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Abstract

We give an explicit upper bound for the algebraic degree and an explicit lower bound for
the absolute value of the minimum of a polynomial function on a compact connected compo-
nent of a basic closed semialgebraic set when this minimum is not zero. As an application,
we obtain a lower bound for the separation of two disjoint connected components of basic
closed semialgebraic sets, when at least one of them is compact.

1 Introduction

Let T ⊂ Rn be a basic closed semialgebraic set defined by polynomials with integer coefficients
and let C be a compact connected component of T . The first aim of this work is to find bounds
δ > 0 and b > 0 such that if the minimum value that a polynomial g ∈ Z[x1, . . . , xn] takes
over C is not zero, then it is an algebraic number of degree at most δ and its absolute value is
greater or equal to b. We look for explicit bounds δ and b in terms of the number of variables,
the number of polynomials defining T and given upper bounds for the degrees and coefficient
size of these polynomials and g. Such explicit bounds are of fundamental importance in the
complexity analysis of symbolic and numerical methods for optimization and polynomial system
solving (see, for instance, [1]).

A standard technique to handle optimization problems with inequality constraints is to use
the Karush-Kuhn-Tucker conditions (see [13, Chapter 12]). In [11], this approach is combined
with deformation techniques to obtain the algebraic degree of the minimizers in polynomial
optimization over subsets of Rn defined by at most n polynomials under certain non-degeneracy
assumptions.
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†Partially supported by an individual postdoctoral grant from the Danish Agency for Science, Technology and
Innovation, and also acknowledges support from the Danish National Research Foundation and the National Sci-
ence Foundation of China (under the grant 61061130540) for the Sino-Danish Center for the Theory of Interactive
Computation, within which part of this work was performed.
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In this paper, we consider the minimization problem for an arbitrary family of polynomial
constraints. Since the system which gives the critical points for g on T may not satisfy the
required hypothesis or may provide us with an infinite set of possible minimizers, we use the
deformation techniques in [8] which follow the spirit of [2, Chapter 13]. The deformation enables
us to deal with ‘nice’ systems which, in the limit, define a finite set of minimizing points. A
careful analysis of the perturbed systems combined with resultant-based estimations relying on
[16] leads us to the explicit bounds (see [3], [5], [6] and [7] for similar applications of these
techniques). Our main result is the following:

Theorem 1 Let T = {x ∈ Rn | f1(x) = · · · = fl(x) = 0, fl+1(x) ≥ 0, . . . , fm(x) ≥ 0} be
defined by polynomials f1, . . . , fm ∈ Z[x1, . . . , xn] with degrees bounded by an even integer d and
coefficients of absolute value at most H, and let C be a compact connected component of T . Let
g ∈ Z[x1, . . . , xn] be a polynomial of degree d0 ≤ d and coefficients of absolute value bounded by
H0 ≤ H. Then, the minimum value that g takes over C is a real algebraic number of degree at
most

2n−1dn

and, if it is not zero, its absolute value is greater or equal to

(24−
n
2 H̃dn)−n2ndn , (1)

where H̃ = max{H, 2n + 2m}.

We also show that the previous result holds for non-compact connected components of T
having a compact set of minimizers for g (see Theorem 12).

Usually solutions of optimization problems are algebraic numbers, hence it is natural to study
the degree of the minimal polynomial that defines them [12]. Our bound for the degree can be
seen as an extension of the result in [11]. In addition, we present an explicit lower bound for
the absolute value of the minimum. This bound can be applied, for instance, to get an explicit
upper bound for the degrees in Schmüdgen’s Positivstellensatz (see [14, Theorem 3]).

A further application of our main result, which is in fact the original motivation of this
work, is an explicit lower bound for the separation between disjoint connected components of
basic closed semialgebraic sets. Bounds of this kind can be applied to estimate the running time
of numeric algorithms dealing with polynomial equations and inequalities (see, for instance,
[9], [17]). For isolated points, the problem has already been studied both in the complex and
real settings (see, for instance, [4], [5], [6]). Our result, which includes positive dimensional
situations, is the following:

Theorem 2 Let T1 = {x ∈ Rn | f1(x) = · · · = fl1(x) = 0, fl1+1(x) ≥ 0, . . . , fm1
(x) ≥ 0},

T2 = {x ∈ Rn | g1(x) = · · · = gl2(x) = 0, gl2+1(x) ≥ 0, . . . , gm2
(x) ≥ 0} be defined by poly-

nomials f1, . . . , fm1
, g1, . . . , gm2

∈ Z[X1, . . . ,Xn] with degrees bounded by an even integer d and
coefficients of absolute value at most H. Let C1 be a compact connected component of T1 and
C2 a connected component of T2. Then, if C1 ∩ C2 = ∅, the distance between C1 and C2 is at
least

(24−nH̃d2n)−n22nd2n

where H̃ = max{H, 4n + 2m1 + 2m2}.
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The paper is organized as follows: Section 2 is devoted to proving the bounds for the mini-
mum. First, we introduce the deformation techniques we use and prove some geometric proper-
ties of this deformation which, in particular, enables us to give a characterization of minimizers
as solutions to a polynomial system; then, we prove Theorem 1. In Section 3, we prove Theorem
2 and present an easy example to show that the double exponential nature of our bounds is
unavoidable.

