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Abstract. We reformulate the zero-norm minimization problem as an equivalent math-

ematical program with equilibrium constraints and establish that its penalty problem,

induced by adding the complementarity constraint to the objective, is exact. Then, by

the special structure of the exact penalty problem, we propose a decomposition method

that can seek a global optimal solution of the zero-norm minimization problem under

the null space condition in [23] by solving a finite number of weighted l1-norm mini-

mization problems. To handle the weighted l1-norm subproblems, we develop a partial

proximal point algorithm where the subproblems may be solved approximately with

the limited memory BFGS (L-BFGS) or the semismooth Newton-CG. Finally, we apply

the exact penalty decomposition method with the weighted l1-norm subproblems solved

by combining the L-BFGS with the semismooth Newton-CG to several types of sparse

optimization problems, and compare its performance with that of the penalty decompo-

sition method [25], the iterative support detection method [38] and the state-of-the-art

code FPC AS [39]. Numerical comparisons indicate that the proposed method is very

efficient in terms of the recoverability and the required computing time.
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1 Introduction

Let IRn be the real vector space of dimension n endowed with the Euclidean inner product

〈·, ·〉 and induced norm ‖ · ‖. We consider the following zero-norm minimization problem

min
x∈IRn

{
‖x‖0 : ‖Ax− b‖ ≤ δ

}
, (1)

where A ∈ IRm×n and b ∈ IRm are given data, δ ≥ 0 is a given constant, and

‖x‖0 :=
n∑

i=1

card(xi) with card(xi) =

{
1 if xi 6= 0,

0 otherwise.

Throughout this paper, we denote by F the feasible set of problem (1) and assume that

it is nonempty. This implies that (1) has a nonempty set of globally optimal solutions.

The problem (1) has very wide applications in sparse reconstruction of signals and

images (see, e.g., [14, 6, 10, 11]), sparse model selection (see, e.g., [36, 15]) and error

correction [8]. For example, when considering the recovery of signals from noisy data, one

may solve (1) with some given δ > 0. However, due to the discontinuity and nonconvexity

of zero-norm, it is difficult to find a globally optimal solution of (1). In addition, each

feasible solution of (1) is locally optimal, but the number of its globally optimal solutions

is finite when δ = 0, which brings in more difficulty to its solving. A common way is to

obtain a favorable locally optimal solution by solving a convex surrogate problem such as

the l1-norm minimization or l1-norm regularized problem. In the past two decades, this

convex relaxation technique became very popular due to the important results obtained

in [13, 14, 36, 12]. Among others, the results of [13, 14] quantify the ability of l1-

norm minimization problem to recover sparse reflectivity functions. For brief historical

accounts on the use of l1-norm minimization in statistics and signal processing, please

see [29, 37]. Motivated by this, many algorithms have been proposed for the l1-norm

minimization or l1-norm regularized problems (see, e.g., [9, 17, 24]).

Observing the key difference between the l1-norm and the l0-norm, Candès et al. [8]

recently proposed a reweighted l1-norm minimization method (the idea of this method

is due to Fazel [16] where she first applied it for the matrix rank minimization). This

method is solving a sequence of convex relaxations of the following nonconvex surrogate

min
x∈IRn

{
n∑

i=1

ln(|xi|+ ε) : ‖Ax− b‖ ≤ δ

}
. (2)

This class of surrogate problems are further studied in [32, 41]. In addition, noting

that the lp-norm ‖x‖pp tends to ‖x‖0 as p → 0, many researchers seek a locally optimal

solution of the problem (1) by solving the nonconvex approximation problem

min
x∈IRn

{
‖x‖pp : ‖Ax− b‖ ≤ δ

}
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or its regularized formulation (see, e.g., [18, 10]). Extensive computational studies in

[8, 18, 10, 32] demonstrate that the reweighted l1-norm minimization method and the

lp-norm nonconvex approximation method can find sparser solutions than the l1-norm

convex relaxation method. We see that all the methods mentioned above are developed

by the surrogates or the approximation of zero-norm minimization problem.

In this paper, we reformulate (1) as an equivalent MPEC (mathematical program

with equilibrium constraints) by the variational characterization of zero-norm, and then

establish that its penalty problem, induced by adding the complementarity constraint to

the objective, is exact, i.e., the set of globally optimal solutions of the penalty problem

coincides with that of (1) when the penalty parameter is over some threshold. Though

the exact penalty problem itself is also difficult to solve, we exploit its special structure

to propose a decomposition method that is actually a reweighted l1-norm minimization

method. This method, consisting of a finite number of weighted l1-norm minimization,

is shown to yield a favorable locally optimal solution, and moreover a globally optimal

solution of (1) under the null space condition in [23]. For the weighted l1-norm minimiza-

tion problems, there are many softwares suitable for solving them such as the alternating

direction method software YALL1 [42], and we here propose a partial proximal point

method where the proximal point subproblems may be solved approximately with the

L-BFGS or the semismooth Newton-CG method (see Section 4).

We test the performance of the exact penalty decomposition method with the sub-

problems solved by combining the L-BFGS and the semismooth Newton-CG for the

problems with several types of sparsity, and compare its performance with that of the

penalty decomposition method (QPDM) [25], the iterative support detection method

(ISDM) [38] and the state-of-the-art code FPC AS [39]. Numerical comparisons show

that the proposed method has a very good robustness, can find the sparsest solution with

desired feasibility for the Sparco collection, has comparable recoverability with ISDM

from fewer observations for most of randomly generated problems which is higher than

that of FPC AS and QPDM, and requires less computing time than ISDM.

Notice that the ISDM proposed in [38] is also a reweighted l1-norm minimization

method in which, the weight vector involved in each weighted l1 minimization problem

is chosen as the support of some index set. Our exact penalty decomposition method

shares this feature with ISDM, but the index sets to determine the weight vectors are

automatically yielded by relaxing the exact penalty problem of the MPEC equivalent

to the zero-norm problem (1), instead of using some heuristic strategy. In particular,

our theoretical analysis for the exact recovery is based on the null space condition in

[23] which is weaker than the truncated null space condition in [38]. Also, the weighted

l1-norm subproblems involved in our method are solved by combining the L-BFGS with

the semismooth Newton-CG method, while such problems in [38] are solved by apply-

ing YALL1 [42] directly. Numerical comparisons show that the hybrid of the L-BFGS

with the semismooth Newton-CG method is effective for handling the weighted l1-norm
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subproblems. The penalty decomposition method proposed by Lu and Zhang [25] aims

to deal with the zero-norm minimization problem (1), but their method is based on a

quadratic penalty for the equivalent augmented formulation of (1), and numerical com-

parisons show that such penalty decomposition method has a very worse recoverability

than FPC AS which is designed for solving the l1-minimization problem.

Unless otherwise stated, in the sequel, we denote by e a column vector of all 1s whose

dimension is known from the context. For any x ∈ IRn, sign(x) denotes the sign vector

of x, x↓ is the vector of components of x being arranged in the nonincreasing order, and

xI denotes the subvector of components whose indices belong to I ⊆ {1, . . . , n}. For

any matrix A ∈ IRm×n, we write Null(A) as the null space of A. Given a point x ∈ IRn

and a constant γ > 0, we denote by N (x, γ) the γ-open neighborhood centered at x.

2 Equivalent MPEC formulation

In this section, we provide the variational characterization of zero-norm and reformulate

(1) as a MPEC problem. For any given x ∈ IRn, it is not hard to verify that

‖x‖0 = min
v∈IRn

{
〈e, e− v〉 : 〈v, |x|〉 = 0, 0 ≤ v ≤ e

}
. (3)

This implies that the zero-norm minimization problem (1) is equivalent to

min
x,v∈IRn

{
〈e, e− v〉 : ‖Ax− b‖ ≤ δ, 〈v, |x|〉 = 0, 0 ≤ v ≤ e

}
, (4)

which is a mathematical programming problem with the complementarity constraint:

〈v, |x|〉 = 0, v ≥ 0, |x| ≥ 0.

Notice that the minimization problem on the right hand side of (3) has a unique optimal

solution v∗ = e− sign(|x|), although it is only a convex programming problem. Such a

variational characterization of zero-norm was given in [1] and [21, Section 2.5], but there

it is not used to develop any algorithms for the zero-norm problems. In the next section,

we will develop an algorithm for (1) based on an exact penalty formulation of (4).

Though (4) is given by expanding the original problem (1), the following proposition

shows that such expansion does not increase the number of locally optimal solutions.

