arXiv:1111.6224v1 [cs.DS] 27 Nov 2011

Threshold phenomena irdominant skylines of
random samples

HsSIEN-KUEI HWANG TSUNG-HSI TsAI
Institute of Statistical Science Institute of Statistical Science
Academia Sinica Academia Sinica
Taipei 115 Taipei 115
Taiwan Taiwan
WEI-MEI CHEN

Department of Electronic Engineering
National Taiwan University of Science and Technology
Taipei 106
Taiwan

November 7, 2018

Abstract

Skylines emerged as a useful notion in database queriesliectiig representative
groups in multivariate data samples for further decisioking multi-objective optimiza-
tion or data processing, and thedominant skylines were naturally introduced to resolve
the abundance of skylines when the dimensionality growsh@anithe coordinates are neg-
atively correlated. We prove in this paper that the expeatedber ofk-dominant skylines
is asymptotically zero for large samples whiert k < d — 1 under two reasonable (con-
tinuous) probability assumptions of the input pointfeing the (finite) dimensionality, in
contrast to the asymptotic unboundedness whend. In addition to such an asymptotic
zero-infinity property, we also establish a sharp thresippldnomenon for the expected
(d — 1)-dominant skylines when the dimensionality is allowed tovgwith n. Several
related issues such as the dominant cycle structures anerimafraspects, are also briefly
studied.

Key words. Skyline, dominance, maxima, random samples, Pareto oluyntareshold phe-
nomena, multi-objective optimization, computational gpetry, asymptotic approximations,
average-case analysis of algorithms.

1 Introduction

The last decade has undergone a drastic change of infomditisemination from Web 1.0 to
Web 2.0, the most notable representative products beindMmeiand Facebook. Data have

1


http://arxiv.org/abs/1111.6224v1

been generated in an unprecedented pace and range, poseafah engines are indispens-
able, and screening useful or usable information (via “smgines”) from the vast is gen-
erally becoming more important than searching and gatger8kylines of multivariate data
sample were introduced for selecting representative graufhe database query literature by
Borzsonyi et al. (seer]) and had appeared in diverse areas under several diffguesdgs and
names:Pareto optimality efficiency maxima admissibility elite, sink etc.; see11, 12] and
the references therein for more information. These diviegas reveal the importance of the
use of skyline as an effective means of data summarizatidheiory and in practice. Many
different notions and variants of skylines have been pregas the literature, following the
original paper f]. In particular, thek-dominant skylines were introduced by Chan et al. (see
[9]) in situations when the skylines are abundant and havevextenuch attention since, al-
though they had already been studied in the Russian litergsee for example3[ 23]). We
focus in this paper on the asymptotic estimates of suchrskyland prove several types of
threshold phenomena under different probability assumptof the input samples, which, in
addition to their theoretical interests, are believed tageful for practitioners.

Skylines and k-dominant skylines The definitions of skyline and many of its variants are
based on the notion of dominance. Given-dimensional datase¥, a pointp € ¥ is said

to dominateanother poinig € 7 if p; < ¢; for1 < j < d, wherep = (py,...,p,) and

q = (q1,--.,q9n), and is less than in at least one dimension. The non-dondrziats in

2 are called theskyline (or skyline pointy of . By relaxing the full dominance definition
to partial dominance, we say that a popte 2 k-dominatesanother poinig € ¥ if there
arek dimensions in whiclp, is not greater thag; and is less than in at least one of thése
dimension& The points inZ that are not:-dominated by any other points are defined to be
the k-dominant skylinef Z; see P]. See alsoJ] for a different formulation.

The definition ofk-dominant skyline implies that for a fixed dataset the numifek-
dominant skylines decreaseskasecomes smaller. Such a monotonicity property will be used
later. To see this, consider any pojmin the unit square. It is a skyline (@dominant sky-
line) point if no other points have simultaneously smalleand smaller-values; namely, no
other points can lie in the shaded regib(wherep is the dotted point in the middle of this
figure). However, to be @&-dominant skyline point requires that all other points mheste si-
multaneously larger- and larger-values, or, equivalently, they cannot lie in the shadetbreg
H.

On the other hand, the transitivity property of skylinessféor £-dominant skylines when
1 < k < d -1, meaning that their cardinality may be zero and there maybles.

The number of skyline points The number of skyline points is a key issue in their use and

usefulness. This quantity under suitable random assumgptid the input is also important

for practical modeling or reference purposes, as well agHeranalysis of skyline-finding

algorithms. The two major, simple, representative randoodets arehypercubesand sim-

plices Assuming that the input dataset = {ps,...,p,} is taken uniformly and indepen-

dently from the hypercub@, 1], then it has been known since the 1960’'s (sHg that the
(logn)9

expected number of skyline points &f is asymptotic to(di1 for largen and finited,

Lif we change the definition of the-dominant skyline to be “exactly” (instead of> k) coordinates smaller
than or equal to and at leassmaller than, then the same types of results in this papehalsl.



exhibiting the independence of the coordinates. (Intelyivif one sorts according to one di-
mension, then each other dimension roughly contribistgs skyline points.) On the other
hand, if we assume that the input points are uniformly sathfslem thed-dimensional sim-
plex {|z1]| + -+ + |z4] < 1,z; € (—1,0]}, then the expected number of skyline points is
asymptotic tol’ (é) nl=i, reflecting obviously a stronger negative correlation & ¢toordi-
nates; seeq] and the references cited there. Hérdenotes Euler's Gamma function. For the
number of skyline points under other models, s&d fi, 15, 25] and the references therein.

On the other hand, in contrast to the recent growing trendumfysng high dimensional
datasets, not much is known for the expected number of skyaints when is allowed to
grow with n. Such a direction is especially useful as practical situnstialways deal with
finite n and finited (whose dependence onis often not clear). The only exception along
this direction is the uniform estimates given it] (see also $]) for the expected number of
skyline points in a random uniform samplesropoints from the hypercubl@, 1]¢. While the

order “‘Eif)l(;_l may seem slowly growing as increases, it soon reaches the ordavhend

is aroundlog n, which is relatively small for moderate valuesmaf Consequently, the skyline
points become too numerous to be of direct use. The growtkydihe points in the random
d-dimensional simplex model is even faster and we can shovatimost all points are skylines

whend roughly exceedi%, again small fon not too large.

The cardinality of k-dominant skyline Sincek-dominant skyline were proposed (sé2) [
to resolve the skyline-abundance problem, it is of inteti@&nhow their quantity under suitable
random models. A critical step in applyitgdominant skyline is to identify an appropriate
such that the size of thle-dominant skyline is within the acceptable ranges. But iy not
be always feasible. Consider thelimensional datase? given in Tablel. The six points are
all skyline points, oneg) is the4-dominant skyline point and no point is in tBedominant
skyline. Clearly,pg is to some extent better than the other points since it cositaio compo-
nents with the lowest value However, it was already mentioned 9] fhat somek-dominant
skylines may be empty. For example, if we diapfrom &, then the five points are all skyline
points but allk-dominant skylines are empty far< £ < 4. In this example, other alternatives
to k-dominant skylines have to be used. Unfortunately, suctopesty ofexcessive skylines
but fewk-dominant skylines not uncommon, and we show in this paper that, under therhype
cube and the simplex random models, the expected numldedominant skylines both tends
to zero for larger and1 < k < d — 1.

point \ skyline 4-dominant skyline 3-dominant skyline

I Y I R

p1 (1,2,2
p2(3,1,2
Ps (3,3, 1
P4 (273737
Ps (2,2,3
Ps (2,3, 1

Table 1: An example showing the property of many skylinegehbut-dominant skylines.



Threshold phenomena We clarify two types of threshold phenomena for the expented-
ber of k-dominant skylines in random samples.

