, . . . , |N | such that

(2.2) αi||x||d ≤ Vi(x) ≤ βi||x||d

for all x ∈ R
n and for all i = 1, . . . , |N |, where ||x|| denotes the Euclidean norm of x.

Let

(2.3) ξ = max
i,j∈{1,...,|N |}2

βi

αj
.

Now consider an arbitrary product Aσk
. . . Aσ1 of length k. Because the graph is path-

complete, there will be a directed path corresponding to this product that consists
of k edges and goes from some node i to some node j. If we write the chain of k
Lyapunov inequalities associated with these edges (cf. Figure 2.1), then we get

Vj(γ
kAσk

. . . Aσ1x) ≤ Vi(x),

which by homogeneity of the Lyapunov functions can be rearranged to

(2.4)

(
Vj(Aσk

. . . Aσ1x)

Vi(x)

) 1
d

≤ 1

γk
.

We can now bound the spectral norm of Aσk
. . . Aσ1 as follows:

||Aσk
. . . Aσ1 || ≤ max

x

||Aσk
. . . Aσ1x||
||x||

≤
(
βi

αj

) 1
d

max
x

V
1
d
j (Aσk

. . . Aσ1x)

V
1
d

i (x)

≤
(
βi

αj

) 1
d 1

γk

≤ ξ
1
d
1

γk
,

4The requirement of homogeneity can be replaced by radial unboundedness which is implied by
homogeneity and positivity. However, since the dynamical system in (1.2) is homogeneous, there is
no conservatism in asking Vi(x) to be homogeneous.
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where the last three inequalities follow from (2.2), (2.4), and (2.3), respectively. From
the definition of the JSR in (1.1), after taking the kth root and the limit k → ∞, we
get that ρ(A) ≤ 1

γ and the claim is established.

Now consider the case where at least one edge of G(N,E) has a label of length
more than one and hence Ge(Ne, Ee) �= G(N,E).5 We will start with the Lyapunov
functions Vi(x) assigned to the nodes of G(N,E) and from them we will explicitly
construct |Ne| Lyapunov functions for the nodes of Ge(Ne, Ee) that satisfy the Lya-
punov inequalities associated to the edges in Ee. Once this is done, in view of our
preceding argument and the fact that the edges of Ge(Ne, Ee) have labels of length
one by definition, the proof will be completed.

For j ∈ Ne, let us denote the new Lyapunov functions by V e
j (x). We give the

construction for the case where |Ne| = |N |+1. The result for the general case follows
by iterating this simple construction. Let s ∈ Ne\N be the added node in the
expanded graph, and let q, r ∈ N be such that (s, q) ∈ Ee and (r, s) ∈ Ee with Asq

and Ars as the corresponding labels, respectively. Define

(2.5) V e
j (x) =

{
Vj (x) if j ∈ N,

Vq (Asqx) if j = s.

By construction, r and q, and subsequently, Asq and Ars are uniquely defined and
hence,

{
V e
j (x) | j ∈ Ne

}
is well defined. We only need to show that

Vq (Asqx) ≤ V e
s (x) ,(2.6)

V e
s (Arsx) ≤ Vr (x) .(2.7)

Inequality (2.6) follows trivially from (2.5). Furthermore, it follows from (2.5) that

V e
s (Arsx) = Vq (AsqArsx)

≤ Vr (x) ,

where the inequality follows from the fact that for i ∈ N , the functions Vi(x) satisfy
the Lyapunov inequalities of the edges of G (N,E) .

Remark 2.1. If the matrix Asq is not invertible, the extended function V e
j (x)

as defined in (2.5) will only be positive semidefinite. However, since our goal is to
approximate the JSR, we will never be concerned with invertibility of the matrices in
A. Indeed, since the JSR is continuous in the entries of the matrices [32, p. 18], we
can always perturb the matrices slightly to make them invertible without changing
the JSR by much. In particular, for any α > 0, there exist 0 < ε, δ < α such that

Âsq =
Asq + δI

1 + ε

is invertible and (2.5)−(2.7) are satisfied with Asq = Âsq.
To understand the generality of the framework of “path-complete GLFs” more

clearly, let us revisit the path-complete graphs in Figure 2.3 for the study of the case

5A reviewer kindly pointed out an alternative and shorter way of proving the second part of this
theorem, without relying on the notion of expanded graphs. We present the proof with expanded
graphs because the explicit relationship between the Lyapunov functions of a graph and its expanded
version proves to be useful in showing equivalence of certain path-complete graphs in terms of the
quality of approximation that they provide on the JSR.
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696 AHMADI, JUNGERS, PARRILO, AND ROOZBEHANI

where the set A = {A1, A2} consists of only two matrices. For all these graphs if our
choice for the Lyapunov functions V (x) or V1(x) and V2(x) are quadratic functions
or sum of squares polynomial functions, then we can formulate the well-established
SDPs that search for these candidate Lyapunov functions.

Graph H1, which is clearly the simplest possible one, corresponds to the well-
known common Lyapunov function approach. Graph H2 is a common Lyapunov
function applied to all products of length two. This graph also obviously implies
stability.6 But graph H3 tells us that if we find a Lyapunov function that decreases
whenever A1, A2

2, and A2A1 are applied (but with no requirement when A1A2 is
applied), then we still get stability. This is a priori not obvious and we believe this
approach has not appeared in the literature before. Graph H3 is also an example that
explains our reasoning behind the expansion process. Note that for the unexpanded
graph, there is no path for any word of the form (A1A2)

k or of the form A2k−1
2 for

any k ∈ N. However, one can check that in the expanded graph of graph H3, there is
a path for every finite word, and this in turn allows us to conclude stability from the
Lyapunov inequalities of graph H3.

The remaining graphs in Figure 2.3 which all have two nodes and four edges
have a connection to the method of min-of-quadratics or max-of-quadratics Lyapunov
functions [29], [28], [20], [30]. If Lyapunov inequalities associated with any of these
four graphs are satisfied, then either min{V1(x), V2(x)} or max{V1(x), V2(x)} or both
serve as a common Lyapunov function for the switched system. In the next sec-
tion, we assert these facts in a more general setting (Corollaries 3.4 and 3.5) and
show that these graphs in some sense belong to “simplest” families of path-complete
graphs.

3. Duality and examples of families of path-complete graphs. Now that
we have shown that any path-complete graph yields a method for proving stability of
switched systems, our next focus is naturally on showing how one can produce graphs
that are path-complete. Before we proceed to some basic constructions of such graphs,
let us define a notion of duality among graphs which essentially doubles the number
of path-complete graphs that we can generate.

Definition 3.1. Given a directed graph G(N,E) whose edges are labeled with
words in A∗, we define its dual graph G′(N,E′) to be the graph obtained by reversing
the direction of the edges of G and changing the labels Aσk

. . . Aσ1 of every edge of G
to its reversed version Aσ1 . . . Aσk

.
An example of a pair of dual graphs with labels of length one is given in Figure 3.1.

The following theorem relates dual graphs and path-completeness.
Theorem 3.2. If a graph G(N,E) is path-complete, then its dual graph G′(N,E′)

is also path-complete.
Proof. Consider an arbitrary finite word Aik . . . Ai1 . By definition of path-

completeness, our task is to show that there exists a path corresponding to this word
in the expanded graph of the dual graph G′. It is easy to see that the expanded
graph of the dual graph of G is the same as the dual graph of the expanded graph

of G; i.e., G′e(Ne, E′e) = Ge
′
(Ne, Ee

′
). Therefore, we show a path for Aik . . . Ai1 in

Ge
′
. Consider the reversed word Aii . . . Aik . Since G is path-complete, there is a path

corresponding to this reversed word in Ge. Now if we just trace this path backward,

we get exactly a path for the original word Aik . . . Ai1 in Ge
′
. This completes the

6By slight abuse of terminology, we say that a graph implies stability, meaning that the associated
Lyapunov inequalities imply stability.
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Fig. 3.1. An example of a pair of dual graphs.

proof.

