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Abstract

In this note we study the convergence of monotone P1 finite element methods on unstructured meshes for fully non-

linear Hamilton-Jacobi-Bellman equations arising from stochastic optimal control problems with possibly degenerate,

isotropic diffusions. Using elliptic projection operators we treat discretisations which violate the consistency conditions

of the framework by Barles and Souganidis. We obtain strong uniform convergence of the numerical solutions and, under

non-degeneracy assumptions, strong L2 convergence of the gradients.

I Introduction

Hamilton-Jacobi-Bellman (HJB) equations, which are of the form

−∂t v + sup
α

(Lαv −dα) = 0, (1)

where the Lα are linear first- or second order operators and dα ∈ L2, characterise the value function of optimal control

problems. Indeed, one possibility to introduce the notion of solution of (1) is via the underlying optimal control structure.

An alternative approach is to use the monotonicity properties of the operator which leads to the concept of viscosity

solutions. While these perceptions are essentially equivalent [17, p.72] both views have been instructive for the design

and analysis of numerical methods.

The former approach, based on the discretisation of the optimal control problem before employing the Dynamic Pro-

gramming Principle, has been proposed in the setting of finite elements in [26, 7, 8], see also the review article [22] and

the references therein. Regarding finite difference methods we refer to the book [23]. The latter approach, which is also

adopted in this note, was firmly established with the contribution [3] by Barles and Souganidis in 1991, providing an ab-

stract framework for the convergence to viscosity solutions. Starting with [20, 21] techniques were developed to quantify

the rate of convergence; more recent works are [1, 13]. A third direction was opened by the method of vanishing moments

which neither enforces discrete maximum principles nor makes use of the underlying optimal control structure but relies

on a higher order regularisation [16]. For a more comprehensive review of the state-of-the-art in the numerical solution

of fully non-linear second order equations we refer to [15].

In the traditional finite element analysis the multiplicative testing with hat functions is viewed as the discrete analogue

of the multiplicative testing procedure to define weak solutions of the (variational) differential equation. While elements

of this viewpoint are implicitly used in Section VII on gradient convergence, we would like to stress a second interpre-

tation: multiplication with hat functions as regularisation of the residual. Consider for a moment the linear problem

−a(x)∆u(x) = f (x) with smooth functions a and u as well as a hat function φ at the node yℓ. Let P be the orthogonal pro-

jection onto the approximation space with respect to the scalar product 〈v, w〉 =
∫

∇v · ∇w dx (given suitable boundary
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conditions). If y is near yℓ then on a fine mesh

−a(y)∆u(y) =−

∫

a(y)∆u(y) φ̂(x)dx ≈−a(yℓ)

∫

∆u(x) φ̂(x)dx = a(yℓ)

∫

∇u(x) ·∇φ̂(x)dx = a(yℓ)

∫

∇Pu(x) ·∇φ̂(x)dx.

since φ̂ :=φ/‖φ‖L1(Ω) approximates a Dirac Delta as the element size is decreased. In contrast, on general meshes,

−a(y)∆u(y) 6≈ a(yℓ)

∫

∇Iu(x) ·∇φ̂(x)dx, (I nodal interpolant)

even in the limit as the mesh is refined (see Example 1 below). This indicates that the orthogonality properties of the pro-

jection of the exact solution into the approximation space play an important role for the understanding of the (pointwise)

consistency of the finite element scheme. Furthermore, this interpretation may serve as a starting point in selecting a

discretisation of the HJB operator.

Our analysis combines the following key elements in a single finite element framework:

Treatment of nodally inconsistent discretisations and uniform convergence: The consistency condition (see [3, eqn.(2.4)]

or [17, p.332]) of Barles and Souganidis is based on a limit involving pointwise values of smooth test functions. This con-

dition is not satisfied by finite element methods, even for linear equations. Based on an alternative consistency condition

we show the uniform convergence of finite element solutions to the viscosity solution.

Gradient convergence: We demonstrate how the coercivity of the linear operators under the supremum is recovered by

the finite element method in order to control the gradient of the numerical solutions. In a uniformly elliptic setting, this

leads to strong convergence in L2([0,T ], H 1(Ω)).

Operators of non-negative characteristic form: The presented analysis includes the treatment of partially and fully deter-

ministic optimal control problems, corresponding to degenerate elliptic operators under the supremum of the Hamilto-

nian.

Unstructured meshes: In the spirit of finite element methods the computational domain may be triangulated with an

unstructured mesh, allowing to capture complex domains more easily than in a finite difference setting. Typically, weaker

conditions on the mesh than quasi-uniformity can be made.

Regularisation with second order operators: We highlight that the regularisation with second order elliptic operators is

sufficient to achieve convergence to the viscosity solution. Indeed, in the example of the method of artificial diffusion, we

illustrate how the regularisation in the second order fully non-linear case is of the same kind and order as for first order

linear operators.

Unconditional time step: Our analysis permits explicit, semi-implicit and fully implicit discretisations in time. Fully im-

plicit discretisations in time lead to unconditionally stable schemes.

The structure of the article is as follows: In Section II we introduce a framework of finite element methods. In Section

III we study the well-posedness of the discrete systems of equations and describe how these systems are solvable by a

known globally convergent, locally superlinearly convergent algorithm. Section IV establishes consistency properties

of elliptic projection operators. This enables us to demonstrate in Section V that the upper and lower envelopes of the

numerical solutions are sub- and supersolutions. Uniform convergence to the viscosity solution is derived in Section VI

and is then built upon to analyse the convergence of the gradient in Section VII. We provide a concrete specimen of a

scheme belonging to our framework by describing the method of artificial diffusion in Section VIII.

II Problem statement and definition of the numerical method

Let Ω be a bounded Lipschitz domain in R
d , d ≥ 2. Let A be a compact metric space and

A →C (Ω)×C (Ω,Rd )×C (Ω)×C (Ω), α→ (aα,bα,cα,dα)

be continuous, such that the families of functions {aα}α∈A , {bα}α∈A , {cα}α∈A and {dα}α∈A are equi-continuous. Consider

the bounded linear operators of non-negative characteristic form [25]

Lα : H 1
0 (Ω) → H−1(Ω), w 7→−aα

∆w +bα
·∇w +cα w

2



where α belongs to A. Furthermore, suppose that pointwise dα ≥ 0. Then

sup
α∈A

‖(aα,bα,cα,dα)‖C (Ω)×C (Ω,Rd )×C (Ω)×C (Ω) <∞, sup
α∈A

‖Lα
‖C 2(Ω)→C (Ω) <∞. (2)

We assume that the final-time boundary data vT ∈C (Ω) is non-negative: vt ≥ 0 on Ω. For smooth w let

H w := sup
α

(Lαw −dα),

where the supremum is applied pointwise. The HJB equation considered is

−∂t v +H v = 0 in (0,T )×Ω, (3a)

v = 0 on (0,T )×∂Ω, (3b)

v = vT on {T }×Ω. (3c)

Definition 1 ([2, 17]). An upper semi-continuous (respectively lower semi-continuous) function v : [0,T ]×Ω→ R is a vis-

cosity subsolution (respectively supersolution) of

−∂t v +H v = 0 (4)

on (0,T )×Ω if for any w ∈C∞(R×Rd ) such that v−w has a strict local maximum (respectively minimum) at (t , x) ∈ (0,T )×Ω

with v(t , x) = w(t , x), gives −∂t w(t , x)+H w(t , x) ≤ 0, (respectively greater than or equal to 0). If v ∈C (R×R
d ) of equation

(4) is a viscosity subsolution and supersolution, then v is called a viscosity solution.

Let Vi be a sequence of piecewise linear shape-regular finite element spaces with nodes yℓ
i

and associated hat functions

φℓ
i

. Here ℓ is the index ranging over the nodes of the finite element mesh. Let V 0
i

be the subspace of functions which

satisfy homogeneous Dirichlet conditions. It is convenient to assume that yℓ
i
∈Ω for ℓ≤ N := dimV 0

i
; i.e. the index ℓ first

ranges over internal and then over external nodes. Set φ̂ℓ
i

:= φℓ
i

/‖φℓ
i
‖L1(Ω). The mesh size, i.e. the largest diameter of an

element, is denoted (∆x)i . It is assumed that (∆x)i → 0 as i →∞.

Let hi be the (uniform) time step used in conjunction with Vi , with T
hi

∈N, and let sk
i

be the kth time step at the refinement

level i . The set of time steps is

Si :=
{

sk
i : k = 0, . . . , T

hi

}

.

Let the ℓth entry of di w(sk
i

, ·) be

(di w(sk
i , ·))ℓ =

w(sk+1
i

, yℓ
i

)−w(sk
i

, yℓ
i

)

hi
.