Proposition 2.1 For problems (1) and (4), the following statements hold.

(a) Each locally optimal solution of (4) has the form (x∗, e− sign(|x∗|)).

(b) x∗ is locally optimal to (1) if and only if (x∗, e− sign(|x∗|)) is locally optimal to (4).

4



Proof. (a) Let (x∗, v∗) be an arbitrary locally optimal solution of (4). Then there is

an open neighborhood N ((x∗, v∗), γ) such that 〈e, e − v〉 ≥ 〈e, e − v∗〉 for all (x, v) ∈
S ∩N ((x∗, v∗), γ), where S is the feasible set of (4). Consider (3) associated to x∗, i.e.,

min
v∈IRn

{
〈e, e− v〉 : 〈v, |x∗|〉 = 0, 0 ≤ v ≤ e

}
. (5)

Let v ∈ IRn be an arbitrary feasible solution of problem (5) and satisfy ‖v − v∗‖ ≤ γ.

Then, it is easy to see that (x∗, v) ∈ S ∩ N ((x∗, v∗), γ), and so 〈e, e − v〉 ≥ 〈e, e − v∗〉.
This shows that v∗ is a locally optimal solution of (5). Since (5) is a convex optimization

problem, v∗ is also a globally optimal solution. However, e − sign(|x∗|) is the unique

optimal solution of (5). This implies that v∗ = e− sign(|x∗|).

(b) Assume that x∗ is a locally optimal solution of (1). Then, there exists an open

neighborhood N (x∗, γ) such that ‖x‖0 ≥ ‖x∗‖0 for all x ∈ F ∩N (x∗, γ). Let (x, v) be an

arbitrary feasible point of (4) such that ‖(x, v)− (x∗, e− sign(|x∗|))‖ ≤ γ. Then, since

v is a feasible point of the problem on the right hand side of (3), we have

〈e, e− v〉 ≥ ‖x‖0 ≥ ‖x∗‖0 = 〈e, e− sign(|x∗|)〉.

This shows that (x∗, e− sign(|x∗|)) is a locally optimal solution of (4).

Conversely, assume that (x∗, e− sign(|x∗|)) is a locally optimal solution of (4). Then,

for any sufficiently small γ > 0, it clearly holds that ‖x‖0 ≥ ‖x∗‖0 for all x ∈ N (x∗, γ).

This means that for any x ∈ F ∩N (x∗, γ), we have ‖x‖0 ≥ ‖x∗‖0. Hence, x∗ is a locally

optimal solution of (1). The two sides complete the proof of part (b). ✷

3 Exact penalty decomposition method

In the last section we established the equivalence of (1) and (4). In this section we show

that solving (4), and then solving (1), is equivalent to solving a single penalty problem

min
x,v∈IRn

{
〈e, e− v〉+ ρ〈v, |x|〉 : ‖Ax− b‖ ≤ δ, 0 ≤ v ≤ e

}
(6)

where ρ > 0 is the penalty parameter, and then develop a decomposition method for

(4) based on this penalty problem. It is worthwhile to point out that there are many

papers studying exact penalty for bilevel linear programs or general MPECs (see, e.g.,

[4, 5, 28, 26]), but these references do not imply the exactness of penalty problem (6).

For convenience, we denote by S and S∗ the feasible set and the optimal solution set

of problem (4), respectively; and for any given ρ > 0, denote by Sρ and S∗
ρ the feasible

set and the optimal solution set of problem (6), respectively.

Lemma 3.1 For any given ρ > 0, the problem (6) has a nonempty optimal solution set.
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Proof. Notice that the objective function of problem (6) has a lower bound in Sρ, to

say α∗. Therefore, there must exist a sequence {(xk, vk)} ⊂ Sρ such that for each k,

〈e, e− vk〉+ ρ〈|xk|, vk〉 ≤ α∗ +
1

k
. (7)

Since the sequence {vk} is bounded, if the sequence {xk} is also bounded, then by letting

(x, v) be an arbitrary limit point of {(xk, vk)}, we have (x, v) ∈ Sρ and

〈e, e− v〉+ ρ〈|x|, v〉 ≤ α∗,

which implies that (x, v) is a globally optimal solution of (6). We next consider the case

where the sequence {xk} is unbounded. Define the disjoint index sets I and I by

I :=
{
i ∈ {1, . . . , n} | {xk

i } is unbounded
}

and I := {1, . . . , n}\I.

Since {vk} is bounded, we without loss of generality assume that it converges to v. From

equation (7), it then follows that vI = 0. Note that the sequence {xk} ⊂ IRn satisfies

AIx
k
I +AIx

k
I
= b+∆k with ‖∆k‖ ≤ δ. Since the sequences {xk

I
} and {∆k} are bounded,

we may assume that they converge to xI and ∆, respectively. Then, from the closedness

of the set AIIR
I , there exists an ξ ∈ IRI such that AIξ + AIxI = b + ∆ with ‖∆‖ ≤ δ.

Letting x = (ξ, xI) ∈ IRn, we have (x, v) ∈ Sρ. Moreover, the following inequalities hold:

〈e, e− v〉+ ρ〈|x|, v〉 = 〈e, e− v〉+ ρ
∑

i∈I

|xi|vi = lim
k→∞

[
〈e, e− vk〉+ ρ

∑

i∈I

〈|xk
i |, v

k
i 〉
]

≤ lim
k→∞

[
〈e, e− vk〉+ ρ

∑

i∈I

〈|xk
i |, v

k
i 〉+ ρ

∑

i∈I

〈|xk
i |, v

k
i 〉
]
≤ α∗,

where the first equality is using vI = 0, and the last equality is due to (7). This shows

that (x, v) is a global optimal solution of (6). Thus, we prove that for any given ρ > 0,

the problem (6) has a nonempty set of globally optimal solutions. ✷

To show that the solution of problem (4) is equivalent to that of a single penalty

problem (6), i.e., to prove that there exists ρ > 0 such that the set of global optimal

solutions of (4) coincides with that of (6) with ρ > ρ, we need the following lemma. Since

this lemma can be easily proved by contradiction, we here do not present its proof.

Lemma 3.2 Given M ∈ IRm×n and q ∈ IRm. If r = min
{
‖z‖0 : ‖Mz − q‖ ≤ δ

}
> 0,

then there exists α > 0 such that for all z with ‖Mz − q‖ ≤ δ, we have |z|↓r > α, where

|z|↓r means the rth component of |z|↓ which is the vector of components of |z| ∈ IRn being

arranged in the nonincreasing order |z|↓1 ≥ |z|↓2 ≥ · · · ≥ |z|↓n.

Now we are in a position to establish that (6) is an exact penalty problem of (4).

Theorem 3.1 There exists a constant ρ> 0 such that S∗ coincides with S∗
ρ for all ρ> ρ.
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Proof. Let r = min{‖x‖0 : ‖Ax − b‖ ≤ δ}. We only need to consider the case where

r > 0 (if r = 0, the conclusion clearly holds for all ρ > 0). By Lemma 3.2, there exists

α > 0 such that for all x satisfying ‖Ax − b‖ ≤ δ, it holds that |x|↓r > α. This in turn

means that |x|↓r > α for all (x, v) ∈ S and (x, v) ∈ Sρ with any ρ > 0.

Let (x, v) be an arbitrary point in S∗. We prove that (x, v) ∈ S∗
ρ for all ρ > 1/α,

and then ρ = 1/α is the one that we need. Let ρ be an arbitrary constant with ρ > 1/α.

Since (x, v) ∈ S∗, from Proposition 2.1(a) and the equivalence between (4) and (1), it

follows that v = e− sign(|x|) and ‖x‖0 = r. Note that |x|↓r > α > 1/ρ for any (x, v) ∈ Sρ

since ρ > 1/α. Hence, for any (x, v) ∈ Sρ, the following inequalities hold:

〈e, e− v〉+ ρ〈v, |x|〉 =

n∑

i=1

(1− vi + ρvi|x|i) ≥
∑

|x|i>1/ρ

(1− vi + ρvi|x|i)

≥ r = 〈e, e− v〉+ ρ〈v, |x|〉

where the first inequality is using 1 − vi + ρvi|x|i ≥ 0 for all i ∈ {1, 2, . . . , n}, and the

second inequality is since |x|↓r > 1/ρ and 0 ≤ vi ≤ 1. Since (x, v) is an arbitrary point

in Sρ and (x, v) ∈ Sρ, the last inequality implies that (x, v) ∈ S∗
ρ .

