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Abstract

We consider a hyperbolic-parabolic model of vasculogenesis in the multidimensional case. For this

system we show the global existence of smooth solutions to the Cauchy problem, using suitable energy

estimates. Since this model does not enter in the classical framework of dissipative problems, we analyze

it combining the features of the hyperbolic and the parabolic parts. Moreover we study the asymptotic

behavior of those solutions showing their decay rates by means of detailed analysis of the Green function

for the linearized problem.

1 Introduction

In this work we present some analytical results on the PDEs model of vasculogenesis proposed by Gamba

el al. [15].

Vasculogenesis is the process of blood vessel formation occurring by the production of endothelial cells

and is lead by a chemotactic phenomenon, i.e. cells direct their movement according to certain chemicals

in their environment [4, 18]. At first, it was believed to occur only during embryologic development but

recently it was realized that vasculogenesis can also occur in the adult organism. Circulating endothelial

progenitor cells were identified and it was observed that they were able to contribute to neovascularization,

such as during tumor growth, or to the revascularization process following a trauma, e.g., after cardiac

ischemia.

In this paper we proceed in the mathematical study of the following system proposed by Gamba et al. [15]





∂tρ+∇· (ρu) = 0,

∂t (ρu)+∇· (ρu⊗u)+∇P (ρ) =−αρu+µρ∇φ,

∂tφ= D∆φ+aρ−bφ.

(1)

Here ρ is the endothelial cells density, u the cells velocity and φ the concentration of the chemoattractant.

Moreover, the positive constants D, a, and b are, respectively, the diffusion coefficient, the rate of release
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and the inverse of the characteristic degradation time of chemoattractant. The other two positive constants,

α and µ, measure respectively the friction of the cells on the substrate and the strenght of the cell response

to the chemical signals.

Classical arguments for hyperbolic-parabolic systems fail in the case of system (1) due to the production

term in the third equation, i.e.: a > 0. The treatment of these terms is not an easy task so, as a first step in

the analytical study of this system, we focus on a particular case. Actually, we restrict ourselves to a specific

class of solutions, i.e.: to small perturbations of non null constant states. Indeed, we are able to show

the existance of global solutions for this Cauchy problem in the full multidimensional setting, and some

precise time decay estimates for those solutions. A first mathematical results on system (1) was proved

by Kowalczyk et al. in [25], where a viscous term γ∇2v in the second equation is considered to introduce

an energy mechanism that models the slowing down of cells in the proximity of network structure. They

performed a detailed linear stability analysis of the model in the two dimensional case, with the aim of

checking their potential for structure formation starting from initial data which represent a continuum cell

monolayer. This model is unstable at low cell densities, while pressure stabilizes it at high densities.

In [7], Di Francesco and Donatelli dealt with diffusive relaxation limits of system (1) toward Keller-Segel type

systems, either hyperbolic-parabolic or hyperbolic-elliptic. In order to produce a nontrivial class of solu-

tions to the hyperbolic system which after a proper rescaling relax toward a Keller-Segel type model, they

provided by means of Friedrich’s symmetrization technique and by linearization arguments, an existence

theorem (local in time) for the approximating system. Moreover they proved the uniform estimates needed

to justify the assumptions in case of initial densities which are small perturbation of an arbitrary non zero

constant state.

More in general, hyperbolic-parabolic systems have been widely studied by Kawa-shima and Shizuta [22,

23, 34]. Under the smallness assumption on the initial data and the dissipation condition on the linearized

system, they were able to prove global (in time) existence and asymptotic stability of smooth solutions to

the initial value problem for a general class of symmetric hyperbolic-parabolic systems.

However system (1) does not enter in this framework. As a matter of fact, due to the presence of the source

terms aρ, the dissipative condition fails.

