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ATOMISTIC-TO-CONTINUUM COUPLING APPROXIMATION OF A
ONE-DIMENSIONAL TOY MODEL FOR DENSITY FUNCTIONAL
THEORY

B. LANGWALLNER, C. ORTNER, AND E. SULI

ABSTRACT. We consider an atomistic model defined through an interaction field satisfying
a variational principle, and can therefore be considered a toy model of (orbital free) density
functional theory. We investigate atomistic-to-continuum coupling mechanisms for this atom-
istic model, paying special attention to the dependence of the atomistic subproblem on the
atomistic region boundary and the boundary conditions. We rigorously prove first-order error
estimates for two related coupling mechanisms.

1. INTRODUCTION

The quasicontinuum (QC) method and, more generally, atomistic/continuum coupling (a/c)
methods, are numerical coarse-graining techniques for the efficient simulation of phenomena
and processes in materials at the nano-scale, such as defects, fracture, grain boundaries, or
nano-indentation [I8], 19, 16, 11]. Incompatibilities between the treatment of forces in atom-
istic and continuum models lead to difficulties in defining coupling mechanisms that do not
introduce additional errors. Substantial effort has been made to understand this problem and
to construct efficient and accurate a/c methods; see [I7, 4, (15, O, 20] for examples of formu-
lations of computational methods and [I}, 2 [3, 12 13} [14] and references therein for examples
of analytical treatments. Formulations of a/c methods for atomistic models based on quantum
mechanics were proposed in [8] [6], but, to the best of our knowledge, no rigorous analysis of
these methods exists.

In the present article we formulate and analyze one-dimensional a/c methods for an atomistic
model that is defined through an interaction field satisfying a linear variational principle. Our
results are related to two classes of a/c methods: Firstly, our work can be viewed as an analysis
of (a simplified version of) the a/c method proposed by Iyer and Gavini [9], who use field-based
versions of classical potentials to formulate their method. Secondly, the atomistic model we
formulate can be considered a toy model of (orbital free) density functional theory, and hence
our work represents a preliminary step towards a rigorous analysis of the a/c methods described
in 8, 16].

The article is structured as follows. In Section [1| we formally motivate the atomistic model,
and introduce the necessary notation. In Section [2] we give a precise formulation of the model
with periodic boundary conditions and derive a “weak formulation” for the resulting forces on
the particles. Section [3] is devoted to the analysis of the model in a bounded domain when
the fields are subjected to Dirichlet boundary conditions. The Cauchy—Born continuum model
is derived and analyzed in Section [l Finally, in Sections [f] and [6] we propose two possibile
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constructions of a/c methods based on different exchange of boundary conditions between an
atomistic and continuum region, and establish error estimates.

1.1. Field-based formulation of pair interactions. The following outline follows ideas
presented in [9]. Let y = (y1,...,yn) € RY represent the coordinates of N particles in one
dimension. We consider an atomistic energy based on a pair-potential V,

1 N
=3 > Vllyi —usl)
ij=1

i#]

The force on particle ¢ is given by

—DyE(y ZSlgn V'(lyi — y;1)-
Hﬁl

We note that the forces are nonlocal expressions in the sense that their computation involves
summation over the other N — 1 particles.

Next, we make a few modifications to this model. First, we replace the pointwise particles
with smooth nonnegative, and compactly supported particle densities d-(- — y;) (such that
Jg 0e(x) da = 1). This leads to

NZ//5 2~ V(|12 — 2])0.(x — ;) d= da.

1,7=1
i#]

To simplify the presentation further, we include the self-energies of the individual particle
densities and define

Z//& z2—y)V(|z — 2|)0c (v — yj) dzda.

3,j=1

This additional self-energy contribution does not affect the forces. It can be computed explicitly
and subtracted from the energy later on. Upon introducing the field ¢ : R — R,

gb(x):/pr(z)Vﬂx—z)dz, where  py (2 25 Z—Yi), (1.1)

to rewrite the energy & (y) in the form

- /R py()(x) da.

It is now easy to see that the forces are given by the local expression

/ Dypy(2)¢(z) dz.

Hence, if the field ¢ is known, then it becomes unnecessary to compute nonlocal sums over
particles. The nonlocality of the interaction has been encoded in the field ¢. However, it is
now necessary to compute the field ¢, which is defined via the convolution .

Suppose that the pair-potential V' is the Green’s function for a linear differential operator
Ly (V); then, ¢ can alternatively be computed by solving the differential equation

Ly (V)¢ = py.

ga(y) =



As an example we consider the Yukawa potential in one space dimension

1 1 1
Vig)= —e el — = [ =
(z) om" 27 Jr k% +m?
In this case ¢ can be obtained as the solution to
—Ag¢+ m2¢ =Py

or, equivalently, as a solution to the minimization problem

1
b= argmin{2/ IV|? + m?@? do — / pygod:c}.
¥ R R

The resulting interaction potential £ can also be written in the form

1
5E(y):—min{/ |V<p|2+m2<p2daz—/pyg0d$}. (1.2)
P 2 R R

The present work is devoted to the analysis of a/c approximations of in a periodic one-
dimensional setting. What distinguishes this analysis from previous analyses of a/c methods is
that the coupling is achieved through an exchange of boundary conditions for the interaction
field ¢, rather than ghost-force removal ideas such as [4] [15].

* dk.

Remark 1.  The interaction defined by is purely repulsive. A purely attractive in-
teraction can be obtained by changing the outer minus sign in the definition of & to a plus
sign. We could combine two energies of the form with different parameters m to model
an interaction similar to the Morse potential V (|z|) = e~ 2%l — 2¢~1#l [9]. O

1.2. Notation. We consider an infinite chain of atoms on the one-dimensional lattice X = ez,
where ¢ = 2/(2N + 1) is the reference lattice spacing. Moreover, to keep the analysis simple,
we admit only (2N 4 1)-periodic displacements from the reference lattice (cf. [14]). Hence, we
define the spaces of admissible displacements and deformations, respectively, by

. N

U={uc RZ UjyaNil) = U VIEZL, D5 Nuj = 0}, and

Y=FX +U,
where F' > 0 is a prescribed macroscopic strain. A deformation y € ) defines the computational
domain

Q= (y-N-1,9N)
for the field variable ¢. We note that the length of the interval is independent of y.
We define the finite differences ¢, y” € U for y € Y or U by their respective components

;YY1 = Yl = 25 Y

Y; = !
J c ’ J 52

Let us also define the weighted ¢? scalar product and norm by

N
(w,v)e =2 Y wv, Yuveld, |ulg:=(uu)l? vuecl. (1.3)
v=—N
The ¢°°-norm is defined in the obvious way

lulos = max fu| Vue

The space U equipped with the discrete Sobolev seminorm ||u||1.2 = [|u/]|2 will be denoted by
U2 and its topological dual space by &/~12. The norm on Y2 is given by

T
|T|y-12 = sup ———.
uclf1:2 HUHUM




Y-N-1 Y-N  Y-N+1 YN—-2 YN-1 YN

FiGUurE 2.1. Sketch of the basic atomistic problem: the field ¢ is periodic in
Q = (y—~—1,yn) and py is a smooth particle density representing the atoms
with positions given by y € ).

For monotonically increasing y € ) (which we will write as y’ > 0) we denote by S(y) C
H'(Q) the space of continuous functions that are linear on every interval Q; = (yi_1,¥:),
i € {=N,...,N}. Furthermore, we define Sx(y) = S(y) N H#(Q) to be the subset of all

periodic functions in S(y).

2. PERIODIC BOUNDARY CONDITIONS

We now put the field-based interaction potential that was outlined above in a precise math-
ematical framework. Let the functional I : H;L(Q) x Y — R be defined by

I(p,y) = /(%52’v80|2 + %m2g02> dx—/pygodm, where
Q Q

py(x) =e) 0z —y;), and &.(z)=c""01(z/e).
JEZ
Here, 61 is a symmetric, nonnegative, regularized delta distribution with compact support
[—%0, %0], where ¢p > 0 and fR 01dx = 1; see Figure We will frequently refer to the
paramter ¢y, which is fixed throughout the paper.
We then define the interaction potential £ : Y — R by

Ey)=— min I(p,y). (2.1)
WEH#(Q)

The respective minimizer (see Figure [2.1)

¢ =arg min I(p,y)
PpEH (D)

is the periodic solution to the Euler-Lagrange equation
—?A¢+mPp = p, in Q. (2.2)

Although ¢ depends on y, we will usually suppress this in our notation. It will always be clear
from the context, which configuration ¢ belongs to. It follows from ([2.2) and integration by
parts that

1
E(y) = 2/Qéf)f)ydd’ﬂ-

To determine equilibrium configurations subject to a given external force f € U2 we need to
minimize the total potential energy Ef : Y — R defined by

Ep(y) =E(y) + (f,y)e- (2.3)
A minimizer y € Y of ([2.3)) satisfies the following Euler-Lagrange equation in 2/~ 1?2
DEf(y) = DE(y) + f = 0.



