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Abstract. It is known that the First-Fit algorithm for partitioning a poset P into
chains uses relatively few chains when P does not have two incomparable chains each
of size k. In particular, if P has width w then Bosek, Krawczyk, and Szczypka (SIAM
J. Discrete Math., 23(4):1992–1999, 2010) proved an upper bound of ckw2 on the
number of chains used by First-Fit for some constant c, while Joret and Milans (Order,
28(3):455–464, 2011) gave one of ck2w. In this paper we prove an upper bound of the
form ckw. This is best possible up to the value of c.

1. Introduction

Every partition of a poset P into chains contains at least w chains where w is the
maximum size of an antichain in P , called the width of P . By a classical theorem
of Dilworth [7], there always exists a chain partition of P achieving this lower bound.
While such an optimal chain partition can easily be computed (see for instance [21]),
this computation requires a full knowledge of the poset P and cannot be made on-
line: In the on-line setting, elements of P are uncovered one at a time and a chain
decomposition of the poset uncovered so far must be maintained at all times. In this
model, once an element is assigned to some chain it must remain assigned to that chain
during the whole execution.

Szemerédi proved that every on-line algorithm can be forced to use Ω(w2) chains (see [1,
14]). It is a well-known open problem to decide whether there exists an on-line algorithm
that uses polynomially many chains (in w). The current best bound, due to Bosek and
Krawczyk [2], is sub-exponential: w16 log2 w.

First-Fit is a natural on-line algorithm for partitioning a poset P into chains: Each
time a new element v is uncovered, First-Fit puts v into the first chain in the current
chain partition such that v is comparable to all elements in that chain. If no such chain
is found, then a new chain containing only v is added at the end of the current chain
partition.
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Researcher of the Fonds National de la Recherche Scientifique (F.R.S.–FNRS), and is also supported
by an Endeavour Fellowship from the Australian Government. David Wood is supported by a QEII
Research Fellowship from the Australian Research Council.

1

ar
X

iv
:1

11
1.

23
70

v1
  [

m
at

h.
C

O
] 

 9
 N

ov
 2

01
1
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The performance of First-Fit on various classes of posets has been studied extensively [1,
3, 4, 5, 6, 10, 14, 16, 17, 18, 19, 20]. In particular, Kierstead [14] showed that First-
Fit can be forced to use an unbounded number of chains even on posets of width
2. (A description of Kierstead’s construction can be found at the end of Section 3.)
Nevertheless, First-Fit behaves well on some restricted classes of posets. A prominent
example are interval orders, for which Kierstead [15] obtained a linear bound of 40w,
which was subsequently improved by Kierstead and Qin [16] to 25.8w, and then by
Pemmaraju, Raman and Varadarajan [19, 20] to 10w. It was later shown by Brightwell,
Kierstead and Trotter [5] and by Narayanaswamy and Babu [18] that the proof method
of Pemmaraju et al. actually gives a bound of 8w. (This refined analysis is also presented
in the journal version [20] of [19].) As for lower bounds, the best result to date is that,
for every ε > 0, First-Fit can be forced to use at least (5 − ε)w chains provided w is
large enough [17].

By a well-known theorem of Fishburn [12], interval orders are exactly the posets not
containing 2 + 2 as an induced subposet, where k + k denotes the poset consisting of
two disjoint chains A,B with |A| = |B| = k where every element in A is incomparable to
every element in B. It is therefore natural to ask to which extent the good performance
of First-Fit on interval orders extends to posets without k + k (where k > 2). This
question was first considered by Bosek, Krawczyk and Szczypka [4], who proved an
upper bound of 3kw2 on the number of chains used by First-Fit. Joret and Milans [13]
subsequently showed an upper bound of 8(k − 1)2w, which is asymptotically better
when k is fixed. Note however that the two bounds are incomparable if k and w are
independent variables.