If we linearize the differential part of (1) we get the semilinear hyperbolic-parabolic model, introduced by

Hillen to describe chemosensitive movements [19],





∂tρ+∇· v = 0,

∂t v +γ2∇ρ =−c(φ,∇φ)v +h(φ,∇φ)g (ρ),

∂tφ=∆φ+ f (ρ,φ),

(2)

where ρ is the density of the population with finite speed γ, v = ρu the flux and φ the chemoattractant con-

centration. With reference to the one dimensional case, a first result of local and global existence for weak

solutions, under the assumption of turning rate’s boundness, was proved in [21]. Recently Guarguaglini et

al. in [16] proved more general results of this model under weaker hypotheses, by showing a general re-

sult for global stability for a zero constant state in the Cauchy problem and for a small constant state in

the Neumann problem. These results have been obtained using the general theory of linearized operators,

and an accurate analysis of their nonlinear perturbations. Proceeding along these lines, in [10] the authors

presented a global existence theorem and the asymptotic behavior for smooth solutions with small initial

data to the Cauchy problem, for a simplified version of system (2) in the two dimensional case. Moreover

in [8, 9] it has been considered the multidimensional model (2), and showed the global existence of smooth

solutions with small initial data to the Cauchy problem and determinated their asymptotic behavior.

Since in our case it is not possible to apply the technique of the semilinear case, we follow a different ap-
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proach. The basic idea is to consider the hyperbolic and parabolic equation “separately”, and to take ad-

vantage of their respective properties. Let us explain our approach in more details.

We look at the hyperbolic part of system (1) without the source term µρ∇φ, i.e. we consider isentropic Euler

equations with damping. This system enters in the general framework proposed by Hanouzet and Natalini.

In [17], they determined sufficient conditions which guarantee the global existence in time of smooth solu-

tions for small initial data, which are the entropy dissipation and the Shizuta-Kawashima conditions.

The first one is a condition for systems which are endowed with a strictly convex entropy. Even if the strict

convexity guarantees that the entropy estimates are equivalent to the L2 estimate, and the dissipation yields

the invariance in the same norm, this condition is too weak to prevent the formation of singularities. In-

deed there exist systems that satisfy this condition such that there is no global solutions for some arbitrarily

small initial data. The condition (SK) is an adaptation to hyperbolic problems of the Kawashima condition

for hyperbolic-parabolic ones. In terms of stability it guarantees the necessary coupling between conserved

and non conserved quantities in order to have dissipation effects, in both the sets of state variables.

Following the work by Hanouzet and Natalini [17] and Yong [37], our approach is based on energy esti-

mates for the parabolic and hyperbolic equations. As a matter of fact, even if classical arguments fail in

the estimate of the source term µρ∇φ, we are able to treat it thanks to particular estimates of the parabolic

equation.

Once that the global existence for smooth solutions has been obtained for perturbation of small constant

states, we are able to determine the asymptotic behavior for large times of solutions, by using the decay

rates of the Green functions. Our strategy consists in using the decomposition of the Green function of dis-

sipative hyperbolic systems done by Bianchini at al. [2] and its precise decay rates. Indeed in [2] the authors

proposed a detailed description of the multidimensional Green function for a class of partially dissipative

systems. They analyzed the behavior of the Green function for the linearized problem, decomposing it into

two main terms. The first term is the diffusive one, and consists of heat kernels, while the faster term con-

sists of the hyperbolic part. Moreover they gave a more precise description of the behavior of the diffusive

part, which is decomposed into four blocks decaying with different rates, and the conservative one.

By using these refined estimates we were able to determine the asymptotic behavior of smooth solutions.

The article is organized as follows. Next section deals with the modeling background relative to system

(1). In the second section we recall some basic results about dissipative hyperbolic systems satisfying the

Shizuta-Kawashima condition. In the subsequent section we show the global existence of small solutions

by means of energy estimates. Finally, the last section is devoted to the study of the decay properties of

small and smooth solutions to the quasilinear system (1).

