
ar
X

iv
:1

11
1.

62
24

v1
  [

cs
.D

S
]  

27
 N

ov
 2

01
1

Threshold phenomena ink-dominant skylines of
random samples

HSIEN-KUEI HWANG

Institute of Statistical Science
Academia Sinica

Taipei 115
Taiwan

TSUNG-HSI TSAI

Institute of Statistical Science
Academia Sinica

Taipei 115
Taiwan

WEI-MEI CHEN

Department of Electronic Engineering
National Taiwan University of Science and Technology

Taipei 106
Taiwan

November 7, 2018

Abstract

Skylines emerged as a useful notion in database queries for selecting representative
groups in multivariate data samples for further decision making, multi-objective optimiza-
tion or data processing, and thek-dominant skylines were naturally introduced to resolve
the abundance of skylines when the dimensionality grows or when the coordinates are neg-
atively correlated. We prove in this paper that the expectednumber ofk-dominant skylines
is asymptotically zero for large samples when1 ≤ k ≤ d− 1 under two reasonable (con-
tinuous) probability assumptions of the input points,d being the (finite) dimensionality, in
contrast to the asymptotic unboundedness whenk = d. In addition to such an asymptotic
zero-infinity property, we also establish a sharp thresholdphenomenon for the expected
(d − 1)-dominant skylines when the dimensionality is allowed to grow with n. Several
related issues such as the dominant cycle structures and numerical aspects, are also briefly
studied.

Key words.Skyline, dominance, maxima, random samples, Pareto optimality, threshold phe-
nomena, multi-objective optimization, computational geometry, asymptotic approximations,
average-case analysis of algorithms.

1 Introduction

The last decade has undergone a drastic change of information dissemination from Web 1.0 to
Web 2.0, the most notable representative products being YouTube and Facebook. Data have
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been generated in an unprecedented pace and range, powerfulsearch engines are indispens-
able, and screening useful or usable information (via “sortengines”) from the vast is gen-
erally becoming more important than searching and gathering. Skylines of multivariate data
sample were introduced for selecting representative groups in the database query literature by
Börzsönyi et al. (see [7]) and had appeared in diverse areas under several differentguises and
names:Pareto optimality, efficiency, maxima, admissibility, elite, sink, etc.; see [11, 12] and
the references therein for more information. These diverseterms reveal the importance of the
use of skyline as an effective means of data summarization intheory and in practice. Many
different notions and variants of skylines have been proposed in the literature, following the
original paper [7]. In particular, thek-dominant skylines were introduced by Chan et al. (see
[9]) in situations when the skylines are abundant and have received much attention since, al-
though they had already been studied in the Russian literature (see for example [3, 23]). We
focus in this paper on the asymptotic estimates of such skylines and prove several types of
threshold phenomena under different probability assumptions of the input samples, which, in
addition to their theoretical interests, are believed to beuseful for practitioners.

Skylines andk-dominant skylines The definitions of skyline and many of its variants are
based on the notion of dominance. Given ad-dimensional datasetD , a pointp ∈ D is said
to dominateanother pointq ∈ D if pj ≤ qj for 1 ≤ j ≤ d, wherep = (p1, . . . , pn) and
q = (q1, . . . , qn), and is less than in at least one dimension. The non-dominated points in
D are called theskyline(or skyline points) of D . By relaxing the full dominance definition
to partial dominance, we say that a pointp ∈ D k-dominatesanother pointq ∈ D if there
arek dimensions in whichpj is not greater thanqj and is less than in at least one of thesek
dimensions1. The points inD that are notk-dominated by any other points are defined to be
thek-dominant skylineof D ; see [9]. See also [3] for a different formulation.

The definition ofk-dominant skyline implies that for a fixed dataset the numberof k-
dominant skylines decreases ask becomes smaller. Such a monotonicity property will be used
later. To see this, consider any pointp in the unit square. It is a skyline (or2-dominant sky-
line) point if no other points have simultaneously smallerx- and smallery-values; namely, no
other points can lie in the shaded region(wherep is the dotted point in the middle of this
figure). However, to be a1-dominant skyline point requires that all other points musthave si-
multaneously largerx- and largery-values, or, equivalently, they cannot lie in the shaded region

.
On the other hand, the transitivity property of skylines fails for k-dominant skylines when

1 ≤ k ≤ d− 1, meaning that their cardinality may be zero and there may be cycles.

The number of skyline points The number of skyline points is a key issue in their use and
usefulness. This quantity under suitable random assumptions of the input is also important
for practical modeling or reference purposes, as well as forthe analysis of skyline-finding
algorithms. The two major, simple, representative random models arehypercubesandsim-
plices. Assuming that the input datasetD = {p1, . . . ,pn} is taken uniformly and indepen-
dently from the hypercube[0, 1]d, then it has been known since the 1960’s (see [1]) that the

expected number of skyline points ofD is asymptotic to(logn)d−1

(d−1)!
for largen and finited,

1If we change the definition of thek-dominant skyline to be “exactlyk” (instead of≥ k) coordinates smaller
than or equal to and at least1 smaller than, then the same types of results in this paper also hold.
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exhibiting the independence of the coordinates. (Intuitively, if one sorts according to one di-
mension, then each other dimension roughly contributeslog n skyline points.) On the other
hand, if we assume that the input points are uniformly sampled from thed-dimensional sim-
plex {|x1| + · · · + |xd| ≤ 1, xj ∈ (−1, 0]}, then the expected number of skyline points is
asymptotic toΓ

(
1
d

)
n1− 1

d , reflecting obviously a stronger negative correlation of the coordi-
nates; see [5] and the references cited there. HereΓ denotes Euler’s Gamma function. For the
number of skyline points under other models, see [2, 14, 15, 25] and the references therein.

On the other hand, in contrast to the recent growing trend of studying high dimensional
datasets, not much is known for the expected number of skyline points whend is allowed to
grow with n. Such a direction is especially useful as practical situations always deal with
finite n and finited (whose dependence onn is often not clear). The only exception along
this direction is the uniform estimates given in [18] (see also [5]) for the expected number of
skyline points in a random uniform samples ofn points from the hypercube[0, 1]d. While the

order (logn)d−1

(d−1)!
may seem slowly growing asd increases, it soon reaches the ordern whend

is aroundlog n, which is relatively small for moderate values ofn. Consequently, the skyline
points become too numerous to be of direct use. The growth of skyline points in the random
d-dimensional simplex model is even faster and we can show that almost all points are skylines
whend roughly exceeds logn

log logn
, again small forn not too large.

The cardinality of k-dominant skyline Sincek-dominant skyline were proposed (see [9])
to resolve the skyline-abundance problem, it is of interestto know their quantity under suitable
random models. A critical step in applyingk-dominant skyline is to identify an appropriatek
such that the size of thek-dominant skyline is within the acceptable ranges. But thismay not
be always feasible. Consider the5-dimensional datasetD given in Table1. The six points are
all skyline points, one (p6) is the4-dominant skyline point and no point is in the3-dominant
skyline. Clearly,p6 is to some extent better than the other points since it contains two compo-
nents with the lowest value1. However, it was already mentioned in [9] that somek-dominant
skylines may be empty. For example, if we dropp6 from D , then the five points are all skyline
points but allk-dominant skylines are empty for1 ≤ k ≤ 4. In this example, other alternatives
to k-dominant skylines have to be used. Unfortunately, such a property ofexcessive skylines
but fewk-dominant skylinesis not uncommon, and we show in this paper that, under the hyper-
cube and the simplex random models, the expected number ofk-dominant skylines both tends
to zero for largen and1 ≤ k ≤ d− 1.

point skyline 4-dominant skyline 3-dominant skyline

p1 (1, 2, 2, 3, 3) ✔ - -
p2 (3, 1, 2, 2, 3) ✔ - -
p3 (3, 3, 1, 2, 2) ✔ - -
p4 (2, 3, 3, 1, 2) ✔ - -
p5 (2, 2, 3, 3, 1) ✔ - -
p6 (2, 3, 1, 1, 3) ✔ ✔ -

Table 1: An example showing the property of many skylines butfewk-dominant skylines.
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Threshold phenomena We clarify two types of threshold phenomena for the expectednum-
ber ofk-dominant skylines in random samples.

1. Large sample, bounded dimension:

Expected number ofk-dominant skylines→
{

0, if 1 ≤ k ≤ d− 1;
∞, if k = d,

as the sample sizen→ ∞. While such a result is not new and contained as a special case
of the general theory developed in [3] for finite dimensional skylines, we will give an
independent, transparent, self-contained proof, which, in addition to being more precise,
can be extended to the case when the dimensionality goes unbounded with the sample
size.

2. Large sample, moderate dimension: There exists an integerd0 = d0(n) ≈
√

2 logn

log log n
log log n

+1

such that (see (23))

Expected number of(d− 1)-dominant skylines→
{

0, if d ≤ d0 − 1;
∞, if d ≥ d0 + 2,

asn → ∞, and the two casesd = d0 andd = d0 + 1 lead to two different oscillating
functions, the first (d = d0) fluctuating between0 and e−γ

2−e−e−1 and the second between
e−γ

2−e−e−1 andO
(

logn
log logn

)

, whereγ is Euler’s constant; see (24) and (25). We consider

only random samples from hypercubes. Other regions and other values ofk, k < d − 1
are expected to exhibit similar threshold phenomena with different d0, but the analysis
becomes excessively long and involved. More details will bediscussed elsewhere.

We see from these phenomena that the usual “curse of high dimensionality” has thus another
form here which one may term “curse of constant dimensionality,” which refers to the situation
when nok-dominant skyline point at all exists. Also the model where dimensionality can vary
with the sample size is, at least from a practical point of view, more reasonable; see Sections6
and7 for more discussions and details.

Related works In addition to the partial dominance used in definingk-dominant skylines
(see [9]), there are also several other skyline variants for retrieving more representative points;
these include skybands [24], top-k dominating queries [20, 24, 27], strong skylines [28], sky-
line frequency [10], approximately dominating representatives [21], ε-skylines [26], and top-k
skylines [8, 22]. See also the survey paper [20] for more information.