In the following we analyze the derivatives of £. In particular, we obtain a “weak” formulation
for the first derivative DE that acts as a natural connection point for the coupling with a
continuum model.

Proposition 1.1.  The potential £ : Y — R defined by (2.1)) is twice continuously Fréchet
differentiable. The components of the first derivative are given by

D,,E(w) =~ [ Voo~ y)(0) ds (2.4)

forje{—=N,....N —1} and by

DyyE(y) = —5/9(V55(33 —y-n-1) + Vo (z — yn)) d(z) da. (2.5)
Proof. The proof of this result is standard and can be found in [9], for example. O

We stress the fact that the forces —DyE(y) are local expressions. To calculate the force on
atom j it is necessary to know ¢ in suppd. (- —y;) but there is no need to sum over all remaining
atoms. This nonlocality is encoded in the field ¢.

Next we establish the weak formulation for the forces on particles. This very much resembles
the structure of the continuum equations and will be the basis for the a/c coupling in Section
A version of this calculation was already shown in [7], which used an interpolant for the
displacement that is constant on the support of every d.(- — y;). To avoid this restriction, we
modify and extend the argument in [7].

For simplicity we assume that the supports of the densities of different particles do not
intersect:

suppde (- — y;) Nsuppde (- —y;) =0 Vi, j € Z, i #j.

Since, [suppd.(- — ;)| = €<o, this is equivalent to |y; —y;| > egp for i # j or, if y is an increasing
sequence, y; > ¢ for all j € Z.

Lemma 1.2. Let y € Y satisfy y' > o and let ¢ € H#(Q) be the associated field, defined
by (2.2). Let uw = (uj)jez € U be a test vector and u € Sy(y) the periodic piecewise linear
interpolant of w, that is, u(y;) = u; for j € Z. Then,

N
DE(y) u = Z Dy E(y)-u; = /Uy(x)Vu(ac)da:, (2.6)
j=—N @

where oy = 0y 1+ 0y 2 and
1.2 2 _1,.2,2
oy1(x) = 57 |Vo|" — 3m° 9" + pyo,

N
oya(r)=c Y $@)Voe(r —y;)(a —y)).

j=—N-1



Proof. We begin by multiplying the derivative (2.4) for j € {—N,..., N —1} by the component
Uj:

Dy, E(y)u; = — eu; /Q Vi (x —y;)o(z) da
= ¢ [ w@)Vhi(a —y)ola) do e [ (u(o) = 1) Vhi(a ~)0la) da
= /Q de(z — yj)u(x)Vo(x) dz + 8/9(55(36 —y;)é(x)Vu(x) dz
+e€

/Q(u(:c) —uj)Vi:(z — yj)p(x) de =: Tl(j) + TQ(j) + T?Ej).

Here we have used integration by parts but there are no boundary terms since u, ¢ and p,
are periodic on 2. Using we obtain a similar expression for Dy, €(y)un. Summing over
7 =—N,..., N we obtain
N
DE(y)u= Y DyE(y)u; =T +Ts+Ts, (2.8)
j=—N

where T; = Zé\fsz Tl-(j), i € {1,2,3}. From py =€} .7 0:(- — y;) it immediately follows that

7, = [ pyfa)o@)Vu(e) da.

For T} we can carry out the following rearrangements
T = / pyuVede = / (—e*A¢ + m*¢)uVeda
Q Q
1
= / (—e*VoAp + m*¢Vp)udz = 2/ V(=€ Ve|* + m*¢*)udx
Q Q

2

Here, we have again used integration by parts and the periodicity of all functions involved. We
deduce that

- 1/(52|v¢|2 — m2¢?) Vuda.
Q

T +1 = / oy1(z)Vu(z)dz
Q
with oy 1 as defined in (2.7).

Before turning to T3 we first note that, since w is piecewise linear,

w(z) = uj + i y,] X (uj —wj—1) = uj + (x —y;)Vu(z) for z € Q;j = (yj-1,9;)
i~ Yji-
T —yj

uw(z) = uj + P — _Jy' (uj41 —uj) = uj + (z — yj)Vu(z) for z € Qi1 = (yj,yj+1)-
j j

Hence, T3 in the above equation ([2.8)) can be written as

N
Ts = ¢(2)Voe(x —y;) (u(z) — u;) do
3=¢ ‘221;1/9 Y

N
= :21\:71 /Q ¢(2)Vie(r — yj)(z — y;) Vu(r)dr = s/Qayg(x)Vu dz,

with oy 2 as defined in ([2.7)), which concludes the proof. O



Remark 2. 1. In more than one space dimension the above calculations can be generalized if
a triangular, respectively, tetrahedral mesh with the atomic positions as nodes is constructed.
For example, this leads to

oy1(2) = (=33Ve|* — 3m?¢* + pyo) id +*Vo ® V.

2. A closer look at the calculations in the proof of Lemma [I.2] shows that the weak form

can be obtained for semilinear models —e?A¢ + F'(¢) = py Wlth any convex function F.
Even a fourth-order model of the form £*A?¢ — £2A¢ + F'(¢) = py admits a similar weak
formulation. N

As already suggested in the introduction the Green’s function for the differential operator
—£?A 4+ m?id acting on functions defined on R is given by

Go(z) = ——e e, (2.9)

We therefore get the following explicit formulas for the function values ¢(z) and V¢(zx) for
x € .

Proposition 2.1. Let y € Y and let ¢ = argmin%H#(Q)I(go,y) be the corresponding
interaction field. Then, for every x € €0,

/G = 2)ey(z dz—2m2/5 - p)e Tl d, (2.10)

kEZ

Vo /G (x — 2)Vpy(2) dz— Z/V(S zZ— Yk) —Ele=zl g, (2.11)

Proof. The proof of this proposition is similar to the one of [5, Thm. 2.1]; see also [10, Prop.
2.4]. O

The following is a consequence of the simple exponential form of the Yukawa potential and
some elementary properties of the exponential function in one dimension. Let y;,y; € R satisfy
Y; > yi + €0, so that the supports of particle densities representing the atoms ¢ and j do not
intersect. Then,

//55(z—yj)e?'Zﬂds(ac—yi)dxdz: //(55(2—3/]-
RJR RJR
:e_?(yf_yi)/e_?(z_yj)(ss(z—yj)dz-/e Wi (y; — x) dx
R R

_ ,ﬁe—%@f‘yﬂ, (2.12)

‘“\S

=05 (x — y;) dw dz

3

where we have defined

:/6€(x)e_?xdx:/5€(x)e?xdx:/51(ac)emxdx.
R R R

Although we will frequently use this property, it is not essential for our reasoning. It merely
makes some calculations more convenient.
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F1GURE 3.1. The atomistic model in the domain 2, with Dirichlet boundary
conditions g = [g1, gr|".

3. DIRICHLET BOUNDARY CONDITIONS

In this section we consider a version of the model (2.1) in the domain Q, = (ar,ar) C R
subject to Dirichlet instead of periodic boundary conditions. This concept will be used later
on, for the formulation of a/c methods, as the atomistic subproblem. We set a = [ar, a R]T € R?
and Aa = ag —ay. Throughout Sectionwe think of y = (y_x,...,yx) as an ordered element
of Q2K+1 such that a;, < y_x < --- < yx < ag. The particle density py is canonically defined
by

K
Py =¢ Z (- — yj)-
j=K

For simplicity we assume that the y; are separated and lie well inside €1, in the sense that

supp py N 08, = 0 or, equivalently,
yi >, fori=—-K+1,... K, (3.1)
ar — Yk > €/2 and y_g —ar > £5/2. ’

We impose the following boundary conditions on the resulting field ¢ : 0, — R:

$(ar) = gz, $(ar) = gr;

ie., dlan, = g with g = [g1, gr]" € R%. The interaction potential &, 4 : Q2K+ — R is defined
by

Cag(y) =— min I(p,y), (3.2)

weH(Qq)
logg=g

where I, : H'(Q,) x Q2K+1 5 R is given by

o 2.,1,.2 2 o

Lo, y) —/ (36°|Vel* + gm7p )dm—/ pysp dz. (3.3)
ar, ar,

For given y the minimizer ¢ is the weak solution to

—2Ap+m2p = py in g,
(3.4)
dloa, = 9.

We will frequently use the decomposition
¢ = ¢0 + ag; (3.5)
where ¢g € Hi(Qq) and &, 4 € H'(£2,), respectively, solve the boundary-value problems
—e?Adg +m’¢y = py in Qq,
Poloa, =0

8



and
2 2 .
—e*A&y g +m*Ee e =0 in Qg
o o (3.6)
Saglon, = g-
This last boundary-value problem can be solved explicitly, which yields the following lemma.