The next proposition offers a very simple construction for obtaining a large family
of path-complete graphs with labels of length one.

Proposition 3.3. A graph having any of the two properties below is path-
complete.

Property (i) Every node has outgoing edges with all the labels in A.

Property (ii) Every node has incoming edges with all the labels in A.

Proof. If a graph has Property (i), then it is obviously path-complete. If a graph
has Property (ii), then its dual has Property (i) and therefore by Theorem 3.2 it is
path-complete.

Examples of path-complete graphs that fall into the category of this proposition
include graphs G1, G2, G3, and G4 in Figure 2.3 and all their dual graphs. By com-
bining the previous proposition with Theorem 2.4, we obtain the following two simple
corollaries which unify several LMIs that have been proposed in the literature. These
corollaries also provide a link to min/max-of-quadratics Lyapunov functions. Different
special cases of these LMIs have appeared in [29], [28], [20], [30], [35], [15], [37]. Note
that the framework of path-complete graph Lyapunov functions makes the proof of
the fact that these LMIs imply stability immediate. We also remark that the following
corollaries, and hence the graphs in Proposition 3.3, already include infinite subsets of
path-complete graphs that are not only sufficient for stability of (1.2) but also neces-
sary. Examples of such infinite sets of LMIs with their proofs of necessity are given in
[35], [37].

Corollary 3.4. Consider the set A = {A1, . . . , Am} and the associated switched
linear system in (1.2) or (1.3). If there exist K positive definite matrices Pj such that

∀(i, k) ∈ {1, . . . ,m} × {1, . . . ,K}, ∃j ∈ {1, . . . ,K}(3.1)

such that γ2AT
i PjAi � Pk

for some γ > 1, then the system is AAS, i.e., ρ(A) < 1. Moreover, the pointwise
minimum

min{xTP1x, . . . , x
TPKx}

of the quadratic functions serves as a common Lyapunov function.

Proof. The inequalities in (3.1) imply that every node of the associated graph has
outgoing edges labeled with all the differentm matrices. Therefore, by Proposition 3.3
the graph is path-complete, and by Theorem 2.4 this implies absolute asymptotic
stability. The proof that the pointwise minimum of the quadratics is a common
Lyapunov function is easy and left to the reader.
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Corollary 3.5. Consider the set A = {A1, . . . , Am} and the associated switched
linear system in (1.2) or (1.3). If there exist K positive definite matrices Pj such that

∀(i, j) ∈ {1, . . . ,m} × {1, . . . ,K}, ∃k ∈ {1, . . . ,K}(3.2)

such that γ2AT
i PjAi � Pk

for some γ > 1, then the system is AAS, i.e., ρ(A) < 1. Moreover, the pointwise
maximum

max{xTP1x, . . . , x
TPKx}

of the quadratic functions serves as a common Lyapunov function.

Proof. The inequalities in (3.2) imply that every node of the associated graph has
incoming edges labeled with all the differentmmatrices. Therefore, by Proposition 3.3
the graph is path-complete and the proof of absolute asymptotic stability then follows.
The proof that the pointwise maximum of the quadratics is a common Lyapunov
function is again left to the reader.

Remark 3.1. The linear matrix inequalities in (3.1) and (3.2) are (convex) suf-
ficient conditions for existence of min-of-quadratics or max-of-quadratics Lyapunov
functions. The converse is not true. The works in [29], [28], [20], [30] have addi-
tional multipliers in (3.1) and (3.2) that make the inequalities nonconvex but when
solved with a heuristic method contain a larger family of min-of-quadratics and max-
of-quadratics Lyapunov functions. Even if the nonconvex inequalities with multipliers
could be solved exactly, except for special cases where the S-procedure is exact (e.g.,
the case of two quadratic functions), these methods still do not completely character-
ize min-of-quadratics and max-of-quadratics functions.

Remark 3.2. The LMIs associated with “path-dependent quadratic Lyapunov
functions” of any given path length (see [35]) and the LMIs associated with “parameter
dependent Lyapunov functions” [15]—when specialized to the analysis of arbitrarily
switched linear systems—are special cases of Corollaries 3.4 and 3.5, respectively. This
observation makes a connection between these techniques and min/max-of-quadratics
Lyapunov functions which is not established in [35], [15]. It is also interesting to note
that the path-complete graph corresponding to the LMIs of path-dependent quadratic
Lyapunov functions of any path length (see Theorem 9 in [35]) is the well-known De
Bruijn graph [22]. The “path length” of these Lyapunov functions is interestingly the
dimension of the De Bruijn graph. We will analyze the bound on the JSR obtained
by analysis via this path-complete graph in later sections since we have empirically
observed that path-dependent quadratic Lyapunov functions are among the most
powerful ones in comparison to all our graphs.

The set of path-complete graphs is much broader than the family of graphs con-
structed in Proposition 3.3. Indeed, there are many graphs that are path-complete
without having outgoing (or incoming) edges with all the labels on every node; see,
e.g., graph He

4 in Figure 3.2. This in turn means that there are several interesting and
unexplored Lyapunov inequalities that we can impose for proving stability of switched
systems. Below, we give one particular example of such “nonobvious” inequalities for
the case of switching between two matrices.

Proposition 3.6. Consider the set A = {A1, A2} and the switched linear system
in (1.2) or (1.3). If there exists a positive definite matrix P such that
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Fig. 3.2. The path-complete graphs corresponding to Proposition 3.6.

γ2AT
1 PA1 � P,

γ4(A2A1)
TP (A2A1) � P,

γ6(A2
2A1)

TP (A2
2A1) � P,

γ6A3T

2 PA3
2 � P

for some γ > 1, then the system is AAS, i.e., ρ(A) < 1.
Proof. The graph H4 associated with the LMIs above and its expanded version

He
4 are drawn in Figure 3.2. We leave it as an exercise for the reader to show (e.g.,

by induction on the length of the word) that there is a path for every finite word
in He

4 . Therefore, H4 is path-complete and in view of Theorem 2.4 the claim is
established.

Remark 3.3. Proposition 3.6 can be generalized as follows: If a single Lyapunov
function decreases with respect to the matrix products

{A1, A2A1, A
2
2A1, . . . , A

k−1
2 A1, A

k
2}

for some integer k ≥ 1, then ρ(A1, A2) < 1. We omit the proof of this generalization
due to space limitations. We will later prove (Theorem 6.2) a bound for the quality
of approximation of path-complete graphs of this type, where a common Lyapunov
function is required to decrease with respect to products of different lengths.

When we have so many different ways of imposing conditions for stability, it
is natural to ask which ones are more powerful. The answer clearly depends on
the combinatorial structure of the graphs and does not seem to be easy in general.
Nevertheless, in the next section, we compare the performance of all path-complete
graphs with two nodes for analysis of switched systems with two matrices. Some
interesting connections between the bounds obtained from these graphs will arise.
For example, we will see that the graphs H1, G3, and G4 always give the same bound
on the joint spectral radius; i.e., one graph will succeed in proving stability if and
only if the other two will. So, there is no point in increasing the number of decision
variables and the number of constraints and impose G3 or G4 in place of H1. The
same is true for the graphs in H3 and G2, which makes graph H3 preferable to graph
G2. (See Proposition 4.2.)

4. Path-complete graphs with two nodes. In this section, we character-
ize the set of all path-complete graphs consisting of two nodes, an alphabet set
A = {A1, A2}, and edge labels of unit length. We will elaborate on the set of all
admissible topologies arising in this setup and compare the performance—in the sense
of conservatism of the ensuing analysis—of different path-complete graph topologies.
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Before we proceed, we introduce notation that will prove to be convenient in
subsection 4.2: Given a labeled graph G(N,E) associated with two matrices A1 and
A2, we denote by G(N,E), the graph obtained by swapping of A1 and A2 in all the
labels on every edge.