Organization of the paper This paper presents a systematic study on the asymptotic esti-
mates of the number ofk-dominant skyline points under random models. It is organized as
follows. We derive in the next section (§ 2) an asymptotic vanishing property for the number
of k-dominant skyline points under a common hypercube model when the dimensionality is
bounded. The extension to include more points in the partialdominant skyline is showed to
suffer from a similar drawback in Section3. We then prove in Section4 that changing the
underlying model from hypercube to simplex does not improveeither the asymptotic vanishing
property. Section5 deals with a categorical model for which the results have a very different
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nature. Roughly, as the total number of sample points are finite in this model, the expected
number ofk-dominant skylines will be asymptotically linear, meaningtoo many choices for
ranking or selection purposes. All these results point to the negative side for the use ofk-
dominant skylines under similar data situations. We then address the positive side in the last
few sections by considering again the hypercubes but with growing dimensionality. A sharp
threshold phenomenon is discovered in Section7 whend → ∞ with n, the asymptotic approx-
imations needed being derived in Section6. Another new threshold result is given in Section8
of the expected number of dominant cycles. Section9 provides a uniform lower-bound estimate
for the expected number of skyline points for1 ≤ k ≤ d− 1. We conclude in Section10 with
some numerical aspects of the estimates we derived.

2 Random samples from hypercubes

The simplest random model is the hypercube[0, 1]d, which is also the most natural and most
studied one. They can also be used when data are discrete in nature but span uniformly over a
sufficiently large interval.

In this section, we derive asymptotic estimates for the expected number ofk-dominant
skyline points in a random sample ofn pointsD := {p1, . . . ,pn} uniformly and independently
drawn from[0, 1]d, d ≥ 2. LetMd,k(n) denote the number ofk-dominant skyline points ofD .
We first derive a crude upper bound for the expected numberE[Md,k(n)], which implies that
E[Md,k(n)] is asymptotically zero asn grows unbounded and1 ≤ k ≤ d − 1. More precise
estimates are possible and will be derived in Section6. For a pointp ∈ [0, 1]d, denoted by
Bk(p) the region of the points in[0, 1]d thatk-dominatesp. Also, |A| denotes the volume of
the regionA.

Theorem 1(Asymptotic zero-infinity property for largen and boundedd). For fixedd ≥ 2

E[Md,k(n)] →
{

0, if 1 ≤ k ≤ d− 1;
∞, if k = d,

(1)

asn→ ∞.

Proof.The casek = d has been known since the 1960’s (see [1]) and were re-derived several
times in the literature. We assume1 ≤ k ≤ d− 1. SinceMd,k(n) ≤ Md,d−1(n) for fixedd and
for 1 ≤ k ≤ d− 1, we only prove thatE[Md,d−1(n)] → 0.

We start from the integral representation

E[Md,d−1(n)] = nP (p1 is a (d− 1)-dominant skyline point)

= n

∫

[0,1]d
(1− |Bd−1(x)|)n−1 dx, (2)

because ifx is not k-dominated by any of the othern − 1 points, they all have to lie in the
region[0, 1]d \Bk(x). Here and throughout this paper, dx is the abbreviation of dx1 · · ·dxd.

To estimate the integral in (2), we split it into two parts, one part having sufficiently small
volume (corresponding roughly to smallx1 · · ·xd) and the other with|Bd−1(x)| bounded away
from zero, rendering the term(1− |Bd−1(x)|)n−1 also small.
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For a fixed numbert satisfying1 < t < d
d−1

, define the region

Qn :=
⋃

1≤ℓ≤d

{

x ∈ [0, 1]d : xℓ ≤ n− t
d and

∏

j 6=ℓ

xj ≤ n− d−1
d

t

}

. (3)

Then

E[Md,d−1(n)] ≤ n |Qn|+ n

∫

[0,1]d\Qn

(1− |Bd−1(x)|)n−1 dx.

The volume ofQn is bounded above by

|Qn| ≤ dn− t
d

∫

x1···xd−1≤n−
d−1
d

t

x∈[0,1]d

dx.

To estimate the last integral, let

Ad(δ) :=

∫

x1···xd−1≤δ

x∈[0,1]d

dx (d ≥ 2),

where0 < δ < 1. ThenA2(δ) = δ, and

Ad(δ) =

∫ 1

δ

Ad−1

(
δ

t

)

dt (d ≥ 3).

A simple induction gives

Ad(δ) = δ
| log δ|d−2

(d− 2)!
(d ≥ 2),

and we obtain, by takingδ = n− d−1
d

t,

|Qn| = O
(
n−t(logn)d−2

)
,

On the other hand, by an inclusion-exclusion argument, we have

|Bd−1(x)| =
∑

1≤ℓ≤d

∏

j 6=ℓ

xj − (d− 1)
∏

1≤j≤d

xj . (4)

Now if x ∈ [0, 1]d \Qn, then

|Bd−1(x)| ≥ max
1≤ℓ≤d

∏

i 6=ℓ

xi ≥ n− d−1
d

t.

Thus, we have

E[Md,d−1(n)] = O
(
n1−t(log n)d−2

)
+O

(

n exp
(

−(n− 1)n− d−1
d

t
))

, (5)

and we see easily that the right-hand side tends to zero by ourchoice oft. More precisely, if
we take

t =
d

d− 1

(

1−
log
(

d
d−1

log n
)

log n

)

,
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so as to balance the twoO-terms in (5), then

E[Md,d−1(n)] = O
(

n− 1
d−1 (log n)d

)

.

This and the monotonicity ofMd,k(n) (in k) proves (1).
The fact thatE[Md,k(n)] → 0 implies that there are many cycles formed by thek-dominant

relation, but the corresponding cycle structures are very difficult to quantify; see Section10for
some preliminary results.

3 “Clouds” of k-dominant skylines

The asymptotic vanishing property (Theorem1) for the expected number ofk-dominant sky-
lines limits their usefulness if the input data are known to be in similar randomness conditions.
In particular, if one is interested in finding the top-K representative points, then the probability
of getting enough number of candidates tends to zero. A simple remedy to this situation (and
still following the same notion of partial dominance between points) is to consider the number
of points that arek-dominated by a specified number, sayj of other points, which we refer to as
the “cloud” of k-dominant skylines. But we show that this also suffers from similar vanishing
drawback under the random hypercube model, unlessj is chosen to be large enough.

Let Ld,k(n, j) denote the number of points in the random sample{p1, . . . ,pn} that arek-
dominated by exactlyj points, where then points are uniformly and independently selected
from [0, 1]d. Note thatLd,k(n, 0) is nothing butMd,k(n).

Theorem 2 (Asymptotic zero-infinity property for clouds ofk-dominant skylines). For fixed
d ≥ 2 and1 ≤ k ≤ d− 1,

E[Ld,k(n, j)] →
{

0, if 1 ≤ k ≤ d− 1;
∞, if k = d,

uniformly for0 ≤ j = o(n(1−ε)/d), asn→ ∞, whereε > 0 is an arbitrarily small constant.

The theorem roughly says that even allowing more flexible partial dominance relation, the
expected number of the skylines so constructed still approaches zero as long as the dimension-
ality is fixed.

Proof. The case whenk = d is also derived in [1] (under the name of “(j + 1)st layer, 1-st
quadrant-admissible points”), where it is showed that

E[Ld,d(n, j)] =
∑

j<i1≤···≤id−1≤n

1

i1 · · · id−1
,

from which we obtain

E[Ld,d(n, j)] ∼

(

log n
j+1

)d−1

(d− 1)!
, (6)

7



if log(n/(j + 1)) → ∞, where the symbol “∼” means that the ratio of both sides tends to1 as
n goes unbounded. Alternatively, we can use the integral representation (see [4])

E[Ld,d(n, j)] = n

(
n− 1

j

)∫

[0,1]d
(x1 · · ·xd)j (1− x1 · · ·xd)n−1−j dx

=
n

(d− 1)!

(
n− 1

j

)∫ 1

0

tj(1− t)n−1−j log
(
1
t

)d−1
dt, (7)

by the change of variablest 7→ x1 · · ·xd. A straightforward evaluation then gives (6).
Note thatE[Ld,d(n,j)]

n
equals the probability that the first-quadrant subtree of the root has

sizej in random quadtrees; see [16, Appendix]. This connection also provides several other
expressions forE[Ld,d(n, j)]. For example,

E[Ld,d(n, j)] =

(
n− 1

j

)
∑

0≤ℓ≤n−1−j

(
n− 1− j

ℓ

)
(−1)ℓ

(j + 1 + ℓ)d
;

see also [5].
For the remaining cases, we consider onlyk = d − 1 and prove thatE[Ld,d−1(n, j)] → 0.

The reason is that
∑

0≤ℓ≤j

Ld,k(n, ℓ) ≤
∑

0≤ℓ≤j

Ld,d−1(n, ℓ) (1 ≤ k ≤ d− 1).

To see this, observe that if a pointp (d−1)-dominates another pointq, thenp alsok-dominates
q for 1 ≤ k ≤ d − 2. Thus, the sum on the left-hand side, which stands for the setthat is
k-dominated by at mostj points, is less than the sum on the right-hand side, the set that is
(d− 1)-dominated by at mostj points.

To proveE[Ld,d−1(n, j)] → 0, we apply the same argument used in the proof of Theorem1
starting from the integral representation

E[Ld,d−1(n, j)] = n

∫

[0,1]d
P(exactlyj points in{p2, . . . ,pn} thatk-dominatep1)

= n

(
n− 1

j

)∫

[0,1]d
Bd−1(x)

j (1−Bd−1(x))
n−1−j dx.

Now we fix a constantt satisfying1 < t < d
d−1

, and then chooseQn as in (3). Then we have

|Qn| = O
(
n−t(logn)d−2

)
,

and
n− d−1

d
t ≤ |Bd−1(x)| ≤ 1 (x ∈ [0, 1]d \Qn).

It follows that

E[Ld,d−1(n, j)] ≤ n|Qn|+ n

(
n− 1

j

)∫

[0,1]\Qn

Bd−1(x)
j (1−Bd−1(x))

n−1−j dx

= O
(
n1−t(logn)d−2

)
+O

(

n

(
n− 1

j

)

exp
(

−(n− 1− j)n− d−1
d

t
))

.
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Now choose

t =
d

d− 1

(

1−
log((j + d

d−1
) log n)

log n

)

.

