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Abstract. We consider an atomistic model defined through an interaction field satisfying
a variational principle, and can therefore be considered a toy model of (orbital free) density
functional theory. We investigate atomistic-to-continuum coupling mechanisms for this atom-
istic model, paying special attention to the dependence of the atomistic subproblem on the
atomistic region boundary and the boundary conditions. We rigorously prove first-order error
estimates for two related coupling mechanisms.

1. Introduction

The quasicontinuum (QC) method and, more generally, atomistic/continuum coupling (a/c)
methods, are numerical coarse-graining techniques for the efficient simulation of phenomena
and processes in materials at the nano-scale, such as defects, fracture, grain boundaries, or
nano-indentation [18, 19, 16, 11]. Incompatibilities between the treatment of forces in atom-
istic and continuum models lead to difficulties in defining coupling mechanisms that do not
introduce additional errors. Substantial effort has been made to understand this problem and
to construct efficient and accurate a/c methods; see [17, 4, 15, 9, 20] for examples of formu-
lations of computational methods and [1, 2, 3, 12, 13, 14] and references therein for examples
of analytical treatments. Formulations of a/c methods for atomistic models based on quantum
mechanics were proposed in [8, 6], but, to the best of our knowledge, no rigorous analysis of
these methods exists.

In the present article we formulate and analyze one-dimensional a/c methods for an atomistic
model that is defined through an interaction field satisfying a linear variational principle. Our
results are related to two classes of a/c methods: Firstly, our work can be viewed as an analysis
of (a simplified version of) the a/c method proposed by Iyer and Gavini [9], who use field-based
versions of classical potentials to formulate their method. Secondly, the atomistic model we
formulate can be considered a toy model of (orbital free) density functional theory, and hence
our work represents a preliminary step towards a rigorous analysis of the a/c methods described
in [8, 6].

The article is structured as follows. In Section 1 we formally motivate the atomistic model,
and introduce the necessary notation. In Section 2 we give a precise formulation of the model
with periodic boundary conditions and derive a “weak formulation” for the resulting forces on
the particles. Section 3 is devoted to the analysis of the model in a bounded domain when
the fields are subjected to Dirichlet boundary conditions. The Cauchy–Born continuum model
is derived and analyzed in Section 4. Finally, in Sections 5 and 6 we propose two possibile
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constructions of a/c methods based on different exchange of boundary conditions between an
atomistic and continuum region, and establish error estimates.

1.1. Field-based formulation of pair interactions. The following outline follows ideas
presented in [9]. Let y = (y1, . . . , yN ) ∈ RN represent the coordinates of N particles in one
dimension. We consider an atomistic energy based on a pair-potential V ,

E(y) =
1

2

N∑
i,j=1
i6=j

V (|yi − yj |).

The force on particle i is given by

−DyiE(y) = −
N∑
j=1
j 6=i

sign(yi − yj)V ′(|yi − yj |).

We note that the forces are nonlocal expressions in the sense that their computation involves
summation over the other N − 1 particles.

Next, we make a few modifications to this model. First, we replace the pointwise particles
with smooth, nonnegative, and compactly supported particle densities δε(· − yi) (such that∫
R δε(x) dx = 1). This leads to

E(y) ≈ 1

2

N∑
i,j=1
i6=j

∫
R

∫
R
δε(z − yi)V (|z − x|)δε(x− yj) dz dx.

To simplify the presentation further, we include the self-energies of the individual particle
densities and define

Eε(y) =
1

2

N∑
i,j=1

∫
R

∫
R
δε(z − yi)V (|z − x|)δε(x− yj) dz dx.

This additional self-energy contribution does not affect the forces. It can be computed explicitly
and subtracted from the energy later on. Upon introducing the field φ : R→ R,

φ(x) =

∫
R
ρy(z)V (|x− z|) dz, where ρy(z) =

N∑
i=1

δε(z − yi), (1.1)

to rewrite the energy Eε(y) in the form

Eε(y) =
1

2

∫
R
ρy(x)φ(x) dx.

It is now easy to see that the forces are given by the local expression

−DyEε(y) = −
∫
R
Dyρy(z)φ(z) dz.

Hence, if the field φ is known, then it becomes unnecessary to compute nonlocal sums over
particles. The nonlocality of the interaction has been encoded in the field φ. However, it is
now necessary to compute the field φ, which is defined via the convolution (1.1).

Suppose that the pair-potential V is the Green’s function for a linear differential operator
LV (∇); then, φ can alternatively be computed by solving the differential equation

LV (∇)φ = ρy.
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As an example we consider the Yukawa potential in one space dimension

V (x) =
1

2m
e−m|x| =

1

2π

∫
R

1

k2 +m2
eikx dk.

In this case φ can be obtained as the solution to

−∆φ+m2φ = ρy

or, equivalently, as a solution to the minimization problem

φ = arg min
ϕ

{
1

2

∫
R
|∇ϕ|2 +m2ϕ2 dx−

∫
R
ρyϕdx

}
.

The resulting interaction potential Eε can also be written in the form

Eε(y) = −min
ϕ

{
1

2

∫
R
|∇ϕ|2 +m2ϕ2 dx−

∫
R
ρyϕdx

}
. (1.2)

The present work is devoted to the analysis of a/c approximations of (1.2) in a periodic one-
dimensional setting. What distinguishes this analysis from previous analyses of a/c methods is
that the coupling is achieved through an exchange of boundary conditions for the interaction
field φ, rather than ghost-force removal ideas such as [4, 15].

Remark 1. The interaction defined by (1.2) is purely repulsive. A purely attractive in-
teraction can be obtained by changing the outer minus sign in the definition of Eε to a plus
sign. We could combine two energies of the form (1.2) with different parameters m to model

an interaction similar to the Morse potential V (|x|) = e−2|x| − 2e−|x| [9]. �

1.2. Notation. We consider an infinite chain of atoms on the one-dimensional lattice X̂ = εZ,
where ε = 2/(2N + 1) is the reference lattice spacing. Moreover, to keep the analysis simple,
we admit only (2N + 1)-periodic displacements from the reference lattice (cf. [14]). Hence, we
define the spaces of admissible displacements and deformations, respectively, by

U =
{
u ∈ RZ : uj+(2N+1) = uj ∀j ∈ Z,

∑N
j=−Nuj = 0

}
, and

Y = FX̂ + U ,
where F > 0 is a prescribed macroscopic strain. A deformation y ∈ Y defines the computational
domain

Ω = (y−N−1, yN )

for the field variable φ. We note that the length of the interval is independent of y.
We define the finite differences y′,y′′ ∈ U for y ∈ Y or U by their respective components

y′j =
yj − yj−1

ε
, y′′j =

yj+1 − 2yj + yj−1

ε2
.

Let us also define the weighted `2 scalar product and norm by

(u,v)ε = ε
N∑

ν=−N
uνvν ∀u,v ∈ U , ‖u‖`2ε := (u,u)1/2

ε ∀u ∈ U . (1.3)

The `∞-norm is defined in the obvious way

‖u‖`∞ = max
ν=−N,...,N

|uν | ∀u ∈ U .

The space U equipped with the discrete Sobolev seminorm ‖u‖U1,2 = ‖u′‖`2ε will be denoted by

U1,2 and its topological dual space by U−1,2. The norm on U−1,2 is given by

‖T‖U−1,2 = sup
u∈U1,2

Tu

‖u‖U1,2

.
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Figure 2.1. Sketch of the basic atomistic problem: the field φ is periodic in
Ω = (y−N−1, yN ) and ρy is a smooth particle density representing the atoms
with positions given by y ∈ Y.

For monotonically increasing y ∈ Y (which we will write as y′ > 0) we denote by S(y) ⊂
H1(Ω) the space of continuous functions that are linear on every interval Qi = (yi−1, yi),
i ∈ {−N, . . . , N}. Furthermore, we define S#(y) = S(y) ∩ H1

#(Ω) to be the subset of all

periodic functions in S(y).

2. Periodic Boundary Conditions

We now put the field-based interaction potential that was outlined above in a precise math-
ematical framework. Let the functional I : H1

#(Ω)× Y → R be defined by

I(ϕ,y) =

∫
Ω

(
1
2ε

2|∇ϕ|2 + 1
2m

2ϕ2
)

dx−
∫

Ω
ρyϕdx, where

ρy(x) = ε
∑
j∈Z

δε(x− yj), and δε(x) = ε−1δ1(x/ε).

Here, δ1 is a symmetric, nonnegative, regularized delta distribution with compact support[
− ς0

2 ,
ς0
2

]
, where ς0 > 0 and

∫
R δ1 dx = 1; see Figure 2.1. We will frequently refer to the

paramter ς0, which is fixed throughout the paper.
We then define the interaction potential E : Y → R by

E(y) = − min
ϕ∈H1

#(Ω)
I(ϕ,y). (2.1)

The respective minimizer (see Figure 2.1)

φ = arg min
ϕ∈H1

#(Ω)
I(ϕ,y)

is the periodic solution to the Euler–Lagrange equation

− ε2∆φ+m2φ = ρy in Ω. (2.2)

Although φ depends on y, we will usually suppress this in our notation. It will always be clear
from the context, which configuration φ belongs to. It follows from (2.2) and integration by
parts that

E(y) =
1

2

∫
Ω
φρy dx.

To determine equilibrium configurations subject to a given external force f ∈ U−1,2 we need to
minimize the total potential energy Ef : Y → R defined by

Ef (y) = E(y) + (f ,y)ε. (2.3)

A minimizer ȳ ∈ Y of (2.3) satisfies the following Euler–Lagrange equation in U−1,2:

DEf (ȳ) = DE(ȳ) + f = 0.
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In the following we analyze the derivatives of E . In particular, we obtain a “weak” formulation
for the first derivative DE that acts as a natural connection point for the coupling with a
continuum model.

Proposition 1.1. The potential E : Y → R defined by (2.1) is twice continuously Fréchet
differentiable. The components of the first derivative are given by

DyjE(y) = −ε
∫

Ω
∇δε(x− yj)φ(x) dx (2.4)

for j ∈ {−N, . . . , N − 1} and by

DyNE(y) = −ε
∫

Ω

(
∇δε(x− y−N−1) +∇δε(x− yN )

)
φ(x) dx. (2.5)

Proof. The proof of this result is standard and can be found in [9], for example. �

We stress the fact that the forces −DyE(y) are local expressions. To calculate the force on
atom j it is necessary to know φ in suppδε(·−yj) but there is no need to sum over all remaining
atoms. This nonlocality is encoded in the field φ.

Next we establish the weak formulation for the forces on particles. This very much resembles
the structure of the continuum equations and will be the basis for the a/c coupling in Section
5. A version of this calculation was already shown in [7], which used an interpolant for the
displacement that is constant on the support of every δε(· − yj). To avoid this restriction, we
modify and extend the argument in [7].

For simplicity we assume that the supports of the densities of different particles do not
intersect:

suppδε(· − yi) ∩ suppδε(· − yj) = ∅ ∀i, j ∈ Z, i 6= j.