The main result of this paper is that a linear dependency in k and in w can be guaranteed
simultaneously: First-Fit partitions every poset of width w without k + k into at most
16kw chains. We also give an example where First-Fit uses (k − 1)w chains on such
posets, implying that our upper bound is within a constant factor of optimal.

Our proof of the upper bound is in two steps. First we prove that the incomparability
graph of every poset of width w without k + k has small pathwidth, namely pathwidth
at most 2kw− 1. Then we show that the fact that First-Fit uses at most 8w chains on
interval orders of width w, as proved in [20], implies that First-Fit uses at most 8(k+1)
chains on posets whose incomparability graphs have pathwidth k. Combining these two
results, we obtain an upper bound of 8 · 2kw = 16kw on the number of chains used by
First-Fit on posets of width w without k + k.

2. Definitions

A chain (respectively, antichain) in a poset P is a set of pairwise comparable (incom-
parable) elements in P . The maximum size of an antichain in P is called the width of
P . An element v is minimal (respectively, maximal) in P if there is no element w in P
such that w < v in P (w > v in P ).
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The incomparability graph of a poset P is the graph with vertex set the elements of P
where two distinct vertices are adjacent if and only if the corresponding elements are
incomparable in P .

A First-Fit chain partition of a poset P is a sequence C1, . . . , Cq of non-empty disjoint
chains of P such that every element of P is in one of the chains, and for each i, j
such that 1 6 i < j 6 q and each v ∈ Cj, there exists w ∈ Ci such that v and w
are incomparable in P . Observe that every chain partition produced by the First-Fit
algorithm is a First-Fit chain partition, and conversely every First-Fit chain partition
can be produced by First-Fit.

A First-Fit coloring of a graph G is a coloring of the vertices of G with positive integers
such that every vertex v ∈ V (G) that is colored i > 2 has a neighbor colored j for
every j ∈ {1, . . . , i− 1}. The maximum number of colors in a First-Fit coloring of G is
denoted FF(G). Note that a First-Fit chain partition of a poset P can equivalently be
seen as a First-Fit coloring of the incomparability graph of P .

Every (finite) set I of closed intervals of the real line defines a corresponding poset P as
follows: P has one element per interval in I, and u < v in P if and only if I(u) = [a, b]
and I(v) = [c, d] with b < c, where I(u) denotes the interval corresponding to u. The
set I is said to be an interval representation of P . A poset P is an interval order if and
only if P has an interval representation.

Such a set I also defines a corresponding graph G, namely the intersection graph of
the intervals in I. Thus G has one vertex per interval, and two distinct vertices are
adjacent if and only if the corresponding intervals intersect. Similarly as above, I
is said to be an interval representation of G. A graph is an interval graph if it has
an interval representation. Clearly, the incomparability graph of an interval order is an
interval graph, and conversely every interval graph is the incomparability graph of some
interval order.

A path decomposition of a graph G is a sequence B1, . . . , Bk of vertex subsets of G
(called bags) such that each vertex of G appears in a non-empty consecutive set of
bags, and each edge of G has its two endpoints in at least one bag. The width of the
decomposition is the maximum cardinality of a bag minus one. The pathwidth pw(G)
of G is the minimum width of a path decomposition of G. Note that the pathwidth
of G can equivalently be defined as the minimum integer k such that G is a spanning
subgraph of an interval graph H with ω(H) = k+1 (where ω(H) denotes the maximum
cardinality of a clique in H).

3. Proofs

A poset P extends (or is an extension of) a poset Q if P and Q have the same set of
elements and u < v in Q implies u < v in P for all elements u, v.
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Theorem 3.1. Every poset P of width w without k + k extends some interval order Q
of width at most 2kw.

Proof. Let C1, . . . , Cw be a partition of P into w chains (which exists by Dilworth’s
theorem). A subset X of elements of P will be called a block if |X ∩Ci| > min{|Ci|, 2k}
and the elements in X ∩ Ci are consecutive in the chain Ci for every i ∈ {1, . . . , w}.
Given a block X, the set up(X) is defined as the set of all elements y of P such that
y ∈ Ci−X for some i ∈ {1, . . . , w} and y > x for every x ∈ X ∩Ci. An element u ∈ X
is good if u < v in P for every v ∈ up(X).