2 Modeling Background

The formation of new blood vessels, called vasculogenesis, is a process lead by a chemotactic phenomenon,

i.e. cells direct their movement according to certain chemicals in their environment. As a matter of fact,

recent works [4, 18] have confirmed that endothelial cells in the process of vascular network formation ex-

change signals by the release and absorption of Vascular Endothelial Growth Factor (VEGF-A). This growth

factor can bind to specific receptors on the cell surface and induce chemotactic motion along its concen-

tration gradient [13]. This communication by chemical signals determines how cells arrange and organize

themselves.

As shown in [29, 30], chemotaxis is decisive in many biological processes. For example, the formation of

cells aggregations (amoebae, bacteria, etc.) occurs during the response of the populations to the change

of the chemical concentrations in the environment. Moreover, also in multicellular organisms, chemotaxis

of cells populations plays a crucial role throughout the life cycle: during embryonic development it is im-
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portant in organizing cell positioning, for example during gastrulation [12] and patterning of the nervous

system [31]; in the adult life, it directs immune cells migration to sites of inflammation [36], fibroblasts into

wounded regions and during cancer growth it allows tumor cells to invade the surrounding environment

[6] or stimulating new blood vessel growth [26].

This biological phenomenon can be described at different scales. For example, by considering the popula-

tion density as a whole, it is possible to obtain macroscopic models of partial differential equations. One

of the most celebrated model of this class is the parabolic one proposed by Patlak in 1953 [32] and subse-

quently by Keller and Segel in 1970 [24].

However, the approach of PKS model is not always sufficiently precise to describe the biological phenom-

ena [14]. As a matter of fact, diffusion leads to fast dissipation or explosive behaviors and prevents us to

observe intermediate organized structures, like aggregations. This approach describe processes on a long

time scale, while on a short time range one gets a suited description from models with finite characteristic

speed.

Kinetic transport equations describe quite well the movement of single organism. For example the “run and

tumble” (the movement along straight lines, the sudden stop and the change of direction) can be modeled

by a stochastic process called velocity-jump process [20, 35].

At an intermediate scale, the process can be described by means of hyperbolic differential equations.

This class of models can be derived as a fluid limit of transport equations, but with a different scaling,

namely the hydrodynamic scaling t → ǫt , x → ǫx [5].

Hyperbolic models can also be obtained by phenomenological derivations, as done by Gamba et al. [15, 33]

to describe the vasculogenesis process. In [15] the authors proposed a model including chemotaxis as a

fundamental mechanisms for cell-to-cell communication in order to find key parameters in the complexity

of the formation of vascular network. This biological process proceeds along three main stages: migration

and early network formation, network remodeling and differentiation in tubular structures. The model

proposed in [15] focused on the first stage of the process.

The experimental results are encoded into a mathematical model starting from the assumptions that the

cell population can be described by a continuous distribution of density ρ and velocity u, moreover it is

also assumed the presence of a concentration φ of chemoattractant. The cell population in the early stages

of its evolution can be modeled as a fluid of non-directly interacting particles and is accelerated by gradient

of chemoattractant released by cells, which diffuse and degrade in finite time.

From these assumptions follows the system





∂tρ+∇· (ρu) = 0,

∂t (ρu)+∇· (ρu⊗u)+∇P (ρ) =−αρu+µρ∇φ,

∂tφ= D∆φ+aρ−bφ,

(3)

where D, a, and b are, respectively, the diffusion coefficient, the rate of release and the inverse of the char-

acteristic degradation time of chemoattractant, µ measures the strength of cell response, and α the friction

of the cells on the substrate.