Since, |suppδε(·−yi)| = ες0, this is equivalent to |yj−yi| > ες0 for i 6= j or, if y is an increasing
sequence, y′j > ς0 for all j ∈ Z.

Lemma 1.2. Let y ∈ Y satisfy y′ > ς0 and let φ ∈ H1
#(Ω) be the associated field, defined

by (2.2). Let u = (uj)j∈Z ∈ U be a test vector and u ∈ S#(y) the periodic piecewise linear
interpolant of u, that is, u(yj) = uj for j ∈ Z. Then,

DE(y)·u =
N∑

j=−N
DyjE(y)·uj =

∫
Ω
σy(x)∇u(x) dx, (2.6)

where σy = σy,1 + σy,2 and

σy,1(x) = 1
2ε

2|∇φ|2 − 1
2m

2φ2 + ρyφ,

σy,2(x) = ε

N∑
j=−N−1

φ(x)∇δε(x− yj)(x− yj).
(2.7)
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Proof. We begin by multiplying the derivative (2.4) for j ∈ {−N, . . . , N −1} by the component
uj :

DyjE(y)uj = − εuj
∫

Ω
∇δε(x− yj)φ(x) dx

= − ε
∫

Ω
u(x)∇δε(x− yj)φ(x) dx+ ε

∫
Ω

(u(x)− uj)∇δε(x− yj)φ(x) dx

= ε

∫
Ω
δε(x− yj)u(x)∇φ(x) dx+ ε

∫
Ω
δε(x− yj)φ(x)∇u(x) dx

+ ε

∫
Ω

(u(x)− uj)∇δε(x− yj)φ(x) dx =: T
(j)
1 + T

(j)
2 + T

(j)
3 .

Here we have used integration by parts but there are no boundary terms since u, φ and ρy
are periodic on Ω. Using (2.5) we obtain a similar expression for DyNE(y)uN . Summing over
j = −N, . . . , N we obtain

DE(y)·u =
N∑

j=−N
DyjE(y)·uj = T1 + T2 + T3, (2.8)

where Ti =
∑N

j=−N T
(j)
i , i ∈ {1, 2, 3}. From ρy = ε

∑
j∈Z δε(· − yj) it immediately follows that

T2 =

∫
Ω
ρy(x)φ(x)∇u(x) dx.

For T1 we can carry out the following rearrangements

T1 =

∫
Ω
ρyu∇φ dx =

∫
Ω

(
−ε2∆φ+m2φ

)
u∇φ dx

=

∫
Ω

(
−ε2∇φ∆φ+m2φ∇φ

)
udx =

1

2

∫
Ω
∇
(
−ε2|∇φ|2 +m2φ2

)
udx

=
1

2

∫
Ω

(
ε2|∇φ|2 −m2φ2

)
∇udx.

Here, we have again used integration by parts and the periodicity of all functions involved. We
deduce that

T1 + T2 =

∫
Ω
σy,1(x)∇u(x) dx

with σy,1 as defined in (2.7).
Before turning to T3 we first note that, since u is piecewise linear,

u(x) = uj +
x− yj

yj − yj−1
(uj − uj−1) = uj + (x− yj)∇u(x) for x ∈ Qj = (yj−1, yj),

u(x) = uj +
x− yj

yj+1 − yj
(uj+1 − uj) = uj + (x− yj)∇u(x) for x ∈ Qj+1 = (yj , yj+1).

Hence, T3 in the above equation (2.8) can be written as

T3 = ε
N∑

j=−N−1

∫
Ω
φ(x)∇δε(x− yj)(u(x)− uj) dx

= ε
N∑

j=−N−1

∫
Ω
φ(x)∇δε(x− yj)(x− yj)∇u(x) dx = ε

∫
Ω
σy,2(x)∇udx,

with σy,2 as defined in (2.7), which concludes the proof. �
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Remark 2. 1. In more than one space dimension the above calculations can be generalized if
a triangular, respectively, tetrahedral mesh with the atomic positions as nodes is constructed.
For example, this leads to

σy,1(x) =
(
−1

2ε
2|∇φ|2 − 1

2m
2φ2 + ρyφ

)
id + ε2∇φ⊗∇φ.

2. A closer look at the calculations in the proof of Lemma 1.2 shows that the weak form
can be obtained for semilinear models −ε2∆φ + F ′(φ) = ρy with any convex function F .
Even a fourth-order model of the form ε4∆2φ − ε2∆φ + F ′(φ) = ρy admits a similar weak
formulation. �

As already suggested in the introduction the Green’s function for the differential operator
−ε2∆ +m2id acting on functions defined on R is given by

Gε(x) =
1

2εm
e−

m
ε |x|. (2.9)

We therefore get the following explicit formulas for the function values φ(x) and ∇φ(x) for
x ∈ Ω.

Proposition 2.1. Let y ∈ Y and let φ = arg minϕ∈H1
#(Ω) I(ϕ,y) be the corresponding

interaction field. Then, for every x ∈ Ω,

φ(x) =

∫
R
Gε(x− z)ρy(z) dz =

1

2m

∑
k∈Z

∫
R
δε(z − yk) e−

m
ε |x−z| dz, (2.10)

∇φ(x) =

∫
R
Gε(x− z)∇ρy(z) dz =

1

2m

∑
k∈Z

∫
R
∇δε(z − yk) e−

m
ε |x−z| dz. (2.11)

Proof. The proof of this proposition is similar to the one of [5, Thm. 2.1]; see also [10, Prop.
2.4]. �

The following is a consequence of the simple exponential form of the Yukawa potential and
some elementary properties of the exponential function in one dimension. Let yi, yj ∈ R satisfy
yj > yi + ες0, so that the supports of particle densities representing the atoms i and j do not
intersect. Then,∫

R

∫
R
δε(z − yj)e−

m
ε |z−x|δε(x− yi) dx dz =

∫
R

∫
R
δε(z − yj)e−

m
ε (z−x)δε(x− yi) dx dz

= e−
m
ε (yj−yi)

∫
R

e−
m
ε (z−yj)δε(z − yj) dz ·

∫
R

e−
m
ε (yi−x)δε(yi − x) dx

= µ2 e−
m
ε (yj−yi), (2.12)

where we have defined

µ =

∫
R
δε(x)e−

m
ε x dx =

∫
R
δε(x)e

m
ε x dx =

∫
R
δ1(x)emx dx.

Although we will frequently use this property, it is not essential for our reasoning. It merely
makes some calculations more convenient.
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Figure 3.1. The atomistic model in the domain Ωa with Dirichlet boundary
conditions g = [gL gR]T.

3. Dirichlet Boundary Conditions

In this section we consider a version of the model (2.1) in the domain Ωa = (aL, aR) ⊂ R
subject to Dirichlet instead of periodic boundary conditions. This concept will be used later
on, for the formulation of a/c methods, as the atomistic subproblem. We set a = [aL aR]T ∈ R2

and ∆a = aR−aL. Throughout Section 3 we think of y = (y−K , . . . , yK) as an ordered element
of Ω2K+1

a such that aL < y−K < · · · < yK < aR. The particle density ρy is canonically defined
by

ρy = ε
K∑

j=−K
δε(· − yj).

For simplicity we assume that the yj are separated and lie well inside Ωa in the sense that
suppρy ∩ ∂Ωa = ∅ or, equivalently,

y′i ≥ ς0, for i = −K + 1, . . . ,K,

aR − yK > ες0/2 and y−K − aL > ες0/2.
(3.1)

We impose the following boundary conditions on the resulting field φ : Ωa → R:

φ(aL) = gL, φ(aR) = gR;

i.e., φ|∂Ωa = g with g = [gL gR]T ∈ R2. The interaction potential Ea,g : Ω2K+1
a → R is defined

by

Ea,g(y) = − min
ϕ∈H1(Ωa)
ϕ|∂Ωa=g

Ia(ϕ,y), (3.2)

where Ia : H1(Ωa)× Ω2K+1
a → R is given by

Ia(ϕ,y) =

∫ aR

aL

(
1
2ε

2|∇ϕ|2 + 1
2m

2ϕ2
)

dx−
∫ aR

aL

ρyϕdx. (3.3)

For given y the minimizer φ is the weak solution to

−ε2∆φ+m2φ = ρy in Ωa,

φ|∂Ωa = g.
(3.4)

We will frequently use the decomposition

φ = φ0 + ξa,g, (3.5)

where φ0 ∈ H1
0 (Ωa) and ξa,g ∈ H1(Ωa), respectively, solve the boundary-value problems

−ε2∆φ0 +m2φ0 = ρy in Ωa,

φ0|∂Ωa = 0

8



and

−ε2∆ξa,g +m2ξa,g = 0 in Ωa,

ξa,g|∂Ωa = g.
(3.6)

This last boundary-value problem can be solved explicitly, which yields the following lemma.

Lemma 2.1. The solution ξa,g of (3.6) is given by

ξa,g(x) = cL(a, g)e−
m
ε

(x−aL) + cR(a, g)e−
m
ε

(aR−x), (3.7)

where the coefficients cL(a, g) and cR(a, g) are given by

c(a, g) =

[
cL(a, g)
cR(a, g)

]
=

[
1 τ
τ 1

]−1 [
gL
gR

]
=: T−1

a ·g (3.8)

and we have defined τ = exp(−m
ε ∆a).

Note that, for ∆a� ε, τ is exponentially small; hence we will often neglect terms of that order
of magnitude. We will write O(τ) for a quantity or function that is (uniformly) bounded above
by Cτ in modulus, where C is independent of ε and ∆a. For example, we have c(a, g) = g+O(τ).

Next, we compute the derivative of Ea,g with respect to the atomic coordinates. For these
derivatives, we obtain a “weak” formulation of the same shape as in the periodic case (see
Proposition 1.1).

If y′ > 0, then we denote by S(y ∪ a) the set of continuous, piecewise affine functions over
the mesh given by the nodes aL, y−K , . . . , yK , aR. Moreover, S0(y ∪ a) = S(y ∪ a) ∩H1

0 (Ωa).

Proposition 2.2. Let a, g ∈ R2, aL < aR; then Ea,g : Y → R defined by (3.2) is continuously
Fréchet differentiable at y.

(i) The components of the first derivative are given by

DyjEa,g(y) = −ε
∫

Ωa

∇δε(x− yj)φ(x) dx for i = −K, . . . ,K. (3.9)

(ii) Let u ∈ U be a test vector, u ∈ S0(y ∪ a) its interpolant, and let miny′ ≥ ς0; then

DyEa,g(y)·u =

∫
Ωa

σy(x)∇u(x) dx, (3.10)

where σy is given by (2.7).

Proof. The derivatives with respect to the coordinates y are easy to calculate along the same
lines as in the proof of Proposition 1.1. The weak formulation can be obtained as in the periodic
case (Lemma 1.2) using the fact that the interpolant u vanishes on ∂Ωa. �

Remark 3. We point out that, in general,

Ea,g(y) 6= 1

2

∫
Ωa

ρyφ dx.