With a slight abuse of terminology, we say that an element u of a set X is minimal in X
(maximal in X) if u is a minimal (maximal, respectively) element of the poset induced
by X.

Claim 3.2. If X is a block with up(X) 6= ∅, then there is an index i ∈ {1, . . . , w} such
that up(X) ∩ Ci 6= ∅ and the minimal element of X ∩ Ci is good.

Proof. Reindexing the chains C1, . . . , Cw if necessary, we may assume that there is an
index w′ such that up(X) ∩ Ci 6= ∅ if and only if i ∈ {1, . . . , w′}. (Note that w′ > 1,
since otherwise up(X) would be empty.)

For every i ∈ {1, . . . , w′}, the set X ∩ Ci is a chain of size 2k; let Li be the set of the
k smallest elements in that chain, and let Ui := (X ∩ Ci) − Li. (Note that |Ui| = k.)
Thus u < v in P for every u ∈ Li and v ∈ Ui.

Define a directed graph D with vertex set V := {1, . . . , w′} as follows: For every i, j ∈ V ,
i 6= j, add an arc (i, j) if u < v in P for some u ∈ Ui and v ∈ Lj. We will also need to
record such a pair (u, v) of witnesses for each arc a = (i, j): Let t(a) and h(a) denote
elements u ∈ Ui and v ∈ Lj, respectively, such that t(a) < h(a) in P .

We claim that D has no directed cycle. Arguing by contradiction, suppose that
a1, . . . , ap is a directed cycle in D, where a` denotes the `-th arc of the cycle. Then
for every ` ∈ {1, . . . , p} we have t(a`) < h(a`) in P (by definition). Also, taking in-
dices modulo p, we have h(a`) < t(a`+1) in P since h(a`) ∈ Lj and t(a`+1) ∈ Uj,
where j ∈ V is the vertex of D such that a` = (i, j) and a`+1 = (j, i′). Hence
t(a1) < h(a1) < · · · < t(ap) < h(ap) in P but also h(ap) < t(a1), which is a con-
tradiction. Thus D has no directed cycle.

Hence, there exists a vertex i ∈ V that has no incoming arc in D. Without loss of
generality, i = 1. Let x be the minimal element of the chain X ∩C1. We now show that
x is good.

Clearly, x < y for every y ∈ up(X) ∩ C1. Since up(X) ⊆ C1 ∪ · · · ∪ Cw′ , it remains to
show that x < y for every j ∈ {2, . . . , w′} and every y ∈ up(X) ∩ Cj. Let j be such
an index, and consider the two disjoint chains L1 and Uj. Since P has no k + k and
since |L1| = |Uj| = k, some element u ∈ L1 is comparable to some element v ∈ Uj. We
cannot have u > v in P , because otherwise D would contain the arc (j, 1), contradicting
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the fact that vertex 1 has no incoming arcs. Thus u < v in P . In particular u < z,
where z is the maximal element of the chain X ∩Cj. On the hand, by the definition of
up(X), we have z < y in P for every y ∈ up(X) ∩ Cj. Therefore, x 6 u < z < y holds
for every such y, as desired. �

Define a sequence B1, . . . , Bq of blocks iteratively as follows: Let B1 be the block ob-
tained by taking the union of the min{2k, |Ci|} smallest elements in chain Ci for every
i ∈ {1, . . . , w}. For j > 2, if up(Bj−1) = ∅ then we stop the process and Bj−1 = Bq

becomes the last block of the sequence. Otherwise, let u be a good element of Bj−1 as in
Claim 3.2, that is, u ∈ Bj−1 ∩Ci for some i ∈ {1, . . . , w} such that up(Bj−1) ∩Ci 6= ∅.
Let v be the smallest element of chain up(Bj−1) ∩Ci, and let Bj be the block obtained
by setting Bj := (Bj−1 − {u}) ∪ {v}.