This system is derived in a classical way by Continuum Mechanics indeed the first equation describes mass

conservation, the second one is a momentum balance with a chemotactic force and the last is a diffusion

equation for the chemoattractant produced by endothelial cells and degrading in time; in particular, the

convective term on the right hand side of the second equation allows describing cell migration. As indi-

cated in [1] it is based on the assumptions that: (i) endothelial cells show persistence in their motion; (ii)

endothelial cells communicate via the release and absorption of molecules of a soluble growth factor and

this chemical factor can be reasonably identified with VEGF-A (Serini et al. [33]); (iii) the chemical factors,
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released by cells, diffuse and degrade in time; (iv) endothelial cells neither duplicate nor die during the

process; (v) cells are slowed down by friction due to the interaction with the fixed substratum; (vi) closely

packed cells mechanically respond to avoid overcrowding.

On the basis of experiments and theoretical insights, the authors in [33] showed that non-linear mechanics

and chemotactic cellular dynamics fit into a model able to reproduce with great accuracy the formation of

capillary networks in vitro.

The model (3) is able to reproduce several experimentally observed facts, e.g. that the mean chord length is

approximately independent on the initial cell density or that connected networks are formed only above a

critical initial density as shown in [15, 33]. Moreover the authors provided a strong evidence that endothelial

cells number and the range of activity of a chemoattractant factor regulate vascular network formation by

flanking biological experiment, theoretical insights, and numerical simulations.

3 System Properties

Let us consider the Cauchy problem for the following hyperbolic-parabolic system





∂t ρ̃+∇· ṽ = 0,

∂t ṽ +∇·
(
ṽ ⊗ ṽ

ρ̃

)
+∇P (ρ̃) =−αṽ +µρ̃∇φ̃,

∂t φ̃= D∆φ̃+aρ̃−bφ̃,

(4)

ρ̃(x,0) = ρ0(x), ũ(x,0) = u0(x), φ̃(x,0) =φ0(x). (5)

We made the assumption

P ′(ρ̃) > 0

to ensure the strictly hyperbolicity of system (4).

Our aim is to prove that, under suitable assumptions, the Cauchy problem (4)-(5) admits a global smooth

solution for small initial data. In particular, we are interested in solutions of the form (ρ̃, ṽ ,φ̃) = (ρ+ρ, v,φ+
φ), where (ρ,0,φ) is a constant stationary solution to the problem with ρ > 0 and φ = a

b ρ, and (ρ, v,φ) is a

perturbation. In this case, we can rewrite system (4) as follows:





∂tρ+∇· v = 0,

∂t v +∇·
(
v ⊗ v

ρ+ρ

)
+∇P (ρ+ρ) =−αv +µ(ρ+ρ)∇φ,

∂tφ= D∆φ+aρ−bφ.

(6)

Now, we show some properties of the hyperbolic-parabolic system (6). To this end, we rewrite it in the

following compact form:





∂tU +
n∑

j=1
∂x j

f j (U +U ) = g (U +U )+h(U +U ,∇φ),

∂tφ= D∆φ+aρ−bφ,

where U = (ρ, v), U = (ρ,0), f j (U +U ) =
(

v j ,
v1v j

ρ+ρ , . . . ,
v2

j

ρ+ρ +P (ρ+ρ), . . . ,
vn v j

ρ+ρ

)
, g (U +U) = (0,−αv) and h(U +

U ,∇φ) = (0,µ(ρ+ρ)∇φ).
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3.1 Strictly Entropy Dissipative Condition

Let us consider the hyperbolic part of (6), that is





∂tρ+∇· v = 0,

∂t v +∇·
(
v ⊗ v

ρ+ρ

)
+∇P (ρ+ρ) =−αv.

(7)

First of all, we want to prove that system (7) is endowed with an entropy function, that is a convex real

function E such that there exist related entropy-fluxes q j satisfying the following condition

( f ′
j )t∇E = q ′

j ,

where f j are the fluxes of the system (7), for j = 1, ...,n.

To ensure the existence of entropy-fluxes q j , it is sufficient to prove that

( f ′
j )t

E
′′ is symmetric,

or equivalently that E
′′ f ′

j
is symmetric, for each j = 1, ...,n (see [3]).