However, we will see below that Ea,g(y) can be written as the sum of a boundary data contri-
bution and a term that is independent of g. �

With a view to the subsequent derivation of a/c methods we will from now on interpret a
and g as arguments to Ea,g rather than fixed parameters entering its definition. We consider
the map Ω2K+1

a ×R2×R2 → R, (y, a, g) 7→ Ea,g(y), and derive the derivatives of this map with
respect to the boundary a and the boundary data g.

9



3.1. Dependence on the boundary positions. When formulating a/c methods in Section
5 we will let the boundary a of the atomistic subdomain depend on the configuration y. It
is therefore necessary to understand the dependence of the energy Ea,g(y) on a. Our main
result is that the derivative DaEa,g(y) can be combined with DyEa,g(y) into a weak formulation
reminiscent of (2.6). This will be a central building block for a/c methods.

Proposition 3.1. Suppose that y ∈ Y, miny′ ≥ ς0. Let h = [hL hR]T ∈ R2 and u =
(u−K , . . . , uK) ∈ R2K+1 be test vectors, and let u ∈ S(y ∪ a) denote the interpolant of u and h
in the sense that

u(aL) = hL, u(aR) = hR, and u(yj) = uj ∀j ∈ {−K, . . . ,K}.
Then,

DaEa,g(y)·h+DyEa,g(y)·u =

∫
Ωa

σy(x)∇u(x) dx.

Proof. This is a direct consequence of the following two lemmas. �

In the first auxiliary lemma we compute the derivative of Ea,g(y) with respect to a = [aL aR]T

while keeping the relative distances between the atoms constant. In other words we consider the
change in Ea,g(y) when the whole domain Ωa is stretched with the atom positions following this
stretching. For y ∈ Ω2K+1

a let X = (X−K , . . . , XK) ∈ (0, 1)2K+1 be given by yj = aL + ∆aXj

for all j ∈ {−K, . . . ,K}. For fixed g,X we define

Ẽ(a) := Ea,g(aL + (aR − aL)X), and

D̃aREa,g(y) := DaR Ẽ(a).

(We understand aL + (aR− aL)X in a componentwise manner: (aL + ∆aX)j = aL + ∆aXj for

all j ∈ {−K, . . . ,K}.) The derivative D̃aLEa,g(y) is defined analogously.

Lemma 3.2. Let y ∈ Ω2K+1
a satisfy (3.1); then

− D̃aLEa,g(y) = D̃aREa,g(y) =
1

∆a

∫
Ωa

σy(x) dx. (3.11)

Proof. We fix X and let η(a) := aL + ∆aX. We begin by transforming the problem to the
unit interval (0, 1) using the transformation x 7→ X(x) = (x− aL)/(aR − aL):

Ẽ(a) = Ea,g(η(a)) =

∫
Ωa

(
−1

2ε
2|∇φ|2 − 1

2m
2φ2 + ρη(a)φ

)
dx

= ∆a

∫ 1

0

(
− ε2

2∆a2
|∇φ̂|2 − m2

2
φ̂2 + ρ̂η(a)φ̂

)
dX.

(3.12)

Here, φ̂(X) = φ(x(X)) and ρ̂η(a)(X) = ρη(a)(x(X)). It follows as in Proposition 1.1 that, to

compute DaẼ(a), it is sufficient to calculate the partial derivatives of the right-hand side with

respect to aR (the derivative of φ or φ̂ with respect to aR does not appear since φ is a minimizer
of Ia(·,y)). This leads to

DaR Ẽ(a) =

∫ 1

0

(
− ε2

2∆a2
|∇φ̂|2 − m2

2
φ̂2 + ρ̂η(a)φ̂

)
dX + ∆a

∫ 1

0

ε2

∆a3
|∇φ̂|2 dX

+ ∆a

∫ 1

0
φ̂DaR ρ̂η(a) dX.
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Transforming the first two integrals on the right-hand side back to the interval Ωa we arrive at

1

∆a
Ea,g(y) +

ε2

∆a

∫
Ωa

|∇φ|2 dx =
1

∆a

∫
Ωa

σy,1(x) dx,

where σy,1 was given in (2.7).
It remains to differentiate ρ̂η(a) with respect to aR. By the definition of the transformation

x 7→ X(x) we have

DaR ρ̂η(a)(X) = εDaR

K∑
j=−K

δε
(
(aR − aL)(X −Xj)

)
= ε

K∑
j=−K

(X −Xj)∇δε
(
(aR − aL)(X −Xj)

)
.

Using ∆a(X −Xj) = (x− yj) we therefore get

∆a

∫ 1

0
φ̂DaR ρ̂η(a) dX =

ε

∆a

K∑
j=−K

∫
Ωa

(x− yj)∇δε(x− yj)φ(x) dx

=
1

∆a

∫
Ωa

σy,2(x) dx

with σy,2(x) as given in (2.7).

To see that DaL Ẽ = −DaR Ẽ we simply note that E(a) depends only on ∆a, which can be
seen from (3.12) and the definition of ρ̂η(a)(X). �

We define θR ∈ S(y ∪ a) to be the piecewise linear function with

θR(aR) = 1, θR(aL) = 0, θR(yj) = 0 for all j ∈ {−K, . . . ,K}.

The function θL ∈ S(y ∪ a) is defined analogously.

Lemma 3.3. Let y ∈ Ω2K+1
a satisfy (3.1); then, the derivatives of Ea,g(y) with respect to aL,

aR (for fixed y and g) satisfy

DaLEa,g(y) =

∫
Ωa

σy(x)∇θL(x) dx,

DaREa,g(y) =

∫
Ωa

σy(x)∇θR(x) dx.

Proof. Let ΘR be the affine function defined on Ωa with ΘR(aL) = 0, ΘR(aR) = 1. Since
∇ΘR(x) = 1

∆a , Lemma 3.2 yields

D̃aREa,y(y) =

∫
Ωa

σy∇ΘR dx =

∫
Ωa

σy∇(ΘR − θR) dx+

∫
Ωa

σy∇θR dx. (3.13)

Now, we have ΘR − θR ∈ S0(y ∪ a) and hence, by Proposition 2.2,∫
Ωa

σy(x)∇(ΘR − θR) dx =
K∑

j=−K
DyjEa,g(y)ΘR(yj). (3.14)

11



However, D̃aREa,g(y) was defined as the derivative with respect to aR, while the relative dis-
tances of the atoms are kept constant. This can be formulated as

D̃aREa,g(y) = DaREa,g(y) +

K∑
j=−K

DyjEa,g(y)ΘR(yj).

Inserting this into (3.13) and using (3.14) then gives∫
Ωa

σy(x)∇θR dx = DaREa,g(y).

Similarly, we can show the expression stated for DaLEa,g(y). �

3.2. Dependence on the boundary conditions. Next, we compute the derivative of Ea,g(y)
with respect to the boundary conditions g when the configuration y and the boundary a are
kept fixed. We define

γL(y, a) = 2

∫
Ωa

ρy(x)Gε(x− aL) dx, and γR(y, a) = 2

∫
Ωa

ρy(x)Gε(aR − x) dx. (3.15)

Lemma 3.4. The partial derivative of Ea,g(y) with respect to g is given by:

DgEa,g(y) = −mε
(

(1− τ2)

[
cL(a, g)
cR(a, g)

]
−
[
γL(y, a)
γR(y, a)

])T
· T−1

a ,

where Ta, c(a, g) = [cL(a, g) cR(a, g)]T and τ = e−
m
ε ∆a are defined in Lemma 2.1.

Proof. Throughout the proof we suppress the arguments of γL, γR, and c for ease of readability.
We recall the additive decomposition φ = φ0 + ξa,g from (3.5). From φ0 ∈ H1

0 (Ω), and from
the equation −ε2∆ξa,g +m2ξa,g = 0 it follows that ε2(∇ξa,g,∇φ0) +m2(ξa,g, φ0) = 0. Hence, a
short calculation shows that the energy Ea,g(y) can be rewritten as

Ea,g(y) = −Ia(φ,y) = −Ia(φ0,y)− Ia(ξa,g,y). (3.16)

The first term on the right-hand side does not depend on the boundary conditions g and the
second term is known explicitly: using −ε2∆ξa,g + m2ξa,g = 0, integration by parts, and the
explicit formula (3.7) for ξa,g, we obtain

Ia(ξa,g,y) =

∫
Ωa

1
2

(
ε2|∇ξa,g|2 +m2ξ2

a,g

)
dx−

∫
Ωa

ρyξa,g dx

=
ε2

2

(
−ξa,g(aL)∇ξa,g(aL) + ξa,g(aR)∇ξa,g(aR)

)
−
∫

Ωa

ρyξa,g dx

=
εm

2

(
c2
L + c2

R

)(
1− e−2

m
ε ∆a)− ∫

Ωa

ρy
(
cLe−

m
ε

(x−aL) + cRe−
m
ε

(aR−x)
)

dx

=mε

(
c2
L + c2

R

2

(
1− τ2

)
− 2

2mε

∫
Ωa

ρy
(
cLe−

m
ε

(x−aL) + cRe−
m
ε

(aR−x)
)

dx

)
=mε

(
c2
L + c2

R

2

(
1− τ2

)
−
(
cLγL + cRγR

))
.

Here we have used the Green’s function Gε from (2.9). Differentiating this expression with
respect to cL and cR and applying the chain rule with Dgc = T−1

a yield the result. �
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Remark 4. 1. We remark that DgEa,g(y) = 0 if and only if cL(a, g) = γL(y, a)/(1− τ2) and
cR(a, g) = γR(y, a)/(1 − τ2). According to (3.8) this corresponds to the “optimal” boundary
conditions

g∗L =
1

1− τ
γL + τγR

1 + τ
, and g∗R =

1

1− τ
τγL + γR

1 + τ
. (3.17)

That is, the boundary conditions are weighted averages of the values 1
1−τ γL and 1

1−τ γR.

2. As can be seen from Lemma 3.4 the boundary data contribution Ia(ξa,g,y) to the energy
Ea,g(y) is quadratic in g. For fixed configuration y and domain Ωa the boundary conditions
g = g∗(y, a) minimize the boundary data contribution Ia(ξa,g,y) to the energy Ea,g(y). This
is equivalent to minimizing Ia(·,y) over H1(Ωa) and therefore leads to homogeneous Neumann
boundary conditions for φ on ∂Ωa.

3. If ∆a� ε, i.e., τ � 1, then we have γL/R = g∗L/R +O(τ), and hence we can simplify

Ia(ξa,g,y) = mε
(

1
2

(
g2
L + g2

R

)
−
(
gLg

∗
L + gRg

∗
R

))
+O(ετ), and (3.18)

DgEa,g(y) = mε(g∗ − g) +O(ετ). �

A useful auxiliary result for the analysis of a/c methods is the global Lipschitz continuity of
the field φ with respect to variations in the boundary conditions g.