Lemma 2.1. The solution &, 4 of (3.6) is given by
bag(®) = cr(a, g)e” =) 4 cp(a, g)e = (), (3.7)

where the coefficients cr(a,g) and cgr(a,g) are given by

oo =[] =[] ] - 09

and we have defined T = exp(—"2Aa).

Note that, for Aa > ¢, 7 is exponentially small; hence we will often neglect terms of that order
of magnitude. We will write O(7) for a quantity or function that is (uniformly) bounded above
by C7 in modulus, where C'is independent of € and Aa. For example, we have ¢(a, g) = g+O(7).

Next, we compute the derivative of &, ; with respect to the atomic coordinates. For these
derivatives, we obtain a “weak” formulation of the same shape as in the periodic case (see
Proposition .

If y' > 0, then we denote by S(y U a) the set of continuous, piecewise affine functions over
the mesh given by the nodes ar,y_k, ..., yK,ar. Moreover, So(yUa) = S(yUa) N HE(Q).

Proposition 2.2. Let a,g € R?, ap, < ag; then &,4: Y — R defined by (3.2) is continuously
Fréchet differentiable at y.
(i) The components of the first derivative are given by

Dy Euy(y) = —¢ A Vie(x — y;)o(z) da fori=-K,...,K. (3.9)
(ii) Let w € U be a test vector, u € So(y U a) its interpolant, and let miny’ > ¢; then
Dy&ug(y)-u :/ oy(z)Vu(x)dz, (3.10)

where oy is given by (2.7).

Proof. The derivatives with respect to the coordinates y are easy to calculate along the same
lines as in the proof of Proposition[I.1] The weak formulation can be obtained as in the periodic
case (Lemma|1.2)) using the fact that the interpolant u vanishes on 0€2,. O

Remark 3. We point out that, in general,

Cus®) 75 | puoi.

However, we will see below that &, 4(y) can be written as the sum of a boundary data contri-
bution and a term that is independent of g. O

With a view to the subsequent derivation of a/c methods we will from now on interpret a
and g as arguments to &, 4 rather than fixed parameters entering its definition. We consider
the map Q25+ x R2xR? - R, (y,a,9) — E.4(y), and derive the derivatives of this map with
respect to the boundary a and the boundary data g.



3.1. Dependence on the boundary positions. When formulating a/c methods in Section
we will let the boundary a of the atomistic subdomain depend on the configuration y. It
is therefore necessary to understand the dependence of the energy &, ,(y) on a. Our main
result is that the derivative D,&, 4(y) can be combined with Dy&, 4(y) into a weak formulation
reminiscent of . This will be a central building block for a/c methods.

Proposition 3.1.  Suppose that y € Y, miny’ > ¢. Let h = [hy hg]t € R? and u =
(u_g, ... ur) € REEHL be test vectors, and let u € S(y U a) denote the interpolant of w and h
in the sense that

u(ar) = hr, u(ar) =hg, and u(y;) =u; Vje{-K,... K}

Then,
Du&4.g(y)-h+ Dyqg(y) u = / oy(z)Vu(z) de.
Qq
Proof. This is a direct consequence of the following two lemmas. O

In the first auxiliary lemma we compute the derivative of &, 4(y) with respect to a = [ar, ag]®

while keeping the relative distances between the atoms constant. In other words we consider the
change in &, 4(y) when the whole domain (), is stretched with the atom positions following this
stretching. For y € Q2K+ let X = (X_g,..., Xk) € (0,1)25F! be given by y; = ar, + AaX;
for all j € {—K,...,K}. For fixed g, X we define

E(a) = Eaglar + (agp —ar)X), and
Dap€ag(y) = Dagy€(a).

(We understand ar, + (ag — ar) X in a componentwise manner: (ar, +AaX); = ar + AaX; for
all j € {-K,...,K}.) The derivative D,, &, 4(y) is defined analogously.

Lemma 3.2. Let y € Q2K+ satisfy (3.1); then

~ ~ 1
— Dy, E0g(Y) = Dopag(y) = Aa/Q oy(z)de. (3.11)

Proof. We fix X and let n(a) := ar, + AaX. We begin by transforming the problem to the
unit interval (0, 1) using the transformation z — X (x) = (x — ar)/(ag — ar):

&) = ugn(@) = [ (<AAVOP — hm*? + i) da
; (3.12)

R 1 2 omia, iy
= a/o (WWQM -5 +Pn(a)¢> :

Here, ¢(X) = ¢(2(X)) and Pr(a)(X) = (o) (#(X)). It follows as in Proposition that, to
compute Dag’ (a), it is sufficient to calculate the partial derivatives of the right-hand side with

respect to ag (the derivative of ¢ or gg with respect to ar does not appear since ¢ is a minimizer
of I,(-,y)). This leads to
1

D 5(@)—/1 —iyv$|2—m—2$2+A 0 dX+Aa/ i]VqASFdX
ar o 0 2ACL2 2 pn(a) 0 ACLB
1
—f—Aa/ QZ)DQRZ)\n(a) dX.
0

10



Transforming the first two integrals on the right-hand side back to the interval €2, we arrive at

1 g2 5 1
Aabas®) + 5, [ 1Voldr= o [ oyi)an

where oy 1 was given in (2.7)).
It remains to differentiate py,) with respect to ag. By the definition of the transformation
x — X (x) we have

K
DaRﬁn(a)(X) =¢eDqp, Z 55((aR —ar)(X — XJ))
j=—K
K
=¢ Z (X — Xj)V(Sg((aR - aL)(X - XJ))
j=—K

Using Aa(X — X;) = (z — y;) we therefore get

K
> /Q (z = yj)Vie(z — y;)é(z) da

j=—K

1
= Aa/Q O'y,g(x) dx

1
~ —~ 9
Aa/(; ¢Daan(a) dX = E

with oy 2(2) as given in ([2.7]).
To see that D,, & = —D,,E we simply note that £(a) depends only on Aa, which can be
seen from (3.12) and the definition of py, ) (X). O

We define 6 € S(y U a) to be the piecewise linear function with
HR(QR) =1, HR(GL) =0, HR(yj) =0 for allj € {—K,. . .,K}.

The function 0, € S(y U a) is defined analogously.

Lemma 3.3. Let y € Q2K+ satisfy (3.1)); then, the derivatives of Ea,g(y) with respect to ar,
ap (for fixred y and g) satisfy

Durfus®) = [ 0@ V0. (0)dx,

a

Danas(y) = / oy (1) V() da.

a

Proof. Let O be the affine function defined on Q, with ©g(ar) = 0, Or(ag) = 1. Since
VOgr(z) = A, Lemmayields

INDQRSQ,y(y):/ ayVG)Rdx:/ oyV(Or — 0OR) dIL‘—I—/ oy Vg dz. (3.13)
Qa a a

Now, we have Or — 0 € Sp(y U a) and hence, by Proposition

K
/ oy(x)V(OR — Op)dz = Y Dy Eaq(y)OR(y;)- (3.14)
Qq K

11



However, EGRSa,g(y) was defined as the derivative with respect to ag, while the relative dis-
tances of the atoms are kept constant. This can be formulated as

K
Dapa,g(y) = Dapag(y) + Z Dnga,g(y)eR(yj)'
j=—K

Inserting this into (3.13]) and using (3.14]) then gives
/ 0y(x)VOrdr = Dyp&aq(y).
Qq
Similarly, we can show the expression stated for Dy, &, 4(y). O

3.2. Dependence on the boundary conditions. Next, we compute the derivative of &, 4(y)

with respect to the boundary conditions g when the configuration y and the boundary a are
kept fixed. We define

w0 =2 [ py@)Gele—an)ds, and ve(y.a) =2 [ py@)Gelor —x)dr. (319

a

Lemma 3.4. The partial derivative of &, 4(y) with respect to g is given by:

Dyay(y) = _mg<(1 2 [CL(a,g)] _ [')’L(y,a)])T‘ -

CR((I, g) ’YR(y7 CL)
where Ty, c(a,g) = [cr(a,g) cr(a,g)]" and 7 = e et gre defined in Lemma .

