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Abstract

This article deals with the numerical calculation of eigenvalues of per-

turbed periodic Schrödinger operators located in spectral gaps. Such op-

erators are encountered in the modeling of the electronic structure of crys-

tals with local defects, and of photonic crystals. The usual finite element

Galerkin approximation is known to give rise to spectral pollution. In this

article, we give a precise description of the corresponding spurious states.

We then prove that the supercell model does not produce spectral pollu-

tion. Lastly, we extend results by Lewin and Séré on some no-pollution

criteria. In particular, we prove that using approximate spectral projec-

tors enables one to eliminate spectral pollution in a given spectral gap of

the reference periodic Schrödinger operator.

1 Introduction

Periodic Schrödinger operators are encountered in the modeling of the electronic
structure of crystals, as well as the study of photonic crystals. They are self-
adjoint operators on L2(Rd) with domain H2(Rd) of the form

H0
per = −∆+ Vper,

where ∆ is the Laplace operator and Vper a R-periodic function of Lp
loc(R

d) (R
being a periodic lattice of Rd), with p = 2 if d ≤ 3, p > 2 for d = 4 and p = d/2
for d ≥ 5.

Such operators describe perfect crystals, by contrast with real crystals, in
which the underlying periodic structure is perturbed by the presence of local
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or extended defects. In solid state physics, local defects are due to impurities,
vacancies, or interstitial atoms, while extended defects correspond to disloca-
tions or grain boundaries. The properties of the crystal can be dramatically
affected by the presence of defects. In this article, we consider the case of a
d-dimensional crystal with a single local defect, whose properties are encoded
in the perturbed periodic Schrödinger operator

H = H0
per +W = −∆+ Vper +W, W ∈ L∞(Rd), W (x) →

|x|→∞
0. (1)

Note that we do not assume here that W is compactly supported. This allows
us in particular to handle the mean-field model considered in [6]. In the latter
model, d = 3 and the self-consistent potential W generated by the defect is of
the form W = ρ ⋆ | · |−1 with ρ ∈ L2(R3) ∩ C, C denoting the Coulomb space.
Such potentials are continuous and vanish at infinity, but are not compactly
supported in general.

Computing the spectrum of the operator H is a key step to understand the
properties of the system. It is well known that the self-adjoint operator H0

per

is bounded from below on L2(Rd), and that the spectrum σ(H0
per) of H0

per is
purely absolutely continuous, and composed of a finite or countable number of
closed intervals of R [16]. The open interval laying between two such closed in-
tervals is called a spectral gap. The multiplication operatorW being a compact
perturbation of H0

per, it follows from Weyl’s theorem [16] that H is self-adjoint

on L2(Rd) with domain H2(Rd), and that H and H0
per have the same essential

spectrum:
σess(H) = σess(H

0
per) = σ(H0

per).

Contrarily to H0
per, which has no discrete spectrum, H may possess discrete

eigenvalues. While the discrete eigenvalues located below the minimum of
σess(H) are easily obtained by standard variational approximations (in virtue of
the Rayleigh-Ritz theorem [16]), it is more difficult to compute numerically the
discrete eigenvalues located in spectral gaps, for spectral pollution may occur [5].

In Section 2, we recall that the usual finite element Galerkin approximation
may give rise to spectral pollution [5], and give a precise description of the
corresponding spurious states. In Section 3, we show that the supercell model
does not produce spectral pollution. Lastly, we extend in Section 4 results by
Lewin and Séré [14] on some no-pollution criteria, which guarantee in particular
that the numerical method introduced in [6], involving approximate spectral
projectors, and is spectral pollution free.
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2 Galerkin approximation

The discrete eigenvalues of H and the associated eigenvectors can be obtained
by solving the variational problem

{
find (ψ, λ) ∈ H1(Rd)× R such that
∀φ ∈ H1(Rd), a(ψ, φ) = λ〈ψ, φ〉L2 ,

where 〈·, ·〉L2 is the scalar product of L2(Rd) and a the bilinear form associated
with H :

a(ψ, φ) =

ˆ

Rd

∇ψ · ∇φ+

ˆ

Rd

(Vper +W )ψφ.

A sequence (Xn)n∈N of finite dimensional subspaces of H1(Rd) being given, we
consider for all n ∈ N, the self-adjoint operator H |Xn

: Xn → Xn defined by

∀(ψn, φn) ∈ Xn ×Xn, 〈H |Xn
ψn, φn〉L2 = a(ψn, φn).

The so-called Galerkin method consists in approximating the spectrum of the
operator H by the eigenvalues of the discretized operators H |Xn

for n large
enough, the latter being obtained by solving the variational problem

{
find (ψn, λn) ∈ Xn × R such that
∀φn ∈ Xn, a(ψn, φn) = λn〈ψn, φn〉L2 .

(2)

According to the Rayleigh-Ritz theorem [16], under the natural assumption that
the sequence (Xn)n∈N satisfies

∀φ ∈ H1(Rd), inf
φn∈Xn

‖φ− φn‖H1 −→
n→∞

0, (3)

the Galerkin method allows to compute the eigenmodes of H associated with
the discrete eigenvalues located below the bottom of the essential spectrum. It
is also known (see e.g. [8] for details) that, as H is bounded below, (3) implies

σ(H) ⊂ lim inf
n→∞

σ (H |Xn
) , (4)

where the right-hand side is the limit inferior of the sets σ (H |Xn
), that is the

set of the complex numbers λ such that there exists a sequence (λn)n∈N, with
λn ∈ σ(H |Xn

) for each n ∈ N, converging toward λ. In particular, any discrete
eigenvalue λ of the operatorH is well-approximated by a sequence of eigenvalues
of the discretized operators H |Xn

. On the other hand, (3) is not strong enough
an assumption to prevent spectral pollution. Some sequences of eigenvalues of
σ(H |Xn

) may indeed converge to a real number which does not belong to the
spectrum of H :

lim sup
n→∞

σ (H |Xn
) * σ(H) in general, (5)

where the limit superior of the sets σ (H |Xn
) is the set of the complex numbers λ

such that there exists a subsequence (σ(H |Xnk
))k∈N of (σ(H |Xn

))n∈N for which

∀k ∈ N, ∃λnk
∈ σ(H |Xnk

) and lim
k→∞

λnk
= λ.
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Spectral pollution has been observed in many situations in physics and me-
chanics, and this phenomenon is now well-documented (see e.g. [9] and ref-
erences therein). In [5], Boulton and Levitin report numerical simulations on
perturbed periodic Schrödinger operators showing that “the natural approach of
truncating Rd to a large compact domain and applying the projection method to
the corresponding Dirichlet problem is prone to spectral pollution”. Truncating
Rd indeed seems reasonable since it is known that the bound states of H decay
exponentially fast at infinity [15]. The following result provides details on the
behavior of the spurious modes when the approximation space is constructed
using the finite element method.