Lemma 4.1. Let φ1, φ2 ∈ H1(Ωa) be minimizers of Ia(·,y) subject to the boundary conditions
g1 ∈ R2, respectively, g2 ∈ R2. Then,

|φ1(x)− φ2(x)| ≤
√

2 |T−1
a (g1 − g2)| e−

m
ε da(x), and

ε|∇φ1(x)−∇φ2(x)| ≤
√

2m |T−1
a (g1 − g2)| e−

m
ε da(x),

where da(x) := min(x− aL, aR − x) denotes the distance to the boundary of Ωa, for x ∈ Ωa.

Proof. We write both functions in the form φi = φ0+ξa,gi , i ∈ {1, 2}. For i = 1, 2, let ci = T−1
a gi

be the respective coefficients entering ξa,gi ; then

|φ1(x)− φ2(x)| = |ξa,g1(x)− ξa,g2(x)| ≤ |c1,L − c2,L| e−
m
ε (x−aL) + |c1,R − c2,R| e−

m
ε (aR−x).

This immediately yields the first bound. The bound for the derivatives is obtained similarly. �

3.3. A special case. We now take a closer look at the interaction potential Ea,g from (3.2)
with the y-dependent boundary conditions g = g∗(y, a) defined in Remark 4.

Proposition 4.2. Let y ∈ Ω2K+1
a . Then,

Ea,g∗(y,a)(y) =
1

4mε

∫
Ωa

∫
Ωa

ρy(x)e−
m
ε |x−z|ρy(z) dz dx+ τMτ (γL, γR)

+
1

4mε

∫
Ωa

∫
Ωa

ρy(x)
(
e−

m
ε (2aR−x−z) + e−

m
ε (x+z−2aL))ρy(z) dz dx,

(3.19)

where Mτ (γL, γR) depends quadratically on γL and γR.

Expression (3.19) can be interpreted as the energy of the atoms represented by y interacting
with each other plus the interaction with mirror atoms outside Ωa. This mirror interaction was
introduced by means of the boundary conditions g = g∗.

For the proof of the proposition it is convenient to use an explicit formula for the function
values of φ0 ∈ H1

0 (Ωa) from the decomposition (3.5). By Proposition 2.1, the Green’s function

for the equation −ε2∆φ + m2φ = ρy in R is given by Gε(x, y) = 1
2mε e−

m
ε
|x−y|. We will now
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construct the Green’s function Gε,a for the operator −ε2∆ + m2id subject to homogeneous
Dirichlet conditions on ∂Ωa.

Lemma 4.3. Let φ0 ∈ H1
0 (Ωa) satisfy −ε2∆φ0 +m2φ0 = ρy in Ωa. Then,

φ0(x) =

∫
Ωa

Gε,a(x, z)ρy(z) dz ∀x ∈ Ωa, (3.20)

where Gε,a = G
(1)
ε,a + τG

(2)
ε,a, with G

(i)
ε,a, i = 1, 2, given by

G(1)
ε,a(x, z) =

1

2mε

(
e−

m
ε |x−z| − e−

m
ε (x+z−2aL) − e−

m
ε (2aR−x−z)

)
,

G(2)
ε,a(x, z) = − 1

2mε

1

1− τ2

(
τe−

m
ε (x+z−2aL) + τe−

m
ε (2aR−x−z)

− e−
m
ε (x−z+aR−aL) − e−

m
ε (z−x+aR−aL)

)
.

Proof. The proof of this result is standard [5, Chapter 2.2.4]; see also [10, Lemma 3.10]. �

We remark that Gε,a = G
(1)
ε,a +O(τ).

Proof of Proposition 4.2. We have already seen in (3.16) that for any choice of boundary data
g ∈ R2 the energy Ea,g(y) can be written as the sum of two terms

Ea,g(y) = −Ia(φ,y) = −Ia(φ0,y)− Ia(ξa,g,y),

where Ia(φ0,y) is independent of the boundary conditions.
Calculation of Ia(φ0,y). Since the function φ0 is a minimizer of Ia(·,y) over H1

0 (Ω), we have
with the expression (3.20) for φ0(x) that

Ia(φ0,y) = −1

2

∫
Ωa

∫
Ωa

ρyφ0 dx = −1

2

∫
Ωa

∫
Ωa

ρy(x)Gε,a(x, z)ρy(z) dz dx. (3.21)

By the definition (3.15) of γL and γR we have

1

4mε

∫
Ωa

∫
Ωa

ρy(x)e−
m
ε (2aR−x−z)ρy(z) dx dz =

mε

4
γ2
R,

1

4mε

∫
Ωa

∫
Ωa

ρy(x)e−
m
ε (x+z−2aL)ρy(z) dx dz =

mε

4
γ2
L,

1

4mε

∫
Ωa

∫
Ωa

ρy(x)e−
m
ε (z−x+aR−aL)ρy(z) dx dz =

mε

4
γLγR.

(3.22)

Inserting the expression Gε,a = G
(1)
ε,a + τG

(2)
ε,a into (3.21) and using these equalities yields

Ia(φ0,y) = − 1

2

∫
Ωa

∫
Ωa

ρy(x)Gε(x, z)ρy(z) dz dx+
mε

4

(
γ2
L + γ2

R

)
+
mε

4

τ

1− τ2

(
τγ2

L + τγ2
R − 2γLγR

)
.

Calculation of Ia(ξa,g∗(y,a),y). From Lemma 3.4 we know that for general g ∈ R2

Ia(ξa,g,y) = mε

(
c2
L + c2

R

2

(
1− τ2

)
−
(
cLγL + cRγR

))
.

If g = g∗(y, a), then cL = γL/(1− τ2) and cR = γR/(1− τ2) as seen in Remark 4. Hence,

Ia(ξa,g∗(y,a),y) = −mε
2

1

1− τ2

(
γ2
L + γ2

R

)
.
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Figure 4.1. The Cauchy–Born approximation: independent periodic problems
are solved on the cells Qj = (yj−1, yj) leading to locally defined fields ψ(j).

Isolating the dependence on τ gives

Ia(ξa,g∗(y,a),y) = −mε
2

(
γ2
L + γ2

R

)
− mε

2

τ2

1− τ2

(
γ2
L + γ2

R

)
. (3.23)

Conclusion. Adding −Ia(ξa,g∗(y,a),y) as just obtained and −Ia(φ0,y) from above we arrive
at

Ea,g∗(y,a)(y) =
1

4mε

∫
Ωa

∫
Ωa

ρy(x)e−
m
ε |x−z|ρy(z) dz dx+

mε

4

(
γ2
L + γ2

R

)
− mε

4

τ

1− τ2

(
τγ2

L + 2γLγR + τγ2
R

)
.

(3.24)

Defining τMτ (γL, γR) to be the third term on the right-hand side and applying (3.22) yields
(3.19). �

4. The Cauchy–Born Approximation

The next building block for the design of a/c methods based on the model (2.1) is the
respective continuum model. Let y ∈ Y satisfy miny′ > ς0. The Cauchy–Born approximation is
obtained by computing the energy of the cells Qj = (yj−1, yj) independently from one another,
by treating each of them as part of a homogeneous chain (see Figure 4.1). We define the
Cauchy–Born energy of the cell Qj by

Ecb
j (y) = − min

ψ∈H1
#(Qj)

(∫
Qj

(
1
2ε

2|∇ψ|2 + 1
2m

2ψ2
)

dx−
∫
Qj

ρyψ dx

)
. (4.1)

Note that this energy only depends on the distance (yj − yj−1). The minimizer ψ(j) of (4.1)

satisfies the equation −ε2∆ψ(j) +m2ψ(j) = ρy in Qj and its |Qj |-periodic extension to R:

− ε2∆ψ(j) +m2ψ(j) = ρy(j) in R. (4.2)

Here we have defined the positions y(j) = (y
(j)
k )k∈Z of an infinite chain of equidistant atoms by

y
(j)
k = yj + (k − j)(yj − yj−1) ∀k ∈ Z. (4.3)

The Cauchy–Born approximation Ecb(y) of the atomistic energy E(y) is then given by the sum
over all cells

Ecb(y) =
N∑

j=−N
Ecb
j (y) =

1

2

N∑
j=−N

∫
Qj

ρyψ
(j) dx. (4.4)

In the Cauchy–Born model we seek to minimize the total potential energy Ecb
f : Y → R defined

by

Ecb
f (y) = Ecb(y) + (f ,y)ε. (4.5)
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Whether the Cauchy–Born model is a good approximation to the exact atomistic model strongly
depends on the regularity properties of minimizers of (4.5).

Let u ∈ U be a test vector and u ∈ S#(y) an interpolant of u, i.e., u(yj) = uj for j ∈ Z. It

follows as in Lemma 3.2 that the derivative of Ecb
j (y) can be written in the form

DyEcb
j (y)·u =

uj − uj−1

yj − yj−1

∫
Qj

σcb
j,y(x) dx =

∫
Qj

σcb
j,y(x)∇u(x) dx, (4.6)

where the local continuum stress function σcb
j,y, in direct correspondence with (2.7), is

σcb
j,y(x) = 1

2 ε
2|∇ψ(j)(x)|2 − 1

2m
2ψ(j)(x)2 + ρy(x)ψ(j)(x)

+ ε
N∑

j=−N−1

ψ(j)(x)∇δε(x− yj)(x− yj).
(4.7)

Furthermore, we define the Cauchy–Born stress function σcb
y : Ω→ R by

σcb
y (x) = σcb

j,y(x) if x ∈ Ωj

for all x ∈ Ω.

4.1. Consistency. Next, we turn to the consistency analysis of the Cauchy–Born approxima-
tion, for which we thoroughly analyze the modelling error incurred. From (2.6) and (4.6) we
deduce that ∣∣(DE(y)−DEcb(y)

)
·u
∣∣ ≤∫

Ω

∣∣σy(x)− σcb
y (x)

∣∣ |∇u(x)| dx

=
N∑

j=−N

∫
Qj

∣∣σy(x)− σcb
j,y(x)

∣∣ |∇u(x)| dx,

where the stress functions σy and σcb
j,y are given by (2.7) and (4.7), respectively. To investigate

the modelling error
∣∣σy(x) − σcb

j,y(x)
∣∣ incurred by going from the atomistic description to the

Cauchy–Born approximation it is therefore sufficient to analyze |φ− ψ(j)| and |∇φ−∇ψ(j)| in
Qj for every j ∈ {−N, . . . , N}.

Lemma 4.1. Let y ∈ `∞(Z) and define y(j) = (y
(j)
k )k∈Z by y

(j)
k = yj +εy′j(k−j) for all k ∈ Z;

then ∣∣yn − y(j)
n

∣∣ ≤ (n− j)ε2‖y′′‖`1([j,n−1]) for n > j,∣∣yn − y(j)
n

∣∣ ≤ (j − 1− n)ε2‖y′′‖`1([n+1,j−1]), for n < j − 1.