Once we have proved the existence of an entropy function for system (7), the following additional equation

for the entropy evolution can be written:

∂t (E (U )−∇E (Û) ·U )+
n∑

j=1

∂x j
(q j (U )−∇E (Û) f j (U ))

= (∇E (U )−∇E (Û )) · (g (U )− g (Û)),

where Û is an equilibrium state for the system (7) (i.e. g (Û ) = 0). From this equation, we deduce that the

integral of E (U )−∇E (Û) ·U is decreasing in time, if the term on the right-hand side is negative.

Denoted by γ the set of equilibrium states of the system (7), this property is encoded in the following defi-

nition.

Definition 3.1. An entropy E for the system (7) is dissipative at Û , with Û ∈ γ, if it satisfies the inequality

(∇E (U )−∇E (Û)) · (g (U )− g (Û)) ≤ 0,

for any U in a neighborhood of Û .

Clearly, an entropy function is dissipative, if it is dissipative at Û , for each Û ∈γ.

Next, if E is a strictly convex function, we can introduce the entropy variable

W :=∇E (U ),

and the functions

E
∗(W ) :=W ·Φ(W )−E (Φ(W )),

q∗
j (W ) :=W · f j (Φ(W ))−q j (Φ(W )),

where Φ= (Φ1,Φ2) := (∇E )−1. Let us set now A0 = (E ∗)′′(W ), A j = f ′
j
(Φ(W ))A0 and G(W ) = g (Φ(W )), then

we rewrite the system (7) in the entropy variable as

A0∂t W +
n∑

j=1

A j∂x j
W =G(W ). (8)
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Let us observe that the matrix A0 is symmetric positive definite and A j is symmetric, for each j = 1, ...,n.

Now, we take U an open subset of Rn+1 and define

γ :=
{
U ∈U : g (U )= 0

}
,

Γ :=∇E (γ) = {W ∈∇E (U ) : G(W ) = 0} .

Let us observe that the dissipative condition ensures the existence of a real positive matrix B = B(W,W )

such that, for every W in a suitable neighborhood of W ,

G2(W ) =−B(W,W )(W2 −W 2).

We refer to [17] for more details.

Definition 3.2. The system (7) is strictly entropy dissipative, if there exists a real matrix B(W,W ) ∈ Rn ×Rn ,

positive definite, such that

G2(W ) =−B(W,W )(W2 −W 2),

for every W ∈∇E (U ) and W = (W1,W2) ∈ Γ.

In our case, we can consider for system (7) the canonical entropy function

E (ρ+ρ, v) =
1

2

v2

ρ+ρ
+ (ρ+ρ)

∫ρ+ρ

0

P (τ)

τ2
dτ,

then

Eρ(ρ+ρ, v) =−
1

2

v2

(ρ+ρ)2
+

P (ρ+ρ)

ρ+ρ
+

∫ρ+ρ

0

P (τ)

τ2
dτ,

Ev (ρ+ρ, v) =
v

ρ+ρ
.

It is easy to prove that system (7), endowed with the entropy E , satisfies the strictly entropy dissipative con-

dition. Moreover, according to [17], the definition of dissipative entropy is invariant for affine perturbation,

so if we consider the function

Ẽ (U )= E (U +U )−E (U )−∇E (U ) ·U , (9)

we have that Ẽ (U ) is a quadratic function and still an entropy for (7). This system, endowed with Ẽ (U ),

satisfies the strictly entropy dissipative condition as well.

Let us finally observe that, in our case,

W :=∇Ẽ (U )=∇E (U +U )−∇E (U ),

and

γ=
{
U ∈U : U = (ρ,0)

}
,

Γ=
{
W ∈∇Ẽ (U ) : W2 = 0

}
.
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3.2 The Shizuta-Kawashima Condition

This section is devoted to prove that system (8) satisfies the Shizuta-Kawashima condition [34] that is:

(SK) every eigenvector of
n∑

j=1
f ′

j
(U )ξ j is not in the null space of g ′(U ), for every ξ ∈Rn − {0}.