1. Large sample, bounded dimension

fl1<k<d-1,;

: . 0,
Expected number df-dominant skylines- { o, if k=d,

as the sample size — oo. While such a result is not new and contained as a special case
of the general theory developed i8] [for finite dimensional skylines, we will give an
independent, transparent, self-contained proof, whichdidition to being more precise,
can be extended to the case when the dimensionality goesindéd with the sample
size.

2. Large sample, moderate dimensidtere exists an integd = do(n) ~ , [ —292% 11

log logn
such that (see2Q))

loglogn

Expected number dil — 1)-dominant skylines— { o, ifd>dy+2.

asn — oo, and the two case$ = d, andd = dy + 1 lead to two different oscillating

functions, the firstd = d,) fluctuating betwee and 2_6;,1 and the second between

2_661,1 andO (101;1%) where~ is Euler’s constant; se@4) and £5). We consider
only random samples from hypercubes. Other regions and e#hees ofk, £ < d — 1
are expected to exhibit similar threshold phenomena wiflerdint d,, but the analysis

becomes excessively long and involved. More details willliseussed elsewhere.

We see from these phenomena that the usual “curse of higmdiorality” has thus another
form here which one may term “curse of constant dimensiofalvhich refers to the situation
when nok-dominant skyline point at all exists. Also the model wheiraehsionality can vary
with the sample size is, at least from a practical point ofwiore reasonable; see Secti@ns
and7 for more discussions and details.

Related works In addition to the partial dominance used in definfirgominant skylines
(see P]), there are also several other skyline variants for refnigg more representative points;
these include skyband&4], top-k dominating queries0, 24, 27], strong skylines 28], sky-
line frequency 10], approximately dominating representativ@g]| e-skylines p€], and topx
skylines B, 22]. See also the survey pap&( for more information.

Organization of the paper This paper presents a systematic study on the asymptotic est
mates of the number df-dominant skyline points under random models. It is orgahias
follows. We derive in the next sectiof ) an asymptotic vanishing property for the number
of k-dominant skyline points under a common hypercube modehwhe dimensionality is
bounded. The extension to include more points in the patbatinant skyline is showed to
suffer from a similar drawback in Sectidh We then prove in Sectios that changing the
underlying model from hypercube to simplex does not impstieer the asymptotic vanishing
property. Sectiorb deals with a categorical model for which the results haverg dgdferent
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nature. Roughly, as the total number of sample points aree finithis model, the expected
number ofk-dominant skylines will be asymptotically linear, meanilog many choices for
ranking or selection purposes. All these results point erthgative side for the use 6f
dominant skylines under similar data situations. We thairess the positive side in the last
few sections by considering again the hypercubes but withvigig dimensionality. A sharp
threshold phenomenon is discovered in Sectiorthend — oo with n, the asymptotic approx-
imations needed being derived in SectbrAnother new threshold result is given in Secti®n
of the expected number of dominant cycles. Seciprovides a uniform lower-bound estimate
for the expected number of skyline points oK k£ < d — 1. We conclude in SectiohO with
some numerical aspects of the estimates we derived.

2 Random samples from hypercubes

The simplest random model is the hyperciibel |4, which is also the most natural and most
studied one. They can also be used when data are discrettine bat span uniformly over a
sufficiently large interval.

In this section, we derive asymptotic estimates for the etquenumber ofc-dominant
skyline points in a random sampleopoints? := {p, ..., p,} uniformly and independently
drawn from|[0, 1]¢, d > 2. Let M, (n) denote the number df-dominant skyline points of.
We first derive a crude upper bound for the expected nurBhef; ,(n)], which implies that
E[M,x(n)] is asymptotically zero as grows unbounded antl < £ < d — 1. More precise
estimates are possible and will be derived in Secéioror a pointp € [0, 1]¢, denoted by
By (p) the region of the points iff), 1] that k-dominatesp. Also, |A| denotes the volume of
the regionA.

Theorem 1 (Asymptotic zero-infinity property for large and bounded). For fixedd > 2

0, ifl1<k<d-—1;
Bl > { 0 Sk @

asn — oo.

Proof. The caseé: = d has been known since the 1960’s (s&p &dnd were re-derived several
times in the literature. We assurhe< k < d — 1. SinceM,(n) < My4-1(n) for fixedd and
for1 <k <d—1, we only prove thak[M, 41 (n)] — 0.

We start from the integral representation

E[My4-1(n)] = nP (p; is a (@ — 1)-dominant skyline point
—n [ - B e @
[0,1]

because ifx is not k-dominated by any of the other — 1 points, they all have to lie in the
region|0, 1]¢\ By (x). Here and throughout this papex i the abbreviation of:d, - - - dz,.

To estimate the integral ir2), we split it into two parts, one part having sufficiently dma
volume (corresponding roughly to small - - - z;) and the other withB,_; (x)| bounded away
from zero, rendering the terfi — |B;_;(x)|)" ! also small.



For a fixed numbet satisfyingl < ¢t < define the region

d 1’
Qn = U {XG[O,I]dzmﬁn_é andejgn_%t}. 3)
1<e<d iy,
Then
BMaaa ()] < 0@l 4 [ (1 [Bas) dx
0,1]\Qn

The volume of),, is bounded above by

|Qn| S dn_%/ d—1 dX
z1xg1<n” 4 '

x€[0,1]¢

To estimate the last integral, let

Ay(6) = dx  (d>2),

T1Tq—1<6
x€[0,1]¢

where0 < § < 1. ThenA,y(d) = ¢, and

Aq(0) = /51 Ag (g) dt  (d>3).

A simple induction gives

| log §|*—2

(d>2),

and we obtain, by taking = n=“7" ¢,

|Qn| = O (n*t(log n)dfz) ,

On the other hand, by an inclusion-exclusion argument, we ha

Baa®)| = > [[zs—@=1) [] = 4)

1<6<d j#b 1<j<d
Now if x € [0,1]?\ Q.,, then

a-1
|By_1(x)| > maxH:cZZn s
1<(<d

1£L

Thus, we have
E[Mgq1(n)] = O (n'~*(logn)*?) + O (nexp (~(n = )71} ), (5)

and we see easily that the right-hand side tends to zero bghmice oft. More precisely, if
we take
, d - log ( 7 log n)
d—1 logn ’

6



So as to balance the twig-terms in ), then
E[Mgg-1(n)] = O (n_ﬁ(log ”)d> :

This and the monotonicity af/, ;(n) (in k) proves (). W

The fact thatf[M, . (n)] — 0 implies that there are many cycles formed by th@ominant
relation, but the corresponding cycle structures are vigfigult to quantify; see SectiohO for
some preliminary results.

3 “Clouds” of k-dominant skylines

The asymptotic vanishing property (Theordjnfor the expected number éfdominant sky-
lines limits their usefulness if the input data are knownearbsimilar randomness conditions.
In particular, if one is interested in finding the t@pfepresentative points, then the probability
of getting enough number of candidates tends to zero. A simgshedy to this situation (and
still following the same notion of partial dominance betwgmints) is to consider the number
of points that aré-dominated by a specified number, gagf other points, which we refer to as
the “cloud” of k-dominant skylines. But we show that this also suffers framilar vanishing
drawback under the random hypercube model, unjésshosen to be large enough.

Let L, x(n, j) denote the number of points in the random samfplg . .., p, } that arek-
dominated by exactly points, where the: points are uniformly and independently selected
from [0, 1]%. Note thatL . (n, 0) is nothing butM, x(n).

Theorem 2 (Asymptotic zero-infinity property for clouds df-dominant skylines)For fixed
d>2andl <k <d-1,

_ 0, if1<k<d-1;
E[Ld,k(nu.])] - { o0, if k = d7

uniformly for0 < j = o(n(!=9)/4), asn — oo, wheres > 0 is an arbitrarily small constant.

The theorem roughly says that even allowing more flexibléigdadominance relation, the
expected number of the skylines so constructed still amh@mzero as long as the dimension-
ality is fixed.