Proof. Assume, without loss of generality that n > j. Since yj−1 = y
(j)
j−1 and yj = y

(j)
j ,

yn − y(j)
n = ε

n∑
k=j+1

(
y′k − (y

(j)
k )′

)
= ε2

n∑
k=j+1

k−1∑
l=j

(
y′′l − (y

(j)
l )′′

)
= ε2

n∑
k=j+1

k−1∑
l=j

y′′l ,

where have used that (y(j))′ is constant. Changing the order of summation we get

|yn − y(j)
n | ≤ ε2

n−1∑
l=j

n∑
k=l+1

|y′′l | = ε2
n−1∑
l=j

(n− l)y′′l ≤ (n− j)ε2‖y′′‖`1([j,n−1]). �
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In the next result we estimate the errors |φ(x) − ψ(j)(x)|, |∇φ(x) − ∇ψ(j)(x)| for x in the
cell Qj . As anticipated by Lemma 4.1 they depend on the second difference y′′.

Lemma 4.2. Let y ∈ Y satisfy miny′ > ς0. Let φ ∈ H1
#(Ω) satisfy (2.2) and ψ(j) ∈ H1

#(Qj)

satisfy (4.2), respectively. Then,∥∥φ− ψ(j)
∥∥
L∞(Qj)

≤ µε
∞∑
n=1

‖y′′‖`1([j−n,j+n−1])ne−mnminy′ , and

∥∥ε∇φ− ε∇ψ(j)
∥∥
L∞(Qj)

≤ mµε
∞∑
n=1

‖y′′‖`1([j−n,j+n−1])ne−mnminy′ .

Proof. From Proposition 2.1 we immediately deduce that, for all x ∈ Qj ,

φ(x) =
1

2m

∫
R

∑
k∈Z

δε(z − yk)e−
m
ε |x−z| dz,

ψ(j)(x) =
1

2m

∫
R

∑
k∈Z

δε(z − y(j)
k )e−

m
ε |x−z| dz.

(4.8)

Since y
(j)
j = yj and y

(j)
j−1 = yj−1, the respective terms in the sums cancel. Hence, we get for

x ∈ Qj :

φ(x)− ψ(j)(x) =
1

2m

∑
k∈Z

k 6=j−1,j

∫
R

(
δε(z − yk)− δε(z − y

(j)
k )
)
e−

m
ε |x−z| dz.

We now derive bounds on the individual terms in the sum. Note that (2.12) simplifies the
following calculations but due to the smoothness of the Green’s function similar bounds can be
obtained without it.

Let k > j. Then we have |x−z| = z−x for all z ∈ suppδε(·−yk) and all z ∈ suppδε(·−y(j)
k ).

Thus, with (2.12),

1

2m

∫
R

(
δε(z − yk)− δε(z − y

(j)
k )
)
e−

m
ε |x−z| dz =

µ

2m

(
e−

m
ε (yk−x) − e−

m
ε (y

(j)
k −x)). (4.9)

If y
(j)
k ≥ yk, then∣∣∣∣ 1

2m

∫
R

(
δε(z − yk)− δε(z − y

(j)
k )
)
e−

m
ε |x−z| dz

∣∣∣∣ ≤ µ

2m
e−

m
ε (yk−x)(1− e−

m
ε (y

(j)
k −yk))

≤ µ

2m
e−

m
ε (yk−x)m

ε
(y

(j)
k − yk).

Using (yk − x) ≥ (k − j)εminy′ for all x ∈ Qj and applying Lemma 4.1 leads to

µ

2ε
e−

m
ε (yk−x)

∣∣yk − y(j)
k

∣∣ ≤ µε

2
‖y′′‖`1([j,k−1])(k − j)e−(k−j)mminy′ .

The same bound on (4.9) can be obtained if y
(j)
k ≤ yk.

For any k < j − 1 we can use the same techniques to obtain that∣∣∣∣ 1

2m

∫
R

(
δε(z − yk)− δε(z − y

(j)
k )
)

e−
m
ε |x−z| dz

∣∣∣∣
≤ µε

2
‖y′′‖`1([k+1,j−1])(j − k − 1)e−(j−k−1)mminy′ .
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Summing over all k ∈ Z\{j − 1, j} we deduce that

∣∣φ(x)− ψ(j)(x)
∣∣ ≤ µε ∞∑

n=1

‖y′′‖`1([j−n,j+n−1])ne−mnminy′ .

The proof for the derivatives ∇φ, ∇ψ(j) is analogous. �

We wish to prove modelling error estimates on
∥∥σy−σcb

j,y

∥∥
L∞(Qj)

in terms of
∥∥φ−ψ(j)

∥∥
L∞(Qj)

and
∥∥∇φ −∇ψ(j)

∥∥
L∞(Qj)

. Since the stress functions σy and σcb
j,y are quadratic in the fields φ

and ψ(j) we need L∞-bounds, which we establish in the next lemma.

Lemma 4.3. Let y ∈ Y, y′ > ς0, and let φ = arg minϕ∈H1
#(Ω) I(ϕ,y) be the corresponding

field. Then, there are continuous functions K0, K1, that depend implicitly on m (but are
independent of ε and y), such that

‖φ‖L∞(Ω) ≤ K0(mminy′), and ε‖∇φ‖L∞(Ω) ≤ K1(mminy′).

Proof. The stated estimates follow in a straightforward manner from the integral representation
of the solution φ; see [10, Lemma 4.4] for the details. �

We can now prove the following modelling error estimates.

Lemma 4.4. Let σy and σcb
j,y be given by (2.7), respectively, (4.7); then∥∥σy − σcb

j,y

∥∥
L∞(Qj)

≤ C
(
ε
∥∥∇φ−∇ψ(j)

∥∥
L∞(Qj)

+
∥∥φ− ψ(j)

∥∥
L∞(Qj)

)
, j = 1, . . . , N,

where the constant C only depends on δ1, Ki = Ki(my
′), and on m.

Proof. From the definitions of the atomistic and continuum stress function we deduce that

σy(x)− σcb
j,y(x) = − 1

2

(
ε∇φ(x)− ε∇ψ(j)(x)

)(
ε∇φ(x) + ε∇ψ(j)(x)

)
+ 1

2m
2
(
φ(x)− ψ(j)(x)

)(
φ(x) + ψ(j)(x)

)
− ρy(x)

(
φ(x)− ψ(j)(x)

)
−
(
φ(x)− ψ(j)(x)

) j∑
i=j−1

ε∇δε(x− yi)(x− yi)

for all x ∈ Qj . With δε(x) = ε−1δ1(x/ε), the L∞-bound on φ from Lemma 4.3, and the

analogous bound for ψ(j) we get

1
2

∣∣ε∇φ(x) + ε∇ψ(j)(x)
∣∣ ≤ K1(mminy′),

m2

2

∣∣φ(x) + ψ(j)(x)
∣∣ ≤ m2K0(mminy′),

‖ρy‖L∞ ≤ ‖δ1‖L∞ ,∣∣ε∇δε(x− yi)(x− yi)∣∣ ≤ ‖∇δ1id‖L∞ ,

which implies the stated result. �

18



4.2. Stability. Besides consistency, the second crucial property of an approximation to a given
model is its stability. The following auxiliary result will play a role in the stability analysis of
a/c methods.

Lemma 4.5. Let y ∈ Y satisfy miny′ > ς0. Then, for all j ∈ {−N, . . . , N},

D2Ecb
j (y)·[u,u] ≥ m2µ2

2
e−mmaxy′ε|u′j |2 ∀u ∈ U .

Proof. We first recall that Ecb
j (y) = 1

2

∫
Qj
ρyψ

(j) dx because ψ(j) is a minimizer of (4.1). Ex-

tending ψ(j) |Qj |-periodically to R and using the symmetry of the cell problem, we can rewrite
this as

Ecb
j (y) =

ε

2

∫
R
δε(x− yj)ψ(j)(x) dx.

We now insert the explicit formula (4.8) for ψ(j)(x) and apply (2.12) to get

Ecb
j (y) =

ε

4m

∑
k∈Z

∫
R

∫
R
δε(x− yj)δε(z − y(j)

k )e−
m
ε |x−z| dz dx

=
µ2ε

4m

∑
k∈Z
k 6=j

e−
m
ε |yj−y

(j)
k | + Eself =

µ2ε

2m

∞∑
ν=1

e−mν y′j + Eself ,

where the constant Eself coming from k = j in the sum represents the self-energies of the atoms

in the cell Qj . Here we have also used that
∣∣y(j)
k − yj

∣∣ = |k − j|y′j for all k ∈ Z. Differentiating
twice leads to

D2Ecb
j (y)·[u,u] =

mµ2

2
ε
∞∑
ν=1

ν2e−νmy
′
j |u′j |2

≥ mµ2

2
ε|u′j |2

∞∑
ν=1

ν2e−νmmaxy′ ≥ mµ2

2
e−mmaxy′ ε|u′j |2.

In the last step we have only kept the term for ν = 1, which represents the nearest neighbour
interactions. �

5. Atomistic-to-Continuum Coupling

The computation of the original atomistic energy E(y) involves the solution of the optimiza-
tion problem (2.1) posed in the whole of Ω = (y−N−1, yN ). Our goal is the construction of
computationally cheaper, approximate energies Eac(y) such that E(y) ≈ Eac(y) for all relevant
y and minimizers ȳac ∈ Y of

Eac
f (y) = Eac(y) + (f ,y)ε,

are good approximations of minimizers ȳ of the energy Ef from (2.3).
Following the philosophy of a/c methods we approximate E(y) by the continuum model

where y is smooth and a version of the atomistic model where y is nonsmooth. In the following
we will implicitly assume that the configurations y ∈ Y under consideration are smooth except
in the segment y−K , . . . , yK for some K < N . We divide Ω into an atomistic subdomain Ωat

such that yj ∈ Ωat for all j ∈ {−K, . . . ,K} and the continuum domain Ωcb = Ω\Ωat. In Ωcb we
will use the Cauchy–Born approximation on a cell-by-cell basis. In Ωat we will use the atomistic
model with Dirichlet boundary conditions as discussed in Section 3.

This basic setting gives rise to a variety of possibilities including the precise choice of ∂Ωat

and the boundary conditions imposed on the atomistic subproblem. Both will in general depend
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Figure 5.1. An illustration of the first a/c method. In Ωat = (aL(y), aR(y))
the atomistic problem is solved with the Dirichlet boundary conditions g∗(y).
Outside Ωat the Cauchy–Born approximation is used in all cells Qj .

on the configuration y. Our main objective for Eac is the existence of a weak formulation in
the sense that

DEac(y)·u =

∫
Ω
σac
y (x)∇u(x) dx,

where u ∈ S#(y) is a piecewise linear interpolant of u ∈ U and σac
y is a stress function to be

determined. If this weak formulation can be obtained, the consistency analysis reduces to error
estimates on fields, as already seen in Lemma 4.4.

Throughout this section, φ ∈ H1
#(Ω) denotes the solution of the original minimization prob-

lem (2.1) for a given configuration y ∈ Y.

5.1. An a/c method with optimal boundary conditions. We place the boundary a of the
atomistic subproblem halfway between the interface atoms, that is a = a(y) = [aL(y) aR(y)]T,
where

aL(y) =
y−K−1 + y−K

2
, aR(y) =

yK + yK+1

2
.