Observe that every element u of P appears in consecutive blocks of the sequence
B1, . . . , Bq; let I(u) be the closed interval [i, j] of the real line where i 6 j are in-
dices such that u is included in precisely the blocks Bi, Bi+1, . . . , Bj of the sequence.
These intervals define an interval order Q on the elements of P , where u < v in Q if and
only if I(u) = [i, j] and I(v) = [i′, j′] with j < i′. Every antichain A of Q corresponds
to a set of pairwise intersecting intervals. By the Helly property of intervals, the latter
intervals share a common point, which implies that there is an index i ∈ {1, . . . , q} such
that A ⊆ Bi. Conversely, every block Bi is an antichain of Q. It follows that the width
of Q is equal to max{|Bi| : 1 6 i 6 w} 6 2kw.

Now, if u < v in Q, then j < i′ where I(u) = [i, j] and I(v) = [i′, j′], and in
particular v ∈ up(Bj) by the definition of the blocks. Since u /∈ Bj+1, it follows that
u is a good vertex of Bj, and hence u < y in P for every y ∈ up(Bj). In partic-
ular, u < v in P . Hence P extends Q, and therefore Q is an interval order as desired. �

Corollary 3.3. The incomparability graph G of a poset P of width w without k + k
has pathwidth at most 2kw − 1.

Proof. Using Theorem 3.1, let Q be an interval order of width at most 2kw such
that P extends Q. Then the incomparability graph H of Q is an interval graph with
ω(H) 6 2kw such that G ⊆ H. Therefore, G has pathwidth at most 2kw − 1. (Note
that the sequence B1, . . . , Bq of blocks defined in the proof of Theorem 3.1 provides a
path decomposition of G of width at most 2kw − 1.) �

The poset consisting of w pairwise incomparable chains each of size k − 1 has width w
and no k + k, and its incomparability graph is the complete w-partite graph with k− 1
vertices in each color class, which has pathwidth (k − 1)(w − 1) (see for instance [11,
Lemma 8.2]). Thus, asymptotically, the bound in Corollary 3.3 is within a factor of 2
of optimal.
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As mentioned in the introduction, Pemmaraju, Raman and Varadarajan [19] proved that
First-Fit partitions every interval order of width w into at most 10w chains, and this
bound can be decreased to 8w [20, 18]. Thus FF(G) 6 8ω(G) for every interval graph G.
While every graph G with pathwidth k is a spanning subgraph of an interval graph H
with ω(H) = k+1, this does not immediately imply that FF(G) 6 8(pw(G)+1). Indeed
the invariant FF(G) is not monotone with respect to subgraph inclusion; for instance,
observe that FF(P4) = 3 > 2 = FF(C4). (And to emphasize the point, FF(Kn,n) = 2
but FF(Kn,n −M) = n, where M denotes a perfect matching of Kn,n.) However, it
turns out that the aforementioned upper bound on FF(G) in terms of the pathwidth of
G holds, as we now show.1

First, recall that a homomorphism from a graph G to a graph H is a function f :
V (G)→ V (H) that maps edges of G to edges of H, that is, f(u)f(v) ∈ E(H) for every
edge uv ∈ E(G). The graph G is said to be homomorphic to H if such a mapping
exists.

Theorem 3.4. Every graph G with pathwidth k is homomorphic to an interval graph
H with ω(H) 6 k + 1 and FF(G) 6 FF(H).

Proof. Consider a First-Fit coloring of G with c := FF(G) colors, and let V1, . . . , Vc

denote the corresponding color classes (in order). Let G′ be an interval graph with
ω(G′) = k + 1 that is a spanning supergraph of G. Let I = {I(v) : v ∈ V (G′)} be an
interval representation of G′, where I(v) denotes the interval corresponding to vertex v.
For each i ∈ {1, . . . , c}, let Wi,1, . . . ,Wi,ni

denote the components of the graph G′[Vi],
and let further Ii,j := ∪{I(v) : v ∈ Wi,j} for each j ∈ {1, . . . , ni}. Observe that Ii,j is
again an interval since G′[Wi,j] is connected. Let H be the interval graph defined by
the latter intervals, and let vi,j denote the vertex of H corresponding to interval Ii,j, for
each i, j such that 1 6 i 6 c and 1 6 j 6 ni.