So that

n

(
n− 1

j

)

exp
(

−(n− 1− j)n− d−1
d

t
)

= O
(

n1+jn−j− d
d−1

)

= O(n− 1
d−1 ),

and
n1−t = n− 1

d−1

(
j + d

d−1

) d
d−1 (logn)

d
d−1 = O

(

n− ε
d−1 (log n)

d
d−1

)

,

uniformly for j = O(n
1−ε
d ). Thus

E[Ld,d−1(n, j)] = O
(

n− ε
d−1 (logn)d−2+ d

d−1 + n− 1
d−1

)

→ 0.

This proves the theorem.
A more precise asymptotic estimate forE[Ld,d−1(n, j)] will be derived in Section6; see

(21). Another easy special case isk = 1, which is dual to the casek = d because we have

E[Ld,1(n, j)] = E[Ld,d(n, n− 1− j)].

Thus, by (7), we have

E[Ld,1(n, j)] =
n

(d− 1)!

(
n− 1

j

)∫ 1

0

tn−1−j(1− t)j(− log t)d−1dt

∼ nj+1

(d− 1)!j!

∫ ∞

0

e−nttj+d−1dt

∼
(
j + d− 1

j

)

n−d+1,

for largen and0 ≤ j = o(
√
n).

In general, if we are to select the topK representatives using such clusters of partial
dominant skylines, then how large shouldj be? That is, what is the minimumm such that
∑

0≤j≤m Ld,k(n, j) > K? Some simulation results are given in Figure1.

4 Random samples from simplices

We show in this section that the asymptotic vanishing property of k-dominant skylines occurs
not only in the case of thed-dimensional hypercube distribution, but also in thed-dimensional
simplex distribution

Sd =

{

x : −1 ≤ xj ≤ 0 and ‖x‖ :=
∑

1≤j≤d

|xj| ≤ 1

}

.

In particular,S2 is the right triangle . Such a shape implies a negative dependence of the two
coordinates and thus a larger number of skyline points.

LetM [s]
k (n) denote the cardinality of thek-dominant skyline of the setD := {p1, . . . ,pn},

where thesen points are uniformly and independently distributed overSd. For a pointp ∈ Sd,
denote byB[s]

k (p) the region of points inSd thatk-dominatep.
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∑

0≤j≤m Ld,k(n, j)

m
0 20 40 60 80 100

0

20

40

60

80

100

(d = 2, k = 1)

(d = 3, k = 2)

(d = 3, k = 1)

(d = 4, k = 3)

(d = 4, k = 2)

(d = 4, k = 1)

∑

0≤j≤m Ld,k(n, j)

m
0 1000 2000 3000 4000 5000

0

1000

2000

3000

4000

5000

(d = 2, k = 1)

(d = 3, k = 2)

(d = 3, k = 1)

(d = 4, k = 3)

(d = 4, k = 2)

(d = 4, k = 1)

Figure 1:Simulated values of
∑

0≤j≤mLd,k(n, j) for n = 100 (left) and5000 (right). Interest-
ingly, the simulations suggest some general pattern that seems independent of the size of the
samples and they are consistent with our analysis sincem has to be very large (compared with
n).

Theorem 3 (Asymptotic vanishing property for finite-dimensional simplex). For 1 ≤ k ≤
d− 1,

E[M
[s]
d,k(n)] →

{
0, if 1 ≤ k ≤ d− 1;
∞, if k = d,

asn→ ∞.

Proof.Fork = d, it is known (see [12]) that

E[M
[s]
d,d(n)] = d!n

∫

D

(

1−
(
1−

∑

1≤i≤dxi
)d
)n−1

dx

= n
∑

0≤j<d

(
d− 1

j

)

(−1)j
Γ(n)Γ

(
j+1
d

)

Γ
(
n + j+1

d

)

= Γ
(
1
d

)
n1− 1

d

(

1 +O
(

dn− 1
d

))

,

whereΓ denotes the Gamma function. Thus the expected number of skylines tends to infinity
asn goes unbounded.

Consider now1 ≤ k < d. It suffices to examine the casek = d − 1. For a pointx ∈ Sd

(x 6= 0), let ξ := x

‖x‖
. ThenB[s]

d−1(ξ) ⊂ B
[s]
d−1(x). We now prove that

∣
∣
∣B

[s]
d−1(ξ)

∣
∣
∣ ≥ 1

d!dd
(ξ ∈ Sd, ‖ξ‖ = 1). (8)

Since‖ξ‖ = 1, there is at least one coordinate|ξj| ≥ 1
d
. Without loss of generality, assume

|ξd| ≥ 1
d
. Then

∑

1≤j<d |ξj| ≤ d−1
d

. Let

T := {y ∈ Sd : yj ≤ ξj for 1 ≤ j ≤ d− 1 andyd ≤ 0}.

We haveT ⊂ B
[s]
d−1(ξ) and

|T | = |Sd||ξd| ≥
1

d!dd
,

10



sinceT is itself a simplex. Thus (8) holds and we have

E[M
[s]
d,d−1(n)] = nd!

∫

Sd

(

1− d!
∣
∣
∣B

[s]
d−1(x)

∣
∣
∣

)n−1

dx

= O
(
n
(
1− d−d

)n)

→ 0,

asn→ ∞.
We see in such a simplex model that the expected number ofk-dominant tends to zero at

anexponentialrate (inn), in contrast to thepolynomialrate in the hypercube model. Does the
expected number ofk-dominant skyline points always tend to zero? Here is a simple, artificial
counterexample.

Example 1.Assumed = 4, k = 3. Let

A := {(−t,−2t, 3t, 4t) : 1 ≤ t ≤ 2} .

Then any two points inA are incomparable (none dominating the other) by the relation of
k-dominance. Thus, the number ofk-dominant skyline points is equal ton almost surely if
p1, . . . ,pn are uniformly and independently distributed inA.

5 A categorical model

The preceding negative results are based on assuming that the points are generated from some
continuous models, which are often a good approximation to situations where the input can as-
sume a sufficiently large range of different values. What if we assume instead that the inputs are
sampled from somediscrete space, which is also often encountered in practical applications?
We show in this section thatthe expected number ofk-dominant skylines is always linear for
1 ≤ k ≤ d, in contrast to the asymptotic zero-infinity property we derived above.

Assume thatn pointsD := {p1, . . . ,pn} are chosen uniformly and independently from the
product space

P :=
⊗

1≤j≤d

Sj ,

where
Sj = {1, 2, . . . , uj} (uj ≥ 2).

Let M [c]
d,k(n) denote the number ofk-dominant skylines inD . Unlike the continuous cases,

the variation of the random variablesM [c]
d,k(n) is easier to predict as the number of possible

points inP is finite. Interestingly, the first-order asymptotic estimate for the expected value of
M

[c]
d,k(n) is independent ofk for 1 ≤ k ≤ d, where the casek = d gives the expected skyline

count.

Theorem 4(Asymptotic linearity for finite-dimensional categoricalmodel). The expected num-
ber ofk-dominant skylines satisfies

E[M
[c]
d,k(n)]

n
→ 1

u
(1 ≤ k ≤ d; d ≥ 2), (9)

11



asn→ ∞, where
u :=

∏

1≤j≤d

uj.

Now the problem is again the excessive number of skyline points. Such a discrete model
exhibits another interesting phenomenon, not present for continuous model, namely, for fixedn,
the expected number ofk-dominant skyline points is not monotonically increasing asd grows.
Proof.Letx = (x1, x2, . . . , xd) ∈ P. Denote byB[c]

k (x) the set of points inP thatk-dominate
x. Then

E[M
[c]
d,k(n)] = nP(p1 is ak-dominant skyline point)

=
n

u

∑

x∈P



1−

∣
∣
∣B

[c]
k (x)

∣
∣
∣

u





n−1

. (10)

If y ∈ B
[c]
k (x), theny is better than or equal tox in all coordinates (at least one better) except

for the coordinates, sayj1, . . . , jℓ for 0 ≤ ℓ ≤ d− k. Thus
∣
∣
∣B

[c]
d (x)

∣
∣
∣ =

∏

1≤j≤d

xj − 1,

and for1 ≤ k < d

∣
∣
∣B

[c]
k (x)

∣
∣
∣ =

∑

0≤ℓ≤d−k

∑

1≤j1<j2<···<jℓ≤d

(∏

1≤i≤d xi
∏

1≤i≤ℓ xji
− 1

)
∏

1≤i≤ℓ

(uji − xji) . (11)

Here the product ∏

1≤i≤d xi
∏

1≤i≤ℓ xji
=

∏

i 6=jr;r=1,...,ℓ

xi,

enumerates all possible locations in thed − ℓ (≥ k) coordinates thatk-dominant skyline point
can assume, and the factor “−1” removes the possibility that alld− ℓ coordinates are equal to
the correspondingxi. The last product in (11) describes all possible locations for the otherℓ
coordinates.

Since there is a unique point1 := (

d
︷ ︸︸ ︷

1, . . . , 1) in P with
∣
∣
∣B

[c]
k (1)

∣
∣
∣ = 0, all other terms in the

sum on the right-hand side of (10) being exponentially small, we obtain (9).

In the special case when alluj = 2 for 1 ≤ j ≤ d, then

∣
∣
∣B

[c]
k (x)

∣
∣
∣ =

(
2ℓ − 1

) ∑

0≤j≤d−k

(
d− ℓ

j

)

,

wherex ∈ {1, 2}d andℓ denotes the number of times “2” occurs inx (and “1” occurringd− ℓ
times). The closed-form expression (10) simplifies

E[M
[c]
d,k(n)] =

n

2d

∑

0≤ℓ≤d

(
d

ℓ

)(

1− 2ℓ − 1

2d

∑

0≤j≤d−k

(
d− ℓ

j

))n−1

,
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Figure 2:A graphical rendering ofE[M [c]
d,k(n)] in the discrete space{0, 1}d for d = 10, k = 9

andn = 1, . . . , 25 (left) andn = 25, . . . , 1000 (right).

n
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Figure 3:Two plots of the ratioE[M [c]
d,k(n)]/n whend = 5, k = 3, 4, 5 (here the casek = 5

corresponds to the skyline),ui ≡ 2 (left) andui ≡ 5 (right). All curves in the left figure tend to
the limit2−5 = 0.03125 while those in the right to5−5 = 0.00032, which is almost zero.
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from which it follows that
E[M

[c]
d,k(n)]

n
→ 1

2d
asn→ ∞.