2 The minimum of a polynomial function

Let f1, . . . , fm, g ∈ Z[x1, . . . , xn] with n ≥ 2, d an even positive integer such that deg(f1), . . . ,deg(fm) ≤
d, and d0 = deg(g) ≤ d. Let H ∈ N be an upper bound on the absolute values of all the co-
efficients of f1, . . . , fm and H0 ∈ N, H0 ≤ H, an upper bound on the absolute values of the
coefficients of g. Let T = {x ∈ Rn | f1(x) = · · · = fl(x) = 0, fl+1(x) ≥ 0, . . . , fm(x) ≥ 0} and let
C be a compact connected component of T .

2.1 The deformation

Here we introduce some notation that we will use throughout this section. Let

• A ∈ Z(m+1)×(n+1), A = (aij)0≤i≤m, 0≤j≤n be a matrix such that each of its submatrices
has maximal rank and aij > 0 for every i, j.

• For every 1 ≤ i ≤ m, f̃i(x) =
∑n

j=1 aijx
d
j + ai0, F

+
i (t, x) = fi(x) + tf̃i(x) and F−

i (t, x) =

fi(x)− tf̃i(x).

• g̃(x) =
∑n

j=1 a0jx
d
j + a00 and G(t, x) = g(x) + tg̃(x).

• For every S ⊂ {1, . . . ,m} and σ ∈ {+,−}S ,

ŴS,σ = {(t, x) ∈ A× An | F σi

i (t, x) = 0 for every i ∈ S},

ẐS,σ = {(t, x) ∈ A× An | (t, x) ∈ ŴS,σ and {∇xF
σi

i (t, x), i ∈ S} is linearly dependent},

and
V̂S,σ = {(t, x, λ) ∈ A× An × P#S | (t, x) ∈ ŴS,σ and

λ0∇xG(t, x) =
∑

i∈S

λi∇xF
σi

i (t, x)},

where A and P denote the affine and projective spaces over the complex numbers respec-
tively. There are

∑m
i=1

(
m
i

)
2i = 3m−1 different sets ŴS,σ. We consider the decomposition

of ŴS,σ as ŴS,σ = W
(0)
S,σ ∪W

(1)
S,σ ∪WS,σ, where

– W
(0)
S,σ is the union of the irreducible components of ŴS,σ included in t = 0,

– W
(1)
S,σ is the union of the irreducible components of ŴS,σ included in t = t0 for some

t0 ∈ C− {0},

– WS,σ is the union of the remaining irreducible components of ŴS,σ,
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and the analogous decompositions of ẐS,σ and V̂S,σ as ẐS,σ = Z
(0)
S,σ ∪ Z

(1)
S,σ ∪ ZS,σ and

V̂S,σ = V
(0)
S,σ ∪ V

(1)
S,σ ∪ VS,σ respectively.

• For a group of variables y, Πy will indicate the projection to the coordinates y.

We start by constructing a matrix A satisfying the conditions required above and bounding
their entries.

Lemma 3 There exists a matrix A ∈ Z(m+1)×(n+1), A = (aij)0≤i≤m, 0≤j≤n, such that each of
its submatrices has maximal rank and 0 < aij ≤ 2(n +m) for every i, j.

Proof. Let p be a prime number such that n + m + 2 ≤ p ≤ 2n + 2m + 1, which exists by
Bertrand’s postulate.

Consider the Hilbert matrix A1 = ( 1
i+j+1)0≤i≤m, 0≤j≤n, which is a particular case of a Cauchy

matrix; therefore, every submatrix of A1 has maximal rank. Let A2 = (n + m + 1)!A1; then,
A2 ∈ Z(m+1)×(n+1) and the positive prime factors of every entry of A2 are prime numbers lower
than or equal to n + m + 1. Looking at the formula for the determinant of Cauchy matrices,
one can see that the determinant of every square submatrix of A2 is an integer (different from
0) such that all its prime factors are lower than or equal to n+m+ 1.