Proof. The case whe = d is also derived inJ] (under the name of(§ + 1)% layer, 1-st
guadrant-admissible points”), where it is showed that

. 1
E[Ld,d(na])] = Z 0
J<i1<-<ig—1<n

from which we obtain

d—1
(e 1)

E[Lga(n,j)] ~ (d—1) 7

(6)



if log(n/(j + 1)) — oo, where the symbol~” means that the ratio of both sides tendd tas
n goes unbounded. Alternatively, we can use the integraésgmtation (seel])

n—1

]Ede@(”wj)]::7l< j ) /&in($1"'1u)j(1 —ayeag)" T T dx

“@m <n j 1) / H(1 =" log (1) d, ()

by the change of variablés— z; - - - 4. A straightforward evaluation then give)(

Note thatw equals the probability that the first-quadrant subtree efrtiot has
sizej in random quadtrees; se&q Appendix]. This connection also provides several other
expressions foE[ L4 4(n, 7)]. For example,

el - (") X (M)

0<t<n—1—j

see alsoj).
For the remaining cases, we consider ohly d — 1 and prove thaE[L, 4 (n, j)] — 0.
The reason is that

> Lag(n,0) < > Lgaa(nt)  (1<k<d-—1).

0<<; 0<<;

To see this, observe that if a poim{d — 1)-dominates another poingt thenp alsok-dominates
qfor1l < k < d— 2. Thus, the sum on the left-hand side, which stands for théhsetis
k-dominated by at most points, is less than the sum on the right-hand side, the agiigh
(d — 1)-dominated by at mostpoints.

To proveE[Lyq-1(n, 7)] — 0, we apply the same argument used in the proof of Thedrem
starting from the integral representation

E[Lgd-1(n,j)] = n/ P(exactly;j points in{ps, . .., p,} thatk-dominatep, )
[0,1)¢

_ n(” j_ 1) /[O Bl - B (x))" 1 dx.

_d_

Now we fix a constant satisfyingl <t < =%,

and then choos@,, as in @). Then we have

|Qnl = O (n"(logn)*?),

and L
T P B (x)[ <1 (x€[0,1]7\ Qn).

It follows that
) n—1 , el
E[Ld,d,l(n,j)] S n|Qn| + n( . ) / Bdfl(X)J (1 — Bdfl(X)) 1= dX
J [0,1\Qn

- 0 e +0 (n" o (-1~
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Now choose

,__d [, los((j+55)logn)
S d-1 logn '
So that
- 1 d—1 1
n(n )exp (—(n—l—j)n’ d t) :O(nlﬂn J d—l) =O(n aT1),
and

't =nTa (4 g4) T (logn) @t = O (”7ﬁ(logn)ﬁ> :
uniformly for j = O(n"a" ). Thus
E[Lga-1(n,j)] = O (n_ﬁ(logn)d_“fil T n—ﬁ) 0.

This proves the theorem. i
A more precise asymptotic estimate f8fL, ,_1(n, j)] will be derived in Sectior6; see
(21). Another easy special casekis= 1, which is dual to the case = d because we have
E[Laa(n,5)] = E[Laa(n,n — 1= 7)].

Thus, by ), we have

E[Lg1(n,7)] = ﬁ (”; 1) /O 19 (1 — ) (= log t)* Lot

~ efnttjﬁ’dfldt
T /0

N (j +d— 1)n—d+1
j )

for largen and0 < j = o(v/n).

In general, if we are to select the tdp representatives using such clusters of partial
dominant skylines, then how large shoylde? That is, what is the minimum such that
ZOSjSm Lax(n,j) > K? Some simulation results are given in Figlire

4 Random samples from simplices

We show in this section that the asymptotic vanishing prigpafr £-dominant skylines occurs
not only in the case of thé-dimensional hypercube distribution, but also in thdimensional
simplex distribution

Sd:{x:—lgscj§0andﬂx|] =) |xj\g1}.

1<j<d
In particular,S, is the right trianglex. Such a shape implies a negative dependence of the two

coordinates and thus a larger number of skyline points.

Let M,Ef] (n) denote the cardinality of thle-dominant skyline of the se¥ := {p,...,pn},
where these points are uniformly and independently distributed a¥grFor a pointp € Sy,

denote byB,[f}(p) the region of points irb,; thatk-dominatep.
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Figure 1:Simulated values OZO§j§m Lk (n,j) for n = 100 (left) and5000 (right). Interest-
ingly, the simulations suggest some general pattern thamnsendependent of the size of the
samples and they are consistent with our analysis sintes to be very large (compared with

Theorem 3 (Asymptotic vanishing property for finite-dimensional gilex). For 1 < k <
d—1,
0, if1<k<d-1;

ensdol - { % fLEh

asn — oo.

Proof.Fork = d, itis known (see12)) that

Ewwgﬁun]zzdhl/;(1-(1-—§:h9§dx0d>"1dx

41\ Tor ()

-2 ()
)

wherel" denotes the Gamma function. Thus the expected number ohskytends to infinity
asn goes unbounded.
Consider nowl < k < d. It suffices to examine the cage= d — 1. For a pointx € S,

(x #0), letg := = ThenBC[fll(é) C Bc[ﬂl(x). We now prove that

lIx[*

BL©)> o (€ sulel=1) ®)

Since||&|| = 1, there is at least one coordindte| > . Without loss of generality, assume
|§d| > é- Then21§j<d |§j| < %- Let

T:={ycS;:y <¢forl<j<d-—1andy,; <0}.
We havel' C Bc[fll(g) and
1
71 = |5all€al = 25
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sinceT is itself a simplex. Thusd) holds and we have

s] ] et
E[Mg 4 1(n)] = nd!/s (1 —d!'|B} (%) ) dx
d

—0(n(1—d%")
— 0,

asn —oo. M

We see in such a simplex model that the expected numbkerdoiminant tends to zero at
anexponentiatate (inn), in contrast to thgpolynomialrate in the hypercube model. Does the
expected number df-dominant skyline points always tend to zero? Here is a spptificial
counterexample.

Example 1.Assumed = 4,k = 3. Let
A= {(—t,—2t,3t,4t) : 1 <t < 2}.

Then any two points ifA are incomparable (none dominating the other) by the relatio
k-dominance. Thus, the number bfdominant skyline points is equal to almost surely if
p1,. .., P, are uniformly and independently distributedAn

5 A categorical model

The preceding negative results are based on assuming ¢éhpoithts are generated from some
continuous modejsvhich are often a good approximation to situations wheedriput can as-
sume a sufficiently large range of different values. Whatafagsume instead that the inputs are
sampled from somédiscrete spacewhich is also often encountered in practical applicattons
We show in this section thdlhe expected number éfdominant skylines is always linear for
1 < k < d, in contrast to the asymptotic zero-infinity property weidsd above.

Assume that: points? := {p, ..., p,} are chosen uniformly and independently from the
product space
7= S
1<j<d

where

Let Mc[li(n) denote the number df-dominant skylines inz. Unlike the continuous cases,

the variation of the random variabléa‘ﬂ(n) is easier to predict as the number of possible
points inZ is finite. Interestingly, the first-order asymptotic estiméor the expected value of
Mﬂ(n) is independent ok for 1 < k£ < d, where the casg = d gives the expected skyline
count.

Theorem 4(Asymptotic linearity for finite-dimensional categoricabdel) The expected num-
ber of k-dominant skylines satisfies

[ ()
@B@éllél (1<k<d;d>?2), 9)

n u



asn — oo, Where

1<j<d
Now the problem is again the excessive number of skylinetpoiSuch a discrete model

exhibits another interesting phenomenon, not presenbfairmuous model, namely, for fixed
the expected number éfdominant skyline points is not monotonically increasisgl @rows.