Since the product spaceP is finite, we can indeed fully characterize the asymptotic distri-
bution ofM [c]

d,k(n).

Theorem 5 (Asymptotic binomial distribution for finite-dimensionalcategorical model). The
distribution ofM [c]

d,k(n) is asymptotically equivalent to a binomial distribution with parameters
n and1/u.

Proof.LetXn denote the number ofj’s for whichpj = (1, . . . , 1), 1 ≤ j ≤ n. Then, obviously,
Xn is binomially distributed with parametersn and1/u, namely,

P(Xn = ℓ) =

(
n

ℓ

)
1

uℓ

(

1− 1

u

)n−ℓ

(0 ≤ ℓ ≤ n).

Now if one of the pointspj equals(1, . . . , 1), thenM [c]
d,k(n) = Xn. Thus

P

(

M
[c]
d,k(n) 6= Xn

)

≤ P (pj 6= (1, . . . , 1)) =

(

1− 1

u

)n

→ 0,

and thus the distribution ofM [c]
d,k(n) is asymptotic to the distribution ofXn.

In particular, we see that the variance ofM
[c]
d,k(n) is also asymptotically linear

V[M
[c]
d,k(n)]

n
→ 1

u

(

1− 1

u

)

(1 ≤ k ≤ d).

The consideration can be easily extended to the case of non-uniform discrete distributions.
More generally, assume that the data set is sampled from the set {a1, . . . , am} ⊂ P and
each point is endowed with the probabilityP(aj). Let pk(aj) be the probability thataj is k-
dominated, that is,pk(aj) is equal to the sum ofP(ai) such thatai k-dominatesaj . Then the
expected number ofk-dominant skyline points satisfies

E[M
[c]
d,k(n)] = n

∑

1≤j≤m

P(aj) (1− pk(aj))
n−1 .

Let
qk :=

∑

pk(aj)=0
1≤j≤m

P(aj)

be the probability of points in{a1, . . . , am} that are notk-dominated. Then since the expected
number ofk-dominant is expressed as a finite sum, we have

E[M
[c]
d,k(n)]

n
→ qk, asn→ ∞.

Note thatpk may range from zero to one.
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6 Uniform asymptotic estimates forE[Md,d−1(n)]

We derive in this section two uniform asymptotic estimates forE[Md,d−1(n)] in two overlapping
ranges. To state our results, we need to introduce the Lambert W -function (see [13]), which is
implicitly defined by the equation

W (z)eW (z) = z. (12)

For our purpose, we takeW to be the principal branch that is positive for positivez and satisfies
the asymptotic approximation

W (x) = log x− log log x+
log log x

log x
+O

(
(log log x)2

(log x)2

)

, (13)

for largex.
Our first asymptotic estimate coversd in the range

3 ≤ d ≤
√

2 logn

W (2 logn) +K
,

whereK → ∞ with n, and the second the range

(log n)1/3 ≪ d ≤ 2

√

log n

W (logn)− C
,

for some constantC > 0. The upper bounds of the two ranges do not differ significantly but
are sufficient for our purposes of proving the threshold phenomenon, which we discuss in the
next section.

Very roughly, the expected number of(d−1)-dominant skylines is asymptotically negligible
in the first range, and undergoes the phase transition from being almost zero to unbounded in
the second.

Theorem 6(Uniform estimate for largen and moderated). If d ≥ 3 and

2 logn

d2
−W (2 logn) → ∞, (14)

then

E[Md,d−1(n)] =
n− 1

d−1

d− 1
Γ

(
1

d− 1

)d (

1 +O
(

dn
− 1

(d−1)(d−2)

))

, (15)

uniformly ind for largen.

Note that ifd is of the form

d =

⌊√

2 logn

W (2 logn) + 2v

⌋

,
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then

dn− 1
(d−1)(d−2) = e−v

(

1 +O

(
(1 + |v|)W (2 logn)3/2√

logn

))

,

which becomeso(1) if v → ∞.
On the other hand, whend = 2, we have, by (2),

E[Md,d−1(n)] = n

∫ 1

0

∫ 1

0

(1− x− y + xy)n−1 dxdy =
1

n
.

Proof.We again begin with the integral representation (2), whereBd−1(x) is given in (4).
By the elementary inequalities (see [6])

e−nt(1− nt2) ≤ (1− t)n ≤ e−nt (n ≥ 1; t ∈ [0, 1]),

we have
En,d − E ′

n,d ≤ E[Md,d−1(n + 1)] ≤ En,d,

where

En,d := n

∫

[0,1]d
e−n|Bd−1(x)|dx,

E ′
n,d := n2

∫

[0,1]d
|Bd−1(x)|2e−n|Bd−1(x)|dx.

We will see thatE ′
n,d is asymptotically of smaller order thanEn,d. The intuition here is that

most contribution to the integral comes fromx for which |Bd−1(x)| is small, implying that
(1 − |Bd−1(x)|)n is close toe−n|Bd−1(x)|. Also replacingn + 1 by n in the resulting asymp-
totic approximation gives rise only to smaller order errors. However, the uniform error bound
represents the most delicate part of our proof.

We start with the asymptotic evaluation ofEn,d. By making the change of variablesxj 7→
yj
N

, whereN := n
1

d−1 ,

En,d = N−1

∫

[0,N ]d
e
−y1···yd

(

1
y1

+···+ 1
yd

)

+ d−1
N

y1···yddy

= N−1 (φd(n)− fd(n) +Rd(n)) , (16)

where

φd(n) :=

∫

Rd
+

e
−y1···yd

(

1
y1

+···+ 1
yd

)

dy,

fd(n) :=

(
∫

Rd
+

−
∫

[0,N ]d

)

e
−y1···yd

(

1
y1

+···+ 1
yd

)

dy,

Rd(n) :=

∫

[0,N ]d
e
−y1···yd

(

1
y1

+···+ 1
yd

) (

e
d−1
N

y1···yd − 1
)

dy.

We focus on the evaluation of the integralφd(n), leaving the lengthier estimation of the two
error termsfd(n) andRd(n) to Appendix A.
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We now carry out the change of variablestj :=
∏

ℓ 6=j yℓ for 1 ≤ j ≤ d, the Jacobian being

∂(y1, . . . , yd)

∂(t1, · · · , td)
:=






∂y1
∂t1

· · · ∂y1
∂td

...
. . .

...
∂yd
∂t1

· · · ∂yd
∂td
,






whose determinant is equal to1/ detJ , where

J :=
∂(t1, . . . , td)

∂(y1, · · · , yd)
.

Note that the entries ofJ satisfy

Ji,j =

{
0, if i = j;
y1 · · · yd
yiyj

, if i 6= j.

It follows that
det J = (y1 · · · yd)d−2 det T,

whereT is ad× d matrix withTi,i = 0 andTi,j = 1 for i 6= j. The determinant ofT is seen to
be(−1)d−1(d− 1) by adding all rows ofT to the first, by taking the factord− 1 out, and then
by subtracting the first row from all other rows. Thus we have

det J = (−1)d−1(d− 1)(y1 · · · yd)d−2

= (−1)d−1(d− 1)(t1 · · · td)
d−2
d−1 .

Thus, by the integral representation of the Gamma function

Γ(x) =

∫ ∞

0

tx−1e−tdt (x > 0),

we obtain

φd(n) =
1

d− 1

∫

Rd
+

e−(t1+···+td)(t1 · · · td)−
d−2
d−1 dt

=
1

d− 1

(∫ ∞

0

e−uu−
d−2
d−1 du

)d

=
1

d− 1
Γ

(
1

d− 1

)d

.

We will prove in Appendix A that

fd(n)

φd(n)
= O

(

dn− 1
(d−1)(d−2)

)

,

Rd(n)

φd(n)
= O

(

d2−dn− 1
d−1

)

. (17)
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In a similar manner, we have

E ′
n,d = O

(

n2

∫

Rd
+

(

x1 · · ·xd
∑

1≤j≤d
1
xj

)2

e
−nx1···xd

∑

1≤j≤d
1
xj dx

)

= O

(

n− 2
d−1

d− 1

∫

Rd
+

(t1 + · · ·+ td)
2 e−(t1+···+td)(t1 · · · td)−

d−2
d−1 dt

)

.

The last integral in a more general form can be evaluated as follows. Let [zn]f(z) denote the
coefficient ofzn in the Taylor expansion off .

∫

Rd
+

(t1 + · · ·+ td)
j e−(t1+···+td)(t1 · · · td)−

d−2
d−1 dt

= j![zj ]

∫

Rd
+

e−(1−z)(t1+···+td)(t1 · · · td)−
d−2
d−1 dt

= j![zj ]
Γ( 1

d−1
)d

(1− z)
d

d−1

= j!Γ

(
1

d− 1

)d( 1
d−1

+ j

j

)

,

for j ≥ 0. Thus

E ′
n,d

φd(n)
= O

(

n− 2
d−1

)

.

Collecting these estimates proves the theorem.
Whend increases beyond the range (14), the error termfd(n) (see (16)) is no more negligi-

ble, and a more delicate analysis is needed.

Theorem 7(Uniform asymptotic estimate in the critical range). If

d

(log n)1/3
→ ∞ and d ≤ 2

√
√
√
√

log n

W
(

4 logn
(e log 2)2

) , (18)

then, withρ := d

en1/d2
,

E[Md,d−1(n)] =
n− 1

d−1

d− 1
Γ

(
1

d− 1

)d(
1

2− e−ρ
+O

(
ρ(ρ+ 1)e−ρ

(2− e−ρ)3

(
1

d
+

logn

d3

)))

, (19)

uniformly ind for largen.