Finally, take A as the matrix obtained by replacing every entry of A2 by its remainder in the
division by p, which is never equal to 0. Then it is clear that A has the required properties. �

Before proceeding, we will state two basic facts about the varieties previously defined. We
postpone the proof of these results to Section 2.3.

Lemma 4 Let S ⊂ {1, . . . ,m} and σ ∈ {+,−}S . If #S > n, the variety WS,σ is empty.

Lemma 5 For every S ⊂ {1, . . . ,m} and σ ∈ {+,−}S , the variety ZS,σ is empty.

2.2 Geometric properties

For every t ≥ 0, let

Tt = {x ∈ Rn | F+
1 (t, x) ≥ 0, . . . , F+

l (t, x) ≥ 0, F+
l+1(t, x) ≥ 0, . . . , F+

m (t, x) ≥ 0,

F−
1 (t, x) ≤ 0, . . . , F−

l (t, x) ≤ 0}.

As f̃i(x) > 0 for every 1 ≤ i ≤ m and x ∈ Rn, it is clear that:

• If 0 ≤ t1 ≤ t2, then Tt1 ⊂ Tt2 ,

• T0 = T .

Since T is a closed set, its connected components are closed. Then, since C is a compact
connected component of T , there exists µ > 0 such that dist(C,C ′) ≥ 2µ for every connected
component C ′ of T , C ′ 6= C. Let us denote

Cµ = {x ∈ Rn | dist(x,C) < µ}.
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Lemma 6 There exists t0 > 0 such that for every 0 ≤ t ≤ t0, the connected component of Tt

containing C is included in Cµ.

Proof. Assume the statement does not hold. Let (tk)k∈N be a decreasing sequence of positive
numbers converging to 0 such that, if C ′

k is the connected component of Ttk containing C, then
C ′
k 6⊂ Cµ.
Since C ′

k is connected, contains C and intersects the set {x ∈ Rn | dist(x,C) ≥ µ}, there
is a point rk ∈ C ′

k with dist(rk, C) = µ. Since (rk)k∈N is a sequence contained in the compact
set {x ∈ Rn | dist(x,C) = µ}, it has a subsequence which converges to a point r such that
dist(r, C) = µ. Without loss of generality, we may assume this subsequence to be the original
one.

On the other hand, since rk ∈ C ′
k ⊂ Ttk , we have that, for every 1 ≤ i ≤ m,

F+
i (tk, rk) ≥ 0, and so, F+

i (0, r) = lim
k→∞

F+
i (tk, rk) ≥ 0,

and, for every 1 ≤ i ≤ l,

F−
i (tk, rk) ≤ 0, and so, F−

i (0, r) = lim
k→∞

F−
i (tk, rk) ≤ 0.

This implies that r ∈ T , leading to a contradiction, since there is no point in T whose distance
to C equals µ. �

The following proposition shows that in order to obtain minimizers for the polynomial func-
tion g on the compact connected component C it is enough to consider polynomial systems with
at most as many equations as variables.

Proposition 7 There exist z ∈ C, S ⊂ {1, . . . ,m} with 0 ≤ #S ≤ n, and σ ∈ {+,−}S with
σi = + for l + 1 ≤ i ≤ m, such that (0, z) ∈ Π(t,x)(VS,σ) and g(z) = min{g(x) | x ∈ C}.

Proof. Let t0 > 0 be such that:

• for every 0 ≤ t ≤ t0, the connected component of Tt containing C is included in Cµ,

• for every S ⊂ {1, . . . ,m}, σ ∈ {+,−}S and t ∈ Πt(W
(1)
S,σ) ∪Πt(Z

(1)
S,σ) ∪Πt(V

(1)
S,σ ), t0 < |t|.

Let (tk)k∈N be a decreasing sequence of positive numbers converging to 0 with t1 ≤ t0.
Consider the connected component C ′

k of Ttk which contains C (note that C ′
k is a compact set)

and let zk be a point in C ′
k at which the functionG(tk, ·) attains its minimum value over C ′

k. Since
the sequence (zk)k∈N is bounded, it has a convergent subsequence; without loss of generality, we
may assume this subsequence to be the original one. Let z = limk→∞ zk. Proceeding as in the
proof of Lemma 6, we have that z ∈ C.

In order to see that g(z) = min{g(x) | x ∈ C}, note that for every x ∈ C ⊂ C ′
k, we have that

G(tk, zk) ≤ G(tk, x) for every k; therefore,

g(z) = G(0, z) = lim
k→∞

G(tk, zk) ≤ lim
k→∞

G(tk, x) = G(0, x) = g(x).