Proposition 2.1. Let (T ∞
n )n∈N be a sequence of uniformly regular meshes of

Rd, invariant with respect to the translations of the lattice R, and such that
hn := maxK∈T ∞

n
diam(K)→n→∞ 0. Let (Ωn)n∈N be an increasing sequence of

closed convex sets of Rd converging to Rd, Tn := {K ∈ T ∞
n |K ⊂ Ωn} and Xn

the finite-dimensional approximation space of H1
0 (Ωn) →֒ H1(Rd) obtained with

Tn and Pm finite elements (m ∈ N∗). Let λ ∈ lim supn→∞ σ (H |Xn
) \ σ(H)

and (ψnk
, λnk

) ∈ Xnk
× R be such that H |Xnk

ψnk
= λnk

ψnk
, ‖ψnk

‖L2 = 1 and
limk→∞ λnk

= λ. Then, the sequence (ψnk
)k∈N, considered as a sequence of

functions of H1(Rd), converges to 0 weakly in H1(Rd) and strongly in Lq
loc(R

d),
with q = ∞ if d = 1, q < ∞ if d = 2 and q < 2d/(d− 2) if d ≥ 3, in the sense
that

∀K ⊂ Rd, K compact,

ˆ

K

|ψnk
|q −→

k→∞
0,

and it holds

∀ǫ > 0, ∃R > 0 s. t. lim inf
k→∞

ˆ

∂Ωnk
+B(0,R)

|ψnk
|2 ≥ 1− ǫ. (6)

The latter result shows that the mass of the spurious states concentrates on
the boundary of the simulation domain Ωnk

.

This phenomenon is clearly observed on the two dimensional numerical sim-
ulations reported below, which have been performed with the finite element
software FreeFem++ [11], with Vper(x, y) = cos(x) + 3 sin(2(x + y) + 1) and
W (x, y) = −(x+2)2(2y−1)2 exp(−(x2+y2)). We have checked numerically, us-
ing the Bloch decomposition method, that there is a gap (α, β), with α ≃ −0.341
and β ≃ 0.016, between the first and second bands of H0

per = −∆+ Vper. We
have also checked numerically, using the pollution free supercell method (see
Theorem 3.1 below), that H = H0

per +W has exactly one eigenvalue in the gap
(α, β) approximatively equal to −0.105. Our simulations have been performed
with a sequence of P1-finite element approximation spaces (Xn)40≤n≤100, where
for each 40 ≤ n ≤ 100,

• Ωn =
[
−4π

mn

n
, 4π

mn

n

]
, with mn =

[
n

(
n− 40

20
+ 5

)]
;
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• T ∞
n is a uniform 2πZ2-periodic mesh of R2 consisting of 2n2 isometrical

isoceles rectangular triangles per unit cell.

The spectra of H |Xn
in the gap (α, β) for 40 ≤ n ≤ 100 are displayed on Fig. 1.

We clearly see that all these operators have an eigenvalue close to −0.1, which
is an approximation of a true eigenvalue of H . The corresponding eigenfunction
for n = 88 (blue circle on Fig. 1) is displayed on Fig. 2 (top); as expected,
it is localized in the vicinity of the defect. On the other hand, most of these
discretized operators have several eigenvalues in the range (α, β), which cannot
be associated with an eigenvalue ofH , and can be interpreted as spurious modes.
The eigenfunction of H |Xn

close to −0.290, obtained for n = 88 (blue square on
Fig. 1), is displayed on Fig. 2 (bottom); in agreement with the analysis carried
out in Proposition 2.1, it is localized in the vicinity of the boundary of the
computational domain.
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Figure 1: Spectrum of H |Xn
in the gap (α, β) for 40 ≤ n ≤ 100

Remark 2.1. Using the results in [19], it is possible to characterize the spurious
states generated by finite element discretizations of one-dimensional perturbed
Schrödinger operators: for R = bZ and Ωn = [−(n + t)b, (n + t)b], the spuri-
ous eigenvalues are the discrete eigenvalues in [min(σ(H0

per)),+∞) \ σ(H) of
the operators H+(t) and H−(t) on L2(R+) with domains H2(R+) ∩ H1

0 (R+),

respectively defined by H±(t) = −
d2

dx2
+ Vper(x ± tb). Besides, the spurious
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Figure 2: A true eigenfunction, localized close to the defect (top), and a “spu-
rious” eigenfunction, localized close to the boundary (bottom).

eigenvectors of H |Xn
converge (in some sense, and up to translation) to the

discrete eigenvectors of H±(t). As


⋃

t∈[0,b)

σ(H±(t))


 ∩ [min(σ(H0

per)),+∞) = [min(σ(H0
per)),+∞),

any λ ∈ [min(σ(H0
per)),+∞) \ σ(H) is a spurious eigenvalue, in the sense that

there exists an increasing sequence (Ωn)n∈N of closed intervals of R converging
to R such that

λ ∈ lim inf
n→∞

σ(H |Xn
).

We refer to [10] for a proof and a numerical illustration of this result. The proof
of similar results for d ≥ 2 is work in progress.
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Proof of Proposition 2.1. We first notice that, sinceH = − 1
2∆+ 1

2 (−∆+ 2Vper)+
W , with W bounded in L∞(Rd) and −∆+2Vper bounded below, there exists a
constant C ∈ R+ such that

∀ψ ∈ H1(Rd), a(ψ, ψ) ≥
1

2
‖∇ψ‖2L2 − C‖ψ‖2L2 . (7)

As
∀k ∈ N, ‖ψnk

‖L2 = 1 and a(ψnk
, ψnk

) = λnk
−→
k→∞

λ,

we infer from (7) that the sequence (ψnk
)k∈N is bounded in H1(Rd). It therefore

converges, up to extraction, to some function φ ∈ H1(Rd), weakly in H1(Rd),
and strongly in Lq

loc(R
d) with q = ∞ if d = 1, q <∞ if d = 2 and q < 2d/(d−2) if

d ≥ 3. It is easy to deduce from (3) and the continuity of a on H1(Rd)×H1(Rd)
that φ satisfiesHφ = λφ and therefore that φ = 0 since λ /∈ σ(H) by assumption.
Consequently, the whole sequence (ψnk

)k∈N converges to zero weakly in H1(Rd)
and strongly in Lq

loc(R
d).