Let Ωat = (aL(y), aR(y)) and Ωcb = Ω\Ωat. We write the a/c energy Eac(y) as the sum of a
continuum and an atomistic part

Eac(y) = Ecb
∗ (y) + Eat

∗ (y), (5.1)

which are introduced below.
Due to the choice of a(y) there are two half cells, (y−K−1, aL(y)) and (aR(y), yK+1), in the

continuum region Ωcb (see Figure 5.1). Since the cell problems are symmetric, the Cauchy–
Born energies of these half cells are given by 1

2E
cb
−K(y) and 1

2E
cb
K+1(y), respectively. Hence, the

continuum contribution to the energy Eac is defined by

Ecb
∗ (y) =

−K−1∑
j=−N+1

Ecb
j (y) + 1

2E
cb
−K(y) + 1

2E
cb
K+1(y) +

N∑
j=K+2

Ecb
j (y). (5.2)

The coordinates of the atoms in the atomistic region Ωat are represented by

yat = (y−K , . . . , yK)T.

For the definition of Eat
∗ (y) we consider the minimization problem (3.2) on the atomistic domain

Ωat subject to the Dirichlet boundary conditions g∗(y) = [g∗L(y) g∗R(y)]T. In correspondence
with Remark 4 and Section 3.3 they are given by

g∗L(y) =
1

1− τ
γL(y) + τγR(y)

1 + τ
, g∗R(y) =

1

1− τ
τγL(y) + γR(y)

1 + τ
,
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where τ = e−
m
ε ∆a(y), and γL, γR are defined in (3.15). The energy contribution from the

atomistic subproblem is thus given by

Eat
∗ (y) = Ea(y),g∗(y)(yat) = − inf

{
Ia(y)(ϕ,yat) : ϕ ∈ H1(Ωat), ϕ|∂Ωat = g∗(y)

}
,

where Ia(y) is defined as in (3.3). We denote the solution of this optimization problem by

φ∗at ∈ H1(Ωat). It satisfies the boundary-value problem

−ε2∆φ∗at +m2φ∗at = ρy in Ωat,

φ∗at|∂Ωat = g∗(y).

From a computational point of view g∗(y) is also a convenient choice since this is equivalent to
homogeneous Neumann boundary conditions. In Section 3.3 we deduced a clear interpretation
of the effect of this choice of boundary data: besides the interaction among themselves, the
atoms in Ωat interact with mirror atoms outside Ωat. This is closely related to the geometric
reconstruction idea for classical potentials [17, 4].

In analogy to (2.3) we search for minimizers of the total potential energy

Eac
f (y) = Eac(y) + (f ,y)ε (5.3)

in Y, where f ∈ U−1,2 represents an external force. Formally, a minimizer ȳac satisfies the
following Euler–Lagrange equation in U−1,2:

DEac
f (y) = DEac(y) + f = 0.

Throughout the remainder of this article we assume that the atomistic domain Ωat is large
compared with ε, that is ∆a � ε and hence terms of order O(τ) are exponentially small. To
keep the notation more compact we will not give precise estimates of τ -dependent terms arising
from the atomistic domain explicitly but include an O(τ) where necessary.

5.2. Consistency. In order to study the consistency properties of the a/c energy Eac(y) from
(5.1) we first need to calculate its derivative. Having established weak formulations for the
derivatives of E , Ecb, as well as Ea,g, we will prove that the a/c energy Eac admits a similar
reformulation of DEac(y)·u. For this we have to take into account that both the boundary of the
atomistic domain Ωat and the boundary conditions depend on y. The necessary preparations
were carried out in Section 3.

Lemma 4.1. Let y ∈ Y satisfy miny′ > ς0. Furthermore, let u ∈ U be a test vector and
u ∈ S#(y) an interpolant of u; then,

DEac(y)·u =

∫
Ω
σac
y (x)∇u(x) dx, where σac

y (x) =

{
σcb
y (x) if x ∈ Ωcb,

σat
y,∗(x) if x ∈ Ωat,

(5.4)

and σat
y,∗(x) is given by (2.7) with φ = φ∗at.

Proof. 1. Continuum Contribution. From Section 4 we already have the equality

DEcb
j (y)·u =

∫
Qj

σcb
y,j(x)∇u(x) dx,

j ∈ {−N, . . . ,−K − 1} ∪ {K + 2, . . . , N}. For the contribution 1
2E

cb
−K(y) from the half cell

(y−K−1, aL(y)) we make use of the symmetry of the cell problems. Since ∇u|Q−K
is constant,
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aL(y) is the midpoint of Q−K = (y−K−1, y−K), and σcb
y,−K is symmetric in Q−K , we deduce

that

1
2DE

cb
−K(y)·u =

1

2

∫
Q−K

σcb
y,−K(x)∇u(x) dx =

∫ aL(y)

y−K−1

σcb
y,−K(x)∇u(x) dx.

We treat 1
2E

cb
K+1(y) analogously. Hence,

DEcb
∗ (y)·u =

∫
Ωcb

σcb
y (x)∇u(x) dx,

where σcb
y (x) = σcb

y,j(x) if x ∈ Qj .
2. Atomistic Contribution. To calculate the derivative DEat

∗ (y) we use the chain rule and
the derivatives that were provided in Section 3. Applying Proposition 3.1 (with hL = (u−K−1 +
u−K)/2, hR = (uK + uK+1)/2 because of Dya(y) · u = a(u)), we get

DEat
∗ (y)·u = DyEa(y),g∗(y)(yat)·uat +DaEa(y),g∗(y)(yat)·Dya(y)·u

=

∫
Ωat

σat
y,∗(x)∇u(x) dx,

(5.5)

where the stress σat
y,∗ is given by (2.7) with φ = φ∗at and uat = (u−K , . . . , uK) ∈ R2K+1 is

the section of u corresponding to the atoms in the atomistic region. Note that the choice of
boundary conditions implies DgEa(y),g∗(y)(yat) = 0; cf. Remark 4. �

Remark 5. The weak form (5.4) of the derivative DEac already implies that there are no
ghost forces for homogeneous deformations y. If the atoms are equidistant, then g∗L(y) = φ(aL)

and g∗R(y) = φ(aR) and thus also φ∗at = φ in Ωat. Moreover, it is clear that ψ(j) = φ for all j.
Hence, we obtain that σac

y (x) = σy(x) for all x ∈ Ω, which implies that DEac(y) = DE(y) = 0

for all y = FX̂ ∈ Y representing homogeneous deformations (i.e., that the method exhibits no
ghost forces). �

Absence of ghost forces does not immediately imply consistency of the a/c method, but has
to be shown separately. This we do next. Because of the structure of the weak formulation
(5.4), the analysis boils down to estimating the errors between the field φ coming from the

original atomistic model and the fields ψ(j), respectively, φ∗at.

Theorem 5.1. Let y ∈ Y be such that miny′ ≥ s0 > ς0; then, for all u ∈ U with interpolants
u ∈ S#(y), ∣∣(DE(y)−DEac(y)

)
·u
∣∣ ≤ C(ε‖y′′‖`2w,s0

+ τ
)
‖∇u‖L2 ,

where C = C(s0) and the weighted `2w,s0-norm is defined by

‖y′′‖2`2w,s0
:= ε

∑N
j=−Nwj

∣∣y′′j ∣∣2, (5.6)

with weights wj := max
(
1, e−ms0dist(j,{−K,K})).

Proof. Using the weak formulation (5.4) of DEac(y) we obtain∣∣(DyE(y)−DyEac(y)
)
·u
∣∣ =

∣∣∣∣∫
Ω

(
σy(x)− σqc

y (x)
)
∇u(x) dx

∣∣∣∣
≤ ‖σy − σqc

y ‖L2(Ω) ‖∇u‖L2

≤
( N∑
j=−N

ε‖σy − σqc
y ‖2L∞(Qj)

)1/2
· ‖∇u‖L2 . (5.7)
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For Qj belonging to the continuum region Lemma 4.4 and Lemma 4.2 imply

‖σy − σqc
y ‖L∞(Qj) ≤ Cε

∞∑
n=1

‖y′′‖`1([j−n,j+n−1])ne−mns0

≤ Cε
∞∑
n=1

‖y′′‖`2([j−n,j+n−1])n
3/2e−mns0

≤ Cε

( ∞∑
n=1

‖y′′‖2`2([j−n,j+n−1])e
−mns0

)1/2

, (5.8)

where we have employed the Cauchy–Schwarz inequality twice and used the fact that the series∑∞
n=1 n

3e−mns0 is convergent.
Summing over all cells belonging to the continuum region and interchanging the order of

summation we obtain∑
j∈{−N,...,N}
\{−K+1,...,K}

ε‖σy − σqc
y ‖2L∞(Qj) ≤ Cε3

∑
j∈{−N,...,N}
\{−K+1,...,K}

∞∑
n=1

‖y′′‖2`2([j−n,j+n−1])e
−mns0

≤ Cε3
N∑

k=−N
w′k|y′′k |2,

where

w′k =
∑

j∈{−N,...,N}
\{−K+1,...,K}

∑
n=1,...,∞

k∈[j−n,j+n−1]

e−mns0 .

This is a geometric series from which we can factor out e−ms0dist(k,{−K,K}), and hence we obtain
w′k ≤ Cwk, which gives ∑

j /∈{−K+1,...,K}
ε‖σy − σqc

y ‖2L∞(Qj) ≤ Cε
3

N∑
k=−N

wk|y′′k |2. (5.9)

To compute the consistency error of the weak form in the atomistic region, we need to bound
the difference

∥∥σy − σqc
y

∥∥
L∞(Qj)

=
∥∥σy − σat

y,∗
∥∥
L∞(Qj)

for Qj ⊂ Ωat. Using the same arguments

as in the proof of Lemma 4.4 we obtain∥∥σy − σat
y,∗
∥∥
L∞(Qj)

≤ C
(
‖φ− φ∗at‖L∞(Qj) + ε‖∇φ−∇φ∗at‖L∞(Qj)

)
.

Lemma 4.1 implies∥∥σy − σat
y,∗
∥∥
L∞(Qj)

≤ C
(
|φ(aL)− g∗L(y)|+ |φ(aR)− g∗R(y)|

)
e
−m

ε
minx∈Qj

da(x)
.

Next, we recall from Remark 4 that g∗R = γ∗R +O(τ), which is given by (cf. Remark 4)

γR(y) =

∫
R
ρrefl
y (x)Gε(aR − x) dx+O(τ),

where ρrefl
y (z) =

∑
j∈Z δε(z− yrefl

j ) and yrefl is a reflected and periodized extension of (yj)
K
j=−K .