Now, for every k and every x ∈ Rn, at most one of the polynomials F+
i (tk, x) and F−

i (tk, x)
may vanish, since f̃i(x) > 0. For every k ∈ N, let

Sk = {i ∈ {1, . . . , l} | F+
i (tk, zk) = 0 or F−

i (tk, zk) = 0} ∪ {i ∈ {l + 1, . . . ,m} | F+
i (tk, zk) = 0}.
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Without loss of generality, we may assume that Sk is the same set S for every k ∈ N; moreover,
we may assume that, for each i ∈ S, it is always the same polynomial F+

i (tk, zk) or F
−
i (tk, zk)

the one which vanishes, thus defining a function σ ∈ {+,−}S .

Since (tk, zk) ∈ ŴS,σ, tk 6∈ Πt(W
(0)
S,σ ∪W

(1)
S,σ) and WS,σ = ∅ if #S > n (Lemma 4), we have

that #S ≤ n. In addition, since tk 6∈ Πt(Z
(0)
S,σ ∪ Z

(1)
S,σ) and ZS,σ = ∅ (Lemma 5), it follows that

(tk, zk) 6∈ ẐS,σ; therefore, {∇xF
σi

i (tk, zk), i ∈ S} is a linearly independent set for every k ∈ N.
Finally, since the function G(tk, ·) attains a local minimum at the point zk when restricted to
the set {x ∈ Rn | F σi

i (tk, x) = 0 for every i ∈ S}, by the Lagrange Multiplier Theorem, there
exists (λi,k)i∈S such that

∇xG(tk, zk) =
∑

i∈S

λi,k∇xF
σi

i (tk, zk).

Therefore, (tk, zk, (1, (λi,k)i∈S)) ∈ V̂S,σ; but since tk 6∈ Πt(V
(0)
S,σ ∪ V

(1)
S,σ ), we conclude that

(tk, zk, (1, (λi,k)i∈S)) ∈ VS,σ. Without loss of generality, we may assume that (1, (λi,k)i∈S)k∈N
converges to a point (λ0, (λi,0)i∈S)) ∈ P#S; then (0, z, (λ0, (λi,0)i∈S)) ∈ VS,σ and, therefore,
(0, z) ∈ Π(t,x)(VS,σ) as we wanted to prove. �

2.3 Obtaining the bounds

In this section we prove Lemmas 4 and 5 and we do the estimates to obtain the bounds we are
looking for.

Notation 8 For p ∈ Q[x1, . . . , xn] and e ∈ N, e ≥ deg p, h(p)e will denote the polynomial
xe0p(x1/x0, . . . , xn/x0) ∈ Q[x0, . . . , xn] which is obtained by homogenizing p up to degree e.

• For every 1 ≤ i ≤ m,

F+
i (t0, t, x0, x) = t0 h(fi)d(x0, x) + t h(f̃i)d(x0, x) = t0 h(fi)d(x0, x) + t




n∑

j=0

aijx
d
j


 ,

F−
i (t0, t, x0, x) = t0 h(fi)d(x0, x)− t h(f̃i)d(x0, x) = t0 h(fi)d(x0, x)− t




n∑

j=0

aijx
d
j


 .

• For S ⊂ {1, . . . ,m} and σ ∈ {+,−}S, for every 1 ≤ j ≤ n,

GS,σ,j(t0, t, x0, x, λ0, λ) = t0 h

(
λ0

∂g

∂xj
−
∑

i∈S

λi
∂fi
∂xj

)

d−1

+t h

(
λ0

∂g̃

∂xj
−
∑

i∈S

λiσi
∂f̃i
∂xj

)

d−1

=

= t0

(
λ0h

( ∂g

∂xj

)
d−1

−
∑

i∈S

λih
( ∂fi
∂xj

)
d−1

)
+ t dxd−1

j

(
λ0a0j −

∑

i∈S

λiσiaij

)
.

Proof of Lemma 4. Consider the polynomials F σi

i for every i ∈ S. These polynomials are bi-

homogeneous in the sets of variables (t0, t), (x0, x); therefore, they define a variety Ŵ S,σ in

P1 × Pn (which contains ŴS,σ when embedded in Pn). Now, the fiber Π−1
(t0,t)

(0, 1) with respect
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to the projection Π(t0,t) : Ŵ S,σ → P1 is given by the set of common zeroes of the polynomials∑n
j=0 aijx

d
j for i ∈ S. But this system has no solution in Pn, since, by the assumption on A

and the fact that #S > n, the matrix (aij)i∈S,0≤j≤n has maximal rank n + 1. We conclude

that Π(t0,t)(Ŵ S,σ) is not equal to P1. Since Pn is a complete variety, Π(t0,t)(Ŵ S,σ) is closed and
hence, it is a finite set. Therefore, WS,σ = ∅. �

Proof of Lemma 5. Consider the variety ZS,σ defined in P1 × Pn × P#S−1 by the polynomials

F σi

i , i ∈ S, and each of the n components of the vector
∑

i∈S λi∇xF
σi

i . Note that the projection

to P1 × Pn of ZS,σ contains ẐS,σ (when embedded in P1 × Pn). Consider the projection Π(t0,t) :

ZS,σ → P1. We will show that the fiber Π−1
(t0,t)

(0, 1) is empty or, equivalently, that the system




n∑

j=0

aijx
d
j = 0 i ∈ S

dxd−1
j

∑

i∈S

σiaijλi = 0 j = 1, . . . , n.

has no solution in Pn × P#S−1. Assume, on the contrary, that (x0, x, λ) is a solution and let
k = #{j ∈ {1, . . . , n} | xj = 0}. When specializing x in the second set of equations, we get a
linear equation system for λ consisting of n− k linearly independent equations in #S unknowns
which has a non-trivial solution; hence #S ≥ n+1−k. This implies that the first #S equations
do not have a common solution in Pn with k vanishing coordinates.

We conclude that Π(t0,t)(ZS,σ) is not equal to P1. Since Pn × P#S−1 is complete, as in the
proof of the previous lemma, it follows that ZS,σ = ∅. �

Now we use the previous constructions to derive our bounds. We will define univariate
polynomials QS,σ(U) having the minimum that g takes over the compact connected components
of T as roots and we will obtain our bounds by means of these polynomials. Let

P (U, x0, x) = Uxd00 − h(g)d0(x0, x).

For S ⊂ {1, . . . ,m} with #S ≤ n and σ ∈ {+,−}S , let

RS,σ(t0, t, U) = Res(x,x0),(λ,λ0)(P ;F σi

i , i ∈ S;GS,σ,j, 1 ≤ j ≤ n) ∈ Z[t0, t, U ],

where Res(x,x0),(λ,λ0) denotes the bihomogeneous resultant associated to the bi-degrees of the
polynomials involved: (d0, 0), (d, 0) repeated s times, and (d− 1, 1) repeated n times.

Lemma 9 The polynomial RS,σ(t0, t, U) is not identically zero.

Proof. Let S be the polynomial system
{

F σi

i (t0, t, x0, x) = 0 i ∈ S,

GS,σ,j(t0, t, x0, x, λ0, λ) = 0 1 ≤ j ≤ n.

By specializing (t0, t) = (0, 1) in the polynomials of the system S, we get the following
polynomial system of equations:

S∞ =





n∑

j=0

aijx
d
j = 0 i ∈ S,

dxd−1
j

(
a0jλ0 −

∑

i∈S

σiaijλi

)
= 0 1 ≤ j ≤ n.

7



We will show that S∞ has finitely many solutions in Pn×Ps, none of them lying in the hyperplane
{x0 = 0}. As a consequence of this fact, it follows that the only roots of RS,σ(0, 1, U) are the
finitely many values g(x) where (1, x, λ0, λ) is a solution to S∞; therefore RS,σ(t0, t, U) is not
identically zero.

First, note that if (x0, x, λ0, λ) is a solution to S∞, the last n equations of this system imply
that, for every 1 ≤ j ≤ n, either xj = 0 or a0jλ0−

∑
i∈S σiaijλi = 0. Let us show that, for every

J ⊂ {1, . . . , n}, the system S∞ has only finitely many solutions such that xj = 0 if and only if
j ∈ J . For a fixed J , these solutions are the solutions to

S(1,J)
∞ =




∑

j /∈J

aijx
d
j = 0 i ∈ S and S(2,J)

∞ =

{
a0jλ0 −

∑

i∈S

σiaijλi = 0 j /∈ J.

Taking into account that any submatrix of (aij) has maximal rank, we have that:

• If #J > n − s, the system S
(1,J)
∞ implies that xj = 0 for every j /∈ J , contradicting the

definition of J .

• If #J < n− s, then S
(2,J)
∞ has a unique solutions (λ0, λ) = 0, since it consists of at least as

many equations as unknowns; then, S∞ has no solutions in Pn × Ps corresponding to J .

• If #J = n−s, S
(2,J)
∞ has a unique solution in Ps. On the other hand, S

(1,J)
∞ has no solutions

with x0 = 0 and exactly ds solutions with x0 = 1.

�

Write RS,σ(t0, t, U) = teS,σR̃S,σ(t0, t, U) with eS,σ ∈ N0 and R̃S,σ(t0, t, U) not a multiple of t.