Let us define A(U +U ) =
n∑

j=1
f ′

j
(U +U )ξ j , with ξ ∈Rn − {0}, so

A(U ) =




0 ξ1 . . . ξn

P ′(ρ)ξ1 0 . . . 0

. . . . . . . . . . . .

P ′(ρ)ξ j 0 . . . 0

. . . . . . . . . . . .

P ′(ρ)ξn 0 . . . 0




.

Now, we suppose that X is in the null space of g ′(U ), that is

g ′(U )X = 0 ⇐⇒ X j = 0 for j = 2, . . . ,n+1.

So if X is in the null space of g ′(U ), then X = (X1,0, . . . ,0)t . Since in this case we have

λX = A(U )X ⇐⇒ λX1 = 0,

X cannot be an eigenvector of A(U ). But this is absurd because X is an eigenvector of A(U ), therefore X is

not in the null space of g ′(U ). This proves that system (8) satisfies the Shizuta-Kawashima condition.

4 The Global Existence of Smooth Solution

In this section, by means of the entropy method, we aim to prove the global existence of smooth solution to

the complete hyperbolic-parabolic system





∂tρ+∇· v = 0,

∂t v +∇·
(

v2

ρ+ρ +P (ρ+ρ)
)
=−αv +µ(ρ+ρ)∇φ,

∂tφ= D∆φ+aρ−bφ.

(10)

Let us recall that ρ,φ :Rn×R+ →R
+, u :Rn×R+ →R

n , v := (ρ+ρ)u, and P ′(ρ+ρ) > 0. Moreover, U = (ρ,0,φ)

is a constant stationary solution to the problem, with φ= a
b
ρ.

As we have shown in previous sections, the hyperbolic part (7) of system (10) is endowed with the dissipative

entropy (9) and it satisfies the strictly entropy dissipative condition. So, considering the entropy variable

W =∇Ẽ (U ) and, setting Φ(W ) = (∇Ẽ )−1(W ) and

A0(W ) = (Φ(W ))′, A j (W ) = f ′
j (Φ(W ))A0,

G(W ) = g (Φ(W )), H(W,∇φ) = h(Φ(W ),∇φ),

we write our system as: 



A0∂t W +
n∑

j=1
A j∂x j

W =G(W )+H(W,∇φ),

∂tφ= D∆φ+aΦ1(W )−bφ.

(11)
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Let us notice that the existence of a local solution to system (11) is ensured by classical argument. Indeed,

(11) is a symmetric hyperbolic-parabolic system, therefore we know that, if initial data W0, φ0 are in H s (Rn),

with s > [n/2]+1, then there exists a local in time solution (W,φ) ∈ C ([0,T ), H s (Rn))× (C ([0,T ), H s (Rn))∩
L2([0,T ), H s+1(Rn))) for system (11) (Theorem 2.9, [22]).

Then, thanks to the continuation principle (see [27]), in order to prove that (W,φ) is global in time, it is

sufficient to show uniformly (in time) estimates of the local solution.

We state now our result:

Theorem 4.1. Fix s > [n/2]+1 =: s0. We consider the Cauchy problem associated to system (11), with small

initial data W0 and φ0 in H s (Rn). If ‖W0‖H s ,
∥∥φ0

∥∥
H s and ρ are sufficiently small, then there exists a unique

solution (W,φ) of system (11), such that

W ∈C ([0,∞), H s (Rn)), φ ∈C ([0,∞), H s (Rn))∩L2([0,∞), H s+1(Rn)),

and for each t > 0

‖W (t)‖2
H s +

∫t

0
‖W2(τ)‖2

H s dτ+
∫t

0
‖∇W (τ)‖2

H s−1 dτ≤C ‖W0‖2
H s ,

∥∥φ(t)
∥∥2

H s +
∫t

0

∥∥∇φ(τ)
∥∥2

H s dτ≤C
∥∥φ0

∥∥2
H s ,

where C =C (‖W0‖H s ,
∥∥φ0

∥∥
H s ,ρ).