The proof of this theorem is very long and is thus relegated inAppendix B. The crucial
step is to prove an asymptotic estimate forfd(n) by an inductive argument by deriving first a
recurrence of the form

fd(n) = gd(n) + Φ[fd](n) + smaller order terms,
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where

gd(n) :=
∑

1≤j≤d−2

(
d

j

)

(−1)j−1(d− 1− j)j−1Γ
(

1
d−1−j

)d−j

n
1

d−1
− 1

d−1−j ,

andΦ is an operator defined by

Φ[fd](n) :=
∑

1≤j≤d−2

(
d

j

)

(−1)jn
1

d−1
− 1

d−1−j

∫

(1,∞)j
(v1 · · · vj)−1− 1

d−1−j fd−j(nv1 · · · vj)dv.

Then (19) follows from iterating the operator and a careful analysisof the resulting sums.

Corollary 1. If d is of the form

d =

⌊√

2 logn

W (2 logn)− 2v − 2

⌋

,

then

E[Md,d−1(n)]

n
− 1

d−1

d−1
Γ
(

1
d−1

)d
∼







1, if v → −∞;
1

2−e−ev , if v = O(1);
1
2
, if v → ∞.

(20)

Proof.Observe that

ρ =
d

en1/d2
= ev

(

1 +O

(
1 + |v|

W (2 logn)

))

.

Thus (20) follows from this and (19).
Combining the ranges (14) and (18) of the two estimates (15) and (19), we see that

Corollary 2. If

3 ≤ d ≤ 2

√

log n

W (4e−2 log n)
,

then

E[Md,d−1(n)] ∼
1

2− e−ρ
· n

− 1
d−1

d− 1
Γ

(
1

d− 1

)d

,

uniformly ind.

We conclude from these estimates thatE[Md,d−1(n)] is, modulo a constant term, very well

approximated byn
− 1

d−1

d−1
Γ
(

1
d−1

)d
.

Remark. A similar analysis as that for (15) leads to (Ld,k(n, j) is defined in Section3)

E[Ld,d−1(n, j)] ∼ cd,jn
− 1

d−1 , (21)

for each finite integerj ≥ 0, where

cd,j :=
1

(d− 1)j!

∫

Rd
+

(v1 + · · ·+ vd)
je−(v1+···+vd)(v1 · · · vd)−

d−2
d−1 dv

=
1

d− 1
Γ

(
1

d− 1

)d(
j + 1

d−1

j

)

,

uniformly when 2 logn
d2

−W (2 logn) → ∞ andj = o
(

n
1−ε
d

)

, ε ∈ (0, 1). The consideration

for largerd as for (19) is similar.
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7 Threshold phenomenon forE[Md,d−1(n)] whend→ ∞
With the asymptotic estimates (15) and (19) we derived in the previous section, we prove in this
section a less expected threshold phenomenon for the expected number of(d − 1)-dominant
skylinesE[Md,d−1(n)] (in random samples fromd-dimensional hypercube) whend− 1 is near
√

2 logn
W (2 logn)

.

Theorem 8(Threshold phenomenon). Let

d0 = d0(n) :=

⌊√

2 logn

W (2 logn)

⌋

+ 1, (22)

whereW denotes the Lambert-W function. Then the expected number of(d − 1)-dominant
skyline points satisfies

lim
n→∞

E[Md,d−1(n)] →
{

0, if d < d0;
∞, if d > d0 + 1.

(23)

If d = d0, thenlimn→∞E[Md,d−1(n)] does not exist and is oscillating between0 and e−γ

2−e−e−1

E[Md,d−1(n)] ∼
e−γ

2− e−e−1 ϕ0

(√

2 logn

W (2 logn)

)

, (24)

whereϕ0(x) is a bounded oscillating function ofx defined by

ϕ0(x) := e−{x}x−2{x}.

If d = d0+1, thenlimn→∞E[Md,d−1(n)] does not exist and is oscillating betweene
−γ

2−e−e−1 and

O
(

logn
log logn

)

E[Md,d−1(n)] ∼
e−γ

2− e−e−1 ϕ1

(√

2 logn

W (2 logn)

)

, (25)

whereϕ1(x) is an oscillating function ofx defined by

ϕ1(x) := e1−{x}x2−2{x}.

Proof. By monotonicity, it suffices to examine the asymptotic behavior of E[Md,d−1(n)] for d
neard0. Observe that if

d = d0 +m =

√

2 logn

Wn
− τn +m+ 1,

wherem is an integer andτ denotes the fractional part of
√

2 logn
W (2 logn)

, namely,

τn :=

{√

2 logn

Wn

}

=

√

2 logn

Wn
−
⌊√

2 logn

Wn

⌋

,
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then

ρ =
d

en1/d2
= e−1

(

1 +O

(

W
3
2
n |m+ τn|√

log n

))

→ e−1,

where, here and throughout the proof,Wn := W (2 logn). Thus for boundedm

1

2− e−ρ
→ 1

2− e−e−1 .

On the other hand, by (19) and the asymptotic estimateΓ(x) = x−1 − γ +O(x) asx → 0,
whereγ denotes the Euler constant, we see that

n− 1
d−1

d− 1
Γ

(
1

d− 1

)d

= e−γ+m−τn

(
2 logn

Wn

)m−τn
(

1 +O

(

W
3
2
n (m+ τn + 1)2√

log n

))







→ 0, if m ≤ −1;

∼ e−γϕ0

(√
2 logn
Wn

)

, if m = 0;

∼ e−γϕ1

(√
2 logn
Wn

)

, if m = 1;

→ ∞, if m ≥ 2.

This proves (23), (24) and (25). It remains to consider more precisely the behavior ofϕ0(x)
andϕ1(x).

Obviously, by definition,ϕ0(x) ∈ (0, 1] andϕ1(x) ∈ [1,∞) because{x} ∈ [0, 1) for
x ∈ R+. If {x} = 0, thenϕ0(x) = 1; more generally,

ϕ0(x) →
{

1, if {x} log x = o(1);
0, if {x} log x→ ∞.

On the other hand,

ϕ1(x) →
{

1, if (1− {x}) log x = o(1);
∞, if (1− {x}) log x→ ∞.

We now prove that

τn = 0 if and only if n = ii
2

(i ≥ 2). (26)

First, if n = ii
2
, then2 logn = 2i2 log i and the positive solution to the equation (see (12))

Wne
Wn = 2i2 log i,

is given byWn = 2 log i, as can be easily checked. Thus
√

2 logn

Wn
= i (i ≥ 2). (27)

Conversely, if the relation (27) holds, then the positive solution to the equations

2 logn

Wn

= i2, andWne
Wn = 2 logn,
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is given byn = ii
2
. This proves (26).

It follows particularly, by (19), that

lim
i→∞

E[Mi,i−1]
(

ii
2
)

=
e−γ

2− e−e−1 .

This completes the proof of the theorem.
The functiond0 of n on the right-hand side of (22) grows extremely slowly. Letai := ii

2

with a1 := 2. Thend = i+1 for ai ≤ n < ai+1, which is small for almost all practical sizes of
n

d0 =







2, if 2 ≤ n ≤ 15;
3, if 16 ≤ n ≤ 19682;
4, if 19683 ≤ n ≤ 42949 67295;
5, if 42949 67296 ≤ n ≤ 2.98 · · · × 1017;
6, if 2.98 · · · × 1017 ≤ n ≤ 1.03 · · · × 1028.

This partly explains why the asymptotic vanishing propertyof E[Md,k(n)] for largen and fixed
d is “invisible” for moderate values ofn.

Note that we did not replace the Lambert-W function in (22) by its asymptotic expansion
(13) so as to make the expression more transparent, the reason being that no matter how many
terms of the asymptotic expansion ofW we use, the resulting expression is nevero(1). This
is because all terms in the expansion are of orders in powers of log log n andlog log logn, and
they are all much smaller thanlog n in the numerator of the first term on the right-hand side of
(22).

Extending the same analysis to other values ofk becomes more difficult and messy except
for k = 1 for which we have

E[Md,1(n)] = n

∫

[0,1]d
(x1 · · ·xd)n−1dx = n1−d.

Note that this always tends to zero no matter how large the value ofd is.
On the other hand, for1 ≤ k ≤ d− 1, we can derive the more precise estimate

E[Md,k(n)] = O

(

n

∫

[0,1]d
exp

(

−n
∑

1≤j1<···<jk≤d

xj1 · · ·xjk

)

dx

)

= O
(

n1− d
k

)

.

However, a more precise uniform asymptotic approximation (in n, d, andk) is less obvious and
describing the corresponding threshold phenomena if any for other values ofk also remains
unclear. Intuitively, the asymptotic vanishing property is expected to hold as long ask ≥ d/2
no matterd is finite or growing withn because the probability of ak-dominance for a random
pair of points is larger than one half, meaning that it is lesslikely to find k-dominant skyline in
such a case.

8 Expected number of dominant cycles

The asymptotic zero-infinity property can be viewed from another different angle by examining
thenumber of dominant cycles.
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Definition. We say thatm points{p1, . . . ,pm} form ak-dominant cycle (of lengthm) if pi

k-dominatespi+1 for i = 1, . . . , m− 1 andpm k-dominatesp1.

Roughly, the number ofk-dominant cycles is inversely proportional to the number ofk-
dominant skylines. Note that by transitivity there is no cycle whenk = d. Thus the number
of cycles seems a better measure to clarify the structure ofk-dominant skylines. However, the
general configuration of the cycle structure is very complicated. We contend ourselves in this
section with the consideration of cycles of lengthd whenk = d− 1.

Lemma 1. Let Cn,d denote the number of(d − 1)-dominant cycles of lengthd in a random
sample ofn points uniformly and independently chosen from[0, 1]d. Then the expected value
ofCn,d satisfies

E[Cn,d] =

(
n

d

)
d!2−d

d
. (28)

Proof.Since the total number of cycles of lengthd is given by
(
n
d

)
d!
d

, we see that

E[Cn,d] =

(
n

d

)
d!

d
P ({p1, . . . ,pd} form a(d− 1)-dominant cycle of lengthd) .

Assume that{p1, . . . ,pd} form a(d− 1)-dominant cycle of lengthd. Let

pi = (pi,1, . . . , pi,d) (i = 1, . . . , d).