Note that RS,σ(1, t, g(x)) vanishes on Π(t,x)(V̂S,σ) and so, R̃S,σ(1, t, g(x)) vanishes on Π(t,x)(VS,σ).
Let

QS,σ(U) = R̃S,σ(1, 0, U).

Proposition 10 The polynomial QS,σ(U) ∈ Z[U ] is not identically zero. The degree of QS,σ(U)
is at most (

n

s

)
ds(d− 1)n−s,

where s = #S, and its coefficients have an absolute value lower than

MS,σ = (2H0)
M1(2H̃)sM2+nM3dnM3NM1

1 N sM2

2 NnM3

3

(
M1 +N1 − 1

N1 − 1

)(
M2 +N2 − 1

N2 − 1

)s(M3 +N3 − 1

N3 − 1

)n

,

where

• H̃ = max{H, 2n + 2m},

• M1 =
(n
s

)
ds(d− 1)n−s, M2 =

(n
s

)
d0d

s−1(d− 1)n−s, M3 =
(n−1

s

)
d0d

s(d− 1)n−s−1,

• N1 =
(d0+n

n

)
, N2 =

(d+n
n

)
, N3 =

(d−1+n
n

)
(s+ 1).

8



Proof. Since R̃S,σ(t0, t, U) is homogeneous in the variables t0, t and it is not a multiple of t, it
follows that QS,σ(U) is not identically zero.

The degree of the polynomials fi is bounded by d and their coefficients are of absolute value
at most H. The corresponding quantities for g are d0 ≤ d and H0. By abuse of notation, let A
be an upper bound for the absolute values of the elements of the matrix A. From Lemma 3, we
may assume A ≤ 2(n+m).

We deduce that P ∈ (Z[U ])[x0, x] is a polynomial of degree d0 and its coefficients are

linear polynomials in U with coefficients of magnitude at most H0. Also, F±
i (t0, t, x0, x) ∈

(Z[t0, t])[x0, x] are polynomials of degree d and their coefficients are linear forms in (t0, t) with
coefficients of magnitude at most H̃. Finally, GS,σ,j(t0, t, x0, x, λ0, λ) ∈ (Z[t0, t])[x0, x, λ0, λ] are
bihomogeneous polynomials in ((x0, x), (λ0, λ)) of degree d − 1 in the variables (x0, x) and lin-
ear in the variables (λ0, λ), and their coefficients are linear forms in (t0, t) with coefficients of
magnitude at most dH̃ .

We compute the resultant RS,σ that eliminates (x0, x)(λ0, λ), which is a polynomial in
(Z[U ])[t0, t]. Recall that the bihomogeneous resultant Res(x0,x),(λ,λ0) of a bihomogeneous system
of n+ s+1 polynomials consisting of a polynomial of bidegree (d0, 0), s polynomials of bidegree
(d, 0) and n polynomials of bidegree (d− 1, 1) is a multihomogeneous polynomial of degree

M1 = Bez((d, 0), s; (d − 1, 1), n) =

(
n

s

)
ds(d− 1)n−s

in the coefficients of the polynomial of bidegree (d0, 0), of degree

M2 = Bez((d0, 0), 1; (d, 0), s − 1; (d − 1, 1), n) =

(
n

s

)
d0d

s−1(d− 1)n−s

in the coefficients of each of the s polynomials of bidegree (d, 0), and of degree

M3 = Bez((d0, 0), 1; (d, 0), s; (d − 1, 1), n − 1) =

(
n− 1

s

)
d0d

s(d− 1)n−s−1

in the coefficients of each of the n polynomials of bidegree (d−1, 1). Here Bez(d1, s1; . . . ;dr, sr)
denotes the Bézout number of a bihomogeneous system formed by si polynomials of bi-degree
di = (di,1, di,2) for 1 ≤ i ≤ r (see [15, Chapter IV, Sec. 2]).

It follows that RS,σ is a sum of terms of the form

ρα
∏

i∈S

βi
∏

1≤j≤n

γj, (2)

where ρ ∈ Z is a coefficient of the bihomogeneous resultant Res(x0,x),(λ,λ0), α denotes a monomial

in the coefficients of P of total degree M1, βi denotes a monomial in the coefficients of F±
i of

total degree M2 for every i ∈ S, and γj denotes a monomial in the coefficients of GS,σ,j of total
degree M3 for every 1 ≤ j ≤ n. In particular, the degree of RS,σ in the variable U is at most
M1.