For each α and i find an approximate splitting Lα ≈ Eα
i
+ Iα

i
into linear operators

Eα
i : H 1

0 (Ω) → H−1(Ω), w 7→ −āα
i ∆w + b̄α

i ·∇w + c̄αi w,

Iαi : H 1
0 (Ω) → H−1(Ω), w 7→ − ¯̄aα

i ∆w +
¯̄bα

i ·∇w + ¯̄cαi w,

with continuous

A →C (Ω)×C (Ω,Rd )×C (Ω), α→ (āα
i

, b̄α
i

, c̄α
i

),

A →C (Ω)×C (Ω,Rd )×C (Ω), α→ ( ¯̄aα
i

, ¯̄bα
i

, ¯̄cα
i

)
(5)

such that c̄α
i

and ¯̄cα
i

are non-negative and for some γ ∈R and all α∈ A,

γ≥ ‖c̄αi ‖L∞ +‖ ¯̄cαi ‖L∞ . (6)

Also find for each i a non-negative dα
i

which approximates dα: dα
i
≈ dα. These consistency conditions Lα ≈ Eα

i
+ Iα

i
and

dα ≈ dα
i

are made precise as follows:

Assumption 1. For all sequences of nodes (yℓ
i

)i∈N, where in general ℓ= ℓ(i ) depends on i :

lim
i→∞

sup
α∈A

∥

∥aα
−

(

āα
i (yℓ

i )+ ¯̄aα
i (yℓ

i )
)∥

∥

L∞(supp φ̂ℓ
i

) +
∥

∥bα
−

(

b̄α
i +

¯̄bα
i

)∥

∥

L∞(Ω,Rd )
+

∥

∥cα−
(

c̄αi + ¯̄cαi
)∥

∥

L∞(Ω)
+

∥

∥dα
−dα

i

∥

∥

L∞(Ω)
= 0.
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Define, for w ∈ H 1(Ω), ℓ ∈ {1, . . . , N = dimV 0
i

},

(Eα
i w)ℓ := āα

i (yℓ
i )〈∇w,∇φ̂ℓ

i 〉+〈b̄α
i ·∇w + c̄αi w,φ̂ℓ

i 〉, (7a)

(Iαi w)ℓ := ¯̄aα
i (yℓ

i )〈∇w,∇φ̂ℓ
i 〉+〈

¯̄bα
i ·∇w + ¯̄cαi w,φ̂ℓ

i 〉, (7b)

(Cα
i )ℓ := 〈dα

i ,φ̂ℓ
i 〉. (7c)

On the restriction to Vi we identify the Eα
i

w and Iα
i

w with their matrix representations with respect to the nodal basis
{

φℓ
i

}

ℓ
. Similarly the nodal evaluation operator corresponds then to the identity matrix Id.

Definition 2. An operator F : V →R
N is said to satisfy the Local Monotonicity Property (LMP) property if for all v ∈Vi such

that v has a non-positive minimum at the internal node yℓ
i

, ℓ ∈ {1, . . . , N }, we have (F v)ℓ ≤ 0. The operator F satisfies the

weak Discrete Maximum Principle (wDMP) provided that:

if
(

F w
)

ℓ ≥ 0 for all ℓ ∈ {1, . . . , N }, then min
Ω

w ≥ min{min
∂Ω

w,0}. (8)

More explicit alternative formulations of the wDMP are discussed, for example, in [5] and [6]. Note that also Id and 0

satisfy this LMP property. It is clear that if F satisfies the LMP and v ∈Vi has a negative minimum at the internal node yℓ
i

then
(

(F +ε Id)v
)

ℓ < 0 for all ε> 0. This implies for all ε> 0 that F +ε Id satisfies the wDMP.

Assumption 2. Assume for each α ∈ A that Eα
i

restricted to Vi has non-positive off-diagonal entries. Let hi be small enough

so that all hiE
α
i
− Id are monotone, i.e. so that all entries of all hiE

α
i
− Id are non-positive. Assume that for each α ∈ A that

Iα
i

satisfies the LMP property.

Obtain the numerical solution vi (T, ·) ∈Vi by interpolation of vT . Then vi (sk
i

, ·) ∈V 0
i

at time sk
i

is defined, inductively, by

−di vi (sk
i , ·)+ sup

α

(

E
α
i vi (sk+1

i , ·)+ I
α
i vi (sk

i , ·)−C
α
i

)

= 0. (9)

If all Iα
i

are 0 then (9) is an explicit scheme, otherwise implicit. Notice that the monotonicity assumption on hiE
α
i
− Id is a

time step restriction if Eα
i

has positive diagonal entries.

III Well-posedness of the discrete HJB equations

Let αℓ,k
i

(w) be a control α which maximises

sup
α

(

E
α
i w(sk+1

i , ·)+ I
α
i w(sk

i , ·)−C
α
i

)

ℓ
. (10)

Let Ik ,w
i

and E
k ,w
i

be the matrices whose ℓth row is equal to that of

I
αℓ,k

i
(w )

i
and E

αℓ,k
i

(w )

i
,

respectively. Also let the ℓth entry of Ck ,w
i

be

C
αℓ,k

i
(w )

i
.

Thus, informally speaking, the E
k ,w
i

, Ik ,w
i

and C
k ,w
i

are gained by ‘reshuffling’ the rows of the Eα
i

, Iα
i

and Cα
i

, respectively.

Notice that the maximising control in (10) may be non-unique.

Where no ambiguity can arise we simply write Iw
i

, Ew
i

and Cw
i

without explicitly referring to k. We will make use of the

partial ordering of Rn :

for x, y ∈R
n ; x ≥ y if and only if xℓ ≥ yℓ, ∀ℓ ∈ {1, . . . ,n} .

For a collection
{

xα
}

α∈A ⊂ R
n , we define the operator supα∈A componentwise:

(

supα∈A xα
)

ℓ = supα∈A xα
ℓ

. The following

lemma shows that in the linear case the wDMP turns, for functions which vanish on the boundary, into an M-matrix

property.
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Lemma 1. The matrices hiE
k ,w
i

− Id are monotone. The matrices of hi I
k ,w
i

+ Id restricted to V 0
i

are invertible diagonally

dominant M-matrices for all w ∈C ([0,T ]×Ω). The operators I
k ,w
i

and hi I
k ,w
i

+ Id satisfy the LMP and wDMP, respectively.

Proof. Monotonicity of hiE
k ,w
i

− Id is a straightforward consequence of the non-positivity of the entries of hiE
α
i
− Id for

all α ∈ A. The LMP property of Iα
i

for the node yℓ
i

only imposes a condition on the ℓ-th row of the matrix of Iα
i

. Hence it

is easily checked that the I
k ,w
i

and the hi I
k ,w
i

+ Id, which are composed row-wise from the Iα
i

and hi I
α
i
+ Id, satisfy the LMP

and wDMP respectively when all Iα
i

satisfy the LMP property.

The LMP property also implies that the matrix representations of the Iα
i

restricted to V 0
i

are weakly diagonally dominant

for all α ∈ A. This is because taking v =−
∑N

ℓ=1
φℓ

i
yields

0 ≥
(

I
α
i v

)

ℓ =−
(

I
α
i

)

ℓℓ−

N
∑

j 6=ℓ

(

I
α
i

)

ℓ j
,

using the fact that v attains a non-positive minimum at each internal node. For j 6= ℓ the hat function φ
j

i
attains a non-

positive minimum at yℓ
i

, giving
(

Iα
i

)

ℓ j
≤ 0. This yields

(

I
α
i

)

ℓℓ−

N
∑

j 6=ℓ

∣

∣

∣

(

I
α
i

)

ℓ j

∣

∣

∣≥ 0.

Therefore hi I
k ,w
i

+ Id restricted to V 0
i

is strictly diagonally dominant and thus invertible. Furthermore, since (hi I
k ,w
i

+

Id)+ε Id is similarly invertible for all ε≥ 0 and all off-diagonal entries are non-positive, [18, p. 114] shows that hi I
k ,w
i

+ Id

restricted to V 0
i

is represented by an invertible M-matrix.

Corollary 1. The non-linear operators w 7→ I
k ,w
i

w and w 7→ (hi I
k ,w
i

+ Id)w satisfy the LMP and wDMP, respectively. More-

over, w 7→ −(hiE
k ,w
i

− Id)w is positive: if w ≥ 0 then −(hiE
k ,w
i

− Id)w ≥ 0.

We record a constructive proof of existence of a solution vi ∈ Si ×V 0
i

to (9) for all k ∈ {0,1,2, . . . ,T /hi −1} with the below

Algorithm 1. This algorithm, which can be traced back to [19], is found in the continuous setting in [24] which provides

the proof of convergence and existence of solutions. In [4] it is shown that in the discrete setting it is a semi-smooth

Newton method that converges superlinearly.

The algorithm to solve the non-linear problem (9) at a given time level is the following.

Algorithm 1. Given k ∈N and vi (sk+1
i

, ·) ∈V 0
i

, choose an arbitrary α ∈ A and find w0 ∈V 0
i

such that

(

hi I
α
i + Id

)

w0 = hiC
α
i −

(

hiE
α
i − Id

)

vi (sk+1
i , ·).