Let us now prove (6) by contradiction. Assume that there exists ǫ > 0 such
that

∀R > 0, lim inf
k→∞

ˆ

∂Ωnk
+B(0,R)

|ψnk
|2 < 1− ǫ.

As ‖ψnk
‖L2 = 1 for all k, the above inequality also reads

∀R > 0, lim sup
k→∞

ˆ

ΩR
nk

|ψnk
|2 > ǫ,

where ΩR
nk

= {x ∈ Ωnk
| d(x, ∂Ωnk

) ≥ R}. We could then extract from (ψnk
)k∈N

a subsequence, still denoted by (ψnk
)k∈N, such that there exists an increasing

sequence (Rnk
)k∈N of real numbers going to infinity such that

∀k ∈ N,
ˆ

Ω
Rnk
nk

|ψnk
|2 ≥ ǫ.

Let us denote by

C0(T ∞
n ) =

{
v ∈ C0(Rd) | ∀K ∈ T ∞

n , v|K ∈ Pm

}

the set of continuous functions built from T ∞
n and Pm-finite elements, and by

X∞
n = C0(T ∞

n ) ∩H1(Rd).

The spaceX∞
n is an (infinite dimensional) closed subspace ofH1(Rd). Obviously

Xn →֒ X∞
n . We then introduce a sequence (χnk

)k∈N of functions of C∞
c (Rd)

such that for all k ∈ N,

Supp(χnk
) ⊂ Ωnk

, χk ≡ 1 on Ω
Rnk
nk

, and ∀|α| ≤ (m+1), ‖∂αχnk
‖L∞ ≤ CR−|α|

nk
,
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for a constant C ∈ R+ independent of k. Let ψ̃nk
= Pnk

(χnk
ψnk

), where Pnk

is the interpolation projector on Xnk
. For all k ∈ N, ‖ψ̃nk

‖L2 ≥ ǫ1/2 and for all
φ∞nk

∈ X∞
nk
,

(a− λnk
)(ψ̃nk

, φ∞nk
) = (a− λnk

)(χnk
ψnk

, φ∞nk
)

−(a− λnk
)(χnk

ψnk
− Pnk

(χnk
ψnk

), φ∞nk
)

= (a− λnk
)(ψnk

, χnk
φ∞nk

)

−(a− λnk
)(χnk

ψnk
− Pnk

(χnk
ψnk

), φ∞nk
)

−

ˆ

Rd

(∆χnk
ψnk

φ∞nk
+ 2φ∞nk

∇χnk
· ∇ψnk

)

= (a− λnk
)(ψnk

, χnk
φ∞nk

− Pnk
(χnk

φ∞nk
))

−(a− λnk
)(χnk

ψnk
− Pnk

(χnk
ψnk

), φ∞nk
)

−

ˆ

Rd

(∆χnk
ψnk

φ∞nk
+ 2φ∞nk

∇χnk
· ∇ψnk

),

where we have used that (a−λnk
)(ψnk

, Pnk
(χnk

φ∞nk
)) = 0 since Pnk

(χnk
φ∞nk

) ∈
Xnk

. Denoting by

a0(ψ, φ) =

ˆ

Rd

∇ψ · ∇φ+

ˆ

Rd

Vperψφ,

we end up with

(a0 − λnk
)(ψ̃nk

, φ∞nk
) = (a− λnk

)(ψnk
, χnk

φ∞nk
− Pnk

(χnk
φ∞nk

))

−(a− λnk
)(χnk

ψnk
− Pnk

(χnk
ψnk

), φ∞nk
)

−

ˆ

Rd

(∆χnk
ψnk

φ∞nk
+ 2φ∞nk

∇χnk
· ∇ψnk

)

−

ˆ

Rd

Wψ̃nk
φ∞nk

. (8)

Besides, for hnk
≤ 1,

∀φ∞nk
∈ X∞

nk
, ‖χnk

φ∞nk
− Pnk

(χnk
φ∞nk

)‖H1 ≤ Chnk
R−1

nk
‖φ∞nk

‖H1 , (9)

for some constant C independent of k and φ∞nk
. To prove the above inequality,

we notice that for all K ∈ Tnk
, (χnk

φ∞nk
)|K ∈ C∞(K), and ∂βφ∞nk

|K = 0 if

8



|β| = m+ 1, so that

‖χnk
φ∞nk

− Pnk
(χnk

φ∞nk
)‖2H1 =

∑

K∈Tnk

‖(χnk
φ∞nk

)|K − (Pnk
(χnk

φ∞nk
))|K‖2H1(K)

≤ Ch2mnk

∑

K∈Tnk

max
|α|=m+1

‖∂α(χnk
φ∞nk

)|K‖2L2(K)

≤ Ch2mnk

∑

K∈Tnk

max
|α|=m+1

∑

β≤α

‖∂α−βχnk
‖2L∞‖∂βφ∞nk

|K‖2L2(K)

≤ Ch2mnk
R−2

nk

∑

K∈Tnk

max
|β|≤m

‖∂βφ∞nk
|K‖2L2(K)

≤ Ch2mnk
R−2

nk

∑

K∈Tnk

(1 + h−2(m−1)
nk

)‖φ∞nk
|K‖2H1(K)

≤ Ch2nk
R−2

nk
‖φ∞nk

‖2H1 ,

where we have used inverse inequalities and the assumption that the sequence
of meshes (T ∞

n )n∈N is uniformly regular, to obtain the last but one inequality.

Using the boundedness of (ψnk
)k∈N in H1(Rd), the properties of χnk

and W ,
and the fact that (ψnk

)k∈N strongly converges to 0 in L2
loc(R

d), we deduce from
(8) and (9) that

∀φ∞nk
∈ X∞

nk
,
∣∣∣(a0 − λnk

)(ψ̃nk
, φ∞nk

)
∣∣∣ ≤ ηnk

‖φ∞nk
‖H1 ,

where the sequence of positive real numbers (ηnk
)k∈N goes to zero when k goes

to infinity.

We can now use Bloch theory (see e.g. [16]) and expand the functions of X∞
nk

as

φ∞nk
(x) =

 

Γ∗

(φ∞nk
)q(x) dq,

where Γ∗ is the first Brillouin zone of the perfect crystal, and where for all
q ∈ Γ∗,

(φ∞nk
)q(x) =

∑

R∈R

φ∞nk
(x+R)e−iq·R.