Note that the polynomial QS,σ(U) is the coefficient of RS,σ ∈ (Z[U ])[t0, t] corresponding to
the smallest power of t. Therefore,

degQS,σ(U) ≤ degU RS,σ(U, t0, t) ≤ M1 =

(
n

s

)
ds(d− 1)n−s.
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In order to estimate the magnitude of its coefficients, we may set t0 = 1 in RS,σ and, by
abuse of notation, write RS,σ for the specialized polynomial. For every k, we will compute an
upper bound for the magnitude of the coefficients of the polynomial in Z[U ] that appears as
coefficient of tk in RS,σ.

First, we apply [16, Theorem 1.1] to bound the coefficients ρ ∈ Z of the resultant Res(x0,x),(λ0,λ).
We obtain:

|ρ| ≤ NM1

1 (NM2

2 )s (NM3

3 )n, (3)

where N1 =
(d0+n

n

)
and N2 =

(d+n
n

)
are the cardinalities of the supports of generic homogeneous

polynomials of degrees d0 and d respectively, and N3 =
(d−1+n

n

)
(s + 1) is the cardinality of the

support of a generic bihomogeneous polynomial of bidegree (d− 1, 1) in (x0, x), (λ0, λ).
Note that α ∈ Z[U ] is a polynomial in U with integer coefficients and degree bounded by

M1, and the absolute value of the coefficient of the power U j in αM1 is at most
(
M1

j

)
HM1−j

0 < (2H0)
M1 . (4)

On the other hand, the product
∏

i∈S βi
∏

1≤j≤n γj ∈ Z[t] is a polynomial in the variable t

with integer coefficients, which is a product of sM2 linear factors that are coefficients of the F±
i

and nM3 linear factors that are coefficients of the GS,σ,j. Thus, for a fixed k, using the upper

bounds on the coefficients of the polynomials F±
i and GS,σ,j, it follows that the coefficient of tk

in this product is at most
(
sM2 + nM3

k

)
H̃sM2(dH̃)nM3 < (2H̃)sM2+nM3dnM3 . (5)

Finally, taking into account the multihomogeneous structure of the resultant, it follows that
RS,σ is a sum of at most

(
M1 +N1 − 1

N1 − 1

)(
M2 +N2 − 1

N2 − 1

)s(M3 +N3 − 1

N3 − 1

)n

(6)

terms of the form (2).
Combining the upper bounds (3), (4), (5) and (6) we obtain the stated upper bound for the

absolute value of the coefficients of QS,σ(U). �

We can prove now the main result of the paper:

Proof of Theorem 1. By Proposition 7, the polynomial g attains its minimum value over C at a
point z0 ∈ C such that (0, z0) ∈ Π(t,x)(VS,σ) for certain S ⊂ {1, . . . ,m} with 0 ≤ #S ≤ n, and

σ ∈ {+,−}S with σi = + for l + 1 ≤ i ≤ m. Now, for every (0, z) ∈ Π(t,x)(VS,σ), we have that
QS,σ(g(z)) = 0.

Then, if s = #S, Proposition 10 implies that g(z0) is an algebraic number of degree at most(n
s

)
ds(d− 1)n−s ≤ 2n−1dn. Furthermore, if g(z0) 6= 0, its absolute value is greater than or equal

to M−1
S,σ (see [10, Proposition 2.5.9]).

We keep the notation in Proposition 10. In order to get the stated bound for the minimum,
we use the following facts:

• N1, N2 ≤
3
2d

n,
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• N3 ≤
9
4d

n: for n = 2 and n = 3 the bound holds easily, for n ≥ 4,

N3 ≤ (n+1)

n∏

i=1

d− 1 + i

i
≤ (n+1)d

(∑n
i=2

d−1+i
i

n− 1

)n−1
≤ (n+1)d

(
(d−1)

log(n)

n− 1
+1
)n−1

≤

≤ (n + 1)d
(
(d− 1)0.47 + 1

)n−1
≤ (n+ 1)0.74n−1dn ≤

9

4
dn.

•
(Mi+Ni−1

Ni−1

)
≤ 2Mi+Ni for 1 ≤ i ≤ 3.

Then we have

MS,σ ≤ 22(M1+sM2+nM3)+(log2(3)−1)(M1+sM2)+2(log2(3)−1)nM3+N1+sN2+nN3 ·

· H̃M1+sM2+nM3dn(M3+M1+sM2+nM3).

Since M1 + sM2 + nM3 ≤ (n+ 1)
(n
s

)
dn ≤ (n+ 1)2n−1dn and M3 ≤ 2n−2dn, we have

MS,σ ≤ 2(((3 log2(3)+1)n+2 log2(3)+2)2n−2+ 3

2
(n+1)+ 9

4
n)dnH̃(n+1)2n−1dnd(2n

2+3n)2n−2dn ,

and taking into account that H̃ ≥ 6 and d ≥ 2, we obtain

MS,σ ≤ 2((−2n2+(log2(3)+2)n+4 log2(3)+4)2n−2+ 3

2
(n+1)+ 9

4
n)dnH̃n2ndndn

22ndn .