4.1. The set of path-complete graphs. The next lemma establishes that for
thorough analysis of the case of two matrices and two nodes, we only need to examine
graphs with four or fewer edges.

Lemma 4.1. Let G ({1, 2} , E) be a path-complete graph with labels of length one
for A = {A1, A2}. Let {V1, V2} be a GLF for G. If |E| > 4, then, either

(i) there exists ê ∈ E such that G ({1, 2} , E\ê) is a path-complete graph
or
(ii) either V1 or V2 or both are common Lyapunov functions for A.

Proof. If |E| > 4, then at least one node has three or more outgoing edges.
Without loss of generality let node 1 be a node with exactly three outgoing edges
e1, e2, e3, and let L (e1) = L (e2) = A1. Let D (e) denote the destination node of an
edge e ∈ E. If D (e1) = D (e2) , then e1 (or e2) can be removed without changing
the output set of words. If D (e1) �= D (e2) , assume, without loss of generality, that
D (e1) = 1 and D (e2) = 2. Now, if L (e3) = A1, then regardless of its destination node,
e3 can be removed. If L (e3) = A2 and D (e3) = 1, then V1 is a common Lyapunov
function for A. The only remaining possibility is that L (e3) = A2 and D (e3) = 2.
Note that there must be an edge e4 ∈ E from node 2 to node 1; otherwise either node
2 would have two self-edges with the same label or V2 would be a common Lyapunov
function for A. If L(e4) = A2, then it can be verified that G({1, 2}, {e1, e2, e3, e4})
is path-complete and thus all other edge can be removed. If there is no edge from
node 2 to node 1 with label A2, then L(e4) = A1 and node 2 must have a self-edge
e5 ∈ E with label L(e5) = A2; otherwise the graph would not be path-complete. In
this case, it can be verified that e2 can be removed without affecting the output set of
words.

One can easily verify that a path-complete graph with two nodes and fewer
than four edges must necessarily place two self-loops with different labels on one
node, which necessitates existence of a common Lyapunov function for the underlying
switched system. Since we are interested in exploiting the favorable properties of graph
Lyapunov functions in approximation of the JSR, we will focus on graphs with four
edges.

4.2. Comparison of performance. It can be verified that for path-complete
graphs with two nodes, four edges, and two matrices, and without multiple self-loops
on a single node, there are a total of nine distinct graph topologies to consider. Of
the nine graphs, six have the property that every node has two incoming edges with
different labels. These are graphs G1, G2, G2, G3, G3, and G4 (Figure 2.3). Note

that G1 = G1 and G4 = G4. The duals of these six graphs, i.e., G′
1, G′

2, G
′
2, G′

3 =

G3, G
′
3 = G3, and G′

4 = G4 have the property that every node has two outgoing
edges with different labels. Evidently, G3, G3, and G4 are self-dual graphs, i.e., they
are isomorphic to their dual graphs. The self-dual graphs are least interesting to us
since, as we will show, they necessitate existence of a common Lyapunov function for
A (cf. Proposition 4.2, equation (4.2)).

Note that all these graphs perform at least as well as a common Lyapunov function
because we can always take V1 (x) = V2 (x). Furthermore, we know from Corollar-
ies 3.5 and 3.4 that if Lyapunov inequalities associated with G1, G2, G2, G3, G3, and
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G4 are satisfied, then max {V1 (x) , V2 (x)} is a common Lyapunov function, whereas

in the case of graphs G′
1, G′

2, G
′
2, G′

3, G
′
3, and G′

4, the function min {V1 (x) , V2 (x)}
would serve as a common Lyapunov function. Clearly, for the self-dual graphsG3, G3,
and G4 both max {V1 (x) , V2 (x)} and min {V1 (x) , V2 (x)} are common Lyapunov
functions.

Notation. Given a set of matrices A = {A1, . . . , Am} , a path-complete graph
G (N,E) , and a class of functions V , we denote by ρ̂V ,G (A) , the upper bound on the
JSR of A that can be obtained by numerical optimization of GLFs Vi ∈ V , i ∈ N,
defined over G. With a slight abuse of notation, we denote by ρ̂V (A) , the upper
bound that is obtained by using a common Lyapunov function V ∈ V .

Proposition 4.2. Consider the set A = {A1, A2} , and let G1, G2, G3, G4,
and H3 be the path-complete graphs shown in Figure 2.3. Then, the upper bounds on
the JSR of A obtained via the associated GLFs satisfy the following relations:

(4.1) ρ̂V ,G1 (A) = ρ̂V ,G′
1
(A)

and

(4.2) ρ̂V (A) = ρ̂V ,G3 (A) = ρ̂V ,G3
(A) = ρ̂V ,G4 (A)

and

(4.3) ρ̂V ,G2 (A) = ρ̂V ,H3 (A) , ρ̂V ,G2
(A) = ρ̂V ,H3

(A)

and

(4.4) ρ̂V ,G′
2
(A) = ρ̂V ,H′

3
(A) , ρ̂V ,G′

2
(A) = ρ̂V ,H′

3
(A) .

Proof. A proof of (4.1) in more generality is provided in section 5 (cf. Corollary
5.3). The proof of (4.2) is based on symmetry arguments. Let {V1, V2} be a GLF
associated with G3. (V1 is associated with node 1 and V2 is associated with node 2.)
Then, by symmetry, {V2, V1} is also a GLF for G3 (where V1 is associated with node
2 and V2 is associated with node 1). Therefore, letting V = V1 + V2, we have that
{V, V } is a GLF for G3 and thus V = V1+V2 is also a common Lyapunov function for
A, which implies that ρ̂V ,G3 (A) ≥ ρ̂V (A) . The other direction is trivial: If V ∈ V is
a common Lyapunov function for A, then {V1, V2 | V1 = V2 = V } is a GLF associated
with G3, and hence, ρ̂V ,G3 (A) ≤ ρ̂V (A) . Identical arguments based on symmetry hold
for G3 and G4. We now prove the left equality in (4.3); the proofs for the remaining
equalities in (4.3) and (4.4) are analogous. The equivalence between G2 and H3 is
a special case of the relation between a graph and its reduced model, obtained by
removing a node without any self-loops, adding a new edge per each pair of incoming
and outgoing edges to that node, and then labeling the new edges by taking the
composition of the labels of the corresponding incoming and outgoing edges in the
original graph; see [46], [45, Chap. 5]. Note that H3 is an offspring of G2 in this sense.
This intuition helps construct a proof. Let {V1, V2} be a GLF associated with G2.
It can be verified that V1 is a Lyapunov function associated with H3, and therefore,
ρ̂V ,H3 (A) ≤ ρ̂V ,G2 (A) . Similarly, if V ∈ V is a Lyapunov function associated with
H3, then one can check that {V1, V2 | V1 (x) = V (x) , V2 (x) = V (A2x)} is a GLF
associated with G2, and hence, ρ̂V ,H3 (A) ≥ ρ̂V ,G2 (A) .

Remark 4.1. Proposition 4.2 (equation 4.1) establishes the equivalence of the
bounds obtained from the pair of dual graphs G1 and G′

1. This, however, is not true

D
ow

nl
oa

de
d 

06
/1

6/
14

 to
 1

8.
51

.1
.8

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

702 AHMADI, JUNGERS, PARRILO, AND ROOZBEHANI

Fig. 4.1. A Hasse diagram describing the relative performance of the path-complete graphs
of Figure 2.3 together with their duals and label permutations. The graphs placed in the same
circle always give the same approximation of the JSR. A graph at the end of an arrow results in
an approximation of the JSR that is always at least as good as that of the graph at the start of
the arrow. When there is no directed path between two graphs in this diagram, either graph can
outperform the other depending on the set of matrices A.

for graphs G2 and G2 as there exist examples for which

ρ̂V ,G2 (A) �= ρ̂V ,G′
2
(A) ,

ρ̂V ,G2
(A) �= ρ̂V ,G′

2
(A) .