In order to prove this theorem, we firstly show the validity of some energy estimates for functions W and φ.

Remark 4.2. This result holds for perturbation of small constant (non null) states. Moreover in the isothermal

case, i.e. P (ρ) = ρ, it holds also for perturbation of zero state in the one dimensional case. It can be proved

using the result of [28] that ensures the existence of a dissipative entropy for 2×2 hyperbolic system, under

suitable assumptions [11].

Remark 4.3. Concerning the constants, they all have been denoted by the letter c. Thus, c may stand for num-

bers that are different from line to line of the text. Only when we intend to explicitly indicate the dependence

of c on some parameters, or to avoid confusions, we have used some other notations for the constants.

4.1 Energy Estimates for φ

We consider the local (in time) solution (W,φ) ∈ C ([0, t), H s (Rn))× (C ([0, t), H s (Rn))∩L2([0, t), H s+1(Rn))),

where t ∈ [0,T ).

First of all, we consider the parabolic equation

∂tφ= D∆φ+aρ−bφ. (12)

Applying the spatial derivative of order α, with α = (α1, ...,αn ) and 0 ≤ |α| ≤ s, and multiplying by ∂αx φ, we

get

∂t

(
1

2
(∂αx φ)2

)
+D

n∑

j=1

(
∂
α1
x1
∂
α2
x2

...∂
α j +1
x j

...∂
αn
xn

φ
)2

= D
n∑

j=1

∂x j

(
∂
α1
x1
∂
α2
x2

...∂
α j +1
x j

...∂
αn
xn

φ∂αx φ
)
+a∂αx ρ∂

α
x φ−b(∂αx φ)2.
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Then, integrating with respect to x and t , we have

1

2

∫
(∂αx φ)2d x+D

∫t

0

∫(
n∑

j=1

(
∂
α1
x1
∂
α2
x2

...∂
α j +1
x j

...∂
αn
xn

φ
)2

)
dτd x

≤
1

2

∫
(∂αx φ0)2d x +

a

2ǫ

∫t

0

∫
(∂αx ρ)2d xdτ

+
( aǫ

2
−b

)∫t

0

∫
(∂αx φ)2d xdτ.

Now, let us introduce the generic functional

N 2
l (t) := sup

0≤τ≤t
‖W (τ)‖2

H l +
∫t

0
‖W2(τ)‖2

H l dτ+
∫t

0
‖∇W (τ)‖2

H l−1 dτ,

for l = 1, ..., s, and

N 2
0 (t) := sup

0≤τ≤t
‖W (τ)‖2

L2 +
∫t

0
‖W2(τ)‖2

L2 dτ.

Therefore, summing up the estimate of ∂αx φ for α such that |α| ∈ [1, s] and assuming ǫ sufficiently small, we

obtain the s-order estimate for function φ:

∥∥φ
∥∥2

H s +c

∫t

0

∥∥∇φ
∥∥2

H s dτ+c

∫t

0

∥∥∇φ
∥∥2

H s−1 dτ≤
∥∥φ0

∥∥2
H s +cN 2

s (t). (13)

Remark 4.4. Let us notice that the previous inequality allows us to estimate the integral in time of
∥∥∇φ

∥∥
H s

simply using the functional Ns(t), which involves the derivatives up to the order s of W .