For each q ∈ Γ∗, the function (φ∞nk
)q belongs to the complex Hilbert space

L2
q(Γ) :=

{
v(x)eiq·x, v ∈ L2

loc(R
d), v R-periodic

}
,

where Γ denotes the Wigner-Seitz cell of the lattice R (notice that the functions
(φ∞nk

)q are complex-valued). Recall that if R = bZd (cubic lattice of parameter

b > 0), then Γ = (−b/2, b/2]d and Γ∗ = (−π/b, π/b]d. The mesh T ∞
nk

being
invariant with respect to the translations of the lattice R, it holds in fact

(φ∞nk
)q ∈ C0(T ∞

nk
) ∩ L2

q(Γ).

9



We thus have for all φ∞nk
∈ X∞

nk
,

(a0 − λnk
)(ψ̃nk

, φ∞nk
) =

 

Γ∗

(a0q − λn)((ψ̃nk
)q, (φ

∞
nk
)q) dq,

where

a0q(ψq, φq) =

ˆ

Γ

∇ψ∗
q · ∇φq +

ˆ

Γ

Vperψ
∗
qφq. (10)

Let (ǫn,l,q, en,l,q)1≤l≤Nn
, ǫn,1,q ≤ ǫn,2,q ≤ · · · ≤ ǫn,Nn,q, be an L

2
q(Γ)-orthonormal

basis of eigenmodes of a0q in C0(T ∞
n ) ∩ L2

q(Γ). Expanding (ψ̃nk
)q in the basis

(enk,l,q)1≤l≤Nnk
, we get

(ψ̃nk
)q =

Nnk∑

j=1

cnk,j,qenk,j,q.

Choosing φ∞nk
such that

(φ∞nk
)q =

Nnk∑

j=1

cnk,j,q(1ǫnk,j,q−λnk
≥0 − 1ǫnk,j,q−λnk

<0)enk,j,q,

we obtain ‖φ∞nk
‖L2 = ‖ψ̃nk

‖L2 and

(a0 − λnk
)(ψ̃nk

, φ∞nk
) =

 

Γ∗

Nnk∑

j=1

|ǫnk,j,q − λnk
| |cnk,j,q|

2.

It is easy to check that lim inf
k→∞

max
j,q

|ǫnk,j,q − λnk
| = ζ := dist(λ, σ(H0

per)) > 0.

Hence,
lim inf
k→∞

(a0 − λnk
)(ψ̃nk

, φ∞nk
) ≥ ζǫ.

Besides,

‖φ∞nk
‖L2 = ‖ψ̃nk

‖L2 and a0(φ∞nk
, φ∞nk

) = a0(ψ̃nk
, ψ̃nk

),

which implies that the sequence (φ∞nk
)k∈N is bounded in H1(Rd). Consequently,

0 < ζǫ ≤ lim inf
k→∞

(a0 − λnk
)(ψ̃nk

, φ∞nk
) ≤ lim inf

k→∞
ηnk

‖φ∞nk
‖H1 = 0.

We reach a contradiction.

A careful look on the above proof shows that the assumptions in Propo-
sition 2.1 can be weakened: in particular, the mesh Tn can be refined in the
regions where |W | is large, and coarsened in the vicinity of the boundary of Ωn

(see [10] for a more precise statement).
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3 Supercell method

In solid state physics and materials science, the current state-of-the-art tech-
nique to compute the discrete eigenvalues of a perturbed periodic Schrödinger
operator in spectral gaps is the supercell method. Let R be the periodic lattice
of the host crystal and Γ its Wigner-Seitz cell. In the case of a cubic lattice of
paramater b > 0, we have R = bZd and Γ = (−b/2, b/2]d. The supercell method
consists in solving the spectral problem

{
find (ψL,N , λL,N) ∈ XL,N × R such that
∀φL,N ∈ XL,N , aL(ψL,N , φL,N ) = λL,N 〈ψL,N , φL,N 〉L2

per(ΓL),
(11)

where ΓL = LΓ (with L ∈ N∗) is the supercell,

L2
per(ΓL) =

{
uL ∈ L2

loc(R
d) | uL LR-periodic

}
,

aL(uL, vL) =

ˆ

ΓL

∇uL·∇vL+

ˆ

ΓL

(Vper+W )uLvL, 〈uL, vL〉L2
per(ΓL) =

ˆ

ΓL

uLvL,

and XL,N is a finite dimensional subspace of

H1
per(ΓL) =

{
uL ∈ L2

per(ΓL) | ∇uL ∈
(
L2
per(ΓL)

)d}
.

We denote by HL,N = HL|XL,N
, where HL is the unique self-adjoint operator

on L2
per(ΓL) associated with the quadratic form aL. It then holds that D(HL) =

H2
per(ΓL),

∀φL ∈ H2
per(ΓL), HLφL = −∆φL + (Vper +WL)φL,

and

∀φL,N ∈ XL,N , HL,NφL,N = −∆φL,N +ΠXL,N
((Vper +WL)φL,N ) ,

whereWL ∈ L∞
per(ΓL) denotes the LR-periodic extension ofW |ΓL

and ΠXL,N
is

the orthogonal projector of L2
per(ΓL) on XL,N for the L2

per(ΓL) inner product.

Again for the sake of clarity, we restrict ourselves to cubic lattices (R = bZd)
and to the most popular discretization method for supercell model, namely the
Fourier (also called planewave) method. We therefore consider approximation
spaces of the form

XL,N =





∑

k∈2π(bL)−1Zd | |k|≤2π(bL)−1N

ckeL,k

∣∣ ∀k, c−k = c∗k




 ,

where eL,k(x) = |ΓL|
−1/2eik·x.

From the classical Jackson inequality for Fourier truncation, we deduce by
scaling the following property of the discretization spaces XL,N : for all real
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numbers r and s such that 0 ≤ r ≤ s, there exists a constant C > 0 such that
for all L ∈ N∗ and all φL ∈ Hs

per(ΓL),

‖φL −ΠXL,N
φL‖Hr

per(ΓL) ≤ C

(
L

N

)s−r

‖φL‖Hs
per(ΓL). (12)

Our analysis of the supercell method requires some assumption on the potential
Vper. We define the functional space Mper(Γ) as

Mper(Γ) =

{
v ∈ L2

per(Γ) | ‖v‖Mper(Γ) := sup
L∈N∗

sup
w∈H1

per(ΓL)\{0}

‖vw‖L2
per(ΓL)

‖w‖H1
per(ΓL)

<∞

}
.