For m ∈ {0,1,2, . . . }, inductively find wm+1 ∈V 0
i

such that

(

hi I
wm

i
+ Id

)

wm+1 = hiC
wm

i
−

(

hiE
wm

i
− Id

)

vi (sk+1
i , ·). (11)

Theorem 1. The numerical solution vi exists, is unique, solves the linear systems

(hi I
k ,vi

i
+ Id)vi (sk

i , ·) =−(hiE
k ,vi

i
− Id)vi (sk+1

i , ·)+hiC
vi

i
∀k ∈

{

0,1,2, . . . , T
hi

−1
}

; (12)

and is non-negative. Given k ∈ {0,1,2, . . . } and vi (sk+1
i

, ·) ∈ V 0
i

, the iterates of Algorithm 1 converge superlinearly to the

unique solution vi (sk
i

, ·) of (9): limm wm = vi (sk
i

, ·). Any numerical solution vα
i

of the linear evolution problem associated

to a fixed α with homogeneous Dirichlet conditions, that is

(hi I
α
i
+ Id)vα

i
(sk

i
, ·) =−(hiE

α
i
− Id)vα

i
(sk+1

i
, ·)+hiC

α
i

,k ∈ {1,2,3, . . .}, with vα
i

(T, ·) = vi (T, ·),

vi (sk
i

, ·) ∈V 0
i

for all k ∈
{

0,1, . . . , T
hi

−1
}

;
(13)

is an upper bound: vi ≤ vα
i

on Si ×Ω.
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x
y4

i
y2

i

y5
i

y3
i

(a) Consistent mesh

x
T1

y4
i

y2
i

y5
i

y3
i

(b) Inconsistent mesh

Figure 1: (a) illustrates a mesh that leads to a FEM discretisation of the Laplacian that is pointwise consistent with respect

to the interpolant. This is no longer the case for the mesh depicted by (b). In (b), T1 denotes the upper-right element.

Proof. [4, Theorem 2.1] shows existence and uniqueness of a solution vi (sk
i

, ·) given k and vi (sk+1
i

, ·) and superlinear

convergence of the algorithm: their Assumption (H1) is ensured by Lemma 1 and their Assumption (H2) is guaranteed by

equation (5). Existence of a solution vi is then obtained by induction over k.

Also vi ≥ 0 on Si ×Ω follows from induction over k. By assumption vi (T, ·) ≥ 0 on Ω. Since all entries of hiE
vi

i
− Id are

non-positive, all entries of C
vi

i
are non-negative, and vi (sk+1

i
, ·) ≥ 0, (12) shows

(hi I
vi

i
+ Id)vi (sk

i , ·) =−(hiE
vi

i
− Id)vi (sk+1

i , ·)+hiC
vi

i
≥ 0.

Hence by inverse positivity of hi I
vi

i
+ Id, we deduce that vi (sk

i
, ·) ≥ 0 on Ω.

Finally, we prove that vi ≤ vα
i

for all α ∈ A. Fix α ∈ A. Firstly, vi (T, ·) = vα
i

(T, ·). For given k ∈ N assume that vi (sk+1
i

, ·) ≤

vα
i

(sk+1
i

, ·). Then (9) implies
(

hi I
α
i + Id

)

vi (sk
i , ·) ≤ hiC

α
i −

(

hiE
α
i − Id

)

vi (sk+1
i , ·).

Subtracting (13) from the above inequality and using monotonicity of hiE
α
i
− Id yields

(

hi I
α
i + Id

)

(

vi (sk
i , ·)− vα

i (sk
i , ·)

)

≤
(

hiE
α
i − Id

)

(

vα
i (sk+1

i , ·)− vi (sk+1
i , ·)

)

≤ 0.

Thus by inverse positivity of hi I
α
i
+ Id we conclude that vi (sk

i
, ·) ≤ vα

i
(sk

i
, ·) on Ω, which completes the induction.

IV Consistency properties of elliptic projections

The Barles-Souganidis argument requires the existence of a projection operator onto the discrete function space that

satisfies two properties. First, the projections of a smooth function must be convergent in a sufficiently strong sense,

for example in W 1,∞. Second, the discretisations of the partial differential operators must be pointwise consistent when

applied to the projections of a smooth function, i.e. the values of the operators applied to the projections converge to the

values of the continuous operator applied to the smooth function. In the context of classical finite difference methods,

the interpolant to the grid satisfies these properties trivially because the operators are designed to be consistent with

respect to interpolation. However, in the case of FEM, the nodal interpolant may fail to satisfy the consistency condition,

even for reasonable meshes. We illustrate this behaviour in Example 1.

Example 1. For a fixed point x in a domain, consider two sequences of meshes, such that the elements neighbouring x are as

depicted in Figure 1. Denote φ̂i and ϕ̂i the L1-normalised hat functions associated with the node x for the meshes depicted

respectively by (a) and (b). Let w be a smooth function; let Ia w and Ib w be the nodal interpolants of w respectively on the

two meshes. We show that the mesh type of (a) leads to a FEM discretisation of the Laplacian that is strongly consistent with

respect to interpolation, whereas the mesh type of (b) does not.

6



For the mesh of Figure 1(a), it is well known that the FEM discretisation of the Laplacian coincides with a finite difference

discretisation and that

〈∇Ia w,∇φ̂i 〉 =
1

(∆x)2
i

(

4w(x)−w(y2
i )−w(y3

i )−w(y4
i )−w(y5

i )
)

=−∆w(x)+O((∆x)2
i ).

For the mesh of Figure 1(b), we sketch the calculation: first we have

∥

∥ϕi

∥

∥=
2

3
(∆x)2

i ; ∇ϕ̂i |T1 =
3

2(∆x)3
i

(

−1

−1

)

; ∇Ib w |T1 =
1

(∆x)i

(

w(y3
i

)−w(x)

w(y2
i

)−w(x)

)

;

thus ∫

T1

∇Ib w ·∇ϕ̂i dx =
3

4(∆x)2
i

(

2w(x)−w(y3
i )−w(y2

i )
)

.

Doing a similar calculation for the other elements shows that

〈∇Ib w,∇ϕ̂i 〉 =
3

2(∆x)2
i

(

4w(x)−w(y2
i )−w(y3

i )−w(y4
i )−w(y5

i )
)

=−
3

2
∆w(x)+O((∆x)2

i ).

We overcome this difficulty by using a different projection operator in the Barles-Souganidis argument. Given w ∈

C ([0,T ], H 1(Ω)), denote by Pi w a linear mapping into [0,T ]×Vi which satisfies for all φ̂ℓ
i
∈V 0

i

〈∇Pi w(t , ·),∇φ̂ℓ
i 〉 = 〈∇w(t , ·),∇φ̂ℓ

i 〉 ∀t ∈ [0,T ]. (14)

Notice that Pi coincides with the classical elliptic projection of the Laplacian if Pi w is chosen to interpolate w on the

boundary.

Assumption 3. There are mappings Pi satisfying (14) and there is a constant C ≥ 0 such that for every w ∈ C∞(Rd ) and

i ∈N,

‖Pi w‖W 1,∞(Ω) ≤C ‖w‖W 1,∞(Ω) and lim
i→∞

‖Pi w −w‖W 1,∞(Ω) = 0. (15)

The conditions under which the above assumption holds for the elliptic projection typically include a condition on the

mesh grading and on the domain. In [12], it is shown that (3) holds when Ω is a bounded convex polyhedral domain

in R
d , d ∈ {2,3}, when the mesh satisfies a local quasi-uniformity condition and when the test functions vanish on the

boundary. To apply the result for non-convex domains Ω and general w ∈ C∞(R×R
d ), consider for example a convex

polyhedral domain B containing Ω and assume there is a locally quasi-uniform mesh on B which coincides with the

original mesh on Ω. Let η be a smooth cut-off function with compact support in B such that η ≡ 1 on Ω. Then the

classical elliptic projection on B , acting on ηw : B → R, has the required properties. Given this construction for Pi , it is

natural to refer to it as an elliptic projection.

Lemma 2. Let w ∈C∞(R×R
d ) and let

{

sk(i)
i

}∞

i=1 tend to t ∈ [0,T ). Then

lim
i→∞

di Pi w(sk(i)
i

, ·) = ∂t w(t , ·) in W 1,∞(Ω). (16)

Proof. By linearity of Pi and (15), the result follows in the limit i →∞ from

‖di Pi w(sk(i)
i

, ·)−∂t w(t , ·)‖W 1,∞(Ω)

≤‖di Pi w(sk(i)
i

, ·)−di Pi w(t , ·)‖W 1,∞(Ω) +‖di Pi w(t , ·)−Pi∂t w(t , ·)‖W 1,∞(Ω) +‖Pi∂t w(t , ·)−∂t w(t , ·)‖W 1,∞(Ω)

≤C‖di w(sk(i)
i

, ·)−di w(t , ·)‖W 1,∞(Ω) +C‖di w(t , ·)−∂t w(t , ·)‖W 1,∞(Ω) +‖Pi∂t w(t , ·)−∂t w(t , ·)‖W 1,∞(Ω),

where di Pi w(t , ·) = (Pi w(t +hi , ·)−Pi w(t , ·))/hi , assuming i is sufficiently large to ensure t +hi ≤ T .