Next we show that if (x, v) ∈ S∗
ρ for ρ > 1/α, then (x, v) ∈ S∗. For convenience, let

I− :=
{
i ∈ {1, . . . , n} | |x|i ≤ ρ−1

}
and I+ :=

{
i ∈ {1, . . . , n} | |x|i > ρ−1

}
.

Note that 1− vi + ρvi|x|i ≥ 0 for all i, and 1− vi + ρvi|x|i ≥ 1 for all i ∈ I+. Also, the

latter together with |x|↓r > α > 1/ρ implies |I+| ≥ r. Then, for any (x, v) ∈ S we have

〈e, e− v〉 = 〈e, e− v〉+ ρ〈v, |x|〉 ≥ 〈e, e− v〉+ ρ〈v, |x|〉

=
n∑

i=1

(1− vi + ρvi|x|i) ≥
∑

i∈I+

(1− vi + ρvi|x|i) ≥ r,

where the first inequality is using S ⊆ Sρ. Let x̃ ∈ IRn be such that ‖x̃‖0 = r and

‖Ax̃ − b‖ ≤ δ. Such x̃ exists by the definition of r. Then (x̃, e − sign(|x̃|)) ∈ S ⊆ Sρ,

and from the last inequality r = 〈e, e− (e− sign(|x̃|))〉 ≥ 〈e, e− v〉+ ρ〈v, |x|〉 ≥ r. Thus,

r = 〈e, e− v〉+ ρ〈v, |x|〉 =
∑

i∈I−

(1− vi + ρvi|x|i) +
∑

i∈I+

(1− vi + ρvi|x|i).

Since 1 − vi + ρvi|xi| ≥ 0 for i ∈ I−, 1 − vi + ρvi|x|i ≥ 1 for i ∈ I+ and |I+| ≥ r, from

the last equation it is not difficult to deduce that

1− vi + ρvi|x|i = 0 for i ∈ I−, 1− vi + ρvi|x|i = 1 for i ∈ I+, and |I+| = r. (8)

Since each 1− vi + ρvi|x|i is nonnegative, the first equality in (8) implies that

vi = 1 and |x|i = 0 for i ∈ I−;
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while the second equality in (8) implies that vi = 0 for i ∈ I+. Combining the last

equation with |I+| = r, we readily obtain ‖x‖0 = r and v = e− sign(|x|). This, together
with ‖Ax− b‖ ≤ δ, shows that (x, v) ∈ S∗. Thus, we complete the proof. ✷

Theorem 3.1 shows that to solve the MPEC problem (4), it suffices to solve (6) with

a suitable large ρ > ρ. Since the threshold ρ is unknown in advance, we need to solve a

finite number of penalty problems with increasing ρ. Although problem (6) for a given

ρ > 0 has a nonconvex objective function, its separable structure leads to an explicit

solution with respect to the variable v if the variable x is fixed. This motivates us to

propose the following decomposition method for (4), and consequently for (1).

Algorithm 3.1 (Exact penalty decomposition method for problem (4))

(S.0) Given a tolerance ǫ > 0 and a ratio σ > 1. Choose an initial penalty parameter

ρ0 > 0 and a starting point v0 = e. Set k := 0.

(S.1) Solve the following weighted l1-norm minimization problem

xk+1 ∈ argmin
x∈IRn

{
〈vk, |x|〉 : ‖Ax− b‖ ≤ δ

}
. (9)

(S.2) If |xk+1
i | > 1/ρk, then set vk+1

i = 0; and otherwise set vk+1
i = 1.

(S.3) If 〈vk+1, |xk+1|〉 ≤ ǫ, then stop; and otherwise go to (S.4).

(S.4) Let ρk+1 := σρk and k := k + 1, and then go to Step (S.1).

Remark 3.1 Note that the vector vk+1 in (S.2) is an optimal solution of the problem

min
0≤v≤e

{
〈e, e− v〉+ ρk〈|x

k+1|, v〉
}
. (10)

So, Algorithm 3.1 is solving the nonconvex penalty problem (6) in an alternating way.

The following lemma shows that the weighted l1-norm subproblem (9) has a solution.

Lemma 3.3 For each fixed k, the subproblem (9) has an optimal solution.

Proof. Note that the feasible set of (9) is F , which is nonempty by the given assumption

in the introduction, and its objective function is bounded below in the feasible set. Let

ν∗ be the infinum of the objective function of (9) on the feasible set. Then there exists

a feasible sequence {xl} such that 〈vk, |xl|〉 → ν∗ as l → ∞. Let I := {i | vki = 1}.
Then, noting that 〈vk, |xl|〉 =

∑
i∈I |x

l
i|, we have that the sequence {xl

I} is bounded.

Without loss of generality, we assume that xl
I → x̃I . Let yl = Axl − b. Noting that

‖yl‖ ≤ δ, we may assume that {yl} converges to ỹ. Since the set AIIR
|I| is closed and

AIx
l
I
= yl − AIx

l
I + b for each l, where I = {1, 2, . . . , n}\I, there exists x̃I ∈ IR|I| such

8



that AI x̃I = ỹ − AI x̃I + b, i.e., AI x̃I + AI x̃I − b = ỹ. Let x̃ = (x̃I ; x̃I). Then, x̃ is a

feasible solution to (9) with 〈vk, x̃〉 = ν∗. So, x̃ is an optimal solution of (9). ✷

For Algorithm 3.1, we can establish the following finite termination result.

Theorem 3.2 Algorithm 3.1 will terminate after at most ⌈ ln(n)−ln(ǫρ0)
lnσ

⌉ iterations.

Proof. By Lemma 3.3, for each k ≥ 0 the subproblem (9) has a solution xk+1. From

Step (S.2) of Algorithm 3.1, we know that vk+1
i = 1 for those i with |xk+1

i | ≤ 1/ρk. Then,

〈vk+1, |xk+1|〉 =
∑

{i: vk+1

i =1} |x
k+1
i | ≤ n

ρk
.

This means that, when ρk ≥ n
ǫ
, Algorithm 3.1 must terminate. Note that ρk ≥ σkρ0.

Therefore, Algorithm 3.1 will terminate when σkρ0 ≥
n
ǫ
, i.e., k ≥ ⌈ ln(n)−ln(ǫρ0)

lnσ
⌉. ✷

We next focus on the theoretical results of Algorithm 3.1 for the case where δ = 0.

To this end, let x∗ be an optimal solution of the zero-norm problem (1) and write

I∗=
{
i | x∗

i 6= 0
}

and I
∗
={1, . . . , n}\I∗.

In addition, we also need the following null space condition for a given vector v ∈ IRn
+:

〈vI∗ , |yI∗|〉 < 〈vI∗ , |yI∗|〉 for any 0 6= y ∈ Null(A). (11)

Theorem 3.3 Assume that δ = 0 and vk satisfies the condition (11) for some nonneg-

ative integer k. Then, xk+1 = x∗. If, in addition, vk+1 also satisfies the condition (11),

then the vector vk+l for all l ≥ 2 satisfy the null space condition (11) and xk+l+1 = x∗

for all l ≥ 1. Consequently, if v0 satisfies the condition (11), then xk = x∗ for all k ≥ 1.

Proof. We first prove the first part. Suppose that xk+1 6= x∗. Let yk+1 = xk+1 − x∗.

Clearly, 0 6= yk+1 ∈ Null(A). Since vk satisfies the condition (11), we have that

〈vk
I
∗ , |yk+1

I
∗ |〉 > 〈vkI∗ , |y

k+1
I∗ |〉. (12)

On the other hand, from step (S.1), it follows that

〈vk, |x∗|〉 ≥ 〈vk, |xk+1|〉 = 〈vk, |x∗ + yk+1|〉 ≥ 〈vk, |x∗|〉 − 〈vkI∗ , |y
k+1
I∗ |〉+ 〈vk

I
∗ , |yk+1

I
∗ |〉.

This implies that 〈vkI∗ , |y
k+1
I∗ |〉 ≥ 〈vk

I
∗ , |yk+1

I
∗ |〉. Thus, we obtain a contradiction to (12).