The diagram in Figure 4.1 summarizes the results of this section. We remark that
no relations other than the ones given in Figure 4.1 can be established among these
path-complete graphs. Indeed, whenever there are no relations between two graphs in
Figure 4.1, we have examples of matrices A1, A2 for which one graph can outperform
the other. These examples are not presented here but are available online and can be
retrieved from [50].

Based on our numerical experiments, the graphs G1 and G′
1 seem to statistically

perform better than all other graphs in Figure 4.1. For example, we ran experiments
on a set of 100 random 5× 5 matrices {A1, A2} with elements uniformly distributed
in [−1, 1] to compare the performance of graphs G1, G2 and G2. If in each case
we also consider the relabeled matrices (i.e., {A2, A1}) as our input, then, of the
total 200 instances, graph G1 produced strictly better bounds on the JSR 58 times,
whereas graphs G2 and G2 each produced the best bound of the three graphs only 23
times. (The numbers do not add up to 200 due to ties.) In addition to this superior
performance, the bound ρ̂V ,G1 ({A1, A2}) obtained by analysis via the graph G1 is
invariant under (i) permutation of the labels A1 and A2 (obvious), and (ii) transposing
of A1 and A2 (Corollary 5.3). These are desirable properties which fail to hold for
G2 and G2 or their duals. Motivated by these observations, we generalize G1 and its
dual G′

1 in the next section to the case of m matrices and m Lyapunov functions and
establish that they have certain appealing properties. We will prove (cf. Theorem
5.4) that these graphs always perform better than a common Lyapunov function in 2
steps (i.e., the graph H2 in Figure 2.3), whereas this is not the case for G2 and G2 or
their duals.

5. Further analysis of a particular family of path-complete graphs. The
framework of path-complete graphs provides a multitude of semidefinite programming
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based techniques for the approximation of the JSR whose performance vary with
computational cost. For instance, as we increase the number of nodes of the graph,
or the degree of the polynomial Lyapunov functions assigned to the nodes, or the
number of edges of the graph that instead of labels of length one have labels of higher
length, we obtain better results but at a higher computational cost. Many of these
approximation techniques are asymptotically tight, so in theory they can be used to
achieve any desired accuracy of approximation. For example,

ρ̂VSOS,2d(A) → ρ(A) as 2d → ∞,

where VSOS,2d denotes the class of sum of squares homogeneous polynomial Lyapunov
functions of degree 2d. (Recall our notation for bounds from section 4.2.) It is also true
that a common quadratic Lyapunov function for products of higher length achieves
the true JSR asymptotically [9], [32]; i.e.,7

t
√
ρ̂V2(At) → ρ(A) as t → ∞.

Nevertheless, it is desirable for practical purposes to identify a class of path-
complete graphs that provide a good trade-off between quality of approximation
and computational cost. Toward this objective, we propose the use of m quadratic
Lyapunov functions assigned to the nodes of the De Bruijn graph8 of dimension 1 on
m symbols for the approximation of the JSR of a set of m matrices. This is precisely
the graph of path-dependent quadratic Lyapunov functions of path length 1 [35]. This
graph and its dual are particular path-complete graphs with m nodes and m2 edges
and will be the subject of study in this section. If we denote the quadratic Lyapunov
functions by xTPix, then we are proposing the use of linear matrix inequalities

(5.1)
Pi � 0 ∀i = 1, . . . ,m,

γ2AT
i PjAi � Pi ∀i, j = {1, . . . ,m}2

or the set of LMIs

(5.2)
Pi � 0 ∀i = 1, . . . ,m,

γ2AT
i PiAi � Pj ∀i, j = {1, . . . ,m}2

for the approximation of the JSR of m matrices. We note that the LMIs in (5.1)
have appeared in [15], [37] and those in (5.2) have appeared in [35]. Throughout this
section, we denote the path-complete graphs associated with (5.1) and (5.2) with G1

and G′
1, respectively. (The De Bruijn graph of dimension 1, by standard convention,

is actually the graph G′
1.) Observe that G1 and G′

1 are indeed dual graphs as they
can be obtained from each other by reversing the direction of the edges. For the
case m = 2, our notation is consistent with the previous section and these graphs are
illustrated in Figure 3.1. Also observe from Corollaries 3.4 and 3.5 that the LMIs in
(5.1) give rise to max-of-quadratics Lyapunov functions, whereas the LMIs in (5.2)
lead to min-of-quadratics Lyapunov functions. We will prove in this section that the

7By V2 we denote the class of quadratic homogeneous polynomials. We drop the superscript
“SOS” because nonnegative quadratic polynomials are always sums of squares.

8The De Bruijn graph of dimension k on m symbols is a labeled directed graph with mk nodes and
mk+1 edges whose nodes are indexed by all possible words of length k from the alphabet {1, . . . ,m}
and whose edges have labels of length one and are obtained by the following simple rule: There is
an edge labeled with the letter j (or for our purposes the matrix Aj) going from node i1i2 . . . ik−1ik
to node i2i3 . . . ikj ∀i1 . . . ik ∈ {1, . . . ,m}k and ∀j ∈ {1, . . . ,m}.
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approximation bound obtained by these LMIs (i.e., the reciprocal of the largest γ for
which the LMIs (5.1) or (5.2) hold) is always the same and lies within a multiplicative
factor of 1

4
√
n
of the true JSR, where n is the dimension of the matrices. The relation

between the bound obtained by a pair of dual path-complete graphs has a connection
to transposition of the matrices in the set A. We explain this next.

5.1. Duality and invariance under transposition. In [19], [20], it is shown
that absolute asymptotic stability of the linear difference inclusion in (1.3) defined by
the matrices A = {A1, . . . , Am} is equivalent to absolute asymptotic stability of (1.3)
for the transposed matrices AT := {AT

1 , . . . , A
T
m}. Note that this fact is immediately

seen from the definition of the JSR in (1.1), since ρ(A) = ρ(AT ). It is also well-known
that

ρ̂V2(A) = ρ̂V2(AT ).

Indeed, if xTPx is a common quadratic Lyapunov function for the set A, then it
is easy to show that xTP−1x is a common quadratic Lyapunov function for the set
AT . However, this nice property is not true for the bound obtained from some other
techniques. For instance, the next example shows that

(5.3) ρ̂VSOS,4(A) �= ρ̂VSOS,4(AT ),

i.e., the upper bound obtained by searching for a common quartic SOS polynomial is
not invariant under transposition.

Example 5.1. Consider the set of matrices A = {A1, A2, A3, A4} with

A1 =

⎡
⎣ 10 −6 −1

8 1 −16
−8 0 17

⎤
⎦ , A2 =

⎡
⎣ −5 9 −14

1 5 10
3 2 16

⎤
⎦ ,

A3 =

⎡
⎣ −14 1 0

−15 −8 −12
−1 −6 7

⎤
⎦ , A4 =

⎡
⎣ 1 −8 −2

1 16 3
16 11 14

⎤
⎦ .

We have ρ̂VSOS,4(A) = 21.411, but ρ̂VSOS,4(AT ) = 21.214 (up to three significant
digits). This phenomenon is not due to the SOS relaxation and should be attributed
to common quartic polynomial Lyapunov functions more generally. We know this
because all five polynomial nonnegativity conditions in this problem (on the Lyapunov
function and its decrements w.r.t. the four matrices) are imposed on ternary quartic
forms. It is known from an old result of Hilbert [26] that all nonnegative ternary
quartic forms are SOS.