Then for each coordinatej, there exists anℓ such that

p1,j > p2,j > · · · > pℓ,j, pℓ,j < pℓ+1,j, pℓ+1,j > · · · > pd,j > p1,j ,

and theℓ’s are all distinct (d! cases). Thus the probability of the event that{p1, . . . ,pd} form a
(d− 1)-dominant cycle is given by

d!

d!d
,

from which (28) follows.
In particular, we see that

E[Cn,2] =
n(n− 1)

4
,

which means that half of the pairs are cycles, rendering the1-dominant skylines less likely to
occur. The first few otherE[Cn,d] are given by

{E[Cn,d]}d≥3 =
{

n(n−1)(n−2)
108

, n(n−1)(n−2)(n−3)
55296

, n(n−1)(n−2)(n−3)(n−4)
1036800000

,

n(n−1)(n−2)(n−3)(n−4)(n−5)
1160950579200000

, . . .
}

.

We see that the denominator grows very fast and we expect another type of threshold phe-
nomenon.

Let

d1 :=

⌊
logn

W (e−1 log n)
+ 1

2

⌋

,
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andτn denote the fractional part of logn
W (e−1 logn)

+ 1
2
. Also let

υ(t) :=
1 + 1

2
log 2π

W + 1
+

W

(log n)(W + 1)

(

t

−12W 3 + (35− 12 log 2π)W 2 + (34− 24 log 2π)W + 23 + (log 2π)2

24(W + 1)3

)

,

wheret ∈ R andW representsW (e−1 log n). Note thatW is of orderlog log n.

Theorem 9. The expected number of(d− 1)-dominant cycles of lengthd satisfies

lim
n→∞

E[Cn,d] →
{

∞, if 2 ≤ d < d1;
0, if d > d1.

Whend = d1, we can writeτn = υ(t); then

lim
n→∞

E[Cn,d]







→ 0 if t→ −∞;
∼ et, if t = O(1);
→ ∞, if t→ ∞.

(29)

Proof.Write

d = d1 −m =
logn

W (e−1 log n)
+ 1

2
− v,

wherev = m+ τn. Then a straightforward calculation using (28) and Stirling’s formula gives

1

d
logE[Cn,d] = v

(
W (e−1 logn) + 1

)
− 1− 1

2
log 2π

+O

(
W (e−1 log n)2 + (v2 + 1)W (e−1 log n)

logn

)

.

ThusE[Cn,d] → ∞ if m ≥ 1 andE[Cn,d] → −∞ if m ≤ −1. Whenm = 0 (v = τn), this
asymptotic expansion is insufficient and we need more terms.If v = τn = υ(t), then the same
calculation as above gives

E[Cn,d] = et
(

1 +O

(
W 2 + 1

log n

))

.

This implies (29).
Let

ai :=

⌊(
i− 1

2

e

)i− 1
2

⌋

+ 1 (i ≥ 1).

Then
d1 = d1(n) = i if ai ≤ n < ai+1.

The first few values ofai are given as follows.

i 4 5 6 7 8 9 10 11 12
ai 3 10 49 290 2022 16165 145405 1453435 15982276
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9 A uniform lower bound for E[Md,k(n)]

The convergence rate in (1) is very slow if d is large andk is close tod. It is interesting to
characterize the transition ofMd,k(n) from zero ton ask increases under the condition thatd
andn are fixed. However, the exact characterization is not easy, so we derive instead a lower
bound that provides a good approximation to the real transition.

Theorem 10(Uniform lower bound ind, k andn). Define

βd,k :=
∑

0≤j≤d−k

(
d

j

)

2−d.

Then, forn ≥ 1 and1 ≤ k ≤ d− 1,

E[Md,k(n)] ≥ nIn(βd,k), (30)

where

In(x) := x

∫ 1

x

t−2 (1− t)n−1 dt.

Proof.Select two random pointsx,y uniformly and independently in[0, 1]d. Obviously,

P (x k-dominatesy) = βd,k.

On the other hand, by definition,P (x k-dominatesy) =
∫

[0,1]d
|Bk(x)| dx. Thus

∫

[0,1]d
|Bk(x)| dx = βd,k.

Let
F (t) =

∣
∣
{
x ∈ [0, 1]d : |Bk(x)| ≤ t

}∣
∣ ,

be the distribution function of|Bk(x)|. By Markov inequality

t (1− F (t)) ≤
∫

[0,1]d
|Bk(x)| dx (t ∈ (0, 1)).

Thus

F (t) ≥ 1−
∫

[0,1]d
|Bk(x)| dx
t

= 1− βd,k
t
.

Define

G(t) := max

{

1− βd,k
t
, 0

}

.

ThenF (t) ≥ G(t). Now

E[Md,k(n)] = n

∫

[0,1]d
(1− |Bk(x)|)n−1 dx = n

∫ 1

0

(1− t)n−1 dF (t)

dt
. (31)
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Figure 4:Simulation result ofE[Md,k(n)] and the lower bound(30) for n = 1000, d = 100 and
k from50 to 100.

Since the integral on the right-hand side of (31) becomes smaller if the distribution function
F (t) is replaced byG(t), we have

E[Md,k(n)] ≥ n

∫ 1

0

(1− t)n−1dG(t)

dt
,

from which (30) follows.
A useful, convergent asymptotic expansion forIn(x), derived by successive integration by

parts, is as follows.

In(x) =
∑

j≥0

(−1)j(j + 1)!

n(n+ 1) · · · (n + j)
x−j−1(1− x)n+j

=
(1− x)n

nx
− 2(1− x)n+1

n(n + 1)x2
+ · · · ,

as long asx≫ 1/n. In particular,In(x) → 0 in this range ofx. If xn→ c > 0, then

In(x) → c

∫ ∞

c

u−2e−udu,

the latter tending to1 asc approaches zero.
We see that the transition ofIn(x) from zero to one occurs atx ≍ n−1 (meaning thatx is of

order proportional ton−1). In terms ofd andk, this arises whend→ ∞ andβd,k ≍ n−1. Now,
by known estimate for binomial distribution (see [17] and the references cited there)

βd,k ≍ (2α− 1)−1d−1/22−dα−αd(1− α)−(1−α)d,

whenk ≥ d/2+K
√
d, whereα := k/d andK > 1 is a constant. We deduce from this that the

transition ofIn(βd,k) from zero to one occurs atc logn for somec ∈ (0, 1). The exact location
of this c matters less sinceIn is simply a lower bound; see Figure4.
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10 Conclusions

While the notion ofk-dominant skyline appeared as a natural means of solving theabundance
of skyline, its use in diverse contexts has to be carefully considered, in view of the results
we derived in this paper. We summarize our findings and highlight suggestions for possible
practical uses.

The asymptotic results we derived in this paper are either ofa vanishing type or of a blow-
up nature; briefly, they are either zero or infinity when the sample size goes unbounded, making
the selection of representative points more subtle. The expected number ofk-dominant skyline
points approaches zero under either of the following situations.

• Hypercube: bothd andk < d bounded;

• Simplex: bothd andk < d bounded;

• Hypercube: extending thek-dominant skyline to the dominance by a cluster ofj points
with bothd andk bounded.

In all cases, zero appears as the limit whenn → ∞. However, for practical purposes,n is
always finite, and thus the above limit results become less useful from a computational point
of view. One needs asymptotic estimates that are uniform ind, k andn. But such results are
often very difficult. The uniform asymptotic approximation(15) we obtained leads to several
interesting consequences, including particularly the threshold phenomenon (23).

We conclude this paper by showing how the asymptotic resultswe derived above can be ap-
plied in more practical situations. Assume that our sample is of size, sayn = 104 or n = 105,
and the dimensionalityd is in the range{4, 5, 6, 7, 8} (smallerd may result in more biased in-
ferences while largerd will yield too many skyline points). We also assume that our data set is
sufficiently random and can be modeled by the hypercube model. If our aim is to choose a rea-
sonably small number of candidates for further decision making, then how can our asymptotic
estimates help?

First, for this range ofn andd, the expected numbers of skyline points can be easily com-
puted by the recurrence relation (see [5])

µn,d =
1

d− 1

∑

1≤j≤d−1

H(d−j)
n µn,j (d ≥ 2),

whereµn,d := E[Md,d(n)], H
(a)
n :=

∑

1≤j≤n j
−a are the harmonic numbers andµn,1 := 1, and

are given approximately by

{164.7, 426.3, 902.7, 1633.1, 2603} (n = 104; d = 4, 5, 6, 7, 8),

and
{304.9, 955.8, 2432.1, 5239.4, 9845} (n = 105; d = 4, 5, 6, 7, 8),

which are often too many for further consideration. So we turn to (d − 1)-dominant skyline
and estimate their numbers by our asymptotic approximations. However, both Theorems6
and7 have poor error terms, and a better numerical approximationto E[Md,d−1(n) for most
moderately values ofn andd is given by

φd(n)− gd(n) =
∑

0≤j≤d−2

(
d

j

)

(−1)j(d− 1− j)j−1Γ
(

1
d−1−j

)d−j

n
1

d−1
− 1

d−1−j .
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We thus obtain, for example, the following numerical values

E[Md,d−1(10
4)] ≈

d 4 5 6 7 8

φd(n)− gd(n) 0.61 5.06 24.85 88.90 243.96
Monte Carlo 0.57 4.82 23.98 83.89 226.65

and

E[Md,d−1(10
5)] ≈

d 4 5 6 7 8

φd(n)− gd(n) 0.31 3.69 24.94 115.31 404.7
Monte Carlo 0.29 3.61 24.38 111.79 386.08

From these tables, one can choose a suitabled according to the need of practical uses. Here we
also see the characteristic property of the skylines, either very few or very many points.

Our Monte Carlo simulations are carried out by a three-phasealgorithm (extending our
two-phase maxima-finding one in [12]) for finding thek-dominant skylines. Briefly, the first
two phases are modified from the algorithms presented in [12] and the last phase removes all
cycles.
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Appendix A. Error analysis: d ≤
√

2 logn
W (2 logn)+K

Recall thatN := n
1

d−1 and consider the integral

fd(n) =

(
∫

Rd
+

−
∫

[0,N ]d

)

e
−y1···yd

(

1
y1

+···+ 1
yd

)

dy =
∑

1≤j≤d

(
d

j

)

(−1)j−1φd,j(n),

where

φd,j(n) :=

∫

[0,N ]d−j×(N,∞)j
e
−y1···yd

(

1
y1

+···+ 1
yd

)

dy. (32)

So ourφd(n) =
1

d−1
Γ
(

1
d−1

)d
corresponds toφd,0(n); see (16).