Consequently, xk+1 = x∗. Since vk+1 also satisfies the null space condition (11), using

the same arguments yields that xk+2 = x∗. We next show by induction that vk+l for all

l ≥ 2 satisfy the condition (11) and xk+l+1 = x∗ for all l ≥ 2. To this end, we define

Iν :=

{
i | x∗

i >
1

ρk+ν

}
and Iν :=

{
i | 0 < x∗

i ≤
1

ρk+ν

}

9



for any given nonnegative integer ν. Clearly, I∗ = Iν ∪Iν . Also, by noting that ρk+ν+1 =

σρk+ν by (S.4) and σ > 1, we have that Iν ⊆ Iν+1 ⊆ I∗. We first show that the result

holds for l = 2. Since xk+1 = x∗, we have vk+1
I0

= 0 and vk+1

I0
= e by step (S.2). Since

xk+2 = x∗, from step (S.2) it follows that vk+2
I1

= 0 and vk+2
I1

= e. Now we obtain that

〈vk+2
I∗ , |yI∗|〉 = 〈vk+2

I1
, |yI1|〉+ 〈vk+2

I1
, |yI1|〉 = 〈vk+2

I1
, |yI1 |〉 ≤ 〈vk+1

I0
, |yI0 |〉

= 〈vk+1
I0

, |yI0|〉+ 〈vk+1
I0

, |yI0|〉 = 〈vk+1
I∗ , |yI∗|〉

< 〈vk+1

I
∗ , |yI∗|〉 = 〈vk+2

I
∗ , |yI∗|〉 (13)

for any 0 6= y ∈ Null(A), where the first equality is due to I∗ = I1 ∪ I1, the second

equality is using vk+2
I1

= 0, the first inequality is due to I1 ⊆ I0, v
k+2
I1

= e and vk+1
I0

= e,

the second inequality is using the assumption that vk+1 satisfies the null space condition

(11), and the last equality is due to vk+1

I
∗ = e and vk+2

I
∗ = e. The inequality (13) shows

that vk+2 satisfies the null space condition (11), and using the same arguments as for

the first part yields that xk+3 = x∗. Now assuming that the result holds for l(≥ 2), we

show that it holds for l+1. Indeed, using the same arguments as above, we obtain that

〈vk+l+1
I∗ , |yI∗|〉 = 〈vk+l+1

Il
, |yIl|〉+ 〈vk+l+1

Il
, |yIl|〉 = 〈vk+l+1

Il
, |yIl |〉 ≤ 〈vk+l

Il−1

, |yIl−1
|〉

= 〈vk+l
Il−1

, |yIl−1
|〉+ 〈vk+l

Il−1

, |yIl−1
|〉 = 〈vk+l

I∗ , |yI∗|〉

< 〈vk+l

I
∗ , |yI∗|〉 = 〈vk+l+1

I
∗ , |yI∗|〉 (14)

for any 0 6= y ∈ Null(A). This shows that vk+l+1 satisfies the null space condition (11),

and using the same arguments as the first part yields that xk+l+2 = x∗. Thus, we show

that vk+l for all l ≥ 2 satisfy the condition (11) and xk+l+1 = x∗ for all l ≥ 2. ✷

Theorem 3.3 shows that, when δ = 0, if there are two successive vectors vk and vk+1

satisfy the null space condition (11), then the iterates after xk are all equal to some

optimal solution of (1). Together with Theorem 3.2, this means that Algorithm 3.1

can find an optimal solution of (1) within a finite number of iterations under (11). To

the best of our knowledge, the condition (11) is first proposed by Khajehnejad et al.

[23], which generalizes the null space condition of [34] to the case of weighted l1-norm

minimization and is weaker than the truncated null space condition [38, Defintion 1].

4 Solution of weighted l1-norm subproblems

This section is devoted to the solution of the subproblems involved in Algorithm 3.1:

min
x∈IRn

{〈v, |x|〉 : ‖Ax− b‖ ≤ δ} (15)

where v ∈ IRn is a given nonnegative vector. For this problem, one may reformulate

it as a linear programming problem (for δ = 0) or a second-order cone programming
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problem (for δ > 0), and then directly apply the interior point method software SeDuMi

[35] or l1-MAGIC [9] for solving it. However, such second-order type methods are time-

consuming, and are not suitable for handling large-scale problems. Motivated by the

recent work [22], we in this section develop a partial proximal point algorithm (PPA)

for the following reformulation of the weighted l1-norm problem (15):

min
u∈IRm,x∈IRn

{
〈v, |x|〉+

β

2
‖u‖2 : Ax+ u = b

}
for some β > 0. (16)

Clearly, (16) is equivalent to (15) if δ > 0; and otherwise is a penalty problem of (15).

Given a starting point (u0, x0) ∈ IRm × IRn, the partial PPA for (16) consists of

solving approximately a sequence of strongly convex minimization problems

(uk+1, xk+1) ≈ arg min
u∈IRm,x∈IRn

{
〈v, |x|〉+

β

2
‖u‖2 +

1

2λk

∥∥x− xk
∥∥2

: Ax+ u = b

}
, (17)

where {λk} is a sequence of parameters satisfying 0 < λk ↑ λ ≤ +∞. For the global

and local convergence of this method, the interested readers may refer to Ha’s work [20],

where he first considered such PPA for finding a solution of generalized equations. Here

we focus on the approximate solution of the subproblems (17) via the dual method.

Let L : IRm × IRn × IRm → IR denote the Lagrangian function of the problem (17)

L(u, x, y) := 〈v, |x|〉+
β

2
‖u‖2 +

1

2λk

‖x− xk‖2 + 〈y, Ax+ u− b〉.

Then the minimization problem (17) is expressed as min(u,x)∈IRm×IRn supy∈IRm L(u, x, y).

Also, by [33, Corollary 37.3.2] and the coercivity of L with respect to u and x,

min
(u,x)∈IRm×IRn

sup
y∈IRm

L(u, x, y) = sup
y∈IRm

min
(u,x)∈IRm×IRn

L(u, x, y). (18)

This means that there is no dual gap between the problem (17) and its dual problem

sup
y∈IRm

min
(u,x)∈IRm×IRn

L(u, x, y). (19)

Hence, we can obtain the approximate optimal solution (uk+1, xk+1) of (17) by solving

(19). To give the expression of the objective function of (19), we need the following

operator Sλ(·, v) : IRn → IRn associated to the vector v and any λ > 0:

Sλ(z, v) := arg min
x∈IRn

{
〈v, |x|〉+

1

2λ
‖x− z‖2

}
.

An elementary computation yields the explicit expression of the operator Sλ(·, v):

Sλ(z, v) = sign(z)⊙max
{
|z| − λv, 0

}
∀z ∈ IRn, (20)
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where “⊙” means the componentwise product of two vectors, and for any z ∈ IRn,

〈v, |Sλ(z, v)|〉 = 〈sign(z)⊙ v, Sλ(z, v)〉 ,

〈Sλ(z, v), Sλ(z, v)〉 = 〈Sλ(z, v), z〉 − λ 〈sign(z)⊙ v, Sλ(z, v)〉 . (21)

From the definition of Sλ(·, v) and equation (21), we immediately obtain that

min
(u,x)∈IRm×IRn

L(u, x, y) = −bT y −
1

2β
‖y‖2 −

1

2λk

∥∥Sλk
(xk − λkA

Ty, v)
∥∥2

+
1

2λk

‖xk‖2.

Consequently, the dual problem (19) is equivalent to the following minimization problem

min
y∈IRm

Φ(y) := bT y +
1

2β
‖y‖2 +

1

2λk

∥∥Sλk
(xk − λkA

Ty, v)
∥∥2
. (22)

The following lemma summarizes the favorable properties of the function Φ.

Lemma 4.1 The function Φ defined by (22) has the following properties:

(a) Φ is a continuously differentiable convex function with gradient given by

∇Φ(y) = b+ β−1y −ASλk
(xk − λkA

Ty, v) ∀y ∈ IRm.

(b) If ŷk is a root to the system ∇Φ(y) = 0, then (ûk+1, x̂k+1) defined by

ûk+1 := −β−1ŷk and x̂k+1 := Sλk
(xk − λkA

T ŷk, v)

is the unique optimal solution of the primal problem (17).

(c) The gradient mapping ∇Φ(·) is Lipschitz continuous and strongly semismooth.

(d) The Clarke’s generalized Jacobian of the mapping ∇Φ at any point y satisfies

∂(∇Φ)(y) ⊆ β−1I + λkA∂xH(z, v)AT := ∂̂2Φ(y). (23)

where z = xk − λkA
Ty and H(x, v) := sign(x)⊙max{|x| − λkv, 0}.

Proof. (a) By the definition of Sλ(·, v) and equation (21), it is not hard to verify that

1

2λ
‖Sλ(z, v)‖

2 =
1

2λ
‖z‖2 − min

x∈IRn

{
〈v, |x|〉+

1

2λ
‖x− z‖2

}
.