It is quite standard to prove that Mper(Γ) is a normed space and that the space
of the R-periodic functions of class C∞ is dense in Mper(Γ). We denote the
R-periodic Lorentz spaces [4] by Lp,q

per(Γ).

Proposition 3.1. The following embeddings are continuous:

for d = 1, L2
per(Γ) →֒ Mper(Γ),

for d = 2, L2,∞
per (Γ) →֒ Mper(Γ),

for d = 3, L3,∞
per (Γ) →֒ Mper(Γ).

Proof. We only prove the result for d = 3; the other two embeddings are ob-
tained by similar arguments. Let us first recall that the Lorentz space L3,∞(Γ)
is a L2-multiplier of L6,2(Γ) (this can be seen by combining results on convolu-
tion multiplier spaces [2] and continuity properties of the Fourier transform on
Lorentz spaces [4]), in the sense that

∃C1 ∈ R+ | ∀f ∈ L3,∞(Γ), ∀g ∈ L6,2(Γ), ‖fg‖L2(Γ) ≤ C1‖f‖L3,∞(Γ)‖g‖L6,2(Γ).

Besides, the embedding of H1(Γ) into L6,2(Γ) is continuous (see [1] for instance)

∃C2 ∈ R+ | ∀g ∈ H1(Γ), ‖g‖L6,2(Γ) ≤ C2‖g‖H1(Γ). (13)

Let v ∈ L3,∞
per (Γ). Denoting by IL := R ∩ (−Lb/2, Lb/2]3, we have, for all

12



w ∈ H1
per(ΓL),

‖vw‖2L2
per(ΓL) =

ˆ

ΓL

|vw|2 =
∑

R∈IL

ˆ

Γ+R

|v(x)w(x)|2 dx

=
∑

R∈IL

ˆ

Γ

|v(x)w(x +R)|2 dx =
∑

R∈IL

‖vw(.+R)‖2L2(Γ)

≤ C2
1

∑

R∈IL

‖v‖2L3,∞(Γ)‖w(.+R)‖2L6,2(Γ)

≤ C2
1‖v‖

2
L3,∞(Γ)

∑

R∈IL

‖w(.+R)‖2L6,2(Γ)

≤ C2
1C

2
2‖v‖

2
L3,∞(Γ)

∑

R∈IL

‖w(.+R)‖2H1(Γ)

≤ C2
1C

2
2‖v‖

2
L3,∞(Γ)

∑

R∈IL

ˆ

Γ

(
|w(x+R)|2 + |∇w(x +R)|2

)
dx

≤ C2
1C

2
2‖v‖

2
L3,∞(Γ)

ˆ

ΓL

(
|w(x)|2 + |∇w(x)|2

)
dx

≤ C2
1C

2
2‖v‖

2
L3,∞(Γ)‖w‖

2
H1

per(ΓL).

Therefore, v ∈ Mper(Γ) and ‖v‖Mper(Γ) ≤ C1C2‖v‖L3,∞(Γ).

Remark 3.1. In dimension 3, the R-periodic Coulomb kernel G1 defined by

−∆G1 = 4π

(
∑

R∈R

δR − |Γ|−1

)
, min

x∈R3
G1(x) = 0,

is in L3,∞
per (Γ), hence in Mper(Γ). The functional setting we have introduced

therefore allows us to deal with the electronic structure of crystals containing
point-like nuclei.

Theorem 3.1. Assume that Vper ∈ Mper(Γ). Then

lim
N,L→∞|N/L→∞

σ(HL,N ) = σ(H).

Proof. Let us first establish that

σ(H) ⊂ lim inf
N,L→∞|N/L→∞

σ(HL,N ).

Let λ ∈ σ(H) and (NL)L∈N∗ be a sequence of integers such that
NL

L
−→
L→∞

∞.

Let ǫ > 0 and ψ ∈ C∞
c (Rd) be such that ‖ψ‖L2 = 1 and ‖(H − λ)ψ‖L2 ≤ ǫ.

13



We denote by ψL the LR-periodic extension of ψ|ΓL
. Since ψ is compactly

supported, there exists L0 ∈ N∗ such that for all L ≥ L0, Supp(ψ) ⊂ ΓL.
Consequently, for all L ≥ L0,

‖ψL‖L2
per(ΓL) = 1 and ‖(HL − λ)ψL‖L2

per(ΓL) ≤ ǫ.

Let ψL,NL
:= ΠXL,NL

ψL. We are going to prove that

‖(HL − λ)ψL − (HL,NL
− λ)ψL,NL

‖L2
per(ΓL) −→

L→∞
0. (14)

First, we infer from (12) and the density of H1
0 (Ω) in L2(Ω) for any bounded

domain Ω of Rd, that

∀φ ∈ L2
c(R

d), ‖(1−ΠXL,NL
)φL‖L2

per(ΓL) −→
L→∞

0,

where L2
c(R

d) denotes the space of the square integrable functions on Rd with
compact supports, and where φL is the LR-periodic extension of φ|ΓL

. As ψ,
∆ψ, Vperψ and Wψ are square integrable, with compact supports, we therefore
have for all L ≥ L0,

‖ψL − ψL,NL
‖L2

per(ΓL) =
∥∥∥
(
1−ΠXL,NL

)
ψL

∥∥∥
L2

per(ΓL)
−→
L→∞

0,

‖ −∆ψL +∆ψL,NL
‖L2

per(ΓL) =
∥∥∥
(
1−ΠXL,NL

)
(−∆ψ)L

∥∥∥
L2

per(ΓL)
−→
L→∞

0,

‖WLψL −ΠXL,NL
(WLψL)‖L2

per(ΓL) =
∥∥∥
(
1−ΠXL,NL

)
(Wψ)L

∥∥∥
L2

per(ΓL)
−→
L→∞

0,

‖VperψL −ΠXL,NL
(VperψL)‖L2

per(ΓL) =
∥∥∥
(
1−ΠXL,NL

)
(Vperψ)L

∥∥∥
L2

per(ΓL)
−→
L→∞

0.