Proof. Throughout the proof we suppress the arguments of vz, vr, and ¢ for ease of readability.
We recall the additive decomposition ¢ = ¢ + £, 4 from . From ¢¢ € H}(?), and from
the equation —e2A¢&, , +m?&, 4 = 0 it follows that e2(V&, 4, Vo) +m?(€a g, ¢o) = 0. Hence, a
short calculation shows that the energy &, 4(y) can be rewritten as

8a7g(y) = _Ia((ba y) = _[a(¢07 y) - Ia(fa,gay)' (316)

The first term on the right-hand side does not depend on the boundary conditions g and the
second term is known explicitly: using —52A§a7g + m2§a7g = 0, integration by parts, and the
explicit formula (3.7) for &, 4, we obtain

I(fag,y) = / 3 (%I Veagl* + m?€; ) da — /Q Py&ag da

a

52

(_ga,g(aL)Vfa,g(aL) + fa,g(aR)vga,g(aR)) - / Py&a,g d

T2
= %(c% + c%) (1- efQ%Aa) — / Py (CLe_%(x_aL) + cRe_%(“R_’U)) dx
Qq
2 4 2 9 e e
:ms(cL 5 R (1-7%) - Sme /a py(cre™ = (z=ar) 4 cpe= = (ar I)) dm)

2 2
—ma(%—;cR(l — 7'2) — (CL’YL + CR’YR)>.

Here we have used the Green’s function G, from ([2.9)). Differentiating this expression with
respect to ¢z, and cr and applying the chain rule with Dyc =T, ! yield the result. [l
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Remark 4. 1. We remark that Dy, 4(y) = 0 if and only if ¢z (a,g) = vo(y,a)/(1 — 7%) and
cr(a,g9) = vr(y,a)/(1 — 72). According to this corresponds to the “optimal” boundary
conditions

1 v +7yr and £ _ 1 7y +r
1—7 1+7 7 IR=T 7147
That is, the boundary conditions are weighted averages of the values ﬁ'yL and ﬁwg.

2. As can be seen from Lemma the boundary data contribution I,(£44,y) to the energy
Ea¢(y) is quadratic in g. For fixed configuration y and domain €, the boundary conditions
g = 9*(y,a) minimize the boundary data contribution I,({s4,y) to the energy &, 4(y). This
is equivalent to minimizing I, (-, y) over H'(£2,) and therefore leads to homogeneous Neumann
boundary conditions for ¢ on 0f€2,.

3. If Aa> ¢, ie., 7 <1, then we have vr/g = g7 /p + O(7), and hence we can simplify

(3.17)

g1, =

Io(Sag y) = me(3 (97 + 9%) — (9297 + gragR)) + O(eT), and (3.18)
Dyagly) = melg” — ) + O(er) )

A useful auxiliary result for the analysis of a/c methods is the global Lipschitz continuity of
the field ¢ with respect to variations in the boundary conditions g.

Lemma 4.1. Let ¢1, 92 € H'(Q,) be minimizers of I,(-,y) subject to the boundary conditions
g1 € R?, respectively, go € R?. Then,

|61 (x) = @a(w)| < V2T, (g1 — g2) e =™, and
e[Vér(2) — Voo ()| < V2m [T, (g1 — g2)| e @),
where dg(z) := min(x — ar,ar — x) denotes the distance to the boundary of Qq, for x € Q.

Proof. We write both functions in the form ¢; = ¢o+E&a4,, i € {1,2}. Fori =1,2,let ¢; = T, 'g;
be the respective coefficients entering &, 4,; then

m
= (

[91(2) — P2(@)| = |€a,91 (%) = Cago (2)] < fer,L —can]e” ¢
This immediately yields the first bound. The bound for the derivatives is obtained similarly. [

z—ar) — " (agp—)
+|CLR_CQ’R|6 € .

3.3. A special case. We now take a closer look at the interaction potential &,  from (3.2))
with the y-dependent boundary conditions g = g*(y, a) defined in Remark

Proposition 4.2. Let y € Q2K+1. Then,

1 _m Tr—=z
bagrtwa)(¥) = 4m€/ / py(@)e™ e " py (2) dz da + 7M. (2, YR)

1 —(2ap—z—2 —(g42-2a
—|—4m€// py(z) (e = (2ar ) pem el 2L))py(z)dzda

where M, (vr,vr) depends quadratically on vy and vg.

(3.19)

Expression can be interpreted as the energy of the atoms represented by vy interacting
with each other plus the interaction with mirror atoms outside €2,. This mirror interaction was
introduced by means of the boundary conditions g = g*.

For the proof of the proposition it is convenient to use an explicit formula for the function
values of ¢ € Hj(€2,) from the decomposition (3.5)). By Proposition the Green’s function

for the equation —e?A¢ + m?¢ = p, in R is given by Ge(z,y) = fyiee_%‘x_m. We will now

13



construct the Green’s function Ge, for the operator —e?A + m?id subject to homogeneous
Dirichlet conditions on 9€),.

Lemma 4.3. Let ¢g € H} () satisfy —e2Ado + m2¢o = py in Qq. Then,

¢o(z) = Gealx,2)py(2)dz Vo € Qq, (3.20)
Qq

where G¢ 4 = GS,Z + TGSC)L, with Gg()l, 1=1,2, given by

1 m m m
Gglg(% 2) = (e* o le—z| _ —F(ta=2ar) _ 7 (2aRf:vfz))7
’ 2me
Gg?g(l,’ Z) _ ; 1 - 1 - (Te—%(gy}zf&]{l) + Tei%(ZaRimiz)
’ mel—T

_ e_%(z_2+aR—GL) _ e_%(z_m‘HIR—aL))‘

Proof. The proof of this result is standard [5, Chapter 2.2.4]; see also [10, Lemma 3.10]. O
We remark that G, , = GQ)E + O(7).

Proof of Proposition[/.3. We have already seen in (3.16]) that for any choice of boundary data
g € R? the energy &, ,4(y) can be written as the sum of two terms

ga,g(y) = _Ia(¢a y) = _Ia(¢07 y) - Ia(ga,gay);

where I,(¢p,y) is independent of the boundary conditions.
Calculation of I, (d)o, ) Since the function ¢ is a minimizer of I,(-,y) over H}(Q2), we have
with the expression ) for ¢o(x) that

Io(do,y ——//pydmdx——//py Ge o, 2)py(2) dz d. (3.21)

By the definition of v; and yr we have

1 - (2agp—z—2 me
4m/a/apy@c)e Fona2) g () dodz = oo,

2 me
4me/a/apy Sl () dods = 2 (3.22)

ERLLYSY. — me
m/ﬂa/ﬂa py(m)e e (z z+aRr CLL)py(Z) drdz = T,}/L,}/R'

Inserting the expression G, = Gglg + TGS;%% into (3.21) and using these equalities yields
L(d0.y) = — / / py()Gelr, 2)py(2) deda + 2 (47 4 7)

+ 2 1 1= (T% + 7Y% — 2L7R)-
Calculation of I4(&4,g+(y,a)>Y)- From Lemma we know that for general g € R?

Ia(§a7gv y) = m5<

If g = g*(y,a), then ¢, = v1/(1 — 72) and cg = yg/(1 — 72) as seen in Remark . Hence,

2 2
LECR() ) (et cmR)).

_me 1
Ia(ga,g* (y,a)> y) 2 1_ (’7L + 'YR)

14



Yj—1 @ g @y Qj+2 Yj+2
FI1GURE 4.1. The Cauchy—Born approximation: independent periodic problems

are solved on the cells Q; = (y;—1,y;) leading to locally defined fields ).

Isolating the dependence on 7 gives

g g
Ia(ga,g* (y,a)» y) = 7% (/7% + 72) T;L 1— (rYL + IVR) (323)

Conclusion. Adding —14(£4,g+(y,q),y) as just obtained and —Ia(¢0, y) from above we arrive
at

- me
&, (yva) / / py(z)e” ¢ Tl ley(z) dzdxr + — (7% + ’7?3)
" dme A
L (3.24)
T4 1- (77L +2YLYR + TVE)-
Defining 7M. (v, vr) to be the third term on the right-hand side and applying (3.22)) yields
B.19). b

4. THE CAUCHY-BORN APPROXIMATION

The next building block for the design of a/c methods based on the model is the
respective continuum model. Let y € ) satisfy miny’ > ¢y. The Cauchy-Born approximation is
obtained by computing the energy of the cells Q; = (yj—1,y;) independently from one another,
by treating each of them as part of a homogeneous chain (see Figure . We define the
Cauchy-Born energy of the cell Q; by

EP(y)=— min (/ 12| V| + Lm2y? dx—/ p wdx). (4.1)
3 beHL(Q,) j(2 ) Q"
Note that this energy only depends on the distance (y; — yj—1). The minimizer »U) of (@)
satisfies the equation —e2Ay() 4 m2ypld) = py in Q; and its |Q;|-periodic extension to R:

— AV 4 mPp) = p ;) in R, (4.2)

Here we have defined the positions y) = (v U )) rez of an infinite chain of equidistant atoms by

y =y + (k— i)y —yj1) V€L (4.3)

The Cauchy-Born approximation £°°(y) of the atomistic energy £(y) is then given by the sum

over all cells
N

)= Y &) Z/w (44)

j=—N

In the Cauchy—Born model we seek to minimize the total potential energy E}b : Y — R defined
by
EP(y) =EP(y) + (£, y)e. (4.5)
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Whether the Cauchy—-Born model is a good approximation to the exact atomistic model strongly
depends on the regularity properties of minimizers of .