Proposition 1. Letd ≥ 3 satisfies2 logn
d2

−W (2 logn) → ∞. Then

fd(n) = O
(

φd(n)dN
− 1

d−2

)

, (33)

uniformly ind.

Proof.We first prove that uniformly for1 ≤ j ≤ d,

φd,j(n) = O
(

Γ
(

1
d−2

)d−1
N− j

d−2

)

. (34)

Consider first the range1 ≤ j ≤ d − 2. By extending the integration ranges and then carrying
out the changes of variablesyℓ 7→ Nvd−ℓ+1 for d− j + 1 ≤ ℓ ≤ d, we obtain the bounds

φd,j(n) = N j

∫

(1,∞)j

∫

[0,N ]d−j

e
−Njv1···vjy1···yd−j

(

1
y1

+···+ 1
yd−j

+ 1
Nv1

+···+ 1
Nvj

)

dydv

≤ N j

∫

(1,∞)j

∫

R
d−j
+

e
−Njv1···vjy1···yd−j

(

1
y1

+···+ 1
yd−j

)

dydv.
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By the change of variablesyj 7→ λ−
1

d−1xj for 1 ≤ j ≤ d, we have, forλ > 0,

∫

Rd
+

e
−λy1···yd

(

1
y1

+···+ 1
yd

)

dy =
Γ
(

1
d−1

)d

d− 1
λ−

d
d−1 (d ≥ 2).

It follows that

φd,j(n) ≤
Γ
(

1
d−1−j

)d−j

d− 1− j
N− j

d−1−j

∫

(1,∞)j
(v1 · · · vj)−1− 1

d−1−j dv

= (d− 1− j)j−1Γ
(

1
d−1−j

)d−j

N− j
d−1−j

= O
(

Γ
(

1
d−2

)d−1
N− j

d−2

)

,

uniformly for 1 ≤ j ≤ d− 2. The remaining two casesj = d− 1, d are much smaller; we start
with φd,d(n). By the same analysis used above, we have

φd,d(n) =

∫

(N,∞)d
e
−x1···xd

(

1
x1

+···+ 1
xd

)

dx

≤
∫

(N,∞)d
e
−x1···xd

(

1
x1

+···+ 1
xd−1

)

dx

≤
∫

(N,∞)d−1

e
−Nx1···xd−1

(

1
x1

+···+ 1
xd−2

)

x1 · · ·xd−1

(
1
x1

+ · · ·+ 1
xd−2

)dx.

By the inequality
∫ ∞

N

t−αe−λtdt ≤ λ−1N−αe−λN (α ≥ 0, λ > 0), (35)

we obtain

φd,d(n) ≤ N−2

∫

(N,∞)d−2

e
−N2x1···xd−2

(

1
x1

+···+ 1
xd−2

)

x1 · · ·xd−2

(
1
x1

+ · · ·+ 1
xd−2

)dx

≤ · · ·

≤ N−2−4−···−2(d−3)

∫

(N,∞)2

e−Nd−2(x1+x2)

(x1 + x2)d−2
dx

= N−(d−2)(d−3)

∫ ∞

2N

e−Nd−2w

wd−2
(w − 2N)dw

≤ 23−dN−d2+3d−1e−2Nd−1

.

Thus

φd,d(n) = O
(

2−dn−d+2+ 1
d−1 e−2n

)

. (36)
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Finally,

φd,d−1(n) ≤
∫

(N,∞)d−1

e−x1···xd−1

x1 · · ·xd−1

(
1
x1

+ · · ·+ 1
xd−1

) dx

≤ 1

d− 1

∫

(N,∞)d−1

e−x1···xd−1

(x1 · · ·xd−1)
1+ 1

d−1

dx,

by the inequality of arithmetic and geometric means

1

d− 1

(
1

x1
+ · · ·+ 1

xd−1

)

≥ (x1 · · ·xd−1)
1

d−1 .

Applying successively the inequality (35), we obtain

φd,d−1(n) ≤
N−1− 1

d−1

d− 1

∫

(N,∞)d−2

e−Nx1···xd−1

(x1 · · ·xd−2)
2+ 1

d−1

dx

≤ · · ·

≤ N−(d2−2d+2)

d− 1
e−Nd−1

.

It follows that

φd,d−1(n) = O
(

d−1n−d+1− 1
d−1 e−n

)

. (37)

We see that bothφd,d(n) andφd,d(n) are much smaller than the right-hand side of (34).
The remaining case is whend = 2. Obviously,

φ2,1(n) <

∫ ∞

0

∫ ∞

N

e−y1−y2dy2dy1 = e−N .

The upper bound (33) then follows from summingφd,j(n) for j from 1 to d using (34)

∑

1≤j≤d

(
d

j

)

(−1)j−1φd,j(n) = O

(

Γ
(

1
d−2

)d−1
∑

j≥1

dj

j!
N− j

d−2

)

= O
(

Γ
(

1
d−2

)d−1
dN− 1

d−2

)

,

sincedN− 1
d−2 → 0 for d in the range (14).

It remains to estimateRd(n), which can be proved to be bounded above by

Rd(n) = O

(

d

N

∫

Rd
+

y1 · · · yde−y1···yd

(

1
y1

+···+ 1
yd

)

dy

)

= O

(

1

N
Γ

(
2

d− 1

)d
)

;

this proves (17).
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Appendix B. Proof of Theorem7

We prove Theorem7 in this Appendix. Our method of proof consists in a finer evaluation of
the integralsφd,j(n), leading to a more precise asymptotic approximation tofd(n).

Proposition 2. Uniformly ford in the range(18)

fd(n) ∼
1− e−ρ

2− e−ρ
· 1

d− 1
Γ

(
1

d− 1

)d

, (38)

whereρ := d

en1/d2
.

Proof.Consider again (32) and start with the changes of variablesyℓ 7→ Nvd−ℓ+1 for d−j+1 ≤
ℓ ≤ d,

φd,j(n) = N j

∫

(1,∞)j

∫

[0,N ]d−j

e
−λN,j(v)y1···yd−j

(

1
y1

+···+ 1
yd−j

+ 1
Nv1

+···+ 1
Nvj

)

dydv,

whereλN,j(v) := N jv1 · · · vj . Then we carry out the change of variables

yℓ 7→ λN,j(v)
− 1

d−1−j xℓ (1 ≤ ℓ ≤ d− j),

and obtain
φd,j(n) = ψd,j(n) + ωd,j(n),

where

ψd,j(n) = N− j
d−1−j

∫

(1,∞)j
(v1 · · · vj)−1− 1

d−1−j

∫

[0,N0]d−j

e
−x1···xd−j

(

1
x1

+···+ 1
xd−j

)

dxdv,

with
N0 := N

d−1
d−1−j (v1 · · · vj)

1
d−1−j = (nv1 · · · vj)

1
d−1−j ,

and the error introduced is bounded above by

ωd,j(n) := N− j
d−1−j

∫

(1,∞)j
(v1 · · · vj)−1− 1

d−1−j

×
∫

[0,N0]d−j

e
−x1···xd−j

(

1
x1

+···+ 1
xd−j

)
(

e
−

x1···xd−j
N0

(

1
v1

+···+ 1
vj

)

− 1

)

dxdv

= O

(

N−1− 2j
d−1−j

∫

(1,∞)j
(v1 · · · vj)−1− 2

d−1−j

(
1
v1

+ · · ·+ 1
vj

)

×
∫

R
d−j
+

e
−x1···xd−j

(

1
x1

+···+ 1
xd−j

)

x1 · · ·xd−jdxdv

)

= O

(

j2−j(d− 1− j)j−2Γ
(

2
d−1−j

)d−j

N−1− 2j
d−1−j

)

.
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Thus the total contribution ofωd,j(n) to fd(n) is bounded above by

hd(n) :=
∑

1≤j≤d−2

(
d

j

)

(−1)j−1ωd,j(n)

≤
∑

1≤j≤d−2

(
d

j

)

j2−j(d− 1− j)j−2Γ
(

2
d−1−j

)d−j

n
1

d−1
− 2

d−1−j ,

(39)

which will be seen to be of a smaller order.

The recurrence relation Now

ψd,j(n) = N− j
d−1−j

∫

(1,∞)j
(v1 · · · vj)−1− 1

d−1−j

∫

R
d−j
+

e
−x1···xd−j

(

1
x1

+···+ 1
xd−j

)

dxdv

−N− j
d−1−j

∫

(1,∞)j
(v1 · · · vj)−1− 1

d−1−j fd−j(nv1 · · · vj)dv

= (d− 1− j)j−1Γ
(

1
d−1−j

)d−j

N− j
d−1−j

−N− j
d−1−j

∫

(1,∞)j
(v1 · · · vj)−1− 1

d−1−j fd−j(nv1 · · · vj)dv.

So we get the following recurrence relation.

Lemma 2. The integralsfd(n) satisfy

fd(n) = gd(n) + hd(n) + ηd(n)

+
∑

1≤j≤d−2

(
d

j

)

(−1)jn
1

d−1
− 1

d−1−j

∫

(1,∞)j
(v1 · · · vj)−1− 1

d−1−j fd−j(nv1 · · · vj)dv,

(40)

for d ≥ 3, with the initial condition

f2(n) = 2e−n − e−2n,

wherehd(n) is given in(39),

gd(n) :=
∑

1≤j≤d−2

(
d

j

)

(−1)j−1(d− 1− j)j−1Γ
(

1
d−1−j

)d−j

n
1

d−1
− 1

d−1−j ,

andηd(n) := φd,d−1(n) + φd,d(n).

Note that, by (36) and (37),

ηd(n) = O
(

d−1n−d+1− 1
d−1 e−n + 2−dn−d+2+ 1

d−1 e−2n
)

= O
(
n−d+2e−n

)
.
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Also, by the change of variablest 7→ v1 · · · vj , we have

fd(n) = gd(n) + hd(n) + ηd(n)

+
∑

1≤j≤d−2

(
d

j

)
(−1)jn

1
d−1

− 1
d−1−j

(j − 1)!