Hence, we obtain∣∣φ(aR)− g∗R(y)
∣∣ =

∣∣φ(aR)− γL(y)
∣∣+O(τ)

≤ 1

2mε

∣∣∣ ∫
R

(
ρy(z)− ρrefl

y (z)
)
e−

m
ε
|aR−z| dz

∣∣∣+O(τ).
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Minor modifications of the proofs of Lemma 4.2 and Lemma 4.1 yield∣∣φ(aR)− g∗R(y)
∣∣ ≤ C

ε

∞∑
j=K+1

∣∣yrefl
j − yj

∣∣e−m
ε

(min(yrefl
j ,yj)−aR) +O(τ)

≤ Cε
∞∑
n=1

‖y′′‖`1([K−n+1,K+n])ne−mns0 +O(τ). (5.10)

An analogous result holds for |φ(aL)− g∗L(y)|. It is now straightforward to see that the consis-
tency error committed in the atomistic region can be bounded above in the same way as the
consistency error committed in the continuum region (in fact it is dominated by (5.9). This
completes the proof. �

5.3. Stability. The special choice g∗(y) of boundary conditions for the atomistic subproblem
allows for an elementary stability analysis of Eac(y) that draws from the ideas we used in
Section 3.3. We recall that

Eat
∗ (y) =

1

4mε

∫
Ωat

∫
Ωat

ρy(x)
(
e−

m
ε |x−z| + e−

m
ε (2aR(y)−x−z)

+ e−
m
ε (x+z−2aL(y)))ρy(z) dz dx+O(τ).

The next result addresses the differentiability of γL and γR. We show that the derivatives
satisfy certain bounds.

Lemma 5.2. Let y ∈ Ω2K+1
a satisfy yi+1 − yi > ες0 for all i ∈ {−K + 1, . . . ,K}, aR − yK >

ες0/2, and y−K − aL > ες0/2. Then, γL(y) is twice continuously differentiable with respect to
y and a and there exists C(mminy′) (independent of ε) such that

∣∣DγL(y, a)·(u, h)
∣∣ ≤ C(mminy′)

((
u−K − hL

ε

)2

+

K∑
k=−K+1

(u′k)
2

)1/2

,

∣∣D2γL(y, a)·
[
(u, h), (u, h)

]∣∣ ≤ C(mminy′)
((

u−K − hL
ε

)2

+

K∑
k=−K+1

(u′k)
2

)
for all u ∈ U and h ∈ R2. Analogous bounds hold for γR(y, a).

Proof. The proof is based on the observation that

γL(y, a) =
1

m

K∑
j=−K

∫
Ωa

e−
m
ε (x−aL)δε(x− yj) dx =

µ

m
e−

m
ε (y−K−aL)

K∑
j=−K

e−
m
ε (yj−y−K).

The rest of the proof is a straightforward computation; see [10, Lemma 5.3] for the details. �

The τ -dependent terms in Eat
∗ (y) = Ea(y),g∗(y)(yat) from (3.24) only contain γL(y) and γR(y),

whose derivatives are bounded by Lemma 5.2. The derivatives of these τ -dependent terms are
therefore still of order O(τ) and will be neglected in the proof of the following result.

Lemma 5.3. Let y ∈ Y satisfy miny′ > ς0. Then,

D2Eac(y)·[u,u] ≥
(mµ2

2
e−mmaxy′ −O(τ)

)
‖u′‖2`2ε ∀u ∈ U .
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Proof. We treat continuum and atomistic contributions independently and start with the for-
mer. Lemma 4.5 states that

D2Ecb
j (y)·[u,u] ≥ m2µ2

2
e−mmaxy′ε|u′j |2

for all j = −N, . . . , N . Hence, the definition (5.2) of Ecb
∗ directly implies that

D2Ecb
∗ (y)·[u,u] ≥ e−mmaxy′m

2µ2

2
ε

(−K−1∑
j=−N

|u′j |2 +
1

2

(
|u′−K |2 + |u′K+1|2

)
+

N∑
j=K+2

|u′j |2
)
.

Let us now turn to the atomistic part Eat
∗ (y). From Section 3.3 we know that for the given

choice of boundary conditions and a(y) we can write the energy of the atomistic part as

Eat
∗ (y) =

ε

4m

K∑
i,j=−K

∫
Ωat

∫
Ωat

δε(x− yi)
(
e−

m
ε |x−z| + e−

m
ε (x+z−y−K−1−y−K)

+ e−
m
ε (yK+1+yK−x−z))δε(z − yj) dz dx

=
εµ2

4m

K∑
i,j=−K

(
e−

m
ε |yi−yj | + e−

m
ε (yi+yj−y−K−y−K−1) (5.11)

+ e−
m
ε (yK+yK+1−yi−yj))+ Eself +O(τ),

where the constant Eself accounts for the self-energies of the atoms {−K, . . . ,K}. Differentiating
twice and keeping only contributions from nearest neighbour interactions leads directly to

D2Eat
∗ (y)·[u,u] ≥ e−mmaxy′mµ

2

2
ε

(
1

2
|u′−K |2 +

K∑
i=−K+1

|u′i|2 +
1

2
|u′K+1|2

)
−O(τ).

Adding the lower bounds for D2Ecb
∗ (y)·[u,u] and D2Eat

∗ (y)·[u,u] we arrive at

D2Eac(y)·[u,u] =
(
D2Ecb

∗ (y) +D2Eat
∗ (y)

)
·[u,u] ≥

(
e−mmaxy′mµ

2

2
−O(τ)

)∥∥u′∥∥2

`2ε
,

for all u ∈ U , as desired. �

5.4. Error Estimates. Combining the consistency and stability results we obtain the following
error estimates. We note that the upper bound on the error depends on the smoothness of ȳ in
the continuum region, but that the dependence on ȳ in the atomistic region decays exponentially
with distance to the a/c interface. In realistic higher-dimensional models such an estimate would
make it possible to allow defects in the atomistic region without affecting the error estimate.

Theorem 5.4. Suppose that ȳ ∈ arg minEf and ȳac ∈ arg minEac
f satisfy

min ȳ′,min ȳ′ac ≥ s0 ≥ ς0, and max ȳ′,max ȳ′ac ≤ S0 < +∞. (5.12)

There exist constants c and C = C(s0, S0) such that, if ∆a ≥ c log(S0), then∥∥ȳ′ − ȳ′ac

∥∥
`2ε
≤ C

(
ε
∥∥ȳ′′‖`2w,s0

+ τ
)
. (5.13)

Proof. From Lemma 5.3 it is clear that there exists a constant c such that, for ∆a ≥ c, we have

D2Eac(y)·[u,u] ≥ mµ2

4
e−mS0‖u′‖2`2ε ∀u ∈ U , ∀y ∈ Y,y′ ≤ S0.

In particular, this holds for all y ∈ conv{ȳ, ȳac}. Let c0 = mµ2

4 e−mS0 .
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yKyK−1yK−J yK+1 ηK+2(y) ηK+J+1(y)aR(y)

QR
J

Figure 6.1. Illustration of the problem in the interval QRJ = (yK−J , 2aR(y)−
yK−J) used to compute gR(y).

Let u = ȳ − ȳac; then we can choose y ∈ conv{ȳ, ȳac} such that

c0‖u′‖2`2ε ≤ D
2Eac(y)·[u,u] =

(
DEac(ȳ)−DEac(ȳac)

)
[u].

Employing the consistency estimate of Theorem 5.1 we obtain the stated result. �

Remark 6. With some additional work it is possible to avoid assuming the existence of ȳac,
but deduce it from an inverse function theorem type argument [14, 10]. �

6. Boundary Conditions From Cell Problems

The boundary conditions g∗(y) we imposed on the atomistic subproblem in Section 5.1 gave
rise to a method without ghost forces, and whose analysis was relatively straightforward. The
reasons for this is the clean weak formulation (5.4) of DEac and the convenient stability proper-
ties established in Lemma 5.3. We now investigate how this situation changes if computationally
cheaper boundary conditions are chosen. The following construction may also provide a starting
point for generalisations to higher dimensions.

For example, a canonical choice, which requires no additional computational effort, is

gL(y) = ψ(−K)(aL) and gR(y) = ψ(K+1)(aR), (6.1)

where we still assume aL(y) = 1
2(y−K−1 + y−K) and aR(y) = 1

2(yK + yK+1). In this case, we
have the following result, which suggests that the additional error committed can be controlled.

Lemma 6.1. Let miny ≥ s0 ≥ ς0 and let gL/R be given by (6.1); then,∣∣g(y)− g∗(y)
∣∣ ≤ C(ε1/2‖y′′‖`2w,s0

+ τ
)
. (6.2)

Proof. Without loss of generality we focus on gR only. Upon first estimating∣∣gR(y)− g∗R(y)
∣∣ ≤ ∣∣ψ(K+1)(aR)− φ(aR)

∣∣+
∣∣φ(aR)− g∗R(y)

∣∣,
and then employing (5.10) and Lemma 4.2, we obtain∣∣gR(y)− g∗R(y)

∣∣ ≤ Cε ∞∑
n=1

‖y′′‖`1([K−n+1,K+n])ne−mns0 +O(τ).

Using the same argument as in (5.8) to (5.9), we obtain the upper bound (6.2). �

Motivated by Lemma 6.1 we define a second a/c energy Eac(y) by

Eac(y) = Ecb
∗ (y) + Eat(y), (6.3)

where Ecb
∗ (y) is the same as in the method discussed in Section 5.1 (see (5.2)) and

Eat(y) = Ea(y),g(y)(yat)

= − inf
{
Ia(y)(ϕ,yat) : ϕ ∈ H1(Ωat), ϕ|∂Ωat = g(y)

}
.
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We denote the minimizer for given y by φat ∈ H1(Ωat).
Before we embark on the analysis of this new method, we establish a useful auxiliary result.

Lemma 6.2. Let miny′ ≥ s0 ≥ ς0. Let gR(y) be defined by (6.1); then, it can be equivalently
written as

gR(y) =
1

2m

∑
k∈Z

∫
R
δε
(
z − (k + 1

2)εy′K+1

)
e−

m
ε
|z| dz. (6.4)

In particular, gR is twice Fréchet differentiable with respect to y, and there exists a constant
C = C(s0) such that, for all y ∈ Y with miny′ ≥ s0 ≥ ς0,∣∣DygR(y) · u

∣∣ ≤ C|u′K+1| and
∣∣D2
ygR(y) · [u,u]

∣∣ ≤ C|u′K+1|2 ∀u ∈ U .

Analogous results hold for gL(y).

Proof. Recall from (4.8) that

gR(y) = ψ(K+1)(aR) =
1

2m

∑
k∈Z

∫
R
δε(z − y(K+1)

K+k )e−
m
ε |aR−z| dz,

where y
(K+1)
j denotes the periodic extension defined in (4.3). We use the identities

y
(K+1)
K+k = yK + kεy′K+1 and aR = yK + 1

2εy
′
K+1

to obtain

gR(y) =
1

2m

∑
k∈Z

∫
R
δε(z − yK − kεy′K+1)e−

m
ε |yK+ 1

2
εy′K+1−z| dz.

Shifting the integration by (yK + 1
2εy
′
K+1), we obtain (6.4).

The bound on the first and second derivatives follows as in Lemma 5.2; the key observation
being that δε = O(ε−1) is balanced against the ε preceding y′K+1 in its argument. �

6.1. Consistency. A crucial difference between the a/c energy (6.3) and the energy from
Section 5.1 is that now the derivative of the atomistic energy with respect to the boundary
conditions does not vanish.