Let f : V (G)→ V (H) be the function that maps each vertex v of G to vertex vi,j of H
where i, j is the unique pair of indices such that v ∈ Wi,j. Clearly f is a homomorphism
from G to H. Now consider an arbitrary clique C of H. By the Helly property of
intervals, there is a point x on the real line that is contained in all the intervals corre-
sponding to vertices in C. For each interval Ii,j such that vi,j ∈ C, there is at least one
vertex in Wi,j whose corresponding interval contains the point x. Thus choosing one
such vertex for each vertex in C, we obtain a clique C ′ of G′ with |C ′| = |C|. It follows
that ω(H) 6 ω(G′) = k + 1.

Finally consider the coloring of H with c colors obtained by letting for i = 1, . . . , c the
i-th color class be Zi := {vi,j : 1 6 j 6 ni}. (Observe that this is a proper coloring of
H since Ii,j ∩ Ii,j′ = ∅ for j 6= j′.) For each i, j such that 1 6 j < i, each vertex v ∈ Vi

1 It should be noted that the invariant FF(G) on graphs G of bounded pathwidth has been explicitly
considered in [8, 9]. However it appears that the authors implicitly assumed that FF(G) is monotone
with respect to subgraph inclusion when writing that upper bounds on FF(G) when G is an interval
graph with ω(G) 6 k + 1 immediately carry over to graphs G with pw(G) 6 k (see [8, p. 22] and [9, p.
64]). Note that, by Theorem 3.4, the maximum of FF(G) over all graphs G with pathwidth at most k
is indeed always achieved by some interval graph G.
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v1,1 v2,1

v2,2v3,1

v3,2

v3,3

v4,1

v4,2

v4,3

v4,4

v5,1

v5,2

v5,3

v5,4

v5,5

Figure 1. The Hasse diagram of poset P5. The dotted rectangles repre-
sent the chains {vi,j : 1 6 j 6 i} for each i.

is adjacent in G to some vertex w ∈ Vj, since V1, . . . , Vc is a First-Fit coloring of G,
and thus f(v) is adjacent to f(w) in H (where f is the homomorphism defined above).
Since f(v) ∈ Zi and f(w) ∈ Zj, it follows that every vertex in Zi has a neighbor in Zj

in H for every i, j such that 1 6 j < i 6 c, that is, Z1, . . . , Zc is a First-Fit coloring of
H. Hence FF(H) > c = FF(G), and therefore H is an interval graph with the desired
properties. �

Theorem 3.4 and the aforementioned bound of FF(G) 6 8ω(G) for interval graphs G
imply:

Corollary 3.5. FF(G) 6 8(pw(G) + 1) for every graph G.

Since a First-Fit chain partition of a poset P can equivalently be seen as a First-Fit
coloring of the incomparability graph of P , Corollary 3.3 and Corollary 3.5 together
imply the follow result.

Theorem 3.6. First-Fit partitions every poset P of width w without k + k into at most
16kw chains.

The bound in Theorem 3.6 is best possible up to a constant factor. This can be shown
by modifying the following construction due to Kierstead [14]: For q > 2, define Pq as
the poset on the set of elements Vq := {v1,1, v2,1, v2,2, v3,1, v3,2, v3,3, . . ., vq,1, vq,2, . . . , vq,q},
where vi,j < vi′,j′ in Pq if and only if i 6 i′ − 2, or i ∈ {i′ − 1, i′} and j 6 j′ − 1. See
Figure 1 for an illustration.
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v1
1,1

v2
1,1

v3
1,1 v3

2,1

v2
2,1

v1
2,1

v1
2,2

v2
2,2

v3
2,2v3

3,1

v2
3,1

v1
3,1

v1
3,2

v2
3,2

v3
3,2

v3
3,3

v2
3,3

v1
3,3

v1
4,1

v2
4,1

v3
4,1

v3
4,2

v2
4,2

v1
4,2

v1
4,3

v2
4,3

v3
4,3

v3
4,4

v2
4,4

v1
4,4

Figure 2. The Hasse diagram of poset Q5,4. The copies of P4 are ordered
from bottom-right to top-left.