∫ ∞

1

t−1− 1
d−1−j (log t)j−1fd−j(nt)dt,

which is easier to use for symbolic computation softwares.
We then obtain, for example,

f3(n) = 3n− 1
2 +O

(

n− 3
2

)

,

f4(n) = 4π
3
2n− 1

6 +O
(

n− 2
3

)

,

f5(n) =
80π4

9Γ
(
2
3

)4 n
− 1

12 − 60π
3
2n− 1

4 +O
(

n− 5
12

)

.

But the expressions soon become too messy.

Asymptotic estimate forgd(n) We derive first a uniform asymptotic approximation togd(n),
which will be needed later. We focus on the case whend tends to infinity withn.

Lemma 3. If d satisfies(18), then

gd(n) =
1

d− 1
Γ

(
1

d− 1

)d{

1− e−ρ + ρe−ρ

(
2ρ− 1

2d
+
ρ− 3

d3
log n

)

+O

(
ρe−ρ(ρ3 + 1)

d2

(

1 +
log2 n

d4

))}

, (41)

uniformly ind.

Proof.First, we have

(
d
j

)
(−1)j−1(d− 1− j)j−1Γ

(
1

d−1−j

)d−j

n− j
(d−1)(d−1−j)

1
d−1

Γ
(

1
d−1

)d

=
dj

j!
(−1)j−1n− j

d2 exp

(

−j − 2j2 − j

2d
− j(j + 2)

d3
log n+O

(
j3

d2
+
j3

d4
log n

))

,

uniformly for j = o(d
2
3 ). Summing over allj gives (41). Here the errors omitted are estimated

by the inequalities






(
d
j

)
= O

(
dj

j!
e−

j2

2d

)

,

Γ
(
1
x

)
≤ x, (x ≥ 1)

(d− 1− j)d−1≤ dd−1e−j− j2

2d ,
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for 1 ≤ j ≤ d − 2, and we see that the contribution of terms ingd(n) with indices larger than,
sayj0 := ⌊d 3

5 ⌋ are bounded above by

∑

j≥j0

(
d

j

)

(−1)j−1(d− 1− j)j−1Γ
(

1
d−1−j

)d−j

n− j
(d−1)(d−1−j)

= O

(

1

d− 1
Γ

(
1

d− 1

)d∑

j≥j0

ρj

j!

)

= O

(

1

d− 1
Γ

(
1

d− 1

)d
ρj0

j0!

)

.

Thus ford in the range (18)

j0 log ρ− log j0! =
2
5
d

3
5 log d− d−

7
5 logn + d

3
5 +O(log d)

≤ −
(

2−
7
5 − 1

5
2

3
5

)

(log n)
3
10 (log log n)

7
10 (1 + o(1))

≤ − 3
40
(log n)

3
10 (log logn)

7
10 (1 + o(1)),

so that
ρj0

j0!
= O

(

e−
3
40

(log n)
3
10 (log logn)

7
10 (1+o(1))

)

,

and the sum of these terms is asymptotically negligible. Theerrors
∑

j≥j0
ρj

j!
are estimated

similarly.

Iteration of the Φ-operator To derive a similar estimate forfd(n), we define the operator

Φ[fd](n) :=
∑

1≤j≤d−2

(
d

j

)

(−1)jn
1

d−1
− 1

d−1−j

∫

(1,∞)j
(v1 · · · vj)−1− 1

d−1−j fd−j(nv1 · · · vj)dv.

By iterating the recurrence (40), we obtain

fd = gd + hd + ηd +
∑

1≤j≤d−2

Φj [gd + hd + ηd],

whereΦj [fd] = Φ[Φj−1[fd]] denotes thej-th iterate of theΦ-operator.
Surprisingly, despite of the complicated forms of the partial sums, eachΦm[gd] can be

explicitly evaluated and differs fromgd only by a single term.

Lemma 4. For anym ≥ 0

Φm[gd](n) =
∑

m<ℓ≤d−2

(
d

ℓ

)

(−1)ℓ−1(d− 1− ℓ)ℓ−1Γ
(

1
d−1−ℓ

)d−ℓ
n

1
d−1

− 1
d−1−ℓσm(ℓ), (42)

whereσm(ℓ) is always positive and defined by

σm(ℓ) :=
∑

j1+···+jm+1=ℓ
j1,...,jm+1≥1

(
ℓ

j1, · · · , jm+1

)

.
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Note that

σm(ℓ) = ℓ![zℓ] (ez − 1)m+1

=
∑

1≤r≤m+1

(
m+ 1

r

)

(−1)m+1−rrℓ.

Proof.By definition and by rearranging the terms

gd(n) =
∑

1≤j≤d−2

(
d

j + 1

)

(−1)d−jjd−2−jΓ
(

1
j

)j+1

n
1

d−1
− 1

j .

Substituting this expression into theΦ-operator, we see that

Φ[gd](n) =
∑

1≤j≤d−2

(
d

j

)

(−1)jn
1

d−1
− 1

d−1−j

∫

(1,∞)j
(v1 · · · vj)−1− 1

d−1−j gd−j(nv1 · · · vj)dv

=
∑

1≤j≤d−2

(
d

j

)

(−1)jn
1

d−1

×
∑

1≤ℓ≤d−j−2

(
d− j

ℓ+ 1

)

(−1)d−j−ℓℓd−2−j−ℓΓ
(
1
ℓ

)ℓ+1
n− 1

ℓ

∫

(1,∞)j
(v1 · · · vj)−1− 1

ℓ dv.

Then

Φ[gd](n) =
∑

1≤j≤d−2

(
d

j

)

(−1)jn
1

d−1

∑

1≤ℓ≤d−j−2

(
d− j

ℓ+ 1

)

(−1)d−j−ℓℓd−2−ℓΓ
(
1
ℓ

)ℓ+1
n− 1

ℓ

=
∑

1≤ℓ≤d−2

(
d

ℓ + 1

)

(−1)d−ℓℓd−2−ℓΓ
(
1
ℓ

)ℓ+1
n

1
d−1

− 1
ℓ

∑

1≤j≤d−2−ℓ

(
d− 1− ℓ

j

)

=
∑

1≤ℓ≤d−2

(
d

ℓ + 1

)

(−1)d−ℓℓd−2−ℓΓ
(
1
ℓ

)ℓ+1
n

1
d−1

− 1
ℓ

(
2d−1−ℓ − 2

)

=
∑

1≤ℓ≤d−2

(
d

ℓ

)

(−1)ℓ−1(d− 1− ℓ)ℓ−1Γ
(

1
d−1−ℓ

)d−ℓ
n

1
d−1

− 1
d−1−ℓ

(
2ℓ − 2

)
.

By repeating the same analysis and induction, we prove (42).

Corollary 3. If d satisfies(18), then

Φm[gd](n) ∼ (−1)m 1
d−1

Γ
(

1
d−1

)d (
1− e−ρ

)m+1
(m = 0, 1, . . . ).

Summing over all0 ≤ m ≤ d− 2, we deduce (38) and it remains only the error estimates.

Error analysis The consideration ofΦm[hd] is similar and we obtain

Φm[hd](n) ≤
∑

m<ℓ≤d−2

(
d

ℓ

)

2−ℓ(d− 1− ℓ)ℓ−2Γ
(

2
d−1−ℓ

)d−ℓ
n

1
d−1

− 2
d−1−ℓσ′

m(ℓ)

37



where

σ′
m(ℓ) :=

∑

j1+···+jm+1=ℓ
j1,...,jm+1≥1

(
ℓ

j1, · · · , jm+1

)

jm+1

= ℓ![zℓ]zez (ez − 1)m

= ℓ
∑

0≤r≤m

(
m

r

)

(−1)m−r(r + 1)ℓ (m ≥ 0).

Thus, with

ρ0 :=
d

en2/d2

which is always≤ log 2 whend satisfies (18), we then have

Φm[hd](n)
1

d(d−1)2d
Γ
(

1
d−1

)d
n− 1

d−1

= O

(
∑

0≤r≤m

(
m

r

)

(−1)m−r
∑

ℓ≥0

ρℓ0
(ℓ− 1)!

(r + 1)ℓ

)

= O

(

ρ0e
ρ0
∑

0≤r≤m

(
m

r

)

(−1)m−r(r + 1)erρ0

)

= O
(
ρ0e

ρ0
(
(eρ0 − 1)m−1 ((m+ 1)eρ0 − 1)

))
.

Now ∑

0≤m≤d−2

(
(x− 1)m−1 ((m+ 1)x− 1)

)
= O(d2)

whenever0 ≤ x ≤ 2. It follows that
∑

0≤m≤d−2

Φm[hd] = O
(

2−dd−2Γ
(

1
d−1

)d
n− 1

d−1ρ0e
ρ0
)

,

which holds uniformly as long aseρ0 ≤ 2. This is how the upper limit ofd in (18) arises.
In such a case,

∑

0≤m≤d−2

Φm[hd] = O
(

2−dd−1Γ
(

1
d−1

)d
n− 1

d−1
− 2

d2

)

.

We consider nowΦj[ηd]. Note that an exponentially small term remains exponentially small
under theΦ-operator because

∫

(1,∞)j
(v1 · · · vj)−1−αe−nv1···vjdv ∼ n−je−n.

So all terms of the formsΦm[ηd] are asymptotically negligible. And we then deduce (38).
More calculations give

fd(n)
1

d−1
Γ
(

1
d−1

)d
=

1− e−ρ

2− e−ρ
+

ρe−ρ

(2− e−ρ)3

(
2ρ− 1 + (ρ+ 1

2
)e−ρ

d

+
2(ρ− 3) + (ρ+ 3) e−ρ

d3
log n

)

+O

(
ρe−ρ

d2
(ρ3 + 1)

(

1 +
log2 n

d4

))

.

Note that the range (14) arises because we had to drop factors of the form(−1)j in esti-
mating the sum ofhd(n). With a more careful analysis along the same inductive line,we can
extend the range of uniformity of (38).
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