Let w € U be a test vector and u € Sy(y) an interpolant of u, i.e., u(y;) = u; for j € Z. It
follows as in Lemma [3.2| that the derivative of E;b(y) can be written in the form

c Uj — Uj—1

D,EP(y )u_{_?/ Jy()da:—/ o (2)Vu(z) dz, (4.6)

Y5 —Yj—1 j j
where the local continuum stress function aj y» i direct correspondence with ., is
o5y (@) = 38V (@) =m0 (@) + py(2)Y) (2)
N
. (4.7)
+te Y DV@)VE(z - yy)(x - y))-
j=—N-1

Furthermore, we define the Cauchy—Born stress function Uzb :Q — R by

oP(x) = O'JC-},L(.CU) if ze€y

for all z € Q.

4.1. Consistency. Next, we turn to the consistency analysis of the Cauchy—Born approxima-
tion, for which we thoroughly analyze the modelling error incurred. From ([2.6) and (4.6 we
deduce that

’(Dé’(y) —D(‘,’Cb(y))-u’ §/}0y(:p) —O’ ’|Vu )| dz
Q

Z / oy (@) — o, ()| | V()] i,

where the stress functions oy, and O' y are given by (2.7)) and (| ., respectively. To investigate

the modelling error ’ay x) —of } incurred by going from the atomlstm description to the

Js y
Cauchy—Born approximation it is therefore sufficient to analyze |¢ — YU ] and |V¢ — Vipd) | in

Q; for every j € {—N,...,N}.
Lemma 4.1. Lety € (>°(Z) and define yU) = (v U ))k;eZ by y,ﬁ,) = y]+5y](k: j) for allk € Z;
then

|Yn _yﬁzj)‘ <( n—j) QH?J"Hzl (lj,n—1]) forn > j,

‘y _y])‘ < —1- TL) 2Hy ”Zl ([ln+1,5-1])» forn <j—1

Proof. Assume, without loss of generality that n > j. Since y;_1 = y](]_) ; and y; = y](-j ),

o= 3 (v e T =2 Y S

k=j+1 k=j+1 I=j k=j+11=j

where have used that (y (g )) is constant. Changing the order of summation we get

lyn — y| <€22 Z | —522 n—0y <=7y o gn-1)- O

=7 k=l+1
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In the next result we estimate the errors |¢p(x) — ) (z)|, |[Vé(z) — Vool (x)| for = in the
cell Q;. As anticipated by Lemma they depend on the second difference y”.

Lemma 4.2. Lety € Y satisfy miny’ > ¢p. Let ¢ € H#(Q) satisfy [2.2) and 9) e H#(Qj)
satisfy (4.2)), respectively. Then,

16 =¥ () < 12 DMl (gm0, and

n=1

1696 = V00 e ) < e S8t (5 gngyme ™™
n=1

Proof. From Proposition 2.1 we immediately deduce that, for all z € Q;,

0@) = 5 [ S dile—u)e E A az,

1 keZ o (4.8)
w0 (e) = o [ S aute = g e Fl
R kez
Since y](-j ) = y; and yj(-j_)l = y,—1, the respective terms in the sums cancel. Hence, we get for

HARS Qj:
b(x) — v (z) = ﬁ 3 /R((;E(Z ) — bz — y))em Bl g,

keZ
k#j—1,j

We now derive bounds on the individual terms in the sum. Note that simplifies the

following calculations but due to the smoothness of the Green’s function similar bounds can be

obtained without it. 4
Let k > j. Then we have |x —z| = z—x for all z € suppd.(- —yx) and all z € suppd.(- —y,(cj)).

Thus, with (2.12)),
m

o / (5o — 1) — 6u( — ) Bl s = P (o Blnma) _
m Jr

_ﬂ(

€ y/(cj)_m)). (49)
If y,ij) > Yk, then
‘ 1

: m m m . (3)
/ (0:(2 = ye) — 0oz — yi))e = Pl dz| < Lo W (1 - o7 S0 w)
2m Jr

< P 6)

Using (yx — ) > (k — j)eminy’ for all z € Q; and applying Lemma [4.1{leads to
=
2¢e

The same bound on (4.9) can be obtained if y,gj ) < yg.

For any k£ < 7 — 1 we can use the same techniques to obtain that

1 j LY
‘/(@(z—yk)—&g(z—y,(j))) e e P2l gy
R

2m
pe
2

I (yp—a ] € -\ —(k—j)mminy’
=0y =y < oy o gy (k = g)e”Emminy

< (] k- 1)6—(j—k—1)mminy"

1y et (et1,5-1))

17



Summing over all k € Z\{j — 1, j} we deduce that
[6(2) = V(@) < 1D Iyl gmgempne”™" Y
n=1

The proof for the derivatives V¢, V1) is analogous. U

We wish to prove modelling error estimates on Hay —0o¢

b : j
‘ J,yHLoo(Qj) in terms of [¢—U) HL‘X’(Qj)
and HV(b — vyl H 1(Q;)" Since the stress functions o, and 0;?'2/ are quadratic in the fields ¢
] b
and Y1) we need L>®-bounds, which we establish in the next lemma.

Lemma 4.3. Lety €)Y,y > , and let ¢ = arg minweH#(Q) I(p,y) be the corresponding

field. Then, there are continuous functions Ko, K, that depend implicitly on m (but are
independent of € and y), such that

@]l Lo () < Ko(mminy'), and e[|V gy < Ki(mminy').

Proof. The stated estimates follow in a straightforward manner from the integral representation
of the solution ¢; see [10, Lemma 4.4] for the details. ]

We can now prove the following modelling error estimates.

Lemma 4.4. Let oy and U;B/ be given by , respectively, ; then
loy = U;'};IHLOO(Qj) <C(e|[ve - Vw(j)HLoo(Qj) +o - w(j)HLOO(Qj))’ J=1....N,
where the constant C only depends on 61, K; = K;(my'), and on m.

Proof. From the definitions of the atomistic and continuum stress function we deduce that

oy(z) — oo () = — L(eV(z) — eV (2)) (eV(z) + VYl (2))
+ 3m? (¢(x) — ¥V (2)) (6(x) + V) (@) — py(2) (d(x) — V) (2))
J
= (¢(2) = V(@) D eVi(z —yi)(z — )
i=j—1
for all z € Q. With d.(z) = e7161(z/e), the L>-bound on ¢ from Lemma and the
analogous bound for ¢ we get
HeVe(x) + Vel (z)| < Ki(mminy),
|6 (x) + v (@)] < m*Ko(mminy),
loyllzoe < [|61]zoe,
’€V6E(x —yi)(x — yz)‘ < ||Véi1id|| o0,

which implies the stated result. O
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4.2. Stability. Besides consistency, the second crucial property of an approximation to a given
model is its stability. The following auxiliary result will play a role in the stability analysis of
a/c methods.

Lemma 4.5. Lety € Y satisfy miny’ > o. Then, for all j € {—N,...,N},
m2
2

D*EP(y)-[u, u] > e MY ey 12 Yu e,

Proof. We first recall that Sj@b(y) = % fQj pyd)(j) dz because ) is a minimizer of ([£.1)). Ex-

tending ) |Q;|-periodically to R and using the symmetry of the cell problem, we can rewrite
this as

€ .
&) = 5 [ oo -y @) de
We now insert the explicit formula (&.8)) for /) (z) and apply ([2.12) to get
cb _° . (4) —m|r—z|
& (y) = 4mZ/R/Réa(az—y])éa(z—yk Je e " dzda

keZ
2 . 92 00
n-e _my ) u-e —mu
:Rze e |+5se1f:2mze 7+
keZ v=1
k]

where the constant Egr coming from k£ = j in the sum represents the self-energies of the atoms

in the cell Q;. Here we have also used that ‘y,(gj) — yj‘ = |k - j]y; for all k£ € Z. Differentiating
twice leads to

9 o
D259b(y)-[u u] _ mp 82 IJQG_me;|’LL/'|2
J ’ 2 J
v=1

2 0 2
my 2 2,— ry mE ! 2
; €|u3| ZV g vmmaxy’ - : e~ mmaxy €|u;| )
v=1
In the last step we have only kept the term for v = 1, which represents the nearest neighbour
interactions. U

5. ATOMISTIC-TO-CONTINUUM COUPLING

The computation of the original atomistic energy £(y) involves the solution of the optimiza-
tion problem ([2.1) posed in the whole of Q@ = (y_ny—_1,yn). Our goal is the construction of
computationally cheaper, approximate energies £2°(y) such that £(y) ~ £2¢(y) for all relevant
y and minimizers ¢ € ) of

E¥(y) =E%(y) + (f,y)e,

are good approximations of minimizers y of the energy Ey from .