Similarly, the bound obtained by nonconvex inequalities proposed in [19] is not
invariant under transposing the matrices. For such methods, one would have to run
the numerical optimization twice—once for the set A and once for the set AT—
and then pick the better bound of the two. We will show that by contrast, the
bound obtained from the LMIs in (5.1) and (5.2) are invariant under transposing
the matrices. Before we do that, let us prove a general result which states that for
path-complete graphs with quadratic Lyapunov functions as nodes, transposing the
matrices has the same effect as dualizing the graph. We are grateful to a reviewer who
kindly made us aware that an independent and earlier proof of this fact for certain
families of path-complete graphs appears in [37].
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Theorem 5.1. Let G(N,E) be a path-complete graph, and let G′(N,E′) be its
dual graph. Then,

(5.4) ρ̂V2,G(AT ) = ρ̂V2,G′(A).

Proof. For ease of notation, we prove the claim for the case where the edge labels
of G(N,E) have length one. The proof of the general case is identical. Pick an
arbitrary edge (i, j) ∈ E going from node i to node j and labeled with some matrix
Al ∈ A. By the application of the Schur complement we have

AlPjA
T
l � Pi ⇔

[
Pi Al

AT
l P−1

j

]
� 0 ⇔ AT

l P
−1
i Al � P−1

j .

But this already establishes the claim since we see that Pi and Pj satisfy the LMI
associated with edge (i, j) ∈ E when the matrix Al is transposed if and only if P−1

j

and P−1
i satisfy the LMI associated with edge (j, i) ∈ E′.

Corollary 5.2. ρ̂V2,G(A) = ρ̂V2,G(AT ) if and only if ρ̂V2,G(A) = ρ̂V2,G′(A).
Proof. This is an immediate consequence of the equality in (5.4).
It is an interesting question for future research to characterize the path-complete

graphs for which one has ρ̂V2,G(A) = ρ̂V2,G(AT ). For example, the above corollary
shows that this is obviously the case for any path-complete graph that is self-dual.
Let us show next that this is also the case for graphs G1 and G′

1 despite the fact that
they are not self-dual.

Corollary 5.3. For the path-complete graphs G1 and G′
1 associated with the

inequalities in (5.1) and (5.2), and for any class of continuous, homogeneous, and
positive definite functions V, we have

(5.5) ρ̂V,G1(A) = ρ̂V,G′
1
(A).

Moreover, if quadratic Lyapunov functions are assigned to the nodes of G1 and G′
1,

then we have

(5.6) ρ̂V2,G1
(A) = ρ̂V2,G1

(AT ) = ρ̂V2,G′
1
(A) = ρ̂V2,G′

1
(AT ).

Proof. The proof of (5.5) is established by observing that the GLFs associated
with G1 and G′

1 can be derived from one another via V ′
i (Aix) = Vi(x). (Note that we

are relying here on the assumption that the matrices Ai are invertible, which as we
noted in Remark 2.1 is not a limiting assumption.) Since (5.5) in particular implies
that ρ̂V2,G1

(A) = ρ̂V2,G′
1
(A), we get the rest of the equalities in (5.6) immediately

from Corollary 5.2 and this finishes the proof. For concreteness, let us also prove the
leftmost equality in (5.6) directly. Let Pi, i = 1, . . . ,m, satisfy the LMIs in (5.1) for
the set of matrices A. Then, the reader can check that

P̃i = AiP
−1
i AT

i , i = 1, . . . ,m,

satisfy the LMIs in (5.1) for the set of matrices AT .

5.2. An approximation guarantee. The next theorem gives a bound on the
quality of approximation of the estimate resulting from the LMIs in (5.1) and (5.2).
Since we have already shown that ρ̂V2,G1

(A) = ρ̂V2,G′
1
(A), it is enough to prove this

bound for the LMIs in (5.1).
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Theorem 5.4. Let A be a set of m matrices in R
n×n with JSR ρ(A). Let

ρ̂V2,G1
(A) be the bound on the JSR obtained from the LMIs in (5.1). Then,

(5.7)
1
4
√
n
ρ̂V2,G1

(A) ≤ ρ(A) ≤ ρ̂V2,G1
(A).

Proof. The right inequality is just a consequence of G1 being a path-complete
graph (Theorem 2.4). To prove the left inequality, consider the set A2 consisting of all
m2 products of length two. In view of (1.6), a common quadratic Lyapunov function
for this set satisfies the bound

1√
n
ρ̂V2(A2) ≤ ρ(A2).

It is easy to show that

ρ(A2) = ρ2(A).

See, e.g., [32]. Therefore,

(5.8)
1
4
√
n
ρ̂

1
2

V2(A2) ≤ ρ(A).

Now suppose for some γ > 0, xTQx is a common quadratic Lyapunov function for
the matrices in A2

γ ; i.e., it satisfies

Q � 0,
γ4(AiAj)

TQAiAj � Q ∀i, j = {1, . . . ,m}2.

Then, we leave it to the reader to check that

Pi = Q+AT
i QAi, i = 1, . . . ,m,

satisfy (5.1). Hence,

ρ̂V2,G1
(A) ≤ ρ̂

1
2

V2(A2),

and in view of (5.8) the claim is established.

Note that the bound in (5.7) is independent of the number of matrices. Moreover,
we remark that this bound is tighter, in terms of its dependence on n, than the
known bounds for ρ̂VSOS,2d for any finite degree 2d of the sum of squares polynomials.
The reader can check that the bound in (1.7) goes asymptotically as 1√

n
. Numerical

evidence suggests that the performance of both the bound obtained by sum of squares
polynomials and the bound obtained by the LMIs in (5.1) and (5.2) is much better
than the provable bounds in (1.7) and in Theorem 5.4. The problem of improving
these bounds or establishing their tightness is open. It goes without saying that
instead of quadratic functions, we can associate sum of squares polynomials to the
nodes of G1 and obtain a more powerful technique for which we can also prove better
bounds with the exact same arguments.
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5.3. Numerical examples and applications. In the proof of Theorem 5.4,
we essentially showed that the bound obtained from LMIs in (5.1) is tighter than the
bound obtained from a common quadratic applied to products of length two. Our
first example shows that the LMIs in (5.1) can in fact do better than a common
quadratic applied to products of any finite length. We remind the reader that these
LMIs correspond to the dual of the De Bruijn graph of dimension one and appear in
[15], [37].

Example 5.2. Consider the set of matrices A = {A1, A2} with

A1 =

[
1 0
1 0

]
, A2 =

[
0 1
0 −1

]
.

This is a benchmark set of matrices that has been studied in [7], [42], [6] because it
gives the worst-case approximation ratio of a common quadratic Lyapunov function.
Indeed, it is easy to show that ρ(A) = 1, but ρ̂V2(A) =

√
2. Moreover, the bound

obtained by a common quadratic function applied to the set At is

ρ̂
1
t

V2(At) = 2
1
2t ,

which for no finite value of t is exact. On the other hand, we show that the LMIs in
(5.1) give the exact bound; i.e., ρ̂V2,G1

(A) = 1. Due to the simple structure of A1

and A2, we can even give an analytical expression for our Lyapunov functions. Given
any ε > 0, the LMIs in (5.1) with γ = 1/ (1 + ε) are feasible with

P1 =

[
a 0
0 b

]
, P2 =

[
b 0
0 a

]

for any b > 0 and a > b/2ε.
Example 5.3. Consider the set of randomly generated matrices A = {A1, A2, A3}

with

A1 =

⎡
⎢⎢⎢⎢⎣

0 −2 2 2 4
0 0 −4 −1 −6
2 6 0 −8 0

−2 −2 −3 1 −3
−1 −5 2 6 −4

⎤
⎥⎥⎥⎥⎦ , A2 =

⎡
⎢⎢⎢⎢⎣

−5 −2 −4 6 −1
1 1 4 3 −5

−2 3 −2 8 −1
0 8 −6 2 5

−1 −5 1 7 −4

⎤
⎥⎥⎥⎥⎦ ,

A3 =

⎡
⎢⎢⎢⎢⎣

3 −8 −3 2 −4
−2 −2 −9 4 −1
2 2 −5 −8 6

−4 −1 4 −3 0
0 5 0 −3 5

⎤
⎥⎥⎥⎥⎦ .