Lemma 3. Let w ∈C∞(R×R
d ) and let

{

sk(i)
i

}∞

i=1 tend to t ∈ [0,T ],
{

yℓ(i)
i

}∞

i=1 tend to x ∈Ω. Then

lim
i→∞

(

E
α
i Pi w(sk(i)+1

i
, ·)+ I

α
i Pi w(sk(i)

i
, ·)−C

α
i

)

ℓ(i)
= Lαw(t , x)−dα(x) uniformly over all α ∈ A. (17)
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Proof. For ease of notation, the dependence of k and ℓ on i is made implicit. From the definition of Pi and integration by

parts,
∣

∣

∣

¯̄aα
i (yℓ

i )〈∇Pi w(sk
i , ·),∇φ̂ℓ

i 〉+ āα
i (yℓ

i )〈∇Pi w(sk+1
i , ·),∇φ̂ℓ

i 〉−aα(yℓ
i )〈∇w(t , ·),∇φ̂ℓ

i 〉

∣

∣

∣

=

∣

∣

∣

¯̄aα
i (yℓ

i )〈∇w(sk
i , ·),∇φ̂ℓ

i 〉+ āα
i (yℓ

i )〈∇w(sk+1
i , ·),∇φ̂ℓ

i 〉−aα(yℓ
i )〈∇w(t , ·),∇φ̂ℓ

i 〉

∣

∣

∣

≤

∣

∣

∣

(

aα(yℓ
i )− ¯̄aα

i (yℓ
i )− āα

i (yℓ
i )

)

〈−∆w(t , ·),φ̂ℓ
i 〉

∣

∣

∣+

∣

∣

∣

¯̄aα
i (yℓ

i )〈∆w(t , ·)−∆w(sk
i , ·),φ̂ℓ

i 〉

∣

∣

∣+

∣

∣

∣āα
i (yℓ

i )〈∆w(t , ·)−∆w(sk+1
i , ·),φ̂ℓ

i 〉

∣

∣

∣ .

Using Assumption 1 and the continuity of w : [0,T ] 7→ C 2(Ω) together with uniform boundedness of
{∣

∣ ¯̄aα
i

(yℓ
i

)
∣

∣

}

α∈A and
{∣

∣āα
i

(yℓ
i

)
∣

∣

}

α∈A , we conclude that

lim
i→∞

sup
α∈A

∣

∣

∣

¯̄aα
i (yℓ

i )〈∇Pi w(sk
i , ·),∇φ̂ℓ

i 〉+ āα
i (yℓ

i )〈∇Pi w(sk+1
i , ·),∇φ̂ℓ

i 〉−aα(yℓ
i )〈∇w(t , ·),∇φ̂ℓ

i 〉

∣

∣

∣= 0.

Owing to the Heine-Cantor theorem for all ε> 0, there is a δ> 0 such that |∆w(t , x)−∆w(t , y)| < ε if |x − y | < δ. Since, for

i sufficiently large, the support of φ̂ℓ
i

is contained in the ball B(x,δ) and since
∥

∥φ̂ℓ
i

∥

∥

L1(Ω)
= 1 as well as φ̂ℓ

i
≥ 0, we find

∣

∣

∣∆w(t , x)−〈∆w(t , ·),φ̂ℓ
i 〉

∣

∣

∣< ε.

As
{

aα
}

α∈A is an equi-continuous family of functions, we conclude that

lim
i→∞

sup
α∈A

∣

∣

∣aα(yℓ
i )〈∆w(t , ·),φ̂ℓ

i 〉−aα(x)∆w(t , x)
∣

∣

∣= 0;

thus showing that

lim
i→∞

sup
α∈A

∣

∣

∣

¯̄aα
i (yℓ

i )〈∇Pi w(sk
i , ·),∇φ̂ℓ

i 〉+ āα
i (yℓ

i )〈∇Pi w(sk+1
i , ·),∇φ̂ℓ

i 〉−
(

−aα(x)∆w(t , x)
)

∣

∣

∣= 0. (18)

Using Assumption 3 and regularity of w , we see that Pi w(sk
i

, ·) and Pi w(sk+1
i

, ·) converge to w(t , ·) in W 1,∞(Ω). It can then

be shown by analogous estimates and by using the equi-continuity of
{

bα
}

α∈A ,
{

cα
}

α∈A and
{

dα
}

α∈A , that

lim
i→∞

sup
α∈A

∣

∣

∣〈
¯̄bα

i ·∇Pi w(sk
i , ·),φ̂ℓ

i 〉+〈b̄α
i ·∇Pi w(sk+1

i , ·),φ̂ℓ
i 〉−bα(x) ·∇w(t , x)

∣

∣

∣= 0, (19a)

lim
i→∞

sup
α∈A

∣

∣

∣〈 ¯̄cαi Pi w(sk
i , ·),φ̂ℓ

i 〉+〈c̄αi Pi w(sk+1
i , ·),φ̂ℓ

i 〉−cα(x)w(t , x)
∣

∣

∣= 0, (19b)

lim
i→∞

sup
α∈A

∣

∣

∣〈dα
i ,φ̂ℓ

i 〉−dα(x)
∣

∣

∣= 0. (19c)

Combining equations (18) and (19) yields (17).

V Sub- and supersolution

Set

v∗(t , x) = sup
(sk

i
,yℓ

i
)→(t ,x)

limsup
i→∞

vi (sk
i , yℓ

i ), v∗(t , x) = inf
(sk

i
,yℓ

i
)→(t ,x)

liminf
i→∞

vi (sk
i , yℓ

i )

where the limit superior and limit inferior are taken over all sequences of nodes in [0,T ]×Ω which converge to (t , x) ∈

[0,T ]×Ω. By construction, v∗ is upper and v∗ lower semi-continuous. With the use of elliptic projection operators key

steps of the convergence proof in [3], which is stated there in a suitable form for finite difference methods, are transferred

to finite element schemes, which do not satisfy the consistency condition in [3].

Theorem 2. The function v∗ is a viscosity subsolution of (4) and v∗ is a viscosity supersolution of (4).

Proof. Step 1 (v∗ is a subsolution). To show that v∗ is a viscosity subsolution, suppose that w ∈ C∞(R×R
d ) is a test

function such that v∗−w has a strict local maximum at (s, y) ∈ (0,T )×Ω, with v∗(s, y) = w(s, y). Consider a neighbourhood

B :=
{

(t , x) ∈ (0,T )×Ω : |t − s|+ |x − y | ≤ δ
}

with δ> 0 such that

v∗(s, y)−w(s, y) > v∗(t , x)−w(t , x) ∀(t , x) ∈B \ (s, y).
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Choose i sufficiently large for B to contain nodes. Let (sk
i

, yℓ
i

) denote the position where vi (sκ
i

, yλ
i

)−Pi w(sκ
i

, yλ
i

) attains

the maximum among all nodes (sκ
i

, yλ
i

) ∈ B . Let us pass to a subsequence
{

(sk
i( j )

, yℓ
i( j )

)
}

j∈N of
{

(sk
i

, yℓ
i

)
}

i∈N for which
{

vi (sk
i( j )

, yℓ
i( j )

)
}

j∈N converges to the limit superior of
{

vi (sk
i

, yℓ
i

)
}

i∈N . By compactness of B , there is a subsequence of
{

(sk
i( j )

, yℓ
i( j )

)
}

j∈N converging to a point (s̃, ỹ) ∈ B . Then Pi w(sk
i( j )

, yℓ
i( j )

) → w(s̃, ỹ) from (15) and by continuity of w . As the

(sk
i

, yℓ
i

) are maximisers, one has

v∗(s̃, ỹ)−w(s̃, ỹ) = limsup
i→∞

vi (sk
i( j ), yk

i( j ))−Pi w(sk
i( j ), yk

i( j )) = v∗(s, y)−w(s, y);

hence (s̃, ỹ) = (s, y) since (s, y) is a strict maximiser of v∗− w on B . Thus there is a subsequence of maximising nodes

converging to (s, y) to which we now pass without change of notation: (sk
i

, yℓ
i

) → (s, y). It follows that

vi (sk
i , yℓ

i )−Pi w(sk
i , yℓ

i ) → v∗(s, y)−w(s, y) = 0. (20)

Moreover, because of (sk
i

, yℓ
i

) → (s, y), the neighbours of the (sk
i

, yℓ
i

) eventually also belong to B : For i sufficiently large we

have (sκ
i

, yλ
i

)∈ B if κ ∈ {k,k +1} and yλ
i
∈ supp φ̂ℓ

i
; in which case

vi (sκi , yλ
i )−Pi w(sκi , yλ

i ) ≤ vi (sk
i , yℓ

i )−Pi w(sk
i , yℓ

i ) ⇔ Pi w(sκi , yλ
i )+µi ≥ vi (sκi , yλ

i ),

with µi = vi (sk
i

, yℓ
i

)−Pi w(sk
i

, yℓ
i

). Notice that µi → 0 as i →∞ because of (20).

Since the matrices Eα
i

have non-zero off diagonal entries
(

Eα
i

)

ℓλ
only if yλ

i
∈ supp φ̂ℓ

i
, we have for all α∈ A

(

(hiE
α
i − Id)

[

Pi w(sk+1, ·)+µi

])

ℓ
≤

(

(hiE
α
i − Id)vi (sk+1

i , ·)
)

ℓ
.

By the LMP property and linearity of Iα
i

, since Pi w(sk
i

, ·)+µi − vi (sk
i

, ·) has a non-positive minimum at yℓ
i

,
(

(hi I
α
i + Id)

[

Pi w(sk
i , ·)+µi

])

ℓ
≤

(

(hi I
α
i + Id)vi (sk

i , ·)
)

ℓ
.