Following the philosophy of a/c methods we approximate £(y) by the continuum model
where y is smooth and a version of the atomistic model where y is nonsmooth. In the following
we will implicitly assume that the configurations y € ) under consideration are smooth except
in the segment y_g,...,yx for some K < N. We divide Q into an atomistic subdomain Q2
such that y; € Q* for all j € {—K,..., K} and the continuum domain Q% = Q\Q3. In QL we
will use the Cauchy-Born approximation on a cell-by-cell basis. In Q2 we will use the atomistic
model with Dirichlet boundary conditions as discussed in Section

This basic setting gives rise to a variety of possibilities including the precise choice of 9Q2
and the boundary conditions imposed on the atomistic subproblem. Both will in general depend
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'aL(y) t t t t t R:<

Y-K-1 Y-K YK yK+1

FIGURE 5.1. An illustration of the first a/c method. In Q* = (ar(y),ar(y))
the atomistic problem is solved with the Dirichlet boundary conditions g*(y).
Outside Q** the Cauchy-Born approximation is used in all cells Q;.

on the configuration y. Our main objective for £2¢ is the existence of a weak formulation in
the sense that

DSaC(y)‘u:/QUZC(x)Vu(x) dz,

where u € Sx(y) is a piecewise linear interpolant of w € U and o3 is a stress function to be
determined. If this weak formulation can be obtained, the consistency analysis reduces to error
estimates on fields, as already seen in Lemma [.4]

Throughout this section, ¢ € H;E(Q) denotes the solution of the original minimization prob-
lem for a given configuration y € ).

5.1. An a/c method with optimal boundary conditions. We place the boundary a of the
atomistic subproblem halfway between the interface atoms, that is a = a(y) = [ar(y) ar(y)]T,
where
Y-K-1+Y-K YK T Yk+1
an(y) = PELEIA gy = VK VR
Let Q% = (ar(y),ar(y)) and QP = Q\Q*. We write the a/c energy £2°(y) as the sum of a
continuum and an atomistic part

£%(y) = EP(y) + EX(y), (5.1)

which are introduced below.

Due to the choice of a(y) there are two half cells, (y_x—_1,ar(y)) and (ar(y), yx+1), in the
continuum region Q° (see Figure . Since the cell problems are symmetric, the Cauchy-
Born energies of these half cells are given by 1% (y) and 15?}0+1(y), respectively. Hence, the
continuum contribution to the energy £2¢ is defined by

-K-1

EP(y) = | Y &)+ 5EN(Y) + 5ER N (Y) + Z P (y (5:2)

=—N+1 j=K+2
The coordinates of the atoms in the atomistic region Q' are represented by

Yar = (nyv 7yK)T~

For the definition of £2*(y) we consider the minimization problem ([3.2)) on the atomistic domain
Q2 subject to the Dirichlet boundary conditions g*(y) = [} (y) g&(y)]T. In correspondence
with Remark [4 and Section [3.3] they are given by

1 y(y) +7r(Y) g (y) = — TL(Y) + R(Y)

gL(y)zl—T 1+ ’ 1—71 1+7

)
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m
where 7 = e ¢ 2*W_ and 7, vr are defined in (3.15). The energy contribution from the
atomistic subproblem is thus given by

EXY) = Ealy)g (v) Yar) = — inf{fa@)(«p,yat) L e H'(OM), o¢laga = g*(y)},

where I,(,) is defined as in (3.3). We denote the solution of this optimization problem by
@, € H'(Q2). Tt satisfies the boundary-value problem

—2A@k + mPPL, = py in O,
Datloas = g% (y).

From a computational point of view g*(y) is also a convenient choice since this is equivalent to
homogeneous Neumann boundary conditions. In Section we deduced a clear interpretation
of the effect of this choice of boundary data: besides the interaction among themselves, the
atoms in Q® interact with mirror atoms outside Q3'. This is closely related to the geometric
reconstruction idea for classical potentials [17), 4].

In analogy to we search for minimizers of the total potential energy

E¥(y) = E£%(y) + (£, y)e (5.3)

in Y, where f € U2 represents an external force. Formally, a minimizer 42¢ satisfies the
following Euler-Lagrange equation in /=12

DE¥(y) = DE(y) + f =0.

Throughout the remainder of this article we assume that the atomistic domain Q2! is large
compared with €, that is Aa > € and hence terms of order O(7) are exponentially small. To
keep the notation more compact we will not give precise estimates of 7-dependent terms arising
from the atomistic domain explicitly but include an O(7) where necessary.

5.2. Consistency. In order to study the consistency properties of the a/c energy £2¢(y) from
we first need to calculate its derivative. Having established weak formulations for the
derivatives of £, £P, as well as Ea,g9, we will prove that the a/c energy £ admits a similar
reformulation of DE*(y)-u. For this we have to take into account that both the boundary of the
atomistic domain Q® and the boundary conditions depend on y. The necessary preparations
were carried out in Section [3]

Lemma 4.1. Let y € Y satisfy miny’ > ¢y. Furthermore, let w € U be a test vector and
u € Sy(y) an interpolant of u; then,

cb ; cb
DE(y)-u = /Q o (x)Vu(z)dz,  where o™ (x) :{ ng*(g) Zzz i gt (5.4)
and o3t () is given by with ¢ = ¢,.
Proof. 1. Continuum Contribution. From Section [4] we already have the equality
DEMy)u= [ @) Vulz) da.
Q@
je{-N,...,—K -1} U{K + 2,...,N}. For the contribution %SfbK(y) from the half cell

(y—k—-1,ar(y)) we make use of the symmetry of the cell problems. Since Vu|g , is constant,
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ar,(y) is the midpoint of Q_x = (y—x-1,y-xk), and U,Zl?iK is symmetric in Q_k, we deduce
that

ar(y)
%DSS‘}((QL/)-U = 1/ o 4 (z)Vu(z)dz = / o 1 (z)Vu(z) dz.
2 Jq_x . Y-K-1 ¥

We treat %5}3})+1(y) analogously. Hence,

Dé’fb(y)-u:/ cr;b(m)Vu(az)d:E,
Qcb

where afjb(:c) = a;'?j(x) if x € Q.
2. Atomistic Contribution. To calculate the derivative DE2'(y) we use the chain rule and
the derivatives that were provided in Section |3, Applying Proposition (with hy = (u—g—1+

u_g)/2, hg = (urg + ux+1)/2 because of Dya(y) - u = a(u)), we get
D&M () u = DyEa(y),g-(y) Yar) Uat + DaCa(y) g+ (y) (Yar) Dyal(y) -u

5.5
= / agt*(:r)Vu(x) dz, (5:3)
Qat
where the stress o2f, is given by ([2.7) with ¢ = ¢ and way = (u_k,...,ux) € R* s
the section of u corresponding to the atoms in the atomistic region. Note that the choice of
boundary conditions implies D&, (y) g+ (y) (Yat) = 0; cf. Remark O

Remark 5. The weak form of the derivative DE? already implies that there are no
ghost forces for homogeneous deformations y. If the atoms are equidistant, then g (y) = ¢(ar)
and g%(y) = ¢(agr) and thus also ¢% = ¢ in Q2. Moreover, it is clear that 1) = ¢ for all j.
Hence, we obtain that op°(x) = oy(z) for all x € Q, which implies that DE*(y) = DE(y) =0

forally =F X e Y representing homogeneous deformations (i.e., that the method exhibits no
ghost forces). O

Absence of ghost forces does not immediately imply consistency of the a/c method, but has
to be shown separately. This we do next. Because of the structure of the weak formulation
, the analysis boils down to estimating the errors between the field ¢ coming from the
original atomistic model and the fields (), respectively, Ohy-

Theorem 5.1. Lety € Y be such that miny’ > sq > go; then, for all uw € U with interpolants
u € Sy(y),

[(DE(y) — DE*(y))-u| < C(elly"lle,, +7) IVulre,
where C = C(so) and the weighted (%, . -norm is defined by
2
ly"li7,. ., = eXie nwslyf [, (5.6)
with weights wj := max (1,e”msodistGA=KK}D)
Proof. Using the weak formulation (5.4]) of DE?“(y) we obtain
‘(Dyé'(y) — DySaC(y)) u‘ = ‘/ﬂ(ay(x) - ch(x))Vu(x) dz
< oy = oy°llez (o) Vull 2
N
1/2
< (X cloy-ofling,) IVl 6D
j=—N
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For @; belonging to the continuum region Lemma [4.4] and Lemma [4.2 impl
J gimg g y