A lower bound on ρ(A) is ρ(A1A2A2)
1/3 = 11.8015. The upper approximations

for ρ(A) that we computed for this example are as follows:

ρ̂V2(A) = 12.5683,

ρ̂
1
2

V2(A2) = 11.9575,

ρ̂V2,G1
(A) = 11.8097,

ρ̂VSOS,4(A) = 11.8015.

(5.9)D
ow

nl
oa

de
d 

06
/1

6/
14

 to
 1

8.
51

.1
.8

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

708 AHMADI, JUNGERS, PARRILO, AND ROOZBEHANI

The bound ρ̂VSOS,4 matches the lower bound numerically and is most likely exact for
this example. This bound is slightly better than ρ̂V2,G1

. However, a simple calculation
shows that the SDP resulting in ρ̂VSOS,4 has 25 more decision variables than the one
for ρ̂V2,G1

. Also, the running time of the algorithm leading to ρ̂VSOS,4 is noticeably
larger than the one leading to ρ̂V2,G1

. In general, when the dimension of the matrices
is large, it can often be cost-effective to increase the number of the nodes of our path-
complete graphs but keep the degree of the polynomial Lyapunov functions assigned to
its nodes relatively low. For example, a path-dependent quadratic Lyapunov function
with path length 2 (i.e., the De Bruijn of dimension 2) also achieves the exact JSR
by solving a system of LMIs with 9 quadratic functions and 27 constraints.

Example 5.4. Consider the set of matrices A = {A1, A2} with

A1 =

[ −1 −1
−4 0

]
, A2 =

[
3 3

−2 1

]
.

A lower bound for ρ(A) is ρ(A2A1)
1/2 = 3.917384715148. Here are some upper

approximations for this example computed via four methods:

ρ̂
1
2

V2(A2) = 3.9264,

ρ̂VSOS,4(A) = 3.9241,

ρ̂V2,G1
(A) = 3.9224,

ρ̂V2,H3
(A) = 3.917384715148.

(5.10)

This example is interesting because the graph H3 (see Figure 2.3) is the cheapest
computational method among the four (e.g., it has only one unknown matrix vari-
able and three constraints, versus one unknown and four constraints for H2 and two
unknowns and four constraints for G1), but yet it is the only method that gets the
JSR exactly. This shows that the quality of the different methods depends on the
particular set of matrices. In particular, the method corresponding to the graph H3,
which has not appeared in the literature to the best of our knowledge, can outperform
other choices in many randomly generated examples. For this example, if we increase
the degree of the common SOS Lyapunov function from 4 to 6, or the path length
of the path-dependent quadratic Lyapunov function from 1 to 2, then these methods
also get the JSR exactly, though at a higher computational cost.

Example 5.5. Consider the set of matrices A = {A1, A2} with

A1 =

[
0.8 0.65

−0.34 0.9

]
, A2 =

[
0.43 0.62

−1.48 0.14

]
.

A lower bound for ρ(A) is ρ(A1A1A1A2)
1/4 = 1.1644.Here are three upper bounds

computed for this example:

ρ̂
1
2

V2(A2) = 1.2140,

ρ̂V2,G1
(A) = 1.1927,

ρ̂V2,H3
(A) = 1.1875.

(5.11)

Once again, graph H3, which is an example of a new method, outperforms the other
two methods even though it solves a smaller SDP.

What is also interesting in the above example is that it is quite challenging to
prove that ρ(A1A1A1A2)

1/4 in fact gives the exact JSR; i.e., it is hard to find a
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JSR AND PATH-COMPLETE GRAPH LYAPUNOV FUNCTIONS 709

Fig. 5.1. The path-complete graph LH3 is obtained from H3 by associating each word in the
set {A1, A2A1, A2

2} with a different node on a complete directed graph of order 3, in which all the
outgoing edges from every node have the same label.

matching upper bound. This goal can be achieved, for example, by a common SOS
Lyapunov function of degree 14 but not by one of degree 12 or lower. Similarly, path-
dependent quadratic Lyapunov functions of path lengths 1, 2, 3, or 4 fail to find the
exact JSR. However, if we combine the SOS method with path-dependent Lyapunov
functions (i.e., assign SOS Lyapunov functions to nodes of the De Bruijn graph), then
the exact JSR can be achieved by “{path length, SOS degree} pairs” equal to {1, 10}
or {2, 8} or {3, 6}.

If one works with quadratic Lyapunov functions only, then path-dependent
quadratic Lyapunov functions of path length 5 succeed in getting the JSR exactly.
The resulting SDP has 32 unknown Lyapunov functions (matrix variables) and 96
LMIs. By using new path-complete graphs, we were able to get the JSR exactly with
only 6 unknown quadratic Lyapunov functions and 42 LMIs. The graph that achieved
this (not shown) consists of 6 nodes and 36 edges and is closely related to Remark 3.3.
Each node of this graph has 6 outgoing edges with exactly the same label going to
the 6 nodes of the graph. The labels on the outgoing edges of the different nodes are
respectively {A2, A1A2, A

2
1A2, A

3
1A2, A

4
1A2, A

5
1}. We leave it to the reader to check

that this graph is path-complete.

Performance on application-motivated problems. In the remainder of this
section, we consider computational problems that arise from three different application
scenarios. In all these applications, the underlying problems have already been shown
by the existing literature to be related to the computation of the JSR of certain
matrices. We thus focus on the computational aspects and demonstrate the usefulness
of the path-complete GLF framework in situations that arise from practical scenarios.

Before we proceed, we introduce two new graphs LH3 and LH2
3 which can be

verified to be path-complete.9 The first graph, LH3, is shown in Figure 5.1 and is
obtained by associating each word in the set {A1, A2A1, A

2
2} with a different node

on a complete directed graph of order 3, in which all the outgoing edges from every
node have the same label. The second graph, LH2

3 (not shown), is a complete di-

9For brevity, we do not provide proofs of path-completeness.
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Table 5.1

Solver time

ρ̂V2,G1
(A) = 2.5259 0.25 sec

ρ̂V2,H3
(A) = 2.5223 0.16 sec

ρ̂V2,D2
(A) = 2.51793404 1.87 sec

ρ̂V2,LH3
(A) = 2.51793404 1.05 sec

ρ(A) = 2.51793404

rected graph of order 9 and is obtained by applying the same principle to the set10

{A2
1, A2

2A1, A2A1
2, A4

2, A2A1A
2
2, A1A

2
2, A2A1A2A1, A3

2A1, A1A2A1}. Finally, we
will use Dn to denote the De Bruijn graph of dimension n. (The number of symbols
of the De Bruijn graph will be clear from the context and always equal the number
of matrices whose JSR is under consideration.)

Example 5.6 (application to computation of the number of overlap-free words).
It was shown in [33] that the problem of computation of the smallest exponent of
growth of the number of overlap-free or repetition-free binary words (see, e.g., [8])
reduces to the computation of the JSR of two sparse matrices A1 and A2 in Z

20×20
+ .

These relatively large-size matrices are explicitly presented in [33, 23] and are not
repeated here in the interest of brevity. More precisely, letting un denote the number
of overlap-free binary words of length n, we have

inf{r | ∃C : un ≤ Cnr} = log2 ρ({A1, A2}).