From the definition of the scheme,

0 =−di vi (sk
i , yℓ

i )+ sup
α∈A

(

E
α
i vi (sk+1

i , ·)+ I
α
i vi (sk

i , ·)−C
α
i

)

ℓ
(21a)

≥−di

(

Pi w(sk
i , yℓ

i )+µi

)

+ sup
α∈A

(

E
α
i

(

Pi w(sk+1
i , ·)+µi

)

+ I
α
i

(

Pi w(sk
i , ·)+µi

)

−C
α
i

)

ℓ
(21b)

=−di Pi w(sk
i , yℓ

i )+ sup
α∈A

[(

E
α
i Pi w(sk+1

i , ·)+ I
α
i Pi w(sk

i , ·)−C
α
i

)

ℓ
+µi 〈c̄

α
i + ¯̄cαi ,φ̂ℓ

i 〉

]

(21c)

≥−di Pi w(sk
i , yℓ

i )+ sup
α∈A

(

E
α
i Pi w(sk+1

i , ·)+ I
α
i Pi w(sk

i , ·)−C
α
i

)

ℓ
−γ

∣

∣µi

∣

∣ . (21d)

Since
∣

∣

∣

∣

sup
α∈A

(

E
α
i Pi w(sk+1

i s, ·)+ I
α
i Pi w(sk

i , ·)−C
α
i

)

ℓ
− sup

α∈A

(

Lαw(s, y)−d a (y)
)

∣

∣

∣

∣

≤ sup
α∈A

∣

∣

∣

(

E
α
i Pi w(sk+1

i s, ·)+ I
α
i Pi w(sk

i , ·)−C
α
i

)

ℓ
−

(

Lαw(s, y)−d a (y)
)

∣

∣

∣ ,

Lemmas 2 and 3 show that after taking the limit i →∞ in inequality (21d) and recalling that µi → 0, we obtain

0≥−∂t w(s, y)+ sup
α∈A

(

Lαw(s, y)−dα(y)
)

. (22)

Therefore v∗ is a viscosity subsolution.

Step 2 (v∗ is a supersolution). Arguments similar to those above show that v∗ is a viscosity supersolution, where the

principal changes are that one considers w ∈ C∞(R×R
d ) such that v∗− w has a strict local minimum at some (s, y) ∈

(0,T )×Ω with v∗(s, y) = w(s, y). Using analogous notation, inequality (21d) corresponds to

0 ≤−di Pi w(sk
i , yℓ

i )+ sup
α∈A

(

E
α
i Pi w(sk+1

i , ·)+ I
α
i Pi w(sk

i , ·)−C
α
i

)

ℓ
+γ

∣

∣µi

∣

∣ ,

i.e. there is a slight asymmetry in the argument due to the last sign in (21d). Nevertheless it is then deduced that

0≤−∂t w(s, y)+ sup
α∈A

(

Lαw(s, y)−dα(y)
)

.

Thus v∗ is a viscosity supersolution.
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VI Uniform convergence

We now turn to the initial and boundary conditions. Together with the sub- and supersolution property we appeal to a

comparison principle to obtain uniform convergence of the numerical solutions.

For each α ∈ A, define

vα,∗(t , x) = sup
(sk

i
,yℓ

i
)→(t ,x)

limsup
i→∞

vα
i (sk

i , yℓ
i );

where the vα
i

are as in (13) and the limit superior is taken over all sequences of nodes which converge to (t , x) ∈ [0,T ]×Ω.

Assumption 4. Suppose that for each (t , x) ∈ [0,T ]×∂Ω

inf
α∈A

vα,∗(t , x) = 0. (23)

Before further considerations, let us motivate Assumption 4 with a simple example. As a side remark, this example also

illustrates how in some settings Kushner-Dupuis finite difference schemes, as described in [23, 17], may be interpreted as

finite element methods in the framework of this paper.

Example 2. Consider the backward time-dependent equation in one spatial dimension

−vt +|vx | = 1 on (0,1)× (−1,1), (24)

with boundary conditions v = 0 on [0,1]× {−1,1}∪ {1}× [−1,1]. Equation (24) may be re-written in HJB form as

−vt + sup
α∈{−1,1}

(αux −1) = 0.

The viscosity solution is v = min(1−t ,1−|x|). We choose a uniform mesh with element size 2(∆x)i and we use a fully explicit

discretisation, where monotonicity will be achieved by using the method of artificial diffusion, as described in [5]. Thus we

have
(

E
α
i w

)

ℓ
= ε〈∂x w,∂x φ̂

ℓ
i 〉+α〈∂x w,φ̂ℓ

i 〉,

where ε is the artificial diffusion parameter to be chosen to obtain a monotone scheme. Calculating the entries shows that

the Eα
i

are of the form

ε

























2
(∆x)2

i

−
1

(∆x)2
i

. . .
. . .

. . .

−
1

(∆x)2
i

2
(∆x)2

i

−
1

(∆x)2
i

. . .
. . .

. . .

−
1

(∆x)2
i

2
(∆x)2

i

























+α





















0 1
2(∆x)i

. . .
. . .

. . .

− 1
2(∆x)i

0 1
2(∆x)i

. . .
. . .

. . .

−
1

2(∆x)i
0





















.

For monotonicity we require that all off-diagonal terms of the Eα
i

be non-positive, i.e. we require ε≥ (∆x)i /2. For example

the special choice ε= (∆x)i /2 yields

E
1
i =





















1
(∆x)i

0

. . .
. . .

−
1

(∆x)i

1
(∆x)i

0

. . .
. . .

−
1

(∆x)i

1
(∆x)i





















; E
−1
i =





















1
(∆x)i

−
1

(∆x)i

. . .
. . .

0 1
(∆x)i

−
1

(∆x)i

. . .
. . .

0 1
(∆x)i





















.

This is equivalent to discretising the spatial part of −vt +vx with backward finite differences and discretising the spatial part

of −vt − vx with forward finite differences, as can be done in applying a Kushner-Dupuis scheme. It can then be deduced,

whilst using appropriate time steps, that v1
i

approximates the solution of

−vt + vx = 1 on (0,1)× (−1,1), v = 0 on (0,T )× {−1}∪ {1}× (−1,1);
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while v−1
i

approximates the solution of

−vt − vx = 1 on (0,1)× (−1,1), v = 0 on (0,T )× {1}∪ {1}× (−1,1).

Consequently, Assumption 4 is enforced by v1,∗ on [0,1]× {−1} and by v−1,∗ on [0,1]× {1}.

Recall from Theorem 1 that

0≤ vi ≤ vα
i for all α∈ A,

and note that by construction 0 ≤ v∗ ≤ v∗. Assumption 4 thus implies that v∗|[0,T ]×∂Ω = v∗|[0,T ]×∂Ω = 0. Observe that

because (23) holds in particular for all (t , x) ∈ {T }× ∂Ω, Assumption 4 implicitly enforces that the initial condition vT

vanishes on ∂Ω as the vα
i

interpolate vT at the final time.

Lemma 4. The sub and super-solutions v∗ and v∗ satisfy

v∗(T, ·) = v∗(T, ·) = vT on Ω. (25)

Proof. Fix ε > 0 and choose a vε
T
∈ C∞(Rd ) such that vT −2ε ≥ vε

T
≥ vT −3ε. Owing to Assumption 3 there is n ∈N such

that ‖Pi vε
T
− vε

T
‖L∞(Ω) ≤ ε and ‖Ii vT − vT ‖L∞(Ω) ≤ ε for all i ≥ n. Hence, for i ≥ n,

vi (T, ·) = Ii vT ≥ Pi vε
T ≥ vT −4ε. (26)

Recalling (14) and as vε
T
∈C∞(Rd ), it is clear that there exists K = K (ε) ≥ 0 which bounds

∣

∣

((

E
α
i + I

α
i

)

Pi vε
T −C

α
i

)

ℓ

∣

∣=
∣

∣−
(

āα
i (yℓ

i )+ ¯̄aα
i (yℓ

i )
)〈

∆vε
T ,φ̂ℓ

i

〉

+
〈(

b̄α
i (yℓ

i )+ ¯̄bα
i (yℓ

i )
)

·∇Pi vε
T +

(

c̄αi (yℓ
i )+ ¯̄cαi (yℓ

i )
)

Pi vε
T ,φ̂ℓ

i

〉

−
(

C
α
i

)

ℓ

∣

∣

for all i ∈ N, ℓ ∈ {1, . . . , N } and α ∈ A. Define wi = Pi vε
T
−K (T − t). To show that vi (sk

i
, ·) ≥ wi (sk

i
, ·) assume vi (sk+1

i
, ·) ≥

wi (sk+1
i

, ·), noting (26) for sk+1
i

= T . Fix an i and ℓ and let α=αk ,ℓ
i

(vi ) as for (10). From

−di wi (sk
i , yℓ

i )+
(

E
α
i wi (sk+1

i , ·)+ I
α
i wi (sk+1

i , ·)
)

ℓ =−K +
((

E
α
i + I

α
i

)

Pi vε
T

)

ℓ
−K (T − sk+1

i )〈c̄αi ,φ̂ℓ
i 〉−K (T − sk

i )〈 ¯̄cαi ,φ̂ℓ
i 〉

≤
(

C
α
i

)

ℓ

(12)
= −di vi (sk

i , yℓ
i )+

(

E
vi

i
vi (sk+1

i , ·)+ I
vi

i
vi (sk+1

i , ·)
)

ℓ

we may deduce that

(

(

hi I
vi

i
+ Id

)

[

vi (sk
i , ·)−wi (sk

i , ·)
])

ℓ
≥

(

(

hiE
vi

i
− Id

)

[

vi (sk
i , ·)−wi (sk

i , ·)
])

ℓ
≥ 0.