Note that the second term on the right hand side is the Moreau-Yosida regularization of

the convex function f(x) := 〈v, |x|〉. From [33] it follows that ‖Sλ(·, v)‖2 is continuously
differentiable, which implies that Φ is continuously differentiable.

(b) Note that ŷk is an optimal solution of (19) and there is no dual gap between the

primal problem (17) and its dual (19) by equation (18). The desired result then follows.

(c) The result is immediate by the expression of Φ and Sλk
(·, v).

(d) The result is implied by the corollary in [7, p.75]. Notice that the inclusion in (23)

can not be replaced by the equality since A is assumed to be of full row rank. ✷
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Remark 4.1 For a given v ∈ R
n
+, from [7, Chaper 2] we know that the Clarke Jacobian

of the mapping H(·, v) defined in Lemma 4.1(d) takes the following form

∂zH(z, v) = ∂φ(z1)× ∂φ(z2)× · · · × ∂φ(zn)

with ∂φ(zi) = {1} if vi = 0 and otherwise ∂φ(zi) =





{1} if |zi| > λvi,

[0, 1] if |zi| = λvi,

{0} if |zi| < λvi.

By Lemma 4.1(a) and (b), we can apply the limited-memory BFGS algorithm [30]

for solving (22), but the direction yielded by this method may not approximate the

Newton direction well if the elements in ∂̂2Φ(yk) are badly scaled since Φ is only once

continuously differentiable. So, we need some Newton steps to bring in the second-order

information. In view of Lemma 4.1(c) and (d), we apply the semismooth Newton method

[31] for finding a root of the nonsmooth system ∇Φ(y) = 0. To make it possible to solve

large-scale problems, we use the conjugate gradient (CG) method to yield approximate

Newton steps. This leads to the following semismooth Newton-CG method.

Algorithm 4.1 (The semismooth Newton-CG method for (19))

(S0) Given ǫ > 0, jmax > 0, τ1, τ2 ∈ (0, 1), ̺ ∈ (0, 1) and µ ∈ (0, 1
2
). Choose a starting

point y0 ∈ IRm and set j := 0.

(S1) If ‖∇Φ(yj)‖ ≤ ǫ or j > jmax, then stop. Otherwise, go to the next step.

(S2) Apply the CG method to seek an approximate solution dj to the linear system

(V j + εjI)d = −∇Φ(yj), (24)

where V j ∈ ∂̂2Φ(yj) with ∂̂2Φ(·) given by (23), and εj := τ1 min{τ2, ‖∇Φ(yj)‖}.

(S3) Seek the smallest nonnegative integer lj such that the following inequality holds:

Φ(yj + ̺ljdj) ≤ Φ(yj) + µ̺lj〈∇Φ(yj), dj〉.

(S4) Set yj+1 := yj + ̺ljdj and j := j + 1, and then go to Step (S.1).

From the definition of ∂̂2Φ(·) in Lemma 4.1(d), V j in Step (S2) of Algorithm 4.1 is

positive definite, and consequently the search direction dj is always a descent direction.

For the global convergence and the rate of local convergence of Algorithm 4.1, the

interested readers may refer to [40]. Once we have an approximate optimal yk of (19),

the approximate optimal solution (uk+1, xk+1) of (17) is obtained from the formulas

uk+1 := −β−1yk and xk+1 := Sλk
(xk − λkA

Tyk, v).

To close this section, we take a look at the selection of V j in Step (S2) for numerical

experiments of the next section. By the definition of ∂̂2Φ(·), V j takes the form of

V j = β−1I + λkAD
kAT , (25)

where Dk ∈ ∂xH(z, v) with z = xk − λkA
Ty. By Remark 4.1, Dk is a diagonal matrix,

and we select the ith diagonal element Dk
i = 1 if |zi| ≥ λvi and otherwise Dk

i = 0.
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5 Numerical experiments

In this section, we test the performance of Algorithm 3.1 with the subproblem (9) solved

by the partial PPA. Notice that using the L-BFGS or the semismooth Newton-CG

alone to solve the subproblem (17) of the partial PPA can not yield the desired result,

since using the L-BFGS alone will not yield good feasibility for those difficult problems

due to the lack of the second-order information of objective function, while using the

semismooth Newton-CG alone will meet difficulty for the weighted l1-norm subproblems

involved in the beginning of Algorithm 3.1. In view of this, we develop an exact penalty

decomposition algorithm with the subproblem (9) solved by the partial PPA, for which

the subproblems (17) are solved by combining the L-BFGS with the semismooth Newton-

CG. The detailed iteration steps of the whole algorithm are described as follows, where

for any given βk, λk> 0 and (xk, vk)∈ IRn×IRn, the function Φk : IRm → IR is defined as

Φk(y) := bT y +
1

2βk

‖y‖2 +
1

2λk

‖Sλk
(xk−1 − λkA

Ty, vk−1)‖2 ∀y ∈ IRm.

Algorithm 5.1 (Practical exact penalty decomposition method for (1))

(S.0) Given ǫ, ǫ1 > 0, ω1, ω2 > 0, γ ∈ (0, 1), σ ≥ 1 and λ > 0. Choose a sufficiently

large β0 and suitable λ0 > 0 and ρ0 > 0. Set (x0, v0, y0) = (0, e, e) and k = 0.

(S.1) While ‖Axk−b‖
max{1, ‖b‖}

> ǫ1 and λk > λ do

• Set λk+1 = γkλ0 and βk+1 = βk.

• With yk as the starting point, find yk+1 ≈ argminy∈IRm Φk+1(y) such that

‖∇Φk+1(y
k+1)‖ ≤ ω1 by using the L-BFGS algorithm.

• Set xk+1 := Sλk+1
(xk − λk+1A

Tyk+1, vk) and vk+1
i :=

{
0 if xk+1

i > ρ−1
k ,

1 otherwise.

• Set ρk+1 = σρk and k := k + 1.

End

(S.2) While ‖Axk−b‖
max{1, ‖b‖}

> ǫ1 or 〈vk, |xk|〉 > ǫ do

• Set λk+1 = λk and βk+1 = βk.

• With yk as the starting point, find yk+1 ≈ argminy∈IRm Φk+1(y) such that

‖∇Φk+1(y
k+1)‖ ≤ ω2 by using Algorithm 4.1.

• Set xk+1 := Sλk+1

(
xk − λk+1A

Tyk+1, vk
)
and vk+1

i :=

{
0 if xk+1

i > ρ−1
k ,

1 otherwise.

• Set ρk+1 = σρk and k := k + 1.

End
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By the choice of starting point (x0, v0, y0), the first step of Algorithm 5.1 is solving

min
u∈IRm,x∈IRn

{
‖x‖1 +

β0

2
‖u‖2 +

1

2λ0

‖x‖2 : Ax+ u = b

}
,

whose solution is the minimum-norm solution of the l1-norm minimization problem

min
x∈IRn

{
‖x‖1 : Ax = b

}
(26)

if β0 and λ0 are chosen to be sufficiently large (see [27]). Taking into account that the l1-

norm minimization problem is a good convex surrogate for the zero-norm minimization

problem (1), we should solve the problem miny∈IRm Φ1(y) as well as we can. If the initial

step can not yield an iterate with good feasibility, then we solve the regularized problems

min
x∈IRn,u∈IRm

{
〈vk, |x|〉+

βk+1

2
‖u‖2 +

1

2λk+1
‖x− xk‖2 : Ax+ u = b

}
. (27)

with a decreasing sequence {λk} and a nondecreasing sequence {βk} via the L-BFGS.

Once a good feasible point is found in Step (S.1), Algorithm 5.1 turns to the second

stage, i.e., to solve (27) with nondecreasing sequences {βk} and {λk} via Algorithm 4.1.

Unless otherwise stated, the parameters involved in Algorithm 5.1 were chosen as:

ǫ =
10−2

max(1, ‖b‖)
, ǫ1 = 10−6, ω1 = 10−5, ω2 = 10−6, λ = 10−2, σ = 2,

β0 = max(5‖b‖ × 106, 1010), ρ0 = min(1, 10/‖b‖), λ0 = γ̂‖b‖, (28)

where we set γ = 0.6 and γ̂ = 5 if A is stored implicitly (i.e., A is given in operator

form); and otherwise we chose γ and γ̂ by the scale of the problem, i.e.,

γ =

{
0.5 if ‖b‖ > 105 or ‖b‖ ≤ 5,

0.8 otherwise,
and γ̂ =

{
10 if ‖b‖ > 105 or ‖b‖ ≤ 5,

1.5 otherwise.