It was conjectured in [33] that ρ({A1, A2}) =
√
ρ(A1A2) ≈ 2.51793404. This conjec-

ture was recently proved in [23] via a variation of the complex polytope algorithm
specialized to nonnegative matrices. In Table 5.1 we report the results of numerical
computation of upper bounds on ρ({A1, A2}) using various path-complete graphs.
The approximate solver times are also reported which correspond to the CPU time
of a 2.5 GHz PC running the solver SeDuMi [48] on MATLAB.

The graphs D2 and LH3 indeed provide an exact (up to machine precision) nu-
merical value of the JSR, and the running time of the SDP associated with LH3 is
only 1 second. These computations show that the path-complete GLF framework can
provide very efficient methods for computation of the JSR in situations of practical
and theoretical interest.

Example 5.7 (application to computation of the Euler ternary partition function).
The problem of computation of the smallest exponent of growth of the Euler ternary
partition function [43] can be reduced to the problem of computation of the JSR of
three matrices with binary 0 or 1 entries. Herein, we examine a special case reported
in [23], where the complex polytope method is applied to provide the exact value of
the JSR of three 7-by-7 matrices with 0 and 1 entries:

ρ({A1, A2, A3}) =
√
ρ(A2A3) ≈ 4.722045134.

In this case, the path-complete DeBruijn graph of dimension 1 yields an upper bound
on the JSR with great accuracy in a fraction of a second; we have ρ̂V2,D1

(A) =
4.722045134, and the computation time is 0.15 second on a 2.5 GHz PC.

10The words in this set correspond to paths of length two on H3.
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Example 5.8 (application to continuity of wavelet functions). Daubechies’ wavelet
functions are orthonormal functions φN with compact support on [0, N ], satisfying

φN (x) =

N∑
k=0

ckφN (2x− k),

where N is a positive integer and the coefficients ck, 0 ≤ k ≤ N , satisfy certain
additional constraints [21, 32]. The problem of computation of the Hölder exponent of
continuity of the wavelet functions [16] is closely related to the problem of computation
of the JSR of two linear operators; see, e.g., [32, Chap. 5], [41], and [21]. Herein, we
are interested in computation of the JSR of the associated matrices for values of N =
5, 7, . . . , 19. The matrix pairs {A1N , A2N} are of dimension (N − 1)/2 and have been
posted online in [51] along with annotated MATLAB code for their computation. We
remark that the JSR of the associated pairs of matrices for odd values of N ∈ [5, 15],
were first reported in [21], where it was shown (numerically) that

(5.12) ρ({A1N , A2N}) = max(ρ(A1N ), ρ(A2N )), N = 3, . . . , 15.

Our numerical analysis conforms with the results of [21] for N ≤ 15 and a single
common quadratic Lyapunov function (ρ̂V2,H1

(·)) provides the exact (up to machine
precision) numerical value of the JSR. For brevity, we do not repeat here the numerical
values of the JSR for N ≤ 15 and instead present the numerical upper bound on the
JSR for two more values of N , i.e., N = 17 and N = 19. Table 5.2 summarizes11

our numerical analysis for N = 17 and N = 19. For N = 17 the pattern holds and
a single common quadratic Lyapunov function provides the exact value of the JSR
which also satisfies (5.12). Surprisingly, however, for N = 19 this pattern breaks and
not only does (5.12) not hold, but also a common quadratic Lyapunov function does
not give the exact upper bound! The best upper bound we are providing is obtained
by graph LH2

3 , which has 9 nodes and 90 LMIs. To the best of our knowledge none of
the methods in the existing literature provide a better upper bound at a comparable
computation cost.

Table 5.2

N = 17 N = 19 Solver time

ρ̂V2,H1
(A) = 0.118781760 0.097472458 0.15 sec

ρ̂V2,H4
(A) = 0.097471788 0.36 sec

ρ̂V2,G1
(A) = 0.097463499 0.46 sec

ρ̂V2,H3
(A) = 0.097407530 0.37 sec

ρ̂V2,H3
1
(A) = 0.097403543 0.77 sec

ρ̂V2,D2
(A) = 0.097334910 0.75 sec

ρ̂V2,D3
(A) = 0.097332287 1.12 sec

ρ̂V2,D6
(A) = 0.097306933 9.66 sec

ρ̂V2,LH3
(A) = 0.097380084 0.60 sec

ρ̂V2,LH2
3
(A) = 0.097306828 3.70 sec

ρ(A) = 0.118781760 0.097301716a

a This number is only a lower bound on the JSR, given by ρ(A2
1A

2
2)

1/4. We
conjecture that it is equal to the true JSR.

11As before, the approximate solver times correspond to the CPU time of a 2.5 GHz PC running
SeDuMi [48] on MATLAB.
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6. Converse Lyapunov theorems and approximation with arbitrary ac-
curacy. It is well known that existence of a Lyapunov function which is the pointwise
maximum of quadratics is not only sufficient but also necessary for absolute asymp-
totic stability of (1.2) or (1.3); see, e.g., [40]. This is perhaps an intuitive fact if
we recall that switched systems of type (1.2) and (1.3) always admit a convex Lya-
punov function. Indeed, if we take “enough” quadratics, the convex and compact
unit sublevel set of a convex Lyapunov function can be approximated arbitrarily well
with sublevel sets of max-of-quadratics Lyapunov functions, which are intersections
of ellipsoids. This of course implies that the bound obtained from max-of-quadratics
Lyapunov functions is asymptotically tight for the approximation of the JSR. How-
ever, this converse Lyapunov theorem does not answer two natural questions of im-
portance in practice: (i) How many quadratic functions do we need to achieve a
desired quality of approximation? (ii) Can we search for these quadratic functions via
semidefinite programming or do we need to resort to nonconvex formulations? The
same questions can naturally be asked for min-of-quadratics Lyapunov functions. The
theorem and remark that follow provide an answer to these questions by relying on
the connections that we have already established between min/max-quadratics Lya-
punov functions and path-dependent Lyapunov functions [35] and their duals [37].
Our results further provide a worst-case approximation guarantee for path-dependent
quadratic Lyapunov functions of any given path length, and similarly for their duals.

Theorem 6.1. Let A be a set of m matrices in R
n×n. Given any positive integer

l, there exists an explicit path-complete graph G consisting of ml−1 nodes assigned
to quadratic Lyapunov functions and ml edges with labels of length one such that the
LMI associated with G imply existence of a max-of-quadratics Lyapunov function and
the resulting bound obtained from the LMIs satisfies

(6.1)
1

2l
√
n
ρ̂V2,G(A) ≤ ρ(A) ≤ ρ̂V2,G(A).

Proof. Let us denote the ml−1 quadratic Lyapunov functions by xTPi1...il−1
x,

where i1 . . . il−1 ∈ {1, . . . ,m}l−1 is a multi-index used for ease of reference to our
Lyapunov functions. We claim that we can let G be the graph dual to the De Bruijn
graph of dimension l − 1 on m symbols. The LMIs associated to this graph are
given by

Pi1i2...il−2il−1
� 0 ∀i1 . . . il−1 ∈ {1, . . . ,m}l−1,

AT
j Pi1i2...il−2il−1

Aj � Pi2i3...il−1j(6.2)

∀i1 . . . il−1 ∈ {1, . . . ,m}l−1,

∀j ∈ {1, . . . ,m}.