Note that vi (sk
i

, ·) ∈ V 0
i

vanishes on ∂Ω and wi (sk
i

, ·) ≤ 0 on ∂Ω. Thus Lemma 1 and (8) imply vi (sk
i

, ·) ≥ wi (sk
i

, ·) on Ω.

Because K is independent of i and Pi vε
T
→ vε

T
as i →∞, we have for any sequence

(

sk
i

, yℓ
i

)

→
(

T, x
)

, x ∈Ω,

liminf
i→∞

vi

(

sk
i , yℓ

i

)

≥ liminf
i→∞

wi

(

sk
i , yℓ

i

)

≥ vT (x)−4ε.

So v∗(T, ·) ≥ vT − 4ε. Since ε was arbitrary, v∗(T, ·) ≥ vT . The argument for showing that v∗ ≤ vT is analogous with

wi = Pi vε
T
+K (T − t) and vT +2ε≤ vε

T
≤ vT +3ε. To conclude, vT ≤ v∗(T, ·) ≤ v∗(T, ·) ≤ vT , which proves (25).

The proof of Lemma 4 is related to the arguments in [17, p. 335]. In the next assumption we draw upon one of the

building blocks of the theory of viscosity solutions, namely the extension of classical comparison principles to spaces of

semi-continuous functions, cf. [10, Sec. 5] and [17, p. 219].

Assumption 5. Let v be a lower semi-continuous supersolution with v |[0,T ]×∂Ω = 0 and v(T, ·) = vT . Similarly, let v be an

upper semi-continuous subsolution with v |[0,T ]×Ω = 0 and v(T, ·) = vT . Then v ≤ v.

Let t = ϑsk
i
+(1−ϑ)sk+1

i
∈ [sk

i
, sk+1

i
] lie between two time steps, ϑ ∈ [0,1]. Then we interpret vi (t , ·) as the linear interpolant

between vi (sk
i

, ·) and vi (sk+1
i

, ·):

vi (t , ·) =ϑvi (sk
i , ·)+ (1−ϑ)vi (sk+1

i , ·). (27)

11



Theorem 3. One has v∗ = v∗ = v, where v is the unique viscosity solution of equation (4) with v(T, ·) = vT and v |[0,T ]×∂Ω = 0.

Furthermore

lim
i→∞

‖vi − v‖L∞((0,T )×Ω) = 0. (28)

Proof. The previous assumption implies that v∗ ≥ v∗ thus v∗ = v∗ = v . Select for each i ∈ N a point (ti , xi ) ∈ [0,T ]×Ω

such that

‖vi − v‖L∞((0,T )×Ω) = |vi − v |(ti , xi ).

Such (ti , xi ) exist as vi − v is a continuous function on a compact domain. Let xi belong to (the closure of) the element T

of the finite element mesh and t ∈ [sκ
i

, sκ+1
i

]; then vi (ti , xi ) is a weighted average of the values of vi at the corners of the

slab [sκ
i

, sκ+1
i

]×T . Thus there is a corner (sk
i

, yℓ
i

) of the slab such that

‖vi − v‖L∞((0,T )×Ω) ≤ |vi (sk
i , yℓ

i )− v(ti , xi )|.

If (28) was wrong we could select a subsequence and an ε> 0 such that

liminf
j→∞

∣

∣vi( j )(sk
i( j ), yℓ

i( j ))− v(ti( j ), xi( j ))
∣

∣≥ ε.

By possibly passing to a further subsequence we may assume that {(ti ( j ) , xi( j ))} j converges to an (t , x) ∈ [0,T ]×Ω. However,

this contradicts

v(t , x) = v∗(t , x) ≤ liminf
j→∞

vi( j )(sk
i( j ), yℓ

i( j )) ≤ limsup
i→∞

vi( j )(sk
i( j ), yℓ

i( j )) ≤ v∗(t , x) = v(t , x).

Thus (28) holds.

VII Gradient convergence

For shorthand, let W =W 1,∞((0,T )×Ω). It is convenient to introduce the discrete spaces

Wi := {v ∈C ([0,T ],V 0
i ) : v |[sk

i
,sk+1

i
]×Ω is affine in time},

which means that functions in Wi have between two time-steps the form of (27). Observe that Wi ⊂W for all i ∈N.

Fix an arbitrary α∈ A. It is convenient to view Eα
i

and Iα
i

as bilinear forms on H 1(Ω)×Vi . Functions u ∈Vi have the nodal

representation

u(y) =
∑

ℓ

u(yℓ
i )φℓ

i (y).

To test with functions other than φ̂ℓ
i

we introduce the following bilinear form as a partially discrete pivot: for w ∈ H 1(Ω)

and u ∈Vi

〈〈E
α
i w,u〉〉 :=

∑

ℓ

u(yℓ
i )

(

āα
i (yℓ

i )〈∇w,∇φℓ
i 〉+〈b̄α

i ·∇w + c̄αi w,φℓ
i 〉

)

.

We use corresponding interpretation for 〈〈Iα
i

w,u〉〉 and also

〈〈w,u〉〉 = 〈〈Idw,u〉〉 =
∑

ℓ

w(yℓ
i )u(yℓ

i )‖φℓ
i ‖L1(Ω) and 〈〈C

α
i ,u〉〉 =

∑

ℓ

u(yℓ
i )〈dα

i ,φℓ
i 〉 = 〈dα

i ,u〉.

Assume that for the chosen α:

|w |
2
L2([0,T ],H 1(Ω))

.
(T /hi )−1

∑

k=0

(

〈〈(

hiE
α
i − Id

)

w(sk+1
i , ·)+

(

hi I
α
i + Id

)

w(sk
i , ·), w(sk

i , ·)
〉〉

)

+
1
2
〈〈w(T, ·), w(T, ·)〉〉+‖w(T, ·)‖2

H 1(Ω)

(∗)
=

(T /hi )−1
∑

k=0

(

hi

〈〈

E
α
i w(sk+1

i , ·)+ I
α
i w(sk

i , ·), w(sk
i , ·)

〉〉

+
1
2
〈〈w(sk+1

i
, ·)−w(sk

i
, ·), w(sk+1

i
, ·)−w(sk

i
, ·)〉〉

)

(29)

+ 1
2
〈〈w(0, ·), w(0, ·)〉〉+‖w(T, ·)‖2

H 1(Ω)
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for all w ∈Wi with w ≥ 0 and i ∈N, where (∗) is a simple reformulation in terms of a telescope sum.

Due to the definition of the numerical method and the non-negativity of the vi ,

|vi |
2
L2([0,T ],H 1(Ω))

.
(T /hi )−1

∑

k=0

(

〈〈(

hiE
α
i − Id

)

vi (sk+1
i , ·)+

(

hi I
α
i + Id

)

vi (sk
i , ·), vi (sk

i , ·)
〉〉

)

+
1
2 〈〈vi (T, ·), vi (T, ·)〉〉+‖vi (T, ·)‖2

H 1(Ω)

≤

(T /hi )−1
∑

k=0

〈〈

hiC
α
i , vi (sk

i , ·)
〉〉

+
1
2 〈〈vi (T, ·), vi (T, ·)〉〉+‖vi (T, ·)‖2

H 1(Ω)

.T ‖dα
i ‖L1(Ω) ‖vi ‖L∞([0,T ]×Ω) +‖vi (T, ·)‖2

H 1(Ω)
.

Thus, with the L∞ control established in the previous section, it is apparent that the vi are bounded in L2([0,T ], H 1(Ω))

provided that vi (T, ·) = Ii vT are bounded in H 1(Ω); this condition holds if v(T, ·) ∈ W 1,∞(Ω). The first convergence re-

sult for the gradient is therefore that, owing to the Banach-Alaoglu theorem, vi * v weakly in L2([0,T ], H 1(Ω)), using

L∞((0,T )×Ω) convergence to pass from L2([0,T ], H 1(Ω)) weak convergence of subsequences to L2([0,T ], H 1(Ω)) weak

convergence of the whole sequence.

The question arises under which circumstances the convergence in the gradient is also strong. We demonstrate this

under the below Assumption 6. We note that supposing (29) points towards uniform ellipticity of Lα. Let Λ0 be the level

set {(t , x) ∈ (0,T )×Ω : v(t , x) = 0}. For a smooth v the boundary of Λ0 is always a d −1 dimensional set if 0 is a regular

value.

Assumption 6. The value function v belongs to the space W =W 1,∞((0,T )×Ω) and the d-dimensional Lebesgue measure

of the boundary of Λ0 vanishes: vol(∂Λ0) = 0. The coefficients āα
i

and ¯̄aα
i

belong to W 1,∞(Ω) and (29) is satisfied.