Proof.Letx = (21,29, ...,24) € &. Denote byB,[f] (x) the set of points i thatk-dominate
x. Then

E[Mﬂ(n)] = nP(p; is ak-dominant skyline point
B x)|
1—

n
= > — . (10)

xXeP

n—1

If y € B,[f] (x), theny is better than or equal to in all coordinates (at least one better) except
for the coordinates, sajy, ..., j, for0 < ¢ < d — k. Thus

Bl = I] o -1,

1<j<d

andforl <k <d

c [Ticicawi
)BL}(X)‘ = > > <H_7_37 1) ] (== (11)
0<e<d—k 1<j1<jo<-+<je<d 1<l i
Here the product
ngzﬁd _ H i,
ngigé x]z i£jrr=1,...,0
enumerates all possible locations in the ¢ (> k) coordinates that-dominant skyline point
can assume, and the factor1” removes the possibility that all — ¢ coordinates are equal to
the corresponding;. The last product in1(1) describes all possible locations for the otlier

coordinates.
d

Since there is a unique poibt:= (1,...,1) in & with ’B,E](l)’ = 0, all other terms in the
sum on the right-hand side df@) being exponentially small, we obtaif)( H

In the special case when al} = 2for1 < ;5 <d, then
. d—1/
B -n > (171
o<j<d—k N J

wherex € {1, 2} and? denotes the number of time3
times). The closed-form expressidrdf simplifies

s 5 () (25 5 (50)

0<e<d 0<j<d—k

occurs inx (and “1” occurringd — ¢
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1.0 -

1.5 -
0.5 1

1'01 5 10 15 20 25 0.0 25 250 500 750 1000

n n

Figure 2:A graphical rendering oE[Mﬂ(n)] in the discrete spacg0, 1}4 ford = 10,k = 9
andn =1,...,25 (left) andn = 25, ...,1000 (right).

1.01

0.5 1

0.0

1 21 22 23 24 25 26 27 28 1 51 52 53 51 5> 56
n n

Figure 3: Two plots of the raticE[MCE‘fL(n)]/n whend = 5, k = 3,4,5 (here the casé = 5
corresponds to the skyline); = 2 (left) andu; = 5 (right). All curves in the left figure tend to
the limit2=> = 0.03125 while those in the right t6 -5 = 0.00032, which is almost zero.
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from which it follows that .
E[Md,k(n)]
—————— — —  asn — o0.
n 2d
Since the product spac? is finite, we can indeed fully characterize the asymptotstrdi
bution of M, ﬁg(n).

Theorem 5 (Asymptotic binomial distribution for finite-dimensioneategorical model)The
distribution ofMC[fL(n) is asymptotically equivalent to a binomial distributiorthvparameters
nandl/u.

Proof.Let X,, denote the number gfs for whichp,; = (1,...,1),1 < j < n. Then, obviously,
X, is binomially distributed with parametersand1/u«, namely,

P(X, ={) = (2)% (1 - %)H (0<(<n).

Now if one of the pointp; equals(l, ..., 1), thenMﬂ(n) = X,,. Thus

u

P (k) # %) < Ploy £ (1) = (1 1) 5o,

and thus the distribution dngﬁg(n) is asymptotic to the distribution of,,. W
In particular, we see that the variance]\dff}g(n) is also asymptotically linear

[c]
w%l<1_l) (1§k§d)_
n u u
The consideration can be easily extended to the case of méorm discrete distributions.
More generally, assume that the data set is sampled fromethgas, ..., a,,} € & and
each point is endowed with the probabilitya;). Let p;(a;) be the probability thai; is k-
dominated, that igy;(a;) is equal to the sum df(a;) such thata; k-dominatesa;. Then the

expected number df-dominant skyline points satisfies

EMyL ()] =n Y Plaj) (1 - pilay))" .

1<j<m
Let
o= Y Play)
pr(a;)=0
1<j<m
be the probability of points ifa, . . ., a,, } that are nok-dominated. Then since the expected

number ofk-dominant is expressed as a finite sum, we have

E[MY)(n)]

n

— qx, asn — oo.

Note thatp, may range from zero to one.
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6 Uniform asymptotic estimates forE[M; ;—1(n)]

We derive in this section two uniform asymptotic estimate&f A/, ,_, (n)] in two overlapping
ranges. To state our results, we need to introduce the Laiibéanction (see13]), which is
implicitly defined by the equation

W(z)eW® = 2. (12)

For our purpose, we také’ to be the principal branch that is positive for positivend satisfies
the asymptotic approximation

log1 log1 2
W(z) =logz — loglog x + 9808 L 0 (log log z)” , (13)
log = (log x)?

for largex.
Our first asymptotic estimate covetsn the range

3<d< 2logn
-~ W(Qlogn) + K’

where K — oo with n, and the second the range

logn
1 P ed<2|——"2——
(logn)™ < d < \/W(log n)—C’

for some constant’ > 0. The upper bounds of the two ranges do not differ signifigaloit
are sufficient for our purposes of proving the threshold pheenon, which we discuss in the
next section.

Very roughly, the expected number(@f1)-dominant skylines is asymptotically negligible
in the first range, and undergoes the phase transition frong ladmost zero to unbounded in
the second.

Theorem 6 (Uniform estimate for large and moderat€). If 4 > 3 and

2logn
ng — W(2logn) — o, (14)
then
E[M, ”_ﬁr RN 1+ 0 (dn~ @ 15
= d—1)(d—2
Maa-r(m} = 5= (d—l) ( + (” )) (15)

uniformly ind for large n.

Note that ifd is of the form

J— 2logn
B W(2logn) +2v |’

15



then

3/2
it — o (14 0 (LA DWW 2logn)¥ |
Viogn

which becomes(1) if v — oc.
On the other hand, wheh= 2, we have, byZ),

1 41

1

E[My4-1(n)] = n/ / (l—z—y+ a:y)"fl dzdy = -
0Jo

Proof. We again begin with the integral representatid)) vhereB,_;(x) is given in @).
By the elementary inequalities (ses&})[

e M1l-nt) < (1—-t)"<e™ (n>1;t€]0,1]),

we have
Ena—E, ;<EMiq1(n+1)] < E,q,

where
B, = n/ ¢—n1Ba1 (0l g
’ [0,1)¢
B = n? / By (x)[2e "B g
’ [0,1]¢

We will see thatF, , is asymptotically of smaller order thai, ;. The intuition here is that
most contribution to the integral comes framfor which | B;_1(x)| is small, implying that
(1 — |Bg_1(x)|)" is close toe"Ba-1) - Also replacingn + 1 by n in the resulting asymp-
totic approximation gives rise only to smaller order errdf®wever, the uniform error bound
represents the most delicate part of our proof.

We start with the asymptotic evaluation bf, ;. By making the change of variables —

, 1
%, whereN :=naT,
E, 4 =N e*?Jl"'?Jd(ﬁJF"'JFi)JFd;lel'“yddy

[0,N]4
= N"" (¢a(n) — fa(n) + Ra(n)), (16)

where

1

+

Juln) = /_/ €_y1"'yd(ﬁ+“‘+ﬁ)dy,
R¢ [0,N]d

Rd(n) ::/ e*yl..-yd<i+---+i> (e%yl“'yd . 1) dy
[0,N]4

We focus on the evaluation of the integral(n), leaving the lengthier estimation of the two
error termsf,(n) and R,(n) to Appendix A.
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We now carry out the change of variables= H#j ye for 1 < 5 < d, the Jacobian being

o ... o
0
a(yla s 7yd) - Ifl &fd
a(tl’ o ’td) BZ.Jd Byld
Pa ... Gw
whose determinant is equal i@ det J, where
O(ty,...,t
J = ( 1, ) d) .
ANy, Ya)

Note that the entries of satisfy

0, if i =j;
YilY;
It follows that
det J = (y1---yq)* *det T,

whereT' is ad x d matrix withT; ; = 0 andT; ; = 1 for ¢ # j. The determinant df" is seen to
be(—1)*"!(d — 1) by adding all rows off" to the first, by taking the factat — 1 out, and then
by subtracting the first row from all other rows. Thus we have

det J = (=) (d — 1) (g1 - - - ya)* >

= (~)" N d = )t ta)

Thus, by the integral representation of the Gamma function
[(x) = / t" e tdt (x > 0),
0

we obtain

Pa(n) = —— /d e O (g tg) Tt
R

+

= e “u d-1du
1 d
= r 1 .
()

We will prove in Appendix A that

fd(n> =0 (dn_m) ,

pa(n)
Rq(n) _
Pa(n)

O (drdn—ﬁ) . (17)
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In a similar manner, we have
/ 2 1 2 *”11"'$d21<j<d mi
EL,=0(n xl"'xdzl<j<dg;_7- e ==tz dx
Re -
+

2
Td-1 _
—o(Z / (ti 4 -+ tg) 2 et Ha (g gy~ |
d - 1 Rd

+

The last integral in a more general form can be evaluatedimsvi Let [2"]f(z) denote the
coefficient ofz" in the Taylor expansion of.