Finally, the result holds since for n ≥ 2,

(−2n2 + (log2(3) + 2)n + 4 log2(3) + 4)2n−2 +
3

2
(n + 1) +

9

4
n ≤

(
4−

n

2

)
n2n.

�

Remark 11 The algebraic degrees of the coordinates of a minimizer are also bounded by 2n−1dn.
This can be seen simply by replacing the polynomial g by a coordinate xi in the previous con-
struction, namely, taking P (U, x0, x) = Ux0 − xi.

In applications (see Section 3), sometimes the minimization of a polynomial g needs to be
done over a component not necessarily compact, but with a compact set of minimizers. The
result in Theorem 1 can be extended to this situation:

Theorem 12 Let T = {x ∈ Rn | f1(x) = · · · = fl(x) = 0, fl+1(x) ≥ 0, . . . , fm(x) ≥ 0} be
defined by polynomials f1, . . . , fm ∈ Z[x1, . . . , xn] with degrees bounded by d and coefficients of
absolute value at most H, and let C be a connected component of T . Let g ∈ Z[x1, . . . , xn] be
a polynomial of degree d0 ≤ d and coefficients of absolute value bounded by H0 ≤ H, and let
gmin,C the minimum value that g takes over C. Assume that the set

Cmin = {z ∈ C | g(z) = gmin,C}

is compact. Then, gmin,C is an algebraic number of degree at most 2n−1dn and, if it is not zero,
its absolute value is greater or equal to (24−

n
2 H̃dn)−n2ndn .
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Proof. Take M ∈ R so that Cmin ⊂ B(0,M), and let C ′ be the connected component of the set

T ′ = {x ∈ Rn | f1(x) = · · · = fl(x) = 0, fl+1(x) ≥ 0, . . . , fm(x) ≥ 0, (M + 1)2 −
n∑

i=1

x2i ≥ 0}

which contains Cmin. Note that C ′ is compact, since T ′ is bounded.
By Proposition 7, there exist z0 ∈ C ′, S ⊂ {1, . . . ,m + 1} with #S ≤ n and σ ∈ {+,−}S

such that (0, z0) ∈ Π(t,x)(VS,σ) (for the corresponding variety VS,σ associated to the equations of
T ′) such that g(z0) = gmin,C .

Since (M +1)2−
∑n

i=1(z0,i)
2 6= 0, we have that S ⊂ {1, . . . ,m} (see the proof of Proposition

7). Now the result follows by Proposition 10, proceeding as in the proof of Theorem 1. �

3 Bounds for the separation between disjoint connected com-

ponents of basic closed semialgebraic sets

In this section we will apply our previous results to the case when g is the square of the Euclidean
distance in order to obtain bounds for the separation between two disjoint (and at least one
compact) connected components of semialgebraic sets defined by non-strict inequalities. In
particular, this gives a separation bound for two connected components of a closed semialgebraic
set provided that one of them is compact.

Proof of Theorem 2. We have that C1 × C2 is a connected component of the set T1 × T2 =
{(x, y) ∈ R2n | f1(x) = · · · = fl1(x) = 0, fl1+1(x) ≥ 0, . . . , fm1

(x) ≥ 0, g1(y) = · · · = gl2(y) =
0, gl2+1(y) ≥ 0, . . . , gm2

(y) ≥ 0}, and if D(x, y) =
∑n

i=1(xi − yi)
2, then the minimum value that

D takes over C1×C2 equals dist
2(C1, C2) > 0. In addition, the set{(x, y) ∈ C1×C2 | dist(x, y) =

dist(C1, C2)} is bounded and, therefore, compact. Then, the result follows from Theorem 12. �

Example 13 Consider d,H, n ∈ N with even d and f1, . . . , fn ∈ Z[x1, . . . , xn] defined by

f1(x) = Hx1 − 1, fi(x) = xi − xdi−1 for 2 ≤ i ≤ n− 1, fn(x) = x2n − xdn−1.

The set {x ∈ Rn | f1(x) = · · · = fn(x) = 0} equals {p, q} with

p = (H−1,H−d, . . . ,H−dn−2

,H− 1

2
dn−1

), q = (H−1,H−d, . . . ,H−dn−2

,−H− 1

2
dn−1

)

and the distance between p and q is 2H− 1

2
dn−1

. This shows that the double exponential nature of
our bound is unavoidable even in the case of different connected components of a single closed
semialgebraic set.
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