Let us suppose momentarily that there are approximations Qi v ∈Wi to v such that Qi v ≤ vi for all i ∈N and

lim
i→∞

‖v −Qi v‖L2([0,T ],H 1(Ω)) = 0,

and

lim
i→∞

(T /hi )−1
∑

k=0

〈〈(

hiE
α
i − Id

)

Qi v(sk+1
i , ·)+

(

hi I
α
i + Id

)

Qi v(sk
i , ·), (vi −Qi v)(sk

i , ·)
〉〉

→ 0. (30)

We will construct such Qi v below. With ξk = vi (sk
i

, ·)−Qi v(sk
i

, ·),

|vi −Qi v |2
L2([0,T ],H 1(Ω))

.
(T /hi )−1

∑

k=0

〈〈(

hiE
α
i − Id

)

ξk+1
+

(

hi I
α
i + Id

)

ξk ,ξk
〉〉

=

(T /hi )−1
∑

k=0

〈〈(

hiE
α
i − Id

)

vi (sk+1
i , ·)+

(

hi I
α
i + Id

)

vi (sk
i , ·),ξk

〉〉

−

(T /hi )−1
∑

k=0

〈〈(

hiE
α
i − Id

)

Qi v(sk+1
i , ·)+

(

hi I
α
i + Id

)

Qi v(sk
i , ·),ξk

〉〉

(∗)
≤

(T /hi )−1
∑

k=0

〈〈

hiC
α
i ,ξk

〉〉

−

(T /hi )−1
∑

k=0

〈〈(

hiE
α
i − Id

)

Qi v(sk+1
i , ·)+

(

hi I
α
i + Id

)

Qi v(sk
i , ·),ξk

〉〉

, (31)

using in (∗) the numerical scheme, ξT /hi = 0 and that, due to the assumptions on the Qi , the sign of vi −Qi v is known.

Since

(T /hi )−1
∑

k=0

〈〈

hiC
α
i ,ξk

〉〉

≤‖dα
i ‖L2(Ω)

(T /hi )−1
∑

k=0

hi

(

‖vi (sk
i , ·)− v(sk

i , ·)‖L2(Ω) +‖v(sk
i , ·)−Qi v(sk

i , ·)‖L2(Ω)

)

.‖dα
i ‖L2(Ω)

(

‖vi − v‖L2((0,T )×Ω) +‖v −Qi v‖L2((0,T )×Ω)

)

,

the first term in (31) vanishes as i →∞. The second term vanishes due to (30). Hence |vi − v |L2([0,T ],H 1(Ω)) → 0 as i →∞.

Theorem 4. If there is an α ∈ A such that Assumption 6 holds, then the numerical solutions converge to the exact solution

strongly in L2([0,T ], H 1(Ω)).
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Proof. It remains to show that suitable Qi can be constructed, given Assumption 6. Denoting the nodal interpolant on

[0,T ]×Ω by Ii we define

Qi : W →Wi , w 7→ Ii max{w −‖v − vi‖L∞((0,T )×Ω),0}. (32)

Observe that the max operator in (32) switches between the first and second argument in the vicinity of ∂Λ0 for i suffi-

ciently large. Furthermore, Qi v ∈ Wi satisfies homogeneous boundary conditions and Qi v ≤ vi and, by the mean value

theorem,

‖Qi v‖W 1,∞((0,T )×Ω) ≤ ‖v‖W 1,∞((0,T )×Ω).

Note also that for all nodes yℓ
i

and time levels sk
i

0 ≤ (vi −Qi v)(sk
i , yℓ

i ) = min
{

(vi − v) (sk
i , yℓ

i )+‖vi − v‖L∞((0,T )×Ω) , vi (sk
i , yℓ

i )
}

≤ 2‖vi − v‖L∞((0,T )×Ω) .

Consider the set Γi of points which is not ‘affected by the cut-off below 0’ in (32) in the sense that

Γi :=
{

(t , x) ∈ (0,T )×Ω : inf
j≥i

Q j v(t , x) > 0 or (t , x) ∈Λ0

}

.

The set Γ′
i

contains the points which are at least one element’s length away from the boundary of Γi \∂Λ0:

Γ
′
i :=

{

(t , x) ∈Γi : {(s, y) ∈ (0,T )×Ω : ‖(t , x)− (s, y)‖ < sup
j≥i

h j + (∆x) j } ⊂ Γi \∂Λ0

}

.

Notice that Γi and Γ
′
i

are hierarchical families. Since ‖v − vi‖L∞((0,T )×Ω) → 0 and hi + (∆x)i → 0 as i →∞ it follows that

⋃

i∈N

Γ
′
i =

(

(0,T )×Ω
)

\∂Λ0.

Crucially, (∂t Q j v)|Γ′
i
= (∂tI j v)|Γ′

i
and (∇Q j v)|Γ′

i
= (∇I j v)|Γ′

i
for j ≥ i .

For every ε> 0 there are i , j ∈N such that vol(Ω\Γ′
i
) ≤ ε2 and ‖Qk v − v‖H 1(Γ′

i
) ≤ ε for all k ≥ j . Therefore

‖Qk v − v‖H 1((0,T )×Ω) . ‖Qk v − v‖H 1(Γ′
i
) +

√

vol(Ω\Γ′
i
)‖v‖W 1,∞((0,T )×Ω) ≤ ε(1+‖v‖W 1,∞((0,T )×Ω)),

giving strong convergence in H 1((0,T )×Ω), meaning convergence in the spatial gradient and the time derivative. The

terms connected to the time derivative in (30) vanish in the limit as

(T /hi )−1
∑

k=0

〈〈

Qi v(sk+1
i , ·)−Qi v(sk

i , ·),ξk
〉〉

=

(T /hi )−1
∑

k=0

hi

〈〈

(∂t Qi v)|(sk
i

,sk+1
i

),ξ
k
〉〉

. ‖∂t v‖L2((0,T )×Ω) ‖ξ
k
‖L2((0,T )×Ω).

Recall that

〈〈I
α
i Qi v(sk

i , ·),ξk
〉〉 =

∑

ℓ

(vi −Qi v)(sk
i , yℓ

i )
(

¯̄aα
i (yℓ

i )〈∇Qi v(sk
i , ·),∇φℓ

i 〉+〈
¯̄bα

i ·∇Qi v(sk
i , ·)+ ¯̄cαi Qi v(sk

i , ·),φℓ
i 〉

)

.

The lower-order terms vanish due to the uniform convergence of vi −Qi v to 0 and the bound

sup
i

‖
¯̄bα

i ·∇Qi v(sk
i , ·)+ ¯̄cαi Qi v(sk

i , ·)‖L∞(Ω) <∞.

We note for the second-order term that

∑

ℓ

(vi −Qi v)(sk
i , yℓ

i ) ¯̄aα
i (yℓ

i )〈∇Qi v(sk
i , ·),∇φℓ

i 〉 = 〈∇Qi v(sk
i , ·),∇Ii ( ¯̄aα

i (vi −Qi v))(sk
i , ·)〉,

so that in (30) the implicit part of the second-order term becomes

(T /hi )−1
∑

k=0

hi 〈∇Qi v(sk
i , ·),∇Ii ( ¯̄aα

i (vi −Qi v))(sk
i , ·)〉 =

∫T

0
〈Ji∇Qi v,Ji∇Ii ( ¯̄aα

i (vi −Qi v))〉dt , (33)
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where Ji maps any w : [0,T ] → L2(Ω;Rd ) onto the step function with (Ji w)|[sk
i

,sk+1
i

) ≡ w(sk
i

, ·). Note that Ji∇Qi v converges

strongly in L2((0,T )×Ω;Rd ). At a time sk
i
∈ [0,T ) the bound

‖∇Ii ( ¯̄aα
i (vi −Qi v))‖L2(Ω;Rd ) .‖∇Ii ( ¯̄aα

i vi )‖L2(Ω;Rd ) +‖ ¯̄aα
i Qi v‖W 1,∞(Ω) . ‖ ¯̄aα

i ‖W 1,∞(Ω) ·
(

‖vi ‖H 1(Ω) +‖v‖W 1,∞(Ω)

)

follows from an inverse estimate and

∑

T

‖∇Ii ( ¯̄aα
i vi )‖2

L2(T ;Rd )
.

∑

T

(∆x)d
T ‖∇Ii ( ¯̄aα

i vi )‖2
L∞(T ;Rd )

.
∑

T

‖ ¯̄aα
i ‖

2
W 1,∞(T )

(

(∆x)d
T ‖vi‖

2
W 1,∞(T )

)

.

The convergence

lim
i→∞

∫T

0
〈w,Ji∇Ii ( ¯̄aα

i (vi −Qi v))〉dt =− lim
i→∞

∫T

0
〈∇ ·w,JI Ii ( ¯̄aα

i (vi −Qi v))〉dt = 0

with test functions w in the dense subset C 1((0,T )×Ω;Rd ) gives weak convergence of ∇Ii ( ¯̄aα
i

(vi −Qi v)) in L2((0,T )×

Ω;Rd ), see [28, p. 121]. Combing weak and strong convergence [29, Prop. 21.23], it is ensured that (33) converges to 0 as

i →∞. A similar argument guarantees that
∑

k hi 〈〈E
α
i

Qi v(sk+1
i

, ·),ξk 〉〉 vanishes in the limit.