/ (b oo tg) e ()Tl
R

d
+

for j > 0. Thus

k), 2
3alm) = © (7).

Collecting these estimates proves the theorerill
Whend increases beyond the randel), the error termy,;(n) (see (6)) is no more negligi-
ble, and a more delicate analysis is needed.

Theorem 7 (Uniform asymptotic estimate in the critical rangé)

d

—_— and d <2
(logn)'/8 =

(18)

then, withp :=

_d
enl/d2 )

uniformly ind for large n.

3

The proof of this theorem is very long and is thus relegatedppendix B. The crucial
step is to prove an asymptotic estimate fgfn) by an inductive argument by deriving first a
recurrence of the form

fa(n) = ga(n) + ®[f4](n) + smaller order terms

18



where

wlm) = X () rrta-1-pr () et

1<j<d2
and® is an operator defined by
Olfil(n) = > (d)(_qundei»jJ/ (g 0y) T fy (o - ).,
1<j<d—2 N (1,00)7
Then (9) follows from iterating the operator and a careful analgdithe resulting sums.
Corollary 1. If d is of the form

J— 2logn
B W(2logn) —2v—21|"’

then
E[M, 4 1(n)] 1, 1 !f v — —00;
— ~ Ca— if v =0(1); (20)
n_ d-1 1 \d 1 .
— I (—dfl) 7 if v = o0.

Proof.Observe that

d 1+ |v|
=——=¢ (1 — ).
r= = (140 (7amem))
Thus @O) follows from thisand19). N

Combining the ranged.d) and (L8) of the two estimateslf) and (L9), we see that
Corollary 2. If

logn
3<d L2y ———7—"
- \/W(4€2 logn)’

then

1

1 pad 1\
EMaa ()]~ 5= r<d_1),

uniformly ind.

We conclude from these estimates tRat/, ,_,(n)] is, modulo a constant term, very well
approximated b@r ()"
Remark. A similar analysis as that fod) leads to {,x(n, j) is defined in SectioB)

1

E[Lga-1(n, j)] ~ cagn” o1, (21)
for each finite integej > 0, where
1 . d-2
- Je=(Wittva) (4L )T dT
Cdj i= d—1);! /Ri(vl + o Fug)em™ (v vg) " 1dv

R A AN R =
d—1" \d-1 i)

uniformly when2%2 — 1¥/(2logn) — oo andj = o (n a ) e € (0,1). The consideration
for largerd as for (L9) is similar.
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7 Threshold phenomenon forE[M; 4—1(n)] whend — oo

With the asymptotic estimate$) and (L9) we derived in the previous section, we prove in this
section a less expected threshold phenomenon for the expeatber of d — 1)-dominant
skylinesE[M, 4—1(n)] (in random samples frort-dimensional hypercube) wheh- 1 is near

2logn
W(2logn) "

Theorem 8(Threshold phenomenan).et

B o 2logn

where W denotes the Lambert-W function. Then the expected numiiér-efl)-dominant
skyline points satisfies

] 0, if d < do;
nll_)ﬂ;lo E[Md,dfl(n)] — { 00, if d > do+ 1. (23)
If d = dy, thenlim,, . E[M,4-1(n)] does not exist and is oscillating betwegand 2_6;71
e~ 2logn
— e _cwoen 24
[Maq-1(n)] Spp—— ( W(2 logn)> ’ &Y

wherep,(x) is a bounded oscillating function afdefined by

oo(x) = e~ @hg=2a},

If d = dy+ 1, thenlim,,, . E[M,4-1(n)] does not exist and is oscillating betwege_ifi;—,1 and

1
O ogn
loglogn

e 2logn
EMag(n)] ~ 5— == ( W) , (25)

whereyp; (x) is an oscillating function of defined by

o1 (z) = el a2 Had,

Proof. By monotonicity, it suffices to examine the asymptotic betwawf E[M,; ;1 (n)] for d
neard,. Observe that if

2logn
0 W, T
wherem is an integer and denotes the fractional part Wz(;olig"n), namely,

o 2logn | 2logn_ 2logn
e w, (VW W, |’
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then

3
_da Wit [m + 7 -1
P= e = © <1+O < Viogn >> B

where, here and throughout the proif, := W (2logn). Thus for bounded-

1 . 1
2—er 22—t

On the other hand, byL@) and the asymptotic estimaféz) = 2! — v + O(x) asz — 0,
where~y denotes the Euler constant, we see that

- d m—"Tn % 2
n-a r 1 - 2logn 140 Wi(m+71,+1)
d—1 d—1 W, Viogn
if m<—1;

Ne'ycpo( Wn> if m =
~e ’*w(@) if m =

if m > 2.

This proves 23), (24) and @5). It remains to consider more precisely the behaviopg(fr)

andy (z).
Obviously, by definition,p(z)
r e Ry If {z} =0, thengy(z) = 1;

S
m
) o 1, if {z}logx = o(1);
0, if {z}logz — 0.

(0,1] and py(z) € [1,00) because{z} € [0,1) for
ore generally,

On the other hand,
1, if (1 —{z})logz = o(1);
oo, if (1—{x})logx — oo.

i)+ §
We now prove that
7, =0ifand onlyifn =" (i > 2). (26)
First, if n = i", then2log n = 2i2log i and the positive solution to the equation (s&BY
W,e"" = 2i%log 1,
is given byW,, = 2logi, as can be easily checked. Thus

2logn
W

—i  (i>2) 27)

Conversely, if the relatior2(7) holds, then the positive solution to the equations

2logn

W ,andW,e"" = 2logn,

21



is given byn = i”*. This proves26).
It follows patrticularly, by (9), that

. ’i2 . 6_7
Jim BM; ] () = 5= =
This completes the proof of the theoreml
The functiond, of n on the right-hand side oP@) grows extremely slowly. Let; := 7%’
with a; := 2. Thend =i + 1 for a; < n < a;,1, which is small for almost all practical sizes of

n
, 1f2<n <15

, if16 <n < 19682;

, if 19683 < n < 42949 67295;

. if 4294967296 < n < 2.98 - -+ x 10'7;
6, if 298 --x 107 <n < 1.03---x 10%.

This partly explains why the asymptotic vanishing propefti[), . (n)] for largen and fixed
d is “invisible” for moderate values of.

Note that we did not replace the Lambert-W function22)(by its asymptotic expansion
(13) so as to make the expression more transparent, the reaisgntihat no matter how many
terms of the asymptotic expansionéf we use, the resulting expression is newvgr). This
is because all terms in the expansion are of orders in powesg g n andlog log log n, and
they are all much smaller thang n in the numerator of the first term on the right-hand side of
(22).