We infer from the last two convergence results that, on the one hand,

‖WLψL −ΠXL,NL
(WLψL,NL

)‖L2
per(ΓL)

≤
∥∥∥WLψL −ΠXL,NL

(WLψL)
∥∥∥
L2

per(ΓL)
+
∥∥∥ΠXL,NL

(WL(ψL − ψL,NL
))
∥∥∥
L2

per(ΓL)

≤
∥∥∥WLψL −ΠXL,NL

(WLψL)
∥∥∥
L2

per(ΓL)
+ ‖W‖L∞ ‖ψL − ψL,NL

‖L2
per(ΓL)

−→
L→∞

0,

and that, on the other hand,

‖VperψL −ΠXL,NL
(VperψL,NL

)‖L2
per(ΓL)

≤
∥∥∥VperψL −ΠXL,NL

(VperψL)
∥∥∥
L2

per(ΓL)
+
∥∥∥ΠXL,NL

(Vper(ψL − ψL,NL
))
∥∥∥
L2

per(ΓL)

≤
∥∥∥
(
1−ΠXL,NL

)
VperψL

∥∥∥
L2

per(ΓL)
+ ‖Vper‖Mper(Γ)‖ψL − ψL,NL

‖H1
per(ΓL)

−→
L→∞

0.
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Collecting the above results, we obtain (14). Thus, for L large enough,

‖(HL,NL
− λ)ψL,NL

‖L2
per(ΓL) ≤ 2ε.

As ‖ψL,NL
‖L2

per(ΓL) = 1 for all L ≥ L0, we infer that for L large enough,

dist(λ, σ(HL,NL
)) ≤ 2ǫ, so that λ ∈ lim inf

L→∞
σ(HL,NL

).

Let us now prove that

lim sup
N,L→∞|N/L→∞

σ(HN,L) ⊂ σ(H).

We argue by contradiction, assuming that there exists λ ∈ R \ σ(H) and a
sequence (Lk, Nk)k∈N with Lk →

k→∞
∞, Nk →

k→∞
∞, Nk/Lk →

k→∞
∞, such that

for each k, there exists (ψLk,Nk
, λLk,Nk

) ∈ XLk,Nk
× R satisfying

{
∀φLk,Nk

∈ XLk,Nk
, aLk

(ψLk,Nk
, φLk,Nk

) = λLk,Nk
〈ψLk,Nk

, φLk,Nk
〉L2

per(ΓLk
)

‖ψLk,Nk
‖L2(ΓLk

) = 1,

and lim
k→∞

λLk,Nk
= λ. Each function ψLk,Nk

is then solution to the PDE

−
1

2
∆ψLk,Nk

+ΠXLk,Nk
((Vper +WLk

)ψLk,Nk
) = λLk,Nk

ψLk,Nk
. (15)

Reasoning as in the proof of Proposition 2.1, it can be checked that the sequence
(‖ψLk,Nk

‖H1
per(ΓLk

))k∈N is bounded, and that

ψLk,Nk
−→
k→∞

0 in L2
loc(R

d). (16)

For all k, we consider a cut-off function χk ∈ C∞
c (Rd) such that 0 ≤ χk ≤ 1

on Rd, χk ≡ 1 on ΓLk
, Supp(χk) ⊂ (Lk + L

1/2
k )Γ, ‖∇χk‖L∞ ≤ CL

−1/2
k , and

‖∆χk‖L∞ ≤ CL−1
k for some constant C ∈ R+ independent of k. We then set

ψ̃k = χkψLk,Nk
. It holds ψ̃k ∈ H2(Rd), 1 ≤ ‖ψ̃k‖L2 ≤ 2d/2 and

−
1

2
∆ψ̃k + Vperψ̃k − λψ̃k = χk

(
VperψLk,Nk

−ΠXLk,Nk
(VperψLk,Nk

)
)

−χkΠXLk,Nk
(WLk

ψLk,Nk
)−∇χk · ∇ψLk,Nk

−
1

2
∆χkψLk,Nk

+ (λLk,Nk
− λ)ψ̃k. (17)

As (λLk,Nk
)k∈N converges to λ in R and ‖ψ̃k‖L2 ≤ 2d/2, we have

(λLk,Nk
− λ)ψ̃k −→

k→∞
0 strongly in L2(Rd).

Using the facts that Supp(χk) ⊂ 2ΓLk
, ‖∇χk‖L∞ ≤ CL

−1/2
k and ‖∆χk‖L∞ ≤

CL−1
k for a constant C ∈ R+ independent of k, and the boundedness of the

sequence (‖ψLk,Nk
‖H1

per(ΓLk
))k∈N, we get

−∇χk · ∇ψLk,Nk
−

1

2
∆χkψLk,Nk

−→
k→∞

0 strongly in L2(Rd).
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It also follows from (16) that the sequence ‖WLk
ψLk,Nk

‖L2
per(ΓLk

) goes to zero,
leading to

χkΠXLk,Nk
(WLk

ψLk,Nk
) −→
k→∞

0 strongly in L2(Rd).

Lastly,

χk

(
VperψLk,Nk

−ΠXLk,Nk
(VperψLk,Nk

)
)
−→
k→∞

0 strongly in L2(Rd). (18)

To show the above convergence result, we consider ǫ > 0 and, using the density
of e.g. W 1,∞

per (Γ) := {Wper ∈ L∞
per(Γ) | ∇Wper ∈ L∞

per(Γ)} in Mper(Γ), we can

choose some Ṽper ∈ W 1,∞
per (Γ) such that ‖Vper − Ṽper‖Mper(Γ) ≤ ε. We then

deduce from (12) that, for all k ∈ N,
∥∥∥VperψLk,Nk

−ΠXLk,Nk
(VperψLk,Nk

)
∥∥∥
L2

per(ΓLk
)

≤
∥∥∥(Vper − Ṽper)ψLk,Nk

∥∥∥
L2

per(ΓLk
)
+
∥∥∥ṼperψLk,Nk

−ΠXLk,Nk

(
ṼperψLk,Nk

)∥∥∥
L2

per(ΓLk
)

≤ ‖Vper − Ṽper‖Mper(Γ)‖ψLk,Nk
‖H1

per(ΓLk
) +

Lk

Nk
‖ṼperψLk,nk

‖H1
per(ΓLk

)

≤ ε‖ψLk,Nk
‖H1

per(ΓLk
) +

Lk

Nk
‖ψLk,nk

‖H1
per(ΓLk

)(‖Ṽper‖L∞ + ‖∇Ṽper‖L∞).

Since the sequence
(
‖ψLk,Nk

‖H1
per(ΓLk

)

)

k∈N∗

is bounded, this yields

∥∥∥VperψLk,Nk
−ΠXLk,Nk

(VperψLk,Nk
)
∥∥∥
L2

per(ΓLk
)
−→
k→∞

0,

which implies (18).