We employed the L-BFGS with 5 limited-memory vector-updates and the nonmonotone

Armijo line search rule [19] to yield an approximate solution to the minimization problem

in Step (S.1) of Algorithm 5.1. Among others, the number of maximum iterations of the

L-BFGS was chosen as 300 for the minimization of Φ1(y), and 50 for the minimization

of Φk(y) with k ≥ 2. The parameters involved in Algorithm 4.1 are set as:

ǫ = 10−6, jmax = 50, τ1 = 0.1, τ2 = 10−4, ̺ = 0.5, µ = 10−4. (29)

In addition, during the testing, if the decrease of gradient is slow in Step (S.1), we

terminate the L-BFGS in advance and then turn to the solution of the next subproblem.

Unless otherwise stated, the parameters in QPDM and ISDM are all set to default

values, the “Hybridls” type line search and “lbfgs” type subspace optimization method

are chosen for FPC AS, and µ = 10−10, ǫ = 10−12 and ǫx = 10−16 are used for FPC AS.
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All tests described in this section were run in MATLAB R2012(a) under a Windows

operating system on an Intel Core(TM) i3-2120 3.30GHz CPU with 3GB memory.

To verify the effectiveness of Algorithm 5.1, we compared it withQPDM [25], ISDM

[38] and FPC AS on four different sets of problems. Since the four solvers return

solutions with tiny but nonzero entries that can be regarded as zero, we use nnzx

to denote the number of nonzeros in x which we estimate as in [2] by the minimum

cardinality of a subset of the components of x that account for 99.9% of ‖x‖1; i.e.,

nnzx := min
{
κ :

∑κ
i=1 |x|

↓
i ≥ 0.999‖x‖1

}
.

Suppose that the exact sparsest solution x∗ is known. We also compare the support of

xf with that of x∗, where xf is the final iterate yielded by the above four solvers. To

this end, we first remove tiny entries of xf by setting all of its entries with a magnitude

smaller than 0.1|x∗|snz to zero, where |x∗|snz is the smallest nonzero component of |x∗|,
and then compute the quantities “sgn”, “miss” and “over”, where

sgn :=
∣∣{i | xf

i x
∗
i < 0}

∣∣, miss :=
∣∣{i | xf

i = 0, x∗
i 6= 0}

∣∣, over :=
∣∣{i | xf

i 6= 0, x∗
i = 0}

∣∣.

5.1 Recoverability for some “pathological” problems

We tested Algorithm 5.1, FPC AS, ISDM and QPDM on a set of small-scale, patho-

logical problems described in Table 1. The first test set includes four problems Caltech

Test 1, . . . , Caltech Test 4 given by Candès and Becker, which, as mentioned in [39],

are pathological because the magnitudes of the nonzero entries of the exact solution x∗

lies in a large range. Such pathological problems are exaggerations of a large number of

realistic problems in which the signals have both large and small entries. The second

test set includes six problems Ameth6Xmeth20-Ameth6Xmeth24 and Ameth6Xmeth6

from [39], which are difficult since the number of nonzero entries in their solutions is

close to the limit where the zero-norm problem (1) is equivalent to the l1-norm problem.

The numerical results of four solvers are reported in Table 2, where nMat means the

total number of matrix-vector products involving A and AT , Time means the computing

time in seconds, Res denotes the l2-norm of recovered residual, i.e., Res = ‖Axf − b‖,
and Relerr means the relative error between the recovered solution xf and the true

solution x∗, i.e., Relerr = ‖xf − x∗‖/‖x∗‖. Since ISDM and QPDM do not record the

number of matrix-vector products involving A and AT , we mark nMat as “–”.

Table 2 shows that among the four solvers, QPDM has the worst performance and

can not recovery any one of these problems, ISDM requires the most computing time

and yields solutions with incorrect miss for the first test set, and Algorithm 5.1 and

FPC AS have comparable performance in terms of recoverability and computing time.
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Table 1: Description of some pathological problems

ID Name n m K (Magnitude, num. of entries on this level)

1 CaltechTest1 512 128 38 (105, 33), (1, 5)

2 CaltechTest2 512 128 37 (105, 32), (1, 5)

3 CaltechTest3 512 128 32 (105, 31), (10−6, 1)

4 CaltechTest4 512 102 26 (104, 13), (1, 12), (10−2, 1)

5 Ameth6Xmeth20 1024 512 150 (1, 150)

6 Ameth6Xmeth21 1024 512 151 (1, 150)

7 Ameth6Xmeth22 1024 512 152 (1, 150)

8 Ameth6Xmeth23 1024 512 153 (1, 150)

9 Ameth6Xmeth24 1024 512 154 (1, 150)

10 Ameth6Xmeth6 1024 512 154 (1, 150)

5.2 Sparse signal recovery from noiseless measurements

In this subsection we compare the performance of Algorithm 5.1 with that of FPC AS,

ISDM andQPDM for compressed sensing reconstruction on randomly generated prob-

lems. Given the dimension n of a signal, the number of observations m and the number

of nonzeros K, we generated a random matrix A ∈ IRm×n and a random x∗ ∈ IRn in the

same way as in [39]. Specifically, we generated a matrix by one of the following types:

Type 1: Gaussian matrix whose elements are generated independently and identically

distributed from the normal distribution N(0, 1);

Type 2: Orthogonalized Gaussian matrix whose rows are orthogonalized using a QR

decomposition;

Type 3: Bernoulli matrix whose elements are ±1 independently with equal probability;

Type 4: Hadamard matrix H , which is a matrix of ±1 whose columns are orthogonal;

Type 5: Discrete cosine transform (DCT) matrix;

and then randomly selected m rows from this matrix to construct the matrix A. Similar

to [39], we also scaled the matrix A constructed from matrices of types 1, 3, and 4 by

the largest eigenvalue of AAT . In order to generate the signal x∗, we first generated the

support by randomly selecting K indexed between 1 and n, and then assigned a value

to x∗
i for each i in the support by one of the following six methods:

Type 1: A normally distributed random variable (Gaussian signal);

Type 2: A uniformly distributed random variable in (−1, 1);

Type 3: One (zero-one signal);

17



Table 2: Numerical results of four solvers for the pathological problems

ID Solver time(s) Relerr Res nMat nnzx (sgn, miss, over)

Algorithm 5.1 0.39 5.16e-12 8.87e-9 1057 33 (0, 0, 0)

1 FPC AS 0.47 4.98e-12 4.37e-8 437 33 (0, 0, 0)

ISDM 0.47 4.52e-6 9.97e-1 – 33 (0, 5, 0)

QPDM 0.15 2.07e-0 1.53e-9 – 125 (0, 28, 118)

Algorithm 5.1 0.11 8.25e-14 8.44e-9 1060 32 (0, 0, 0)

2 FPC AS 0.12 1.86e-13 5.58e-8 357 32 (0, 0, 0)

ISDM 0.37 4.27e-6 9.34e-1 – 32 (0, 5, 0)

QPDM 0.01 2.18e-0 1.17e-9 – 123 (0, 28, 119)

Algorithm 5.1 0.16 4.56e-9 2.09e-14 1199 31 (0, 0, 0)

3 FPC AS 0.06 1.15e-9 1.61e-9 247 31 (0, 0, 0)

ISDM 0.42 9.78e-7 4.67e-7 – 31 (0, 1, 0)

QPDM 0.03 9.78e-7 4.67e-7 – 31 (0, 1, 0)

Algorithm 5.1 0.16 3.10e-7 4.05e-3 985 13 (0, 1, 0)

4 FPC AS 0.17 4.52e-13 7.51e-9 572 13 (0, 0, 0)

ISDM 0.34 9.96e-5 1.38e-0 – 13 (0, 12, 1)

QPDM 0.02 2.10e-0 6.00e-11 – 13 (0, 21, 97)

Algorithm 5.1 0.47 4.93e-14 5.69e-13 1098 150 (0, 0, 0)

5 FPC AS 0.25 6.80e-10 4.01e-9 412 150 (0, 0, 0)

ISDM 3.17 6.67e-1 3.72e-1 – 464 (0, 15, 185)

QPDM 1.58 8.65e-1 4.38e-1 – 492 (0, 28, 287)

Algorithm 5.1 0.36 4.91e-14 5.68e-13 730 151 (0, 0, 0)