Extending the same analysis to other values becomes more difficult and messy except
for k = 1 for which we have

do =

Ot > W N

E[Mg1(n)] = n/ (z1 - 2g)" tdx = n'e

[0,1]¢

Note that this always tends to zero no matter how large theevaild is.
On the other hand, for < k < d — 1, we can derive the more precise estimate

E[Myr(n)] =0 <n/ exp (—n Z xj, - -a:jk> dX)
[0,1]¢ 1<j1 < <ji<d
=0 (nl’%> )

However, a more precise uniform asymptotic approximatiom(d, andk) is less obvious and
describing the corresponding threshold phenomena if angtfeer values of also remains
unclear. Intuitively, the asymptotic vanishing propegyekpected to hold as long &s> d/2
no matterd is finite or growing withn because the probability offadominance for a random
pair of points is larger than one half, meaning that it is léssy to find k-dominant skyline in
such a case.

8 Expected number of dominant cycles

The asymptotic zero-infinity property can be viewed fromtaeodifferent angle by examining
thenumber of dominant cycles
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Definition. We say thatn points{py, ..., p..} form ak-dominant cycle (of length) if p;
k-dominate; ., fori =1,...,m — 1 andp,, k-dominate9;.

Roughly, the number of-dominant cycles is inversely proportional to the numbek:-of
dominant skylines. Note that by transitivity there is noleywhenk = d. Thus the number
of cycles seems a better measure to clarify the structukedaiminant skylines. However, the
general configuration of the cycle structure is very congtéd. We contend ourselves in this
section with the consideration of cycles of lengttvhenk = d — 1.

Lemma 1. Let C,, 4 denote the number @f/ — 1)-dominant cycles of lengtli in a random
sample ofn points uniformly and independently chosen frigiyi 2. Then the expected value

of C, 4 satisfies
n\ dl>—¢

Proof. Since the total number of cycles of lengtls given by(g)%’, we see that

n

!
E[Chd] = (d) %IP’ ({p1,-..,pa} forma(d — 1)-dominant cycle of length) .

Assume thafp,, ..., pq} form a(d — 1)-dominant cycle of length. Let

Pi = (Pi1, -, Did) (1=1,...,d).

Then for each coordinatg there exists a# such that

D1j > D25 > > Dejs  Pej <Devlyj, Petlj > - > DPdj > Pl

and the’s are all distinct {! cases). Thus the probability of the event that, . . ., ps} form a
(d — 1)-dominant cycle is given by
d!

dld’
from which 28) follows. W
In particular, we see that
n(n —1)
1
which means that half of the pairs are cycles, rendering tdeminant skylines less likely to
occur. The first few otheE[C), 4] are given by

E[Cn,Q] =

_ Jnrn-1)(n-2) nn—-1)(n—=2)(n=3) n(n—1)(n—2)(n—3)(n—4)
{E[Cnad]}dzi% - { 1(35(5 ) )5(5296 )’ )1(036800000)( )

n(n—1)(n—2)(n—3)(n—4)(n—>5) }
1160950579200000 P

We see that the denominator grows very fast and we expechentype of threshold phe-
nomenon.
Let
logn J

dy = | —F7"F——
! {W(ellogn) *

N[
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andr, denote the fractional part Q{,l"gin) + % Also let

(e=1logn

o(t) = 1+%log27r n w ;
W1 (logn)(W +1)

12W3 4 (35 — 121log 2m)W?2 + (34 — 24 log 2m)W + 23 + (log 27T)2)

24(W +1)3
wheret € R andW represent$l/ (e~ ! logn). Note thati¥’ is of orderlog log n.

Theorem 9. The expected number @f — 1)-dominant cycles of lengthsatisfies

lim E[Cn,d] —

n—o0

oo, If2<d<d;
0, ifd>d;.

Whend = d,, we can writer,, = v(t); then

—0 ift— —o0;
lim E[C, 48 ~e€f, ift=0(1); (29)
e — o0, Ift— oc.

Proof. Write

logn
d=dy—m=—28" 4 1_
Lo V[/(e—llogn)jL2 v

wherev = m + 7,,. Then a straightforward calculation usirg] and Stirling’s formula gives

1
~1ogE[Cp 4] =v (W (e 'logn) +1) — 1 — 1 log2r

d
<W(6_1 logn)? + (v* + 1)W (e ' log n))
+0 :
logn

ThusE[C,, 4] — oo if m > 1 andE[C,, 4] — —oc if m < —1. Whenm = 0 (v = 7,), this
asymptotic expansion is insufficient and we need more telims= 7,, = v(t), then the same
calculation as above gives

2
E[Cod] = ¢ <1+0(W “)).
’ logn

1

a; = Mi‘j)iEJ Y1 (i)

d1 = dl(n) = if a; <n< Ajgq-

Thisimplies9). N
Let

Then

The first few values ofi; are given as follows.

i |4]5]6] 7| 8 9 10 11 12|
a; | 3[10]49]290 [ 2022 | 16165 | 145405 | 1453435 | 15982276 |
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9 A uniform lower bound for E[M,(n)]

The convergence rate id)(is very slow ifd is large andk is close tod. It is interesting to

characterize the transition éf, ;(n) from zero ton ask increases under the condition thét
andn are fixed. However, the exact characterization is not easyesderive instead a lower
bound that provides a good approximation to the real tremsit

Theorem 10(Uniform lower bound ind, k£ andn). Define

e X (O

0<j<d—k
Then, forn > 1andl <k <d -1,
E[Mar(n)] > nl,(Bar), (30)
where .
L(z) = x/ 2 (1= 1" dt,
Proof. Select two random points, y uniformly and independently ij, 1]¢. Obviously,
P (x k-dominatesy) = Sy

On the other hand, by definitioff,(x k-dominatesy) = f[o,l}d | B.(x)| dx. Thus

/[v ]d |Bk(X)| dX = ﬁd,k-
0,1

Let
F(t) = |{x€[0,1]*: |Bi(x)| < t}

be the distribution function ofB(x)|. By Markov inequality

Y

t(l—F(t))g/ IBi(x)|dx  (t € (0,1)).

[0,1]¢

Thus

F(t)>1- S 1Brl dx  — Pak
- t t

- _ Pax
G(t) = max{l . }

Define

ThenF(t) > G(t). Now

E[Mg(n)] = n/ (1—|Bp(x)])" " dx = n/o (1—t)"" di—]@. (31)

[0,1]¢
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Figure 4:Simulation result oE[1/, . (n)] and the lower boun@30) for n = 1000, d = 100 and
k from 50 to 100.

Since the integral on the right-hand side 81 becomes smaller if the distribution function
F(t) is replaced by (t), we have

E[M(n)] > n/o (1— t)"l%it),

from which @B0) follows. W
A useful, convergent asymptotic expansion fpfx), derived by successive integration by
parts, is as follows.

DG
In(x)_;n(n+l)---(n+j)x (1-2)

(1—2)" 2(1—ax)"!

nx n(n + 1)x?

as long as > 1/n. In particular,/,,(x) — 0 in this range ofc. If xn — ¢ > 0, then

I,(z) — c/ u%e " du,

the latter tending ta asc approaches zero.

We see that the transition éf () from zero to one occurs at=< n~! (meaning that is of
order proportional ta~'). In terms ofd andk, this arises wherd — oo andS;; =< n~*. Now,
by known estimate for binomial distribution (se€/] and the references cited there)

Bax = (200 — 1)*1d*1/22*da*ad<1 _ Oé)*(lfa)d’

whenk > d/2 + K+/d, wherea := k/d andK > 1 is a constant. We deduce from this that the
transition of7,,(3,,) from zero to one occurs atlog n for somec € (0, 1). The exact location
of this ¢ matters less sincg, is simply a lower bound; see Figude
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10 Conclusions

While the notion ofk-dominant skyline appeared as a natural means of solvinglihedance
of skyline, its use in diverse contexts has to be carefullysatered, in view of the results
we derived in this paper. We summarize our findings and haghkuggestions for possible
practical uses.

The asymptotic results we derived in this paper are eithean@nishing type or of a blow-
up nature; briefly, they are either zero or infinity when th@agke size goes unbounded, making
the selection of representative points more subtle. Theard number ot-dominant skyline
points approaches zero under either of the following sibnat

e Hypercube: botll andk < d bounded,
e Simplex: bothd andk < d bounded;

e Hypercube: extending thledominant skyline to the dominance by a clusteyj gioints
with bothd andk bounded.