(e.)
loy = o3llL~(@,) < Ce > Y o1 (j—njrn—1yne” ™

n=1

oo
< CeY Y lex(fjmnjen_ryyn® Pe 0
n=1

00 1/2
= < > ’y"||?2<[j—n,j+n—11>e_mnso> ’ (58)
n=1

where we have employed the Cauchy—Schwarz inequality twice and used the fact that the series
Y00 ndeT™n%0 g convergent.
Summing over all cells belonging to the continuum region and interchanging the order of

summation we obtain

)
Z EHUy — GEC”%OO(Qj) < 063 Z Z ||y//‘|?2([j_n,j+n_1])e—mnso

N
3 1,02
< Ce Z wk|yk| )
k=—N

where

w; = g E e NS0,

jE€{-N,..N}  n=l,..00
\{—K+1,...,K} k€[j—n,j+n—1]

This is a geometric series from which we can factor out e~ ™sodist(k-{-K.K}) "and hence we obtain
wj, < Cwy, which gives

N
Y clloy—oglix@, <C Y wilyil® (5.9)
jE{—K+1,. K} k=—N

To compute the consistency error of the weak form in the atomistic region, we need to bound
: qc _ t , t :
the difference Hay — oy HLOO(Qj) = Hay — UZ,*HLOO(Qj) for Q; C *. Using the same arguments
as in the proof of Lemma [4.4] we obtain

oy = Oyrell 1) < CI6 = Sailli=iq + el Vo = Vil q;)-
Lemma [4.1] implies
loy = 03]l e,y < CI0(ar) = g5 (w)| + [$ar) — gi(y)|)e = mmeees @),

Next, we recall from Remark || that g5, = 75 + O(7), which is given by (cf. Remark
W) = [ F)Gelar — a) o+ O(1),
R

where pgfﬂ (2) =2 ez 0e(2 — y;”.eﬂ) and y™! is a reflected and periodized extension of (y])JK: K

Hence, we obtain
|6(ar) — 95 ()| = [6(ar) —vL(y)| + O(7)

2”116’/1[{(,0?/(2)—pryeﬂ(z))e_m“R_Z' dz| + O(7).

23



Minor modifications of the proofs of Lemma [£.2] and Lemma [4.1] yield

¢ .- — 1 (min(ytefl 4. )—a
‘QZ)(GR) - g}k«z(y)‘ < . Z ‘y;-eﬂ — yj|e 2 (min(y3*,y;)—ar) +O(7)
j=K+1

< CeY Yl (k—nt 1, npne” ™" + O(7). (5.10)

n=1

An analogous result holds for |¢(ar) — g7 (y)|. It is now straightforward to see that the consis-
tency error committed in the atomistic region can be bounded above in the same way as the
consistency error committed in the continuum region (in fact it is dominated by . This
completes the proof. O

5.3. Stability. The special choice g*(y) of boundary conditions for the atomistic subproblem
allows for an elementary stability analysis of £2°(y) that draws from the ideas we used in
Section [3.3l We recall that

a’ ]- _m, _m o
E*t(y) B 477’L€/Qat/gat py(l‘)(e E‘x Z‘-i—e 5(21112(;1/) z—z)

2

+e ¢ $+272“L(y)))py(z) dzdx + O(7).

The next result addresses the differentiability of v; and ~vr. We show that the derivatives
satisfy certain bounds.

Lemma 5.2. Let y € Q2K+ satisfy yiv1 —y; > eo foralli € {~K +1,...,K}, ap — yx >
£50/2, and y_x — ar, > €s0/2. Then, v.(y) is twice continuously differentiable with respect to
y and a and there exists C(mminy’) (independent of €) such that

Dostaw)| < Clomminy (Y 3 )

€ “K+1
2 a) [(u u mminy’ w 2 3 uh)?
%39 0)- (. ). (]| < Clomminy) (5 >+k§+1( 2?)

for allu € U and h € R%. Analogous bounds hold for yr(y,a).

Proof. The proof is based on the observation that

K K

1 m m
_ = —2@=ar)s (o 0w Vdr — Mo~ (y_k—ar) — % Wi—y-K)
YLy, a) - > / e ¢ c(r —y;)dr e E > e e

j=—K 7% j=—K

The rest of the proof is a straightforward computation; see [10, Lemma 5.3] for the details. O

The 7-dependent terms in E2*(y) = Eq(y) g+ () (Yar) from (B.24) only contain v (y) and yr(y),
whose derivatives are bounded by Lemma [5.2] The derivatives of these 7-dependent terms are

therefore still of order O(7) and will be neglected in the proof of the following result.
Lemma 5.3. Let y € Y satisfy miny’ > ¢y. Then,

2
D™ (y)-[u, u] > (%e*mmaxy —0m) Wl Vueu.
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Proof. We treat continuum and atomistic contributions independently and start with the for-
mer. Lemma [£.5] states that

2,2
DZEQb(y)_[u u] > H efmmaxy’s‘u/‘|2
J ’ — J

2
for all j = —N,..., N. Hence, the definition (5.2)) of £ directly implies that
2 —K-1 N
D?EX(y) [, u] > e Y M < Z i ? + \U wl? + weal?) + Z |“;"2>-
j=K+2

Let us now turn to the atomistic part £2'(y). From Section we know that for the given
choice of boundary conditions and a(y) we can write the energy of the atomistic part as

m
5ft(y) - 4m Z /Q t JQat Oc(z — yz)( € H + e & @HE—y-K-1-Y-K)

7j7 m
+ e ¢ (yK+1+Z/K*9«“*Z))5E(Z — y]) dz dx

2
_ept (ef%\yifyj| 1o B Wity Y-k —y-K 1) (5.11)

dm
27]:_K

3

+e e WKTYR41—Yi— j)) + Egetf + O(7),

where the constant Egepr accounts for the self-energies of the atoms {— K, ..., K'}. Differentiating
twice and keeping only contributions from nearest neighbour interactions leads directly to

2 K
rm 1 1
D26 ()] 2 Y (L P Y P 4 Glul?) - 00,
i=—K+1

Adding the lower bounds for D2 (y)-[u, u] and D2E2(y)-[u, u] we arrive at

DQSaC(y)-[u,u] = (DQSfb(y) + DQEft(y))'[u,u] > (e_mmaxyl% - O(r ) Hu Hﬁ’

for all w € U, as desired. O

5.4. Error Estimates. Combining the consistency and stability results we obtain the following
error estimates. We note that the upper bound on the error depends on the smoothness of g in
the continuum region, but that the dependence on ¥ in the atomistic region decays exponentially
with distance to the a/c interface. In realistic higher-dimensional models such an estimate would
make it possible to allow defects in the atomistic region without affecting the error estimate.

Theorem 5.4. Suppose that y € argmin Ey and y,. € arg min Eg°¢ satisfy

miny’, miny,, > so >, and maxy’ maxy,. < Sy < +oo. (5.12)
There exist constants ¢ and C = C(so, So) such that, if Aa > clog(Sp), then
Hy/ . @;CH@ < C<5H@”H€?u,so + 7—>' (5.13)

Proof. From Lemma it is clear that there exists a constant ¢ such that, for Aa > ¢, we have

2
D% (y)-fuu] = e [y VueU, Wy e Dy < S

In particular, this holds for all y € conv{y,y,.}. Let cp = mTuzefmSO-
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FIGURE 6.1. Dlustration of the problem in the interval Q% = (yx_;,2ar(y) —
yix—J) used to compute gr(y).

Let u =y — y,.; then we can choose y € conv{y, y,.} such that
collu'[[7 < D2E*(y)-[u, u] = (DEX(y) — DE*(y,.)) [ul.
Employing the consistency estimate of Theorem we obtain the stated result. O

Remark 6. With some additional work it is possible to avoid assuming the existence of y,,.,
but deduce it from an inverse function theorem type argument [14} [10]. O

6. BOUNDARY CONDITIONS FROM CELL PROBLEMS

The boundary conditions ¢g*(y) we imposed on the atomistic subproblem in Section gave
rise to a method without ghost forces, and whose analysis was relatively straightforward. The
reasons for this is the clean weak formulation of DE* and the convenient stability proper-
ties established in Lemmal5.3] We now investigate how this situation changes if computationally
cheaper boundary conditions are chosen. The following construction may also provide a starting
point for generalisations to higher dimensions.

For example, a canonical choice, which requires no additional computational effort, is

gr(y) = ¢ (ar)  and  gr(y) = " (ag), (6.1)

where we still assume az(y) = $(y_x—1 + y-k) and ap(y) = 3(yx + yx+1). In this case, we
have the following result, which suggests that the additional error committed can be controlled.