Collecting the above convergence results, we obtain that the right-hand side
of (17) goes to zero strongly in L2(Rd). Therefore, (ψ̃k/‖ψ̃k‖L2)k∈N is a Weyl
sequence for λ, which contradicts the fact that λ /∈ σ(H0

per).

A similar result was proved in [18] for compactly supported defects in 2D pho-
tonic crystals, with Vper ∈ L∞(R2) and N = ∞. In [7], we prove that the error
made on the eigenvalues and the associated eigenvectors decays exponentially
with respect to the size of the supercell. We did not consider here the error due
to numerical integration. The numerical analysis of the latter is ongoing work
and will be reported in [10].

Note that, if instead of supercells of the form ΓL = LΓ, L ∈ N∗, we had
used computational domains of the form ΓL+t = (L + t)Γ, t ∈ (0, 1), we
would have observed spectral pollution. As in the case studied in the previ-
ous section, the spurious eigenvectors concentrate on the boundary ∂ΓL+t. In
the one-dimensional setting (R = bZ), and for a fixed value of t, the trans-
lated spurious modes φL,N (· − (L + t)b/2) strongly converge in H1

loc(R), when
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L goes to infinity, to the normalized eigenmodes of the dislocation operator

H(t) = −
d2

dx2
+ 1x<0Vper(x + tb/2) + 1x>0Vper(x − tb/2) studied in [12]. We

refer to [10] for further details.

4 A no-pollution criterion

Spectral pollution can be avoided by using e.g. the quadratic projection method,
introduced in an abstract setting in [17], and applied to the case of perturbed
periodic Schrödinger operators in [5]. An alternative way to prevent spec-
tral pollution is to impose constraints on the approximation spaces (Xn)n∈N.
Consider a gap (α, β) ⊂ R \ σ(H0

per) in the spectrum of H0
per and denote by

P = χ(−∞,γ](H
0
per) where γ = α+β

2 and where χ(−∞,γ] is the characteristic
function of the interval (−∞, γ].

Theorem 4.1. Let (Pn)n∈N be a sequence of linear projectors on L2(Rd) such
that for all n ∈ N, Ran(Pn) ⊂ H1(Rd), and supn∈N

‖Pn‖L(L2) < ∞, and
(Xn)n∈N a sequence of finite dimensional discretization spaces satisfying (3)
as well as the following two properties:

(A1) ∀n ∈ N, Xn = X+
n ⊕X−

n with X−
n ⊂ Ran(Pn) and X

+
n ⊂ Ran(1− Pn);

(A2) sup
φn∈Xn\{0}

‖(P − Pn)φn‖H1(Rd)

‖φn‖H1(Rd)

−→
n→∞

0.

Then,
lim
n→∞

σ(H |Xn
) ∩ (α, β) = σ(H) ∩ (α, β).

The above result is an extension, for the specific case of perturbed periodic
Schrödinger operators, to the results in [14, Theorem 2.6] in the sense that (i)
the exact spectral projector P is replaced by an approximate projector Pn, and
(ii) the discretization space Xn may consist of functions of H1(Rd) (the form
domain ofH), while in [14], the basis functions are assumed to belong toH2(Rd)
(the domain of H).

Proof. From (4), we already know that σ(H) ∩ (α, β) ⊂ lim infn→∞ σ(H |Xn
) ∩

(α, β). Conversely, let λ ∈ (lim supn→∞ σ(H |Xn
)∩ (α, β))\σ(H), and (ψnk

)k∈N

be a sequence of functions of H1(Rd) such that for all k ∈ N, ψnk
∈ Xnk

,
‖ψnk

‖L2(Rd) = 1 and (H |Xnk
− λ)ψnk

−→k→∞ 0 strongly in L2(Rd). Reasoning
as in the proof of Proposition 2.1, we obtain that the sequence (ψnk

)k∈N con-
verges to 0, weakly inH1(Rd), and strongly in L2

loc(R
d). Let us then expand ψnk

as ψnk
= ψ+

nk
+ψ−

nk
with ψ+

nk
:= (1−Pnk

)ψnk
∈ X+

nk
and ψ−

nk
:= Pnk

ψnk
∈ X−

nk

and notice that

(a0 − λ)(ψ+
nk
, ψ+

nk
) + (a0 − λ)(ψ−

nk
, ψ+

nk
) = (a− λ)(ψnk

, ψ+
nk
)−

ˆ

Rd

Wψnk
ψ+
nk
.
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Since ψ+
nk

= (1− Pn)ψnk
∈ Xnk

,

∣∣(a− λ)(ψnk
, ψ+

nk
)
∣∣ =

∣∣∣〈(H |Xnk
− λ)ψnk

, (1 − Pn)ψnk
〉L2

∣∣∣

≤

(
1 + sup

k∈N

‖Pnk
‖L(L2)

)
‖(H |Xnk

− λ)ψnk
‖L2 −→

k→∞
0.

Besides, as W vanishes at infinity, (ψnk
)k∈N converges to 0 in L2

loc(R
d) and

supk∈N
‖ψ+

nk
‖L2 ≤ 1 + supk∈N

‖Pnk
‖L(L2) <∞, we also have

ˆ

Rd

Wψnk
ψ+
nk

−→
k→∞

0.

Therefore,
(a0 − λ)(ψ+

nk
, ψ+

nk
) + (a0 − λ)(ψ−

nk
, ψ+

nk
) −→
k→∞

0.

Likewise,

(a0−λ)(ψ+
nk
, ψ−

nk
)+(a0−λ)(ψ−

nk
, ψ−

nk
) = (a−λ)(ψnk

, ψ−
nk
)−

ˆ

Rd

Wψnk
ψ−
nk

−→
k→∞

0.

Substracting the second equation from the first one, we obtain

(a0 − λ)(ψ+
nk
, ψ+

nk
)− (a0 − λ)(ψ−

nk
, ψ−

nk
) −→
k→∞

0.

Now, we notice that

(a0 − λ)(ψ−
nk
, ψ−

nk
) = (a0 − λ)(Pnk

ψnk
, Pnk

ψnk
)

= (a0 − λ)(Pψnk
, Pψnk

) + 2(a0 − λ)(Pψnk
, (Pnk

− P )ψnk
)

+(a0 − λ)((Pnk
− P )ψnk

, (Pnk
− P )ψnk

),

and

(a0 − λ)(ψ+
nk
, ψ+

nk
) = (a0 − λ)((1 − Pnk

)ψnk
, (1 − Pnk

)ψnk
)

= (a0 − λ)((1 − P )ψnk
, (1− P )ψnk

)

+2(a0 − λ)((1 − P )ψnk
, (P − Pnk

)ψnk
)

+(a0 − λ)((P − Pnk
)ψnk

, (P − Pnk
)ψnk

).