In all cases, zero appears as the limit wher» oo. However, for practical purposes,is
always finite, and thus the above limit results become lesiilfom a computational point
of view. One needs asymptotic estimates that are uniford) inandn. But such results are
often very difficult. The uniform asymptotic approximati¢ib) we obtained leads to several
interesting consequences, including particularly theshold phenomeno223).

We conclude this paper by showing how the asymptotic resdtderived above can be ap-
plied in more practical situations. Assume that our sangple size, say: = 10* orn = 105,
and the dimensionality is in the range(4, 5,6, 7, 8} (smallerd may result in more biased in-
ferences while largef will yield too many skyline points). We also assume that catiacset is
sufficiently random and can be modeled by the hypercube mtdeir aim is to choose a rea-
sonably small number of candidates for further decisioninggkhen how can our asymptotic
estimates help?

First, for this range of andd, the expected numbers of skyline points can be easily com-
puted by the recurrence relation (sép [

1 .
Hn,d = -1 Z Hqsd ])Mn,j (d>2),

1<j<d-1

whereys,, 4 == E[My4(n)], HY" = > 1<j<nJ* are the harmonic numbers apg, := 1, and
are given approximately by

{164.7,426.3,902.7,1633.1,2603}  (n = 10*d =4,5,6,7,8),
and
{304.9,955.8,2432.1,5239.4,9845}  (n=10°;d = 4,5,6,7,8),

which are often too many for further consideration. So we tor(d — 1)-dominant skyline
and estimate their numbers by our asymptotic approximatiddowever, both Theorents
and7 have poor error terms, and a better numerical approximatid{), ,_,(n) for most
moderately values of andd is given by

)~ ) = 30 ()@ 1=y () et

0<j<d—2 J
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We thus obtain, for example, the following numerical values

| d [ 4]5[]6 [ 7 ] 8 |
E[Mgq-1(10%)] ~[ ¢4(n) — ga(n) [ 0.61 | 5.06 | 24.85 | 88.90 | 243.96
Monte Carlo || 0.57 | 4.82 | 23.98 | 83.89 | 226.65

and

| d | 4 5] 6 [ 7 | 8 |
E[Mya-1(10°)] ~[ ¢q(n) — ga(n) | 0.31] 3.69] 24.94] 115.31| 404.7
Monte Carlo || 0.29| 3.61| 24.38| 111.79| 386.08

From these tables, one can choose a suitédblording to the need of practical uses. Here we
also see the characteristic property of the skylines, eitbey few or very many points.

Our Monte Carlo simulations are carried out by a three-pladgerithm (extending our
two-phase maxima-finding one ia]) for finding the k-dominant skylines. Briefly, the first
two phases are modified from the algorithms presentedZhgnd the last phase removes all
cycles.
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Appendix A. Error analysis: d < \/W 221})05”””(

Recall thatV := n7-1 and consider the integral
g (et L d ,
) (f -, ) vl ey = ()0 o),
R [0,N]4 1<=d

where

¢d,j(n) ::/ 6*?41 yd( +-- + )dy (32)
[0,N]2=J x (N,00)J

So ourgy(n) = =T (dTll)d corresponds t@,(n); see (6).

Proposition 1. Letd > 3 satisfies“;’# — W(2logn) — oco. Then
faln) = O (¢aln)dN~77) . (33)
uniformly ind.

Proof. We first prove that uniformly fot < j < d,

daj(n) = O (T (55)" N7, (34)

Consider first the range < j < d — 2. By extending the integration ranges and then carrying
out the changes of variablgs+— Nvg 4,1 ford — j + 1 < ¢ < d, we obtain the bounds

*N“’l VY1 Yd— J<y1+m+
¢dj
(1,00)3J [0,N]d—d
NI g0y e B S
N]/ / e N'Ul Uiyl yd73<y1+ +yd,]>dydv
> oa;
(1,00)3J RY.
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By the change of variableg — )fﬁxj for1 < j <d, we have, for\ > 0,

1 \d
/ e—)\yl“‘yd<yl+ +oo )dy — @ )\*ﬁ (d>2).
Rd

+

It follows that

Hets)

.n < ) N_d—]l—J/ Vi Vs _1_¢i—%—jdv

=(d—1-j)" 1F(d L ]>d_jN‘d—+—j
_O( (d12)d 1N7‘f2>7

uniformly for 1 < 57 < d — 2. The remaining two casgs= d — 1, d are much smaller; we start
with ¢4 4(n). By the same analysis used above, we have

ba.a(n) :/ ef:vl---md(ﬁJr...Jré)dX
b (N7m)d

[ i)
(N,00)¢

_ 1 1
e Nxy-xq_ 1<zl+ +zd—2>
< dx.
N,00)d—1 .. 1 e 1
( ) T Td—1 (xl + + To_o

By the inequality

/ =% Mdt < \TINTYe AN (@ >0,\>0), (35)

N

we obtain

Nx1$d2(++ )
» e T4—2

(N’Oo)d_Qxl"'xd—2<i+"'+ 1 )

Tq—2

¢aa(n) < N dx

o4 2(d3) e—Nd72(J:1+J:2)
<N T e OX
(N,00)2 (1’1 + .I‘Q) B

0o —N4—2y
= N~(d-2(d-3) / ¢ (w—2N)dw
2N

wd—2
_ ) 1 —9oNd-1
< 23 dN d“+3d 16 2N )

Thus

¢aa(n) =0 (2’dn_d+2+d_ile’2”> ) (36)
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Finally,

—T1 T
e Tl Td—1

baa-1(n) S/ dx
(N,oo)dflxl...xd71<i+...+ 1 >

z1 Ty—1
1 e~ Ed -1
=71 141 dx,
-1 (N,00)d-1 (xl . xd—l) a1

by the inequality of arithmetic and geometric means

1 1+ n 1 > ( )d_ll
- —_— o .. I‘-.-I‘i =1,
d—1 il Td—1 - ! -1

Applying successively the inequalit@%), we obtain

N_l_ﬁ e~ Ne1za_s
baa-1(n) < 7/ — dx
(

d - 1 N,Oo)d_Q (1-1 P xd—?) —

IN

N—(d®—2d+2)
< —e
- d-1

It follows that
Gaa1(n) = O (d~ =1 -T1e). (37)

We see that both, ,(n) and¢, «(n) are much smaller than the right-hand side3#)(
The remaining case is wheh= 2. Obviously,

$a1(n) <// e 2 dy,dy; = e V.
0o JN

The upper bound3Q) then follows from summing, ;(n) for j from 1 to d using @4)

5 (rain-o{rir g2

1<j<d J

sinced N~ 72 — 0 for d in the range 14).
It remains to estimat&,(n), which can be proved to be bounded above by

d g (gL
Rd(n):O (N/R Y1 Ya€ Y yd<yl+ +yd>dy>

d
+

o ()
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Appendix B. Proof of Theorem7

We prove TheorenT in this Appendix. Our method of proof consists in a finer eaéin of
the integralsp, ;(n), leading to a more precise asymptotic approximatiofyta).

Proposition 2. Uniformly for d in the range(18)

l—e? 1 1 \¢
fd(”)“’z—ep'd—lr(d—l) ’ (39)

_da _
enl/dZ "

wherep :=

Proof.Consider again3?2) and start with the changes of variablgs—> Nvy 4, ford—j+1 <
¢ <d,

AR 5 S| 1y 1
’ (1,00)7/ [0, V)43

where\y ;(v) := N/v; - - -v;. Then we carry out the change of variables
yo e Ay (v) T, (1< 0<d— ),

and obtain
¢a,j(n) = vYa;(n) + wai(n),

where

. L [ L+...+;
Yaj(n) = N"a15 /(1 ),(Ul"'vj) ' dij/[ON]d € o J<x1 xdij)dXdV’
,00)J ,NoJ¢=7

with . ) )
NO = Nm (Ul .. .vj)m — (nvl .. .ij)d—l—j

)

and the error introduced is bounded above by
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Thus the total contribution @b, ;(n) to f4(n) is bounded above by

ha(n) =Y (4)(—1)jlwd,j<n>

1<j<d—2 J
. d—j
< > ()92] — 1P (2) Tt
1<j<d—2

which will be seen to be of a smaller order.