Lemma 6.1. Let miny > so > ¢o and let gy, /r be given by (6.1); then,

9(w) — g ()| < Oy, +7). (6.2)

Proof. Without loss of generality we focus on gr only. Upon first estimating
l9r(y) — gr(w)| < [ (ar) — dlar)| + |¢(ar) — gi(y)
and then employing (5.10) and Lemma we obtain

)

|9R(y) - g}%(y)\ <Ce Z Hy”Hél([K—n—i-l,K—i-n])neimnso +O(7).

n=1
Using the same argument as in (5.8)) to (5.9]), we obtain the upper bound (6.2)). O
Motivated by Lemma we define a second a/c energy £2°(y) by
£2(y) = EP(y) + E%(y), (6.3)

where £ (y) is the same as in the method discussed in Section (see (5.2))) and
E™(Y) = Ea(y),g(y) Yar)
= - inf{la(y)(so, Ya) 1 @ € HI(Q™), ploge = g(y)}-
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We denote the minimizer for given y by ¢ar € H'(22Y).
Before we embark on the analysis of this new method, we establish a useful auxiliary result.

Lemma 6.2. Let miny’ > s > ¢o. Let gr(y) be defined by (6.1); then, it can be equivalently
written as

Ir(y 2mk€%/5 z— (k4 3)eykiq)e” 2l 2. (6.4)

In particular, gr is twice Fréchet differentiable with respect to y, and there exists a constant
C = C(so) such that, for ally € Y with miny’ > s¢ > ¢,

|Dygr(y) - u| < Clufeyy| and |Digr(y) - [u,ul| < Cluk > Yuel.
Analogous results hold for gr(y).
Proof. Recall from (4.8) that
(K+1 aR—z
gr(y) = P (ap Z/ 5.(z — Yt D)o lon=el gz,
kEZ

where y](-KH) denotes the periodic extension defined in (4.3)). We use the identities

K+1
y§(+k )=y + keyiyr and  ar =YK + 3eU5
to obtain
1 .
9r(y = om Z/ 0c(z — yx — keygo1)e < Tlyrtievicn—2l 4.
m
kEZ

Shifting the integration by (yx + §5le+1)7 we obtain (6.4)).
The bound on the first and second derivatives follows as in Lemma the key observation
being that d. = O(s!) is balanced against the ¢ preceding y}. 41 In its argument. ]

6.1. Consistency. A crucial difference between the a/c energy and the energy from
Section is that now the derivative of the atomistic energy with respect to the boundary
conditions does not vanish.

Since the continuum contribution to DE*(y)-w is the same as in Section we only need
to analyze DE*(y). Using the chain rule we obtain

DE™ (y)-u = Dy, Eay) g(y) Yar) at + Dala(y).g(y) Yar)-a(w)
+ DyCa(y).g(y) (Yar) (Dyg(y)-w).

The same reasoning as in Section gives for the first two terms on the right-hand side

Dy, Ea(y).gty) Yat) Uat + Daaly) () (Yar)-a(u) = /Q o2 () Vu(z) dz, (6.5)

where o3 t(z) is given by (2.7 . with ¢ = @at.
Next, we turn our attention to the term Dy&(y) g(y)(Yat) - (Dyg(y) - w). We recall from

Lemma [3.4| that (for Aa > ¢)

DyEa(y)gty) Yat) = —melgr(y) — 91.(y), 9r(y) — gi(y)] + O(er).
Combining this result with Lemma and Lemma we obtain

|DyEuy) ot War) - (Dyg(w) - w)| < C=(lgr = gil +lgr = il + 7) (W2 + i )

< C(=ly" e, +7) Il (6.6)

1/2
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where C' = C(miny’), and we have estimated el/2r < 7. Equipped with these estimates, we
obtain the following consistency result.

Lemma 6.3. Let y € Y with miny’ > sy > qy; then, there exists a constant C = C(sg) such
that

‘Dg( w— DEY(y u‘<c< HyuHéaysoH)HvuuLQ Vu €U,

where we have used the same notation as in Theorem [5.1]

Proof. From (/6.5 and we obtain that

1/2
Dy u-pe @< (= X o=l o= o )

j=—N,..N

+ C(5Hy”||z2w s +7)| - IVl 2.

The first group in the upper bound was already estimated in the proof of Theorem [5.1] -, and the
second group, |oy — HL2 ap.ap) €an be treated analogously to the term [oy — 08% I 12(a; an)
in the proof of Theorem U

6.2. Stability. We wish to compute a convenient lower bound on D?£%(y)-[u,u] for some
given y € YV with ¢y < sg < ¢y’ < Sp. Since the continuum part of the energy is the same as
in the first method, we only address the stability of the atomistic subproblem with the given
choice of boundary data. We write the second derivative of the energy £' in the form

D*e™ (y)-[u,u] = D*E (y)-[u,u] + (D*E™(y) — D*EM(y)) -[u, u]
and use the coercivity of D2£2*(y): we know from Lemma [5.3| that
K

2
/ 1
DA (y) fuvu] 2 e (L P S P+ Sl ) - 00
i=—K+1

for all w € U; hence we are left to analyze the difference D2£%(y) — D?£3(y). We will not
show that this difference is small, but will only be able to bound it below by a controllable
quantity. This is reminiscent of similar observations made in [14].

Lemma 6.4. Let y € YV such that miny’ > so > ¢y; then there exists a constant C = C(sg)
such that

(D25at(y) _ DZEft(y))'[U,u] > _C(SI/QHyHHfi,sO + 7').

Proof. The difference between the energies £2'(y) and £2*(y) only consists of effects from the
boundary conditions. We have, by (3.18]),
me

EM(y) = EM(W) = — Loy Cawow) ¥) + L) Eaw)o @) ¥) = 5 |9(y) = g @) +O(en).

As in Section one can verify that the O(7) term remains of that same order in the first and
second derivatives. This implies that

(D2E*(y) — D*€*(y))-[u, u] = me(9(y) — g*(¥)) " [(D*9(y) — D*g*(y))-[u, u]]
+2m5‘(Dg( — Dg*(y )u‘ + O(7 v’ ||52)

> me(g(y) — " ()" [(D?g(y) — D*g"(y)) - [u,ul] + O [3).  (6.7)
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We now employ Lemma [6.2| to bound D?g(y), Lemma [5.2 to bound D?g* (up to another O(7)
error), and Lemma to bound g — ¢g*, which yields

(D26 (y) — D€ () [u,u) > ~C(e 2y |z +7) Il
where C' = C(miny’). O

From Lemma [6.4 and Lemmal5.3] we immediately obtain the following corollary, which states
that, if Sp is moderate, y “smooth” in a neighbourhood of the interfaces a;,r and in the
continuum region, and if the atomistic region is sufficiently large, then D?£2¢(y) is stable.

Corollary 6.5. Let y € Y satisfy miny’ > sg > ¢y and maxy’ < Sy; then there exists a
constant C = C(sg) such that

2
D% (y) fu,u] = (=0 = Oyl +7) ) vueU.

Remark 7. The scaling €'/2 is due to the fact that the additional error committed is
concentrated in a region of length ¢. O

6.3. Error Estimates. Repeating the proof of Theorem [5.4] verbatim, but replacing the con-
sistency and stability estimates from Section [b| with those derived in Lemma and Corollary
m we obtain the following error estimates for the modified a/c method.

Theorem 7.1. Recall the notation introduced in Theorem . Suppose that y € argmin Ey
and Y,. € argmin E2°, where £%¢ is defined in (6.3)), satisfy

miny’, miny,, > so >, and maxy  maxy.,. < Sy < +oo. (6.8)

There exist constants ¢ and C = C(sg, So) such that, if7'+51/2Hy”||@12U o = ce™™%0 (in particular,
K must be sufficiently large), then

|9 = Gicll < O (N8 iz,, + 7). (69

7. CONCLUSIONS AND OUTLOOK

We have presented a rigorous error analysis of an atomistic-to-continuum coupling method
for a field-based interaction potential in one space dimension. The starting point for the design
of coupling methods was a weak formulation of the forces arising from the atomistic model.
This provided a natural connection point to the corresponding continuum model. We believe
that the present work in a comparably simple setting addresses several important questions
relevant for a/c coupling in the presence of fields, most prominently the dependence of the a/c
methods on choice of the boundary and the boundary data for the interaction fields.

For the two a/c methods we discussed we chose y-dependent boundaries a(y) of the atomistic
subdomain Q. In other words we fixed the position of the boundary in the Lagrangian domain.
This leads to convenient weak formulations of DE*(y). An obvious alternative (particularly
relevant for higher dimensions) is the choice of y-independent a. We have not investigated this
further, however, see [10] for some preliminary remarks.

We also remark that we heavily utilized the one-dimensional setting in several places in the
analysis. A generalisation both of the numerical methods and their analysis is therefore non-
trivial. In particular, we can see no straightforward generalisation of the reflection boundary
conditions g*(y). A possible way forward would be to give an alternative analysis of the second
method described in Section [6] that does not utilize these reflection techniques.
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