The regularity of the exact value function v is, for instance, discussed in Section IV.8 and IV.9 of [17]. Another item of

Assumption 6, namely the justification of (29), is examined in the following example:

Example 3. a) Suppose that aα is positive and constant and, for all smooth w,

Lαw = Iαw =−aα
∆w +bα

·∇w +cαw, Eαw = 0,

and, to obtain semi-definiteness in the lower-order terms, cα−
1
2
∇·bα ≥ 0. Then, for w ∈Wi ,

aα
|w |

2
L2([0,T ],H 1(Ω))

. aα
(T /hi )−1

∑

k=0

hi

〈

∇w(sk
i , ·),∇w(sk

i , ·)
〉

+‖w(T, ·)‖2
H 1(Ω)

=

(T /hi )−1
∑

k=0

hi

〈〈

I
α
i w(sk

i , ·), w(sk
i , ·)

〉〉

+‖w(T, ·)‖2
H 1(Ω)

.

b) Suppose that aα ∈W 2,∞(Ω) is non-constant, positive, uniformly bounded from below and that cα−
1
2 (∇·bα+∆aα) ≥ 0,

noting for smooth w:

〈Lαw, w〉 = 〈aα∇w,∇w〉+〈(cα−
1
2 (∇·bα+∆aα))w, w〉.

Again choosing a fully implicit scheme with Lα = Iα, the highest order term in 〈〈Iα
i

w, w〉〉 is at time sk
i

:

∑

ℓ

w(sk
i , yℓ

i )aα(sk
i , yℓ

i )〈∇w(sk
i , ·),∇φℓ

i 〉 = 〈∇w(sk
i , ·),∇Ii (aα(sk

i , ·)w(sk
i , ·))〉.

According to Theorem 2.1 in [11] there is a constant C =C
(

‖aα‖W 2,∞(Ω)

)

such that for i sufficiently large

〈∇w,∇Ii (aαw)〉−〈∇w,∇aαw〉 ≤ ‖∇w‖L2(Ω;Rd ) · ‖Ii (aαw)−aαw‖H 1(Ω) ≤C (∆x)i ‖w‖
2
H 1(Ω)

,

using that the η appearing in the proof in [11] is defined in terms of nodal interpolation. It then follows from Poincaré’s

inequality that there is some C such that for C (∆x)i <
1
2

infΩ aα that |w |2
H 1(Ω)

. 〈〈Iα
i

w, w〉〉 for w ∈V 0
i

, implying (29).

VIII Example: the method of artificial diffusion

The purpose of this section is to provide a way of constructing the operators Eα
i

and Iα
i

in order to satisfy Assumptions 1

and 2. This approach, called the method of artificial diffusion, is based on the fact that for strictly acute meshes, the dis-

crete Laplacian is monotone. Further details on the method of artificial diffusion and monotone finite element schemes

may, for example, be found in [5], [9] and [27].

Let Ti be the mesh corresponding to the finite element space Vi . Given a function f :Ω→R
d we denote

| f |T :=
( d
∑

j=1

∥

∥ f j

∥

∥

2
L∞(T )

) 1
2

, T ∈Ti , i ∈N.

15



If f is elementwise constant then | f |T is simply the Euclidean norm of f on T . Let (∆x)T denote the diameter of T . We

assume that the meshes Ti are strictly acute [5] in the sense that there exists ϑ ∈ (0,π/2) such that

∇φℓ
i ·∇φ

l
i

∣

∣

T ≤− sin(ϑ) |∇φℓ
i |T |∇φl

i |T ∀ℓ, l ≤ N ∀i ∈N. (34)

We choose a splitting of the form aα = ãα
i
+ ˜̃aα

i
, bα = b̄α

i
+

¯̄bα
i

, cα = c̄α
i
+ ¯̄cα

i
and dα = dα

i
, where all terms are in C (Ω), ãα

i

and ˜̃aα
i

are non-negative and all c̄α
i

and ¯̄cα
i

are non-negative and satisfy inequality (6). Choose non-negative ν̄α,ℓ
i

and ¯̄να,ℓ
i

such that for all T which have yℓ
i

as vertex:

(

|b̄α
i |T + (∆x)T ‖c̄αi ‖L∞(T )

)

≤ ν̄α,ℓ
i

sin(ϑ) |∇φ̂ℓ
i |T vol(T ), (35a)

(

|
¯̄bα

i |T + (∆x)T ‖ ¯̄cαi ‖L∞(T )

)

≤ ¯̄να,ℓ
i

sin(ϑ) |∇φ̂ℓ
i |T vol(T ). (35b)

Choose āα
i

and ¯̄aα
i

both in C (Ω) such that āα
i

(yℓ
i

) ≥ max
{

ãα
i

(yℓ
i

), ν̄α,ℓ
i

}

and ¯̄aα
i

(yℓ
i

) ≥ max
{

˜̃aα
i

(yℓ
i

), ¯̄να,ℓ
i

}

. Now suppose that

w ∈Vi has a non-positive minimum at an interior node yℓ
i

. By extending the arguments of [5], we show that

(Eα
i w)ℓ ≤ 0, (Iαi w)ℓ ≤ 0. (36)

We illustrate the proof of (36) for the implicit term. From the strict acuteness condition on the mesh, it can be shown that

on the restriction to T [5, Lemma 3.1]

∇w ·∇φℓ
i = cos

(

∠(∇w,∇φℓ
i )

)

|∇w |T |∇φℓ
i |T ≤−sin(ϑ)|∇w |T |∇φℓ

i |T .

Using ¯̄cα
i
≥ 0, w(yℓ

i
) ≤ 0 and ‖φ̂ℓ

i
‖L1(Ω) = 1,

〈 ¯̄cαi w,φ̂ℓ
i 〉 =

∫

Ω

¯̄cαi (x)
(

w(yℓ
i )+∇w(x) · (x − yℓ

i )
)

φ̂ℓ
i (x)dx

≤

∫

Ω

¯̄cαi (x)∇w(x) · (x − yℓ
i ) φ̂ℓ

i (x)dx ≤
∑

T

‖ ¯̄cαi ‖L∞(T ) |∇w |T (∆x)T .

Consequently,

(Iαi w)ℓ = ¯̄aα
i (yℓ

i )〈∇w,∇φ̂ℓ
i 〉+〈

¯̄bα
i ·∇w + ¯̄cαi w,φ̂ℓ

i 〉

≤
∑

T

− ¯̄aα
i (yℓ

i )sin(ϑ)|∇w |T |∇φ̂ℓ
i |T vol(T )+|

¯̄bα
i |T |∇w |T +‖ ¯̄cαi ‖L∞(T ) |∇w |T (∆x)T

≤
∑

T

|∇w |T
((

|
¯̄bα

i |T + (∆x)T ‖ ¯̄cαi ‖L∞(T )

)

− ¯̄να,ℓ
i

sin(ϑ) |∇φ̂ℓ
i |T vol(T )

)

≤ 0.

The proof of (Eα
i

w)ℓ ≤ 0 is analogous. As hat functions φℓ
i

attain a non-positive minimum at all y
j

i
where j 6= ℓ, all off-

diagonal entries of Eα
i

are non-positive. Hence with a suitable time step restriction the hiE
α
i
− Id are monotone, which

ensures that Assumption 2 is satisfied.

The scaling of the terms in (35) with respect to (∆x)T leads to Assumption 1. Due to shape-regularity all elements T on a

patch are of comparable size; giving ‖φℓ
i
‖L1(Ω) ≤C vol(T ) for all T ⊂ suppφℓ

i
with a constant C which is independent of h

and ℓ. Hence in (35), we see that

vol(T ) |∇φ̂ℓ
i |T ≥

vol(T )

(∆x)T ‖φℓ
i
‖L1(Ω)

≥
1

C (∆x)T

.

Thus, if ν̄α,ℓ
i

and ¯̄να,ℓ
i

are chosen optimally then for T ⊂ suppφℓ
i

ν̄α,ℓ
i

=O
(

sup
T

{

|b̄α
i |T (∆x)T +‖c̄αi ‖L∞(T )(∆x)2

T

})

, ¯̄να,ℓ
i

=O
(

sup
T

{

|
¯̄bα

i |T (∆x)T +‖ ¯̄cαi ‖L∞(T )(∆x)2
T

})

. (37)

With (37) in mind we return to the time step restriction for semi-implicit and explicit methods. The non-positivity of the

diagonal terms of hiE
α
i
− Id expands to

1≥hi

(

āα
i (yℓ

i )〈∇φℓ
i ,∇φ̂ℓ

i 〉+〈b̄α
i ·∇φℓ

i + c̄αi φℓ
i ,φ̂ℓ

i 〉

)

= hi

(

O
(

āα
i (∆x)−2

T

)

+O
(

|b̄α
i |T (∆x)−1

T

)

+O
(

c̄αi
)

)

.

Therefore the time step restriction imposed by Lα is hi . supT

(

(∆x)2
T /āα

i
(yℓ

i
)
)

, yℓ
i
∈ T , if there is a non-zero ãα

i
and i is

large. It is hi . supT

(

(∆x)T /|b̄α
i

(yℓ
i

)|T
)

if all āα
i
= 0, i ∈N, and there are non-zero b̄α

i
, and is O(1) if all āα

i
and b̄α

i
vanish.

There is no restriction if also all c̄α
i

are zero.
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