(39)

The recurrence relation Now

i 1 —x1mgoj | et
(1,00)9 R

N /( i (v 0) T faj(nwy )y
1,00)7

a1 () e
N /( i (v 0) T fag(ny - vp)dv.
1,00)7
So we get the following recurrence relation.
Lemma 2. The integralsf,(n) satisfy
fa(n) = ga(n) + ha(n) + 1a(n)

d 1 1 -1

1<j<d—2 J

for d > 3, with the initial condition
fa(n) =2e7" —e

whereh,(n) is given in(39),

ga(n) = (;j) (—1Md—=1-4y7'T (ﬁ_j)“ pati-
1<j<d—2
andng(n) := ¢aa-1(n) + Paa(n).
Note that, by 86) and @7),
na(n) = O (d*ln‘dﬂ—ﬁgn | gdy 42t gty 672n>
::C)(n_d+26_"),
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Also, by the change of variablés— v, - - - v;, we have
fa(n) = ga(n) + ha(n) + nd(n)

D (:) (J _1ﬂ__1“[ £ 7T (log )7 fa-y (nt) ol

1<5<d-2

which is easier to use for symbolic computation softwares.
We then obtain, for example,

807t 5
fs(n) = 7; 1 n"1 — 60msn 1+ O (n’ﬁ> )
9T (3)

But the expressions soon become too messy.

Asymptotic estimate forg,(n) We derive first a uniform asymptotic approximationjtdn ),
which will be needed later. We focus on the case wihénds to infinity withn.

Lemma 3. If d satisfie18), then

1 1 \* 2p—1 p—3
— —e P —p
ga(n) d—lr(d—l) {1 e "+ pe ( ¥ + 7 logn)

+O<E1¥§iil<y+bi")>}, (41)

uniformly ind.

Proof. First, we have

()@ —1—jyT (dlj) T

G ‘ n 2 N Ly .3 .3
:df(—l)j_ln_d2 exp (—j— J j—j(j+ )l ogn +O( 4logn)),

d2d

uniformly for j = o(dg). Summing over alj gives @1). Here the errors omitted are estimated
by the inequalities

O-0(4c ),
I' (1)<, (x >1)
4=1- % e b
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for 1 < j < d — 2, and we see that the contribution of termgitn) with indices larger than,
sayjo := Ld%J are bounded above by

2 (j)<—1>“<d— 1—j)"'T (d_%_)d_j T
270 4 ‘
o
5 4)

1 1
:o( r( )
d—1 \d-1 i>jo
1 1 \?pio
= r 2.
O(d—l <d—1> j0!>

Thus ford in the range 18)

jolog p —log jo! = 2d% logd — d ™% log n + d? + O(log d)
- (2—% - %2%) (log 1)1 (log log n) T (1 + o(1))

3 T

10 (log logn) 10 (1 4 o(1)),

IN

< —%(log n)

so that
3

P O <e43_0(10gn) 10 (10g10gn)170(1+0(1))>

Jo!

and the sum of these terms is asymptotically negligible. @iers>"
similarly. W

j>jo & are estimated

Iteration of the ®-operator To derive a similar estimate fgf;(n), we define the operator
d .1 1 1 1
O[f4](n) == Z ( ) (—1)/ a1 a1 / . (v - - 'Uj) === fdfj(nvl .. -Uj)dV.
1<j<d—2 N (1,00)7

By iterating the recurrence(), we obtain

fo=ga+ha+na+ Y lga+ha+nd,

1<j<d—2

where®’|f,] = ®[®7~[f,]] denotes thg-th iterate of theb-operator.
Surprisingly, despite of the complicated forms of the @hrsums, eachb™[g,] can be
explicitly evaluated and differs fromy, only by a single term.

Lemma 4. Foranym > 0
d _ —¢ 1 __1
olad) = 30 (§) 0 1= 0 () e o0, (@)
m<l<d—2
whereo,,(¢) is always positive and defined by

om(l) = ) (jl,“'g,jmﬂ).
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Note that

om(l) = 0[] (eF — 1)}

- ¥ (m: 1) (—1)mtioryt,

1<r<m+1

Proof. By definition and by rearranging the terms

ZOEEDY <j i 1) (~1)*jT (%)jﬂnd—il— .

1<j<d—2

S

Substituting this expression into tdeoperator, we see that

Plgal(n) = ) (4)(—1)jnd_i1_‘i‘+‘j /(1,oo)j (vr 1) 7T gaj(ny - v)dv

1<j<d-2 J
d 1
P (.)<—1>Jndl
1<j<d-2 J
% Z <2l_j>(_1)d—j—€£d—2—j—ér (%)ZJrln_%/ (Ul“‘fl}j)ili% dv.
1<0<d—j—2 +1 (1,00)9
Then
d e d—j d—j—lpd—2—p (1)1 1
gd(m)= D () (-1 P (G Vi N O RO
1<j<d-2 J 1<e<d—j—2
d ) 0 pd—o— 41 11 d—1—/
= (D) () e > < . )
1<0<d—2 <£ +1 1<j<d—2—¢ J
d ) d—tpd—2—0p (11 L1 5d—1—¢
= (—1)“% U'(3) " naie(2 —2)
1<0<d—2 <£+1
- ((Z) (=)A= 1= 07T () e (20— 2).
1<<d—2

By repeating the same analysis and induction, we prég2e ( W

Corollary 3. If d satisfieq18), then
m m 1 1 \d —p\ym+1 B
" [gql(n) ~ (1) AT (75)" (1—e?) (m=0,1,...).

Summing over all < m < d — 2, we deduce38) and it remains only the error estimates.

Error analysis The consideration ob™[h,] is similar and we obtain

" ha(n) <Y @”(d — 1= 07 (2) " e e ()

m<l<d—2
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where

l
(0) = . ‘ i
Jm( ) Z <]17"' 7]m+1>J !

Jitetimr=L
Jiseenjmt121

Thus, with

Po = pCYr)
en
which is always< log 2 whend satisfies 18), we then have

ém[hd](n) — = O ( Z (’n,:) (_1)mfrz (g 501)! (T + 1)2)

Szl (ﬁ)d noat 0<r<m >0

d(d—1)29
=0 (poe”O > (T) (=)™ "(r + l)erp())

0<r<m

=0 (poe™ ((e” — 1) ((m+ 1)e” —1))).

Now
> (=" ((m+ Dz —1)) = O(d?)
0<m<d—2
whenevel < z < 2. It follows that
S @ =0 (27T () )
0<m<d—2

which holds uniformly as long ag° < 2. This is how the upper limit of in (18) arises.
In such a case,

5 el oyt )
0<m<d-2

We consider nowb’ [n4]. Note that an exponentially small term remains expondnsahall
under theb-operator because

/ (vy -+ vy) e Vidy oI e
(1700)j

So all terms of the formé™[n,] are asymptotically negligible. And we then dedugg)( W
More calculations give

fam)  _1—e?  pe? (2/) —1+(pt3)e”
d 9 _ e— — e—pr)3
T () 2—er (2—e7") d
2(p=3)+(p+3)e” pe’ log® n
+ 5 logn | +0 7 PP+1) 1+ 7 :

Note that the rangel@) arises because we had to drop factors of the form)’ in esti-
mating the sum oh,(n). With a more careful analysis along the same inductive liveecan
extend the range of uniformity 088).
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