These LMIs appear in [37] and are known to be asymptotically exact. The fact that G
is path-complete and that the LMIs imply existence of a max-of-quadratics Lyapunov
function follows from Corollary 3.5. The proof that these LMIs satisfy the bound in
(6.1) is a straightforward generalization of the proof of Theorem 5.4. By the same
arguments we have

(6.3)
1

2l
√
n
ρ̂

1
l

V2(Al) ≤ ρ(A).
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Suppose xTQx is a common quadratic Lyapunov function for the matrices in Al; i.e.,
it satisfies

Q � 0,
(Ai1 . . . Ail)

TQAi1 . . . Ail � Q ∀i1 . . . il ∈ {1, . . . ,m}l.
Then, it is easy to check that12

Pi1i2...il−2il−1
= Q+AT

il−1
QAil−1

+ (Ail−2
Ail−1

)TQ(Ail−2
Ail−1

) + · · ·
+ (Ai1Ai2 . . . Ail−2

Ail−1
)TQ(Ai1Ai2 . . . Ail−2

Ail−1
),

i1 . . . il−1 ∈ {1, . . . ,m}l−1

satisfy (6.2). Hence,

ρ̂V2,G(A) ≤ ρ̂
1
l

V2(Al),

and in view of (6.3) the claim is established.
Remark 6.1. Arbitrarily good approximation bounds identical to those in Theo-

rem 6.1 can be proved for min-of-quadratics Lyapunov functions in a similar fashion.
The only difference is that the LMIs in (6.2) would get replaced by the ones corre-
sponding to the dual graph of G, i.e., the De Bruijn graph which is associated with
path-dependent Lyapunov functions [35].

Our last theorem establishes approximation bounds for a family of path-complete
graphs with one single node but several edges labeled with words of different lengths.
Examples of such path-complete graphs are graph H3 in Figure 2.3 and graph H4 in
Figure 3.2.

Theorem 6.2. Let A be a set of matrices in R
n×n. Let G̃ ({1} , E) be a path-

complete graph and l be the length of the shortest word in Ã = {L (e) : e ∈ E} . Then
ρ̂V2 ,G̃ (A) provides an estimate of ρ (A) that satisfies

1
2l
√
n
ρ̂V2 ,G̃ (A) ≤ ρ(A) ≤ ρ̂V2 ,G̃ (A).

Proof. The right inequality is obvious; we prove the left one. Since both ρ̂V2 ,G̃ (A)
and ρ are homogeneous in A, we may assume, without loss of generality, that
ρ̂V2 ,G̃ (A) = 1. Suppose for the sake of contradiction that

(6.4) ρ(A) < 1/ 2l
√
n.

We will show that this implies that ρ̂V2 ,G̃ (A) < 1. Toward this goal, let us first prove

that ρ(Ã) ≤ ρl(A). Indeed, if we had ρ(Ã) > ρl(A), then there would exist13 an
integer i and a product Aσ ∈ Ãi such that

(6.5) ρ
1
i (Aσ) > ρl(A).

Since we also have Aσ ∈ Aj (for some j ≥ il), it follows that

(6.6) ρ
1
j (Aσ) ≤ ρ(A).

12The construction of the Lyapunov function here is a special case of a general scheme for con-
structing Lyapunov functions that are monotonically decreasing from those that decrease only every
few steps; see [3, p. 58].

13Here, we are appealing to the well-known fact about the JSR of a general set of matrices B:
ρ(B) = lim supk→∞ maxB∈Bk ρ

1
k (B). See, e.g., [32, Chap. 1].

D
ow

nl
oa

de
d 

06
/1

6/
14

 to
 1

8.
51

.1
.8

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

714 AHMADI, JUNGERS, PARRILO, AND ROOZBEHANI

The inequality in (6.5) together with ρ(A) ≤ 1 gives

ρ
1
j (Aσ) > ρ

il
j (A) ≥ ρ(A).

But this contradicts (6.6). Hence we have shown

ρ(Ã) ≤ ρl(A).

Now, by our hypothesis (6.4) above, we have that ρ(Ã) < 1/
√
n. Therefore, there

exists ε > 0 such that ρ((1+ ε)Ã) < 1/
√
n. It then follows from (1.6) that there exists

a common quadratic Lyapunov function for (1+ ε)Ã. Hence, ρ̂V2((1+ ε)Ã) ≤ 1, which
immediately implies that ρ̂V2 ,G̃ (A) < 1, a contradiction.

A noteworthy immediate corollary of Theorem 6.2 (obtained by setting Ã =⋃k
t=r At) is the following: If ρ(A) < 1

2r
√
n
, then there exists a quadratic Lyapunov

function that decreases simultaneously for all products of lengths r, r + 1, . . . , r + k,
for any desired value of k. Note that this fact is obvious for r = 1 but nonobvious for
r ≥ 2.

7. Conclusions and future directions. We introduced the framework of path-
complete graph Lyapunov functions for the formulation of semidefinite programming
based algorithms for approximating the joint spectral radius (or equivalently estab-
lishing absolute asymptotic stability of an arbitrarily switched linear system). We
defined the notion of a path-complete graph, which was inspired by concepts in au-
tomata theory. We showed that every path-complete graph gives rise to a technique
for the approximation of the JSR. This provided a unifying framework that includes
many of the previously proposed techniques and also introduces new ones. (In fact,
all families of LMIs that we are aware of are particular cases of our method.) We
shall also emphasize that although we focused on switched linear systems because
of our interest in the JSR, the analysis technique of multiple Lyapunov functions on
path-complete graphs is clearly valid for switched nonlinear systems as well.

We compared the quality of the bound obtained from certain classes of path-
complete graphs, including all path-complete graphs with two nodes on an alphabet
of two matrices, and also a certain family of dual path-complete graphs. Among
the different path-complete graphs considered in this paper, we observed that the De
Bruijn graph and its dual, whose LMIs appear in the earlier work [35], [37], have
a superior performance on average (but not always). Motivated by this fact, we
studied these graphs in further detail. For example, we showed that stability analysis
via these graphs is invariant under transposition of the matrices, results in common
min/max-of-quadratics Lyapunov functions, and produces upper bounds on the JSR
that are always within a multiplicative factor of 1/ 4

√
n of the true value, already for

the first level of the hierarchy. Finally, we presented two converse Lyapunov theorems,
one for the well-known methods of minimum and maximum-of-quadratics Lyapunov
functions and the other for a new class of methods that propose the use of a common
quadratic Lyapunov function for a set of words of possibly different lengths.

We believe the methodology proposed in this paper should straightforwardly ex-
tend to the case of constrained switching by requiring the graphs to have a path not
for all the words but only for the words allowed by the constraints on the switching.
A rigorous treatment of this idea is left for future work.

Another question for future research is to determine the complexity of checking
path-completeness of a given graph G(N,E). As we explained in section 2, well-
known algorithms in automata theory (see, e.g., [27, Chap. 4]) can check for path-
completeness by testing whether the associated finite automaton accepts all finite
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words. When the automata are deterministic (i.e., when all outgoing edges from ev-
ery node have different labels), these algorithms are very efficient and have running
time of only O(|N |2). However, the problem of deciding whether a nondeterminis-
tic finite automaton accepts all finite words is known to be PSPACE-complete [18,
p. 265]. Of course, the step of checking path-completeness of a graph is done offline
and prior to the run of our algorithms for approximating the JSR. Therefore, while
checking path-completeness is in general difficult, the approximation algorithms that
we presented indeed run in polynomial time since they work with a fixed (a priori
chosen) path-complete graph. Nevertheless, the question on complexity of checking
path-completeness is interesting in many other settings, e.g., when deciding whether a
given set of Lyapunov inequalities implies stability of an arbitrarily switched system.

Some other interesting questions that can be explored in the future are the fol-
lowing. What are some other classes of path-complete graphs that lead to new tech-
niques for proving stability of switched systems? Can we classify graph operations
that preserve path-completeness? How can we compare the performance of differ-
ent path-complete graphs in a systematic way? Given a set of matrices, a class of
Lyapunov functions, and a fixed size for the graph, can we efficiently come up with
the least conservative topology of a path-complete graph? What properties of a set
of matrices make a particular path-complete GLF better than another one? What
are the analogues of the results of this paper for continuous time switched systems?
To what extent do the results carry over to the synthesis (controller design) problem
for switched systems? These questions and several others show potential for much
follow-up work on path-complete graph Lyapunov functions.
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