Besides, there exists η+, η− > 0 such that for all ψ ∈ H1(Rd),

(a0 − λ)((1 − P )ψ, (1 − P )ψ) ≥ η+‖(1− P )ψ‖2L2(Rd),

−(a0 − λ)(Pψ, Pψ) ≥ η−‖Pψ‖
2
L2(Rd).

Thus,

(a0 − λ)(ψ+
nk
, ψ+

nk
)− (a0 − λ)(ψ−

nk
, ψ−

nk
) ≥ min(η+, η−)‖ψnk

‖2L2(Rd)

+2(a0 − λ)(ψnk
, (P − Pnk

)ψnk
).
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From assumption (A2) and the boundedness of (ψnk
)k∈N in H1(Rd), we deduce

that
(a0 − λ)(ψnk

, (P − Pnk
)ψnk

) −→
k→∞

0,

which imply that ‖ψnk
‖L2 −→

k→∞
0. This contradicts the fact that ‖ψnk

‖L2 = 1

for all k ∈ N.

The assumptions made in Theorem 4.1 allow in particular to consider ap-
proximation spaces built from approximate spectral projectors of H0

per. As
a matter of illustration, let us consider the case when the approximate spec-
tral projectors are constructed by means of the finite element method. As
in Section 2, we consider a sequence (T ∞

n )n∈N of uniformly regular meshes of
Rd, invariant with respect to the translations of the lattice R, and such that
hn := maxK∈T ∞

n
diam(K)−→n→∞ 0, and denote by X∞

n the infinite dimen-
sional closed vector subspace of H1(Rd) built from (T ∞

n )n∈N and Pm-finite el-
ements. Assume that we want to compute the eigenvalues of H = H0

per +W

located inside the gap (α, β) between the J th and (J+1)st bands of H0
per. Using

Bloch theory [16], we obtain

P = χ(−∞,γ](H
0
per) =

 

Γ∗

Pq dq,

where Pq is the rank-J orthogonal projector on L2
q(Γ) defined by

Pq =

J∑

j=1

|ej,q〉 〈ej,q|,

where (ǫj,q, ej,q)j∈N∗ , ǫ1,q ≤ ǫ2,q ≤ · · · , is an L2
q(Γ)-orthonormal basis of eigen-

modes of the quadratic form a0q defined by (10). For n large enough, we introduce

Pn :=

 

Γ∗

J∑

j=1

|en,j,q〉 〈en,j,q| dq, (19)

where (ǫn,j,q, en,j,q)1≤j≤Nn
, ǫn,1,q ≤ ǫn,2,q ≤ · · · ≤ ǫn,Nn,q, is the L

2
q(Γ)-orthonormal

basis of eigenmodes of a0q in C0(T ∞
n )∩L2

q(Γ) already introduced in the proof of
Proposition 2.1.

We have seen in Section 2 that using approximation spaces of the form

Xn = {ψn ∈ X∞
n | Supp(ψn) ⊂ Ωn} ,

where (Ωn)n∈N is an increasing sequence of closed convex sets of Rd converging to
Rd, leads, in general, to spectral pollution. We now consider the approximation
spaces

X̃n = X+
n ⊕X−

n where X−
n = PnXn and X+

n = (1 − Pn)Xn. (20)

Note that X̃n = Xn+PnXn, so that X̃n can be seen as an augmentation of Xn.
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Corollary 4.1. The sequence of approximation spaces (X̃n)n∈N defined by (20)
satisfies (3) and it holds

lim
n→∞

σ(H |X̃n
) ∩ (α, β) = σ(H) ∩ (α, β). (21)

Proof. As X̃n = Xn+PnXn with (Xn)n∈N satisfying (3), it is clear that (X̃n)n∈N

satisfies (3). The sequence (Pn)n∈N is a sequence of orthogonal projectors of
L2(Rd) such that Ran(Pn) ⊂ X∞

n ⊂ H1(Rd). Besides, ‖Pn‖L(L2) = 1 since the
projector Pn is orthogonal. It follows from the minmax principle [16] and usual
a priori error estimates for linear elliptic eigenvalue problems [3] that

sup
1≤j≤J, q∈Γ∗

ǫn,j,q −→
n→∞

α and inf
j≥J+1, q∈Γ∗

ǫn,j,q −→
n→∞

β,

and that there exists C ∈ R+ such that

‖Pn−P‖L(H1) ≤ C sup
q∈Γ∗

sup
vq ∈ Ran(Pq)
‖vq‖L2

q(Γ)
= 1

inf
vn
q ∈C0(T ∞

n )∩L2
q(Γ)

‖vq−v
n
q ‖H1

q (Γ)
−→
n→∞

0.

We conclude using Theorem 4.1.

Let us finally present some numerical simulations illustrating Corollary 4.1 in
a one-dimensional setting, with Vper(x) = cos(x) + 3 sin(2x + 1) and W (x) =

−(x + 2)2e−x2

. We focus on the spectral gap (α, β) located between the first

and second bands of H0
per = − d2

dx2 + Vper (corresponding to J = 1). Numerical
simulations done with the pollution-free supercell model show that α ≃ −1.15
and β ≃ −0.65, and that H has exactly two discrete eigenvalues λ1 ≃ −1.04
and λ2 ≃ −0.66 in the gap (α, β).

The simulations below have been performed with a uniform mesh of R cen-
tered on 0, consisting of segments of length h = π/50, and with Ω = [−L,L],
for different values of L. The sums over R have been truncated using very
large cut-offs; likewise, the integrals on the Brillouin zone have been computed
numerically on a very fine uniform integration grid, in order to eliminate the
so-called k-point discretization errors. The numerical analysis of the approxima-
tions resulting from the truncation of the sums over R and from the numerical
integration on Γ∗, is work in progress.

The spectra of the operators H |Xn
(standard finite element discretization

spaces) and H |X̃n
(augmented finite element discretization spaces defined by

(20)) are displayed in Figure 4. The variational approximation of H in Xn is
seen to generate spectral pollution, while, in agreement with Corollary 4.1, no
spectral pollution is observed with the discretization spaces X̃n.
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Figure 3: The spectra of the variational approximations of H for various sizes
of the simulation domain, obtained with standard finite element discretization
spaces Xn (top) and with augmented finite element discretization spaces X̃n

defined by (20) (bottom).
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