6 FPC AS 0.29 6.96e-10 4.11e-9 408 151 (0, 0, 0)

ISDM 3.38 4.92e-14 5.80e-14 – 151 (0, 0, 0)

QPDM 0.92 6.58e-1 4.92e-1 – 480 (0, 16, 211)

Algorithm 5.1 0.41 4.91e-14 5.69e-13 910 152 (0, 0, 0)

7 FPC AS 0.36 8.10e-10 4.81e-9 461 152 (0, 0, 0)

ISDM 3.29 5.02e-14 5.80e-13 – 152 (0, 0, 0)

QPDM 1.42 6.89e-1 5.00e-1 – 481 (0, 21, 222)

Algorithm 5.1 0.34 4.95e-14 5.68e-13 809 153 (0, 0, 0)

8 FPC AS 0.34 9.19e-10 5.44e-9 578 153 (0, 0, 0)

ISDM 2.96 5.51e-14 5.88e-13 – 153 (0, 0, 0)

QPDM 1.36 2.06e-0 2.50e-1 – 494 (0, 37, 361)

Algorithm 5.1 0.37 4.94e-14 5.67e-13 826 154 (0, 0, 0)

9 FPC AS 0.41 9.41e-10 5.57e-9 572 154 (0, 0, 0)

ISDM 3.81 4.70e-14 5.79e-13 – 154 (0, 0, 0)

QPDM 1.47 2.71e-0 2.31e-1 – 496 (0, 42, 374)

Algorithm 5.1 0.61 4.94e-14 5.67e-8 1419 154 (0, 0, 0)

10 FPC AS 0.31 2.59e-13 1.57e-7 577 154 (0, 0, 0)

ISDM 3.28 4.70e-14 5.79e-8 – 154 (0, 0, 0)

QPDM 0.22 3.01e-0 2.22e+4 – 499 (0, 81, 420)
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Type 4: The sign of a normally distributed random variable;

Type 5: A signal x with power-law decaying entries (known as compressible sparse

signals) whose components satisfy |xi| ≤ cxi
−p, where cx = 105 and p = 1.5;

Type 6: A signal x with exponential decaying entries whose components satisfy

|xi| ≤ cxe
−pi with cx = 1 and p = 0.005.

Finally, the observation b was computed as b = Ax∗. The matrices of types 1, 2, 3 and 4

were stored explicitly, and the matrices of type 5 were stored implicitly. Unless otherwise

stated, in the sequel, we call a signal recovered successfully by a solver if the relative

error between the solution xf generated and the original signal x∗ is less than 5× 10−7.

We first took the matrix of type 1 for example to test the influence of the number of

measurements m on the recoverability of four solvers for different types of signals. For

each type of signal, we considered the dimension n = 600 and the number of nonzeros

K = 40 and took the number of measurements m ∈ {80, 90, 100, · · · , 220}. For each m,

we generated 50 problems randomly, and tested the frequency of successful recovery for

each solver. The curves of Figure 1 depict how the recoverability of four solvers vary

with the number of measurements for different types of signals.

Figure 1 shows that among the four solvers, QPDM has the worst recoverability for

all six different types of signals, ISDM has a little better recoverability than Algorithm

5.1 for the signals of types 1, 2 and 6, which are much better than that of FPC AS,

and Algorithm 5.1, FPC AS and ISDM have comparable recoverability for the signals

of types 3 and 4. For the signals of type 5, Algorithm 5.1 has much better recoverability

than ISDM and FPC AS. After further testing, we found that for other types of A, the

four solvers display the similar performance as in Figure 1 for the six kinds of signals (see

Figure 2 for type 2), and ISDM requires the most computing time among the solvers.

Then we took the matrices of type 5 for example to show how the performance of

Algorithm 5.1, FPC AS and ISDM scales with the size of the problem. Since Figure

1-2 illustrates that the three solvers have the similar performance for the signals of types

1, 2 and 6, and the similar performance for the signals of type 3 and 4, we compared their

performance only for the signals of types 1, 3 and 5. For each type of x∗, we generated

50 problems randomly for each n ∈ {27, 28, . . . , 216} and tested the frequency and the

average time of successful recovery for the three solvers, where m = round(n/6) for the

signals of type 1, m = round(n/3) for the signals of type 3, and m = round(n/4) for

the signals of type 5, and the number of nonzerosK was set to round(0.3m). The curves

of Figure 3 depict how the recoverability and the average time of successful recovery vary

with the size of the problem. When there is no signal recovered successfully, we replace

the average time of successful recovery by the average computing time of 50 problems.
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Figure 1: Frequency of successful recovery for four solvers (Atype= 1)
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Figure 2: Frequency of successful recovery for four solvers (Atype= 2)
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Figure 3: Frequency and time of successful recovery for three solvers (Atype= 5)
22



Figure 3 shows that for the signals of types 1 and 5, Algorithm 5.1 has much higher

recoverability than FPC AS and ISDM and requires the less recovery time; for the

signals of type 3, the recoverability and the recovery time of three solvers are comparable.

From Figure 1-3, we conclude that for all types of matrices considered, Algorithm 5.1

has comparable even better recoverability than ISDM for the six types of signals above,

and requires less computing time than ISDM; Algorithm 5.1 has better recoverability

than FPC AS and needs comparable even less computing time than FPC AS; and

QPDM has the worst recoverability for all types of signals. In view of this, we did not

compare Algorithm 5.1 with QPDM in the subsequent numerical experiments.

5.3 Sparse signal recovery from noisy measurements

Since problems in practice are usually corrupted by noise, in this subsection we test

the recoverability of Algorithm 5.1 on the same matrices and signals as in Subsection

5.2 but with Gaussian noise, and compare its performance with that of FPC AS and

ISDM. Specifically, we let b = Ax∗ + θξ/‖ξ‖, where ξ is a vector whose components

are independently and identically distributed as N(0, 1), and θ > 0 is a given constant

to denote the noise level. During the testing, we always set θ to 0.01, and chose the

parameters of Algorithm 5.1 as in (28) and (29) except that ǫ = 1, ǫ1 =
0.01θ

max(1,‖b‖)
,

γ =

{
0.5 if ‖b‖ ≥ 102,

0.8 otherwise,
γ̂ =

{
1 if ‖b‖ ≥ 102,

10 otherwise.
and jmax = 5.

We first took the matrix of type 3 for example to test the influence of the number

of measurements m on the recovery errors of three solvers for different types of signals.

For each type of signals, we considered n = 600 and K = 40 and took the number

of measurements m ∈ {120, 130, · · · , 240}. For each m, we generated 50 problems

randomly and tested the recovery error of each solver. The curves in Figure 4 depict

how the relative recovery error of three solvers vary with the number of measurements

for different types of signals. From this figure, we see that for the signals of types 1,

2 and 6, Algorithm 5.1 and ISDM require less measurements to yield the desirable

recovery error than FPC AS does; for the signals of types 3 and 4, the three solvers are

comparable in terms of recovery errors; and for the signals of type 5, ISDM yields a little

better recovery error than Algorithm 5.1 and FPC AS. After checking, we found that

for the signals of type 5, the solutions yielded by ISDM have a large average residual; for

example, when m = 240, the average residual attains 0.3, whereas the average residual

yielded by Algorithm 5.1 and FPC AS are less than 0.02. In other words, the solutions

yielded by ISDM deviate much from the set {x ∈ IRn | ‖Ax− b‖ ≤ δ}.

Finally, we took the matrix of type 4 for example to compare the recovery errors

and the computing time of three solvers for the signals of a little higher dimension.

Since Figure 4 shows that the three solvers have the similar performance for the signals
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Figure 4: Relative recovery error of three solvers (Atype= 3)
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Figure 5: Relative recovery error and average computing time of three solvers (Atype= 4)
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of types 1, 2 and 6, and the similar performance for the signals of type 3 and 4, we

compared the performance of three solvers only for the signals of types 1, 3 and 5. For

each type of signals, we considered the dimension n = 211 and the number of nonzeros

K = 150 and took the number of measurements m ∈ {500, 550, · · · , 1100}. For each m,

we generated 50 problems randomly and tested the recovery error of each solver. The

curves of Figure 5 depict how the recovery error and the computing time of three solvers

vary with the number of measurements for different types of signals.

Figure 5 shows that for the signals of a little larger dimension, Algorithm 5.1 yields

comparable recovery errors with ISDM and FPC AS and requires less computing time

than ISDM and FPC AS. Together with Figure 4, we conclude that for the noisy signal

recovery, Algorithm 5.1 is superior to ISDM and FPC AS in terms of computing time,

and comparable with ISDM and better than FPC AS in terms of the recovery error.