The poset Pq has width 2, because it has two incomparable elements and Vq can be
partitioned into the two chains {vi,j : 1 6 j 6 i 6 q, i odd} and {vi,j : 1 6 j 6
i 6 q, i even}. Consider the ordering of the elements of Pq suggested by their indices,
namely v1,1, v2,1, v2,2, . . ., vq,1, vq,2, . . . , vq,q, which we call the natural ordering. Given
this ordering, observe that First-Fit assigns element vi,j to the (i− j + 1)-th chain. In
particular, First-Fit uses exactly q chains in total (as proved by Kierstead [14]).

For k > 2 and w > 2, take the disjoint union of w − 1 copies of Pk−1, denote by v`i,j
the element vi,j in the `-th copy of Pk−1, and add the following comparisons between
elements from distinct copies: For 1 6 ` < `′ 6 w−1 and i 6= k−1, we have v`i,j < v`

′

i′,j′ .
Let Qk,w denote the resulting poset. See Figure 2 for an illustration.

The poset Qk,w has width exactly w. We claim that Qk,w has no k + k. Arguing
by contradiction, suppose that A,B are two disjoint chains in Qk,w of size k that are
incomparable. First observe that Pk−1 has no k + k, since every element of Pk−1 is
incomparable to at most k − 1 others. Thus we may assume that A has two elements
that belong to distinct copies of Pk−1. Since the set X := {v`k−1,j : 1 6 j 6 k − 1, 1 6
` 6 w − 1} induces a poset of height k − 1, the sets A−X and B −X are not empty.
Moreover, every u ∈ A−X and v ∈ B−X belong to the same copy of Pk−1, as otherwise
they would be comparable; thus A − X and B − X are both subsets of the `-th copy
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of Pk−1 for some ` ∈ {1, . . . , w − 1}. Recall that A has at least one element w that
belongs to another copy of Pk−1, say the `′-th one. Thus w ∈ X. Let u ∈ A −X and
v ∈ B − X. If `′ < `, then u and w are incomparable, contradicting u,w ∈ A. If
`′ > `, then w > v in Qk,w, contradicting the fact that w, v are incomparable. Both
cases leading to a contradiction, we deduce that the two chains A,B do not exist.

Now, given the ordering of the elements of Qk,w obtained by concatenating the natural
orderings of the w − 1 copies of Pk−1 in order, First-Fit assigns element v`i,j to the
((k−1)(`−1) + (i− j + 1))-th chain, as is easily checked. Hence First-Fit uses (k−1)w
chains in total.

References

[1] B. Bosek, S. Felsner, K. Kloch, T. Krawczyk, G. Matecki, and P. Micek. On-line chain partitions
of orders: A survey. Order, to appear.

[2] B. Bosek and T. Krawczyk. The sub-exponential upper bound for on-line chain partitioning.
Foundations of Computer Science, Annual IEEE Symposium on, pages 347–354, 2010.

[3] B. Bosek, T. Krawczyk, and G. Matecki. Forbidden structures for efficient first-fit chain partition-
ing. Extended abstract in proceedings of Eurocomb’11.

[4] B. Bosek, T. Krawczyk, and E. Szczypka. First-fit algorithm for the on-line chain partitioning
problem. SIAM J. Discrete Math., 23(4):1992–1999, 2010.

[5] G. R. Brightwell, H. A. Kierstead, and W. T. Trotter. A note on first fit coloring of interval graphs.
Unpublished manuscript, 2006.
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