Since the continuum contribution to DEac(y)·u is the same as in Section 5.1 we only need
to analyze DEat(y). Using the chain rule we obtain

DEat(y)·u = Dyat
Ea(y),g(y)(yat)·uat +DaEa(y),g(y)(yat)·a(u)

+DgEa(y),g(y)(yat)·(Dyg(y)·u).

The same reasoning as in Section 5.1 gives for the first two terms on the right-hand side

Dyat
Ea(y),g(y)(yat)·uat +DaEa(y),g(y)(yat)·a(u) =

∫
Ωat

σat
y (x)∇u(x) dx, (6.5)

where σat
y (x) is given by (2.7) with φ = φat.

Next, we turn our attention to the term DgEa(y),g(y)(yat) · (Dyg(y) · u). We recall from
Lemma 3.4 that (for ∆a� ε)

DgEa(y),g(y)(yat) = −mε
[
gL(y)− g∗L(y), gR(y)− g∗R(y)

]
+O(ετ).

Combining this result with Lemma 6.2 and Lemma 6.1, we obtain∣∣DgEa(y),g(y)(yat) · (Dyg(y) · u)
∣∣ ≤ Cε

(
|gL − g∗L|+ |gR − g∗R|+ τ

)(
|u′−K |2 + |u′K+1|2

)1/2
≤ C

(
ε‖y′′‖`2w,s0

+ τ
)
· ‖u′‖`2ε , (6.6)
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where C = C(miny′), and we have estimated ε1/2τ ≤ τ . Equipped with these estimates, we
obtain the following consistency result.

Lemma 6.3. Let y ∈ Y with miny′ ≥ s0 ≥ ς0; then, there exists a constant C = C(s0) such
that ∣∣∣DE(y)·u−DEat(y)·u

∣∣∣ ≤ C(ε‖y′′‖`2w,s0
+ τ
)
‖∇u‖L2 ∀u ∈ U ,

where we have used the same notation as in Theorem 5.1.

Proof. From (6.5) and (6.6) we obtain that∣∣∣DE(y)·u−DEat(y)·u
∣∣∣ ≤ [(ε ∑

j=−N,...,N
j /∈{−K+1,...,K}

∥∥σy − σcb
j,y

∥∥2

L∞(Qj)
+
∥∥σy − σat

y

∥∥2

L2(aL,aR)

)1/2

+ C
(
ε‖y′′‖`2w,s0

+ τ
)]
· ‖∇u‖L2 .

The first group in the upper bound was already estimated in the proof of Theorem 5.1, and the
second group, ‖σy − σat

y ‖L2(aL,aR) can be treated analogously to the term ‖σy − σat
y,∗‖L2(aL,aR)

in the proof of Theorem 5.1. �

6.2. Stability. We wish to compute a convenient lower bound on D2Eac(y) · [u,u] for some
given y ∈ Y with ς0 ≤ s0 ≤ y′ ≤ S0. Since the continuum part of the energy is the same as
in the first method, we only address the stability of the atomistic subproblem with the given
choice of boundary data. We write the second derivative of the energy Eat in the form

D2Eat(y)·[u,u] = D2Eat
∗ (y)·[u,u] +

(
D2Eat(y)−D2Eat

∗ (y)
)
·[u,u]

and use the coercivity of D2Eat
∗ (y): we know from Lemma 5.3 that

D2Eat
∗ (y)·[u,u] ≥ e−mmaxy′mµ

2

2
ε

(
1

2
|u′−K |2 +

K∑
i=−K+1

|u′i|2 +
1

2
|u′K+1|2

)
−O(τ)

for all u ∈ U ; hence we are left to analyze the difference D2Eat(y) − D2Eat
∗ (y). We will not

show that this difference is small, but will only be able to bound it below by a controllable
quantity. This is reminiscent of similar observations made in [14].

Lemma 6.4. Let y ∈ Y such that miny′ ≥ s0 ≥ ς0; then there exists a constant C = C(s0)
such that (

D2Eat(y)−D2Eat
∗ (y)

)
·[u,u] ≥ −C

(
ε1/2‖y′′‖`2w,s0

+ τ
)
.

Proof. The difference between the energies Eat(y) and Eat
∗ (y) only consists of effects from the

boundary conditions. We have, by (3.18),

Eat(y)− Eat
∗ (y) = − Ia(y)(ξa(y),g(y),y) + Ia(y)(ξa(y),g∗(y),y) =

mε

2

∣∣g(y)− g∗(y)
∣∣2 +O(ετ).

As in Section 5.3, one can verify that the O(τ) term remains of that same order in the first and
second derivatives. This implies that(

D2Eat(y)−D2Eat
∗ (y)

)
·[u,u] = mε

(
g(y)− g∗(y)

)T[(
D2g(y)−D2g∗(y)

)
·[u,u]

]
+ 2mε

∣∣(Dg(y)−Dg∗(y)
)
·u
∣∣2 +O(τ‖u′‖2`2ε)

≥ mε
(
g(y)− g∗(y)

)T[(
D2g(y)−D2g∗(y)

)
·[u,u]

]
+O(τ‖u′‖2`2ε). (6.7)
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We now employ Lemma 6.2 to bound D2g(y), Lemma 5.2 to bound D2g∗ (up to another O(τ)
error), and Lemma 6.1 to bound g − g∗, which yields(

D2Eat(y)−D2Eat
∗ (y)

)
·[u,u] ≥ −C

(
ε1/2‖y′′‖`2w,s0

+ τ
)
‖u′‖2`2ε ,

where C = C(miny′). �

From Lemma 6.4 and Lemma 5.3 we immediately obtain the following corollary, which states
that, if S0 is moderate, y “smooth” in a neighbourhood of the interfaces aL/R and in the

continuum region, and if the atomistic region is sufficiently large, then D2Eac(y) is stable.

Corollary 6.5. Let y ∈ Y satisfy miny′ ≥ s0 ≥ ς0 and maxy′ ≤ S0; then there exists a
constant C = C(s0) such that

D2Eac(y)·[u,u] ≥
(mµ2

2
e−mS0 − C

(
ε1/2‖y′′‖`2w,s0

+ τ
))
‖u′‖2`2ε ∀u ∈ U .

Remark 7. The scaling ε1/2 is due to the fact that the additional error committed is
concentrated in a region of length ε. �

6.3. Error Estimates. Repeating the proof of Theorem 5.4 verbatim, but replacing the con-
sistency and stability estimates from Section 5 with those derived in Lemma 6.3 and Corollary
6.5, we obtain the following error estimates for the modified a/c method.

Theorem 7.1. Recall the notation introduced in Theorem 5.1. Suppose that ȳ ∈ arg minEf
and ȳac ∈ arg minEac

f , where Eac is defined in (6.3), satisfy

min ȳ′,min ȳ′ac ≥ s0 ≥ ς0, and max ȳ′,max ȳ′ac ≤ S0 < +∞. (6.8)

There exist constants c and C = C(s0, S0) such that, if τ+ε1/2‖y′′‖`2w,s0
≤ ce−mS0 (in particular,

K must be sufficiently large), then∥∥ȳ′ − ȳ′ac

∥∥
`2ε
≤ C

(
ε
∥∥ȳ′′‖`2w,s0

+ τ
)
. (6.9)

7. Conclusions and Outlook

We have presented a rigorous error analysis of an atomistic-to-continuum coupling method
for a field-based interaction potential in one space dimension. The starting point for the design
of coupling methods was a weak formulation of the forces arising from the atomistic model.
This provided a natural connection point to the corresponding continuum model. We believe
that the present work in a comparably simple setting addresses several important questions
relevant for a/c coupling in the presence of fields, most prominently the dependence of the a/c
methods on choice of the boundary and the boundary data for the interaction fields.

For the two a/c methods we discussed we chose y-dependent boundaries a(y) of the atomistic
subdomain Ωat. In other words we fixed the position of the boundary in the Lagrangian domain.
This leads to convenient weak formulations of DEac(y). An obvious alternative (particularly
relevant for higher dimensions) is the choice of y-independent a. We have not investigated this
further, however, see [10] for some preliminary remarks.

We also remark that we heavily utilized the one-dimensional setting in several places in the
analysis. A generalisation both of the numerical methods and their analysis is therefore non-
trivial. In particular, we can see no straightforward generalisation of the reflection boundary
conditions g∗(y). A possible way forward would be to give an alternative analysis of the second
method described in Section 6 that does not utilize these reflection techniques.
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[10] B. Langwallner, C. Ortner, and E. Süli. Quasicontinuum coupling for a field-based interaction potential.

OxMOS Report 34/2011, http://www2.maths.ox.ac.uk/oxmos/reports/.
[11] R. Miller, E. B. Tadmor, R. Phillips, and M. Ortiz. Quasicontinuum simulation of fracture at the atomic

scale. Modelling and Simulation in Materials Science and Engineering, 6:607, 1998.
[12] P. Ming and J. Z. Yang. Analysis of a one-dimensional nonlocal quasi-continuum method. Multiscale Model.

Simul., 7(4):1838–1875, 2009.
[13] C. Ortner. The role of the patch test in 2d atomistic-to-continuum coupling methods. arXiv:1101.5256, to

appear in M2AN Math. Model. Numer. Anal.
[14] C. Ortner. A priori and a posteriori analysis of the quasinonlocal quasicontinuum method in 1D. Math.

Comp., 80(275):1265–1285, 2011.
[15] A. V. Shapeev. Consistent energy-based atomistic/continuum coupling for two-body potentials in one and

two dimensions. Multiscale Model. Simul., 9(3):905–932, 2011.
[16] V. B. Shenoy, R. Miller, E. B. Tadmor, R. Phillips, and M. Ortiz. Quasicontinuum models of interfacial

structure and deformation. Physical Review Letters, 80(4):742–745, 1998.
[17] T. Shimokawa, J. J. Mortensen, J. Schiøtz, and K. W. Jacobsen. Matching conditions in the quasicontinuum

method: Removal of the error introduced at the interface between the coarse-grained and fully atomistic
region. Phys. Rev. B, 69(21):214104, 2004.

[18] E. B. Tadmor, M. Ortiz, and R. Phillips. Quasicontinuum analysis of defects in solids. Philosophical Mag-
azine A, 73(6):1529–1563, 1996.

[19] E. B. Tadmor, R. Phillips, and M. Ortiz. Mixed atomistic and continuum models of deformation in solids.
Langmuir, 12(19):4529–4534, 1996.

[20] S. P. Xiao and T. Belytschko. A bridging domain method for coupling continua with molecular dynamics.
Computer methods in applied mechanics and engineering, 193(17-20):1645–1669, 2004.

B. Langwallner, Mathematical Institute, 24-29 St Giles’, Oxford OX1 3LB, UK
E-mail address: langwallner@maths.ox.ac.uk

C. Ortner, Mathematics Institute, Zeeman Building, University of Warwick, Coventry CV4
7AL, UK

E-mail address: christoph.ortner@warwick.ac.uk
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