5.4 Sparco collection

In this subsection we compare the performance of Algorithm 5.1 with that of FPC AS

and ISDM on 24 problems from the Sparco collection [3], for which the matrix A is

stored implicitly. Table 3 reports their numerical results where, each column has the

same meaning as in Table 2. When the true x∗ is unknown, we mark Relerr as “–”.

From Table 3, we see that Algorithm 5.1 can solve those large-scale problems such as

“srcsep1”, “srcsep2”, “srcsep3”, “angiogram” and “phantom2” with the desired feasibil-

ity, where “srcsep3” has the dimension n = 196608, and requires comparable computing

time with FPC AS, which is less than that required by ISDM for almost all the test

problems. The solutions yielded by Algorithm 5.1 have the smallest zero-norm for almost

all test problems, and have better feasibility than those given by ISDM. In particular,

for those problems on which FPC AS and ISDM fail (for example, “heavisgn”, “blkn-

heavi” and “yinyang”), Algorithm 5.1 still yields the desirable results. Also, we find that

for some problems (for example, “angiogram” and “phantom2”), the solutions yielded

by FPC AS have good feasibility, but their zero-norms are much larger than those of

the solutions yielded by Algorithm 5.1 and ISDM.

From the numerical comparisons in Subsection 5.1-5.4, we conclude that Algorithm

5.1 is comparable even superior to ISDM in terms of recoverability, and the superiority

of Algorithm 5.1 is more remarkable for those difficult problems from Sparco collection.

The recoverability of Algorithm 5.1 and ISDM is higher than that of FPC AS. In

particular, Algorithm 5.1 requires less computing time than ISDM. The recoverability

and recovery error of QPDM is much worse than that of the other three solvers.
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Table 3: Numerical comparisons of three solvers on Sparco collection

No. Problem Solver time(s) Relerr Res nMat nnzx

Algorithm 5.1 0.45 2.23e-12 2.23e-10 618 4

1 Heavisine FPC AS 5.82 6.86e-1 1.54e+0 6891 1557

ISDM 5.55 6.47e-1 2.17e-0 – 10

Algorithm 5.1 0.14 2.53e-12 2.00e-10 539 71

2 blocksig FPC AS 0.03 1.07e-11 8.43e-10 9 71

ISDM 0.03 7.94e-15 5.91e-13 – 71

Algorithm 5.1 0.66 9.80e-13 9.95e-11 1546 115

3 cosspike FPC AS 0.13 1.10e-11 1.10e-9 221 115

ISDM 5.99 4.25e-7 4.32e-5 – 115

Algorithm 5.1 0.89 1.05e-10 1.09e-8 1748 121

4 zsinspike FPC AS 4.74 4.32e-11 4.82e-9 6669 121

ISDM 5.13 3.68e-11 4.18e-9 – 121

Algorithm 5.1 1.31 1.06e-8 6.59e-7 1730 59

5 gcosspike FPC AS 2.07 1.48e-11 8.42e-10 1123 59

ISDM 8.81 4.34e-4 1.30e-2 – 61

Algorithm 5.1 168.0 5.63e-9 2.06e-5 3851 166

6 p3poly FPC AS 23.4 5.85e-12 5.44e-11 1691 166

ISDM 277.0 4.63e-3 9.05e-0 – 211

Algorithm 5.1 0.34 1.97e-11 4.33e-11 266 20

7 sgnspike FPC AS 0.17 4.50e-10 9.36e-10 63 20

ISDM 0.81 1.95e-14 3.59e-14 – 20

Algorithm 5.1 1.37 5.04e-12 1.58e-11 609 20

8 zsgnspike FPC AS 33.3 3.57e-9 1.60e-8 6747 20

ISDM 3.15 1.90e-14 5.02e-14 – 20

Algorithm 5.1 0.19 3.03e-8 8.92e-7 2137 12

9 blkheavi FPC AS 0.14 2.45e-11 3.91e-10 789 12

ISDM 5.69 7.30e+2 1.02e+4 – 102

Algorithm 5.1 0.45 3.29e-7 2.00e-6 2059 12

10 blknheavi FPC AS 1.72 2.57e-2 1.40e-1 6797 344

ISDM 2.17 6.05e-1 1.54e+0 – 25

Algorithm 5.1 0.31 1.64e-9 1.46e-7 1671 32

11 gausspike FPC AS 0.14 3.16e-12 4.38e-11 181 32

ISDM 0.99 2.89e-14 1.67e-12 – 32

Algorithm 5.1 186.0 – 6.81e-6 3431 21520

12 srcsep1 FPC AS 238.0 – 4.08e-5 6885 42676

ISDM 388.0 – 3.81e-3 – 21644

Algorithm 5.1 380.0 – 1.92e-6 3628 21733

13 srcsep2 FPC AS 351.0 – 3.09e-4 6885 64478

ISDM 601.0 – 2.01e-3 – 23258
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Algorithm 5.1 409.0 – 1.83e-4 3934 110406

14 srcsep3 FPC AS 589.0 – 1.25e-7 7131 113438

ISDM 316.0 – 3.78e-3 – 110599

Algorithm 5.1 3.53 – 3.31e-6 2399 606

15 phantom1 FPC AS 19.4 – 1.19e-5 7203 3989

ISDM 9.08 – 2.22e-10 – 811

Algorithm 5.1 1.59 – 6.96e-7 695 574

16 angiogram FPC AS 4.24 – 3.29e-9 485 9881

ISDM 3.34 – 2.17e-13 – 574

Algorithm 5.1 57.8 – 2.97e-7 2914 20962

17 phantom2 FPC AS 44.4 – 1.04e-8 861 64599

ISDM 149.0 – 5.93e-7 – 29313

Algorithm 5.1 53.0 – 6.41e+1 5102 1831

18 smooth soccer FPC AS 97.8 – 5.18e+0 6875 3338

ISDM 456.0 – 2.64e+3 – 2

Algorithm 5.1 35.8 – 1.45e-6 4427 701

19 soccer FPC AS 25.7 – 4.61e-10 1769 701

ISDM 247.0 – 1.00e+7 – 6

Algorithm 5.1 8.70 – 5.65e-7 2710 771

20 yinyang FPC AS 35.4 – 7.99e-3 6563 3281

ISDM 52.7 – 6.34e-4 – 886

Algorithm 5.1 167.0 – 4.43e-6 3992 62757

21 blurrycam FPC AS 76.5 – 8.63e-7 2313 62757

ISDM 525.0 – 2.51e-1 – 54829

Algorithm 5.1 27.6 – 1.36e-6 3225 15592

22 blurspike FPC AS 11.7 – 4.86e-7 1863 15592

ISDM 67.0 – 2.62e-3 – 15276

Algorithm 5.1 0.03 6.06e-10 3.02e-10 50 3

23 jitter FPC AS 0.02 7.99e-10 3.84e-10 35 3

ISDM 0.02 2.10e-14 9.69e-15 – 3

Algorithm 5.1 0.36 3.48e-9 1.27e-7 1851 12

24 spiketrn FPC AS 1.45 3.81e-11 1.94e-9 4535 12

ISDM 4.82 3.68e-0 1.40e+1 – 34
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6 Conclusions

In this work we reformulated the zero-norm problem (1) as an equivalent MPEC, then

established its exact penalty formulation (4). To the best of our knowledge, this novel

result can not be obtained from the existing exact penalty results for MPECs. Moti-

vated by the special structure of exact penalty problem, we proposed a decomposition

method for dealing with the MPEC problem, and consequently the zero-norm problem.

This method consists of finding the solution of a finite number of weighted l1-norm min-

imization problems, for which we propose an effective partial PPA algorithm for dealing

with them. In particular, we show that this method can yield an optimal solution of

the zero-norm problem under the null space condition used in [23]. Numerical compar-

isons show that the exact penalty decomposition method is significantly better than the

quadratic penalty decomposition method [25], is comparable with ISDM in terms of

recoverability [38] but requires less computing time, and has better recoverability than

FPC AS [39] and requires comparable computing time.

There are several research topics worthwhile to pursue; for example, one may consider

to extend the results of this paper to rank minimization problems, design other effective

convex relaxation methods for (1) based on its equivalent MPEC problem, and make

numerical comparisons for the exact penalty decomposition method with the weighted

l1-norm subproblems solved by different effective algorithms.
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