Now, the function φ is a solution of the parabolic equation (12), therefore, using the Duhamel’s formula, it

could be written as

φ(x, t) = e−bt
Γ

p (x, t)∗φ0(x)+
∫t

0
e−b(t−τ)

Γ
p (x, t −τ)∗ρ(x, t)dτ,

where Γ
p is the heat kernel. Consequently, we obtain

∥∥∇φ(x, t)
∥∥

L∞ ≤
n∑

j=1

[
ce−bt

∥∥∥∂x j
φ0

∥∥∥
L∞

+ sup
0≤τ≤t

∥∥ρ(τ)
∥∥

L∞

∫t

0
e−b(t−τ)(t −τ)−1/2dτ

]

≤ ce−bt
(∥∥φ0

∥∥
H s+1 +Ns(t)

)
. (14)

4.2 The zero-order Energy Estimate

Now, we want to estimate the L2-norm of the function W . To this end, let us rewrite the first two equations

of system (10) in the form:

∂tU +
n∑

j=1

∂x j
f j (U +U ) = g (U +U )+h(U +U ,∇φ). (15)

Multiplying the previous system by ∇Ẽ (U )=∇E (U +U )−∇E (U ), we have

∂t Ẽ (U )+
n∑

j=1

∂x j
q̃ j (U )=∇Ẽ (U ) · g (U +U )+∇Ẽ (U ) ·h(U +U ,∇φ),
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where q̃ j ( j = 1, ...,n) are the entropy-fluxes associated to the function Ẽ .

Let us observe that, thanks to definitions of the entropy Ẽ and the variable W = ∇Ẽ (U ), there exist two

constants δ0 and c such that
1

c
|W |2 ≤ Ẽ (U )≤ c|W |2 ,

for |W | ≤ δ0. Moreover, as proved in Section 3.1, the system (15) satisfies the strictly dissipative condition,

therefore there exists a constant c such that

−(W ·G(W )) ≥ c|W2|2.

Let us integrate the previous system, with respect to space variable x, so we get:

d

d t

∫
Ẽ (U )d x =

∫
∇Ẽ (U ) · g (U +U )d x +

∫
∇Ẽ (U ) ·h(U +U ,∇φ)d x,

which yields

‖W (t)‖2
L2 +c

∫t

0
‖W2(τ)‖2

L2 dτ≤ ‖W0‖2
L2 +c

∫t

0

∫
∇E (U +U ) ·h(U +U ,∇φ)d xdτ,

for all |W (x, t)| ≤ δ0 where (x, t) ∈Rn × (0,T ).

Now, let us observe that, thanks to the definition of function h(U +U ,∇φ), the last integral can be estimate

as follows

∫t

0

∫
∇Ẽ (U ) ·h(U +U ,∇φ)d xdτ=

∫t

0

∫
W2 ·µ(ρ+ρ)∇φd xdτ

≤
∫t

0
µ‖W2(τ)‖L2‖ρ(τ)‖L∞‖∇φ(τ)‖L2 dτ

+
∫t

0
µρ‖W2(τ)‖L2‖∇φ(τ)‖L2 dτ

≤c sup
τ∈(0,t )

‖ρ(τ)‖L∞

∫t

0

(
‖W2(τ)‖2

L2 +‖∇φ(τ)‖2
L2

)
dτ

+cρ

∫t

0

(
‖W2(τ)‖2

L2 +‖∇φ(τ)‖2
L2

)
dτ

≤cN1(t)
[∥∥φ0

∥∥2
L2 +N 2

1 (t)
]
+cρ

[∥∥φ0

∥∥2
L2 +N 2

1 (t)
]

,

where, in the last inequality, we used the energy estimate of the function φ.

In conclusion, the zero order estimate of function W is given by

‖W (t)‖2
L2 +

∫t

0
‖W2(τ)‖2

L2 dτ≤N 2
0 (0)+C (

∥∥φ0

∥∥
L2 )N1(t)

+C (ρ)N 2
1 (t)+C N 3

1 (t)+C (
∥∥φ0

∥∥
L2 ,ρ).

4.3 The s-order Energy Estimate for function W

To prove energy estimates of the function ∂s
xW , it is necessary to use some inequalities based on the Sobolev

embedding theorem. Here we just state the following lemma, whose proof can be found in [37].

Lemma 4.5. We take s, s1 and s2 three non-negative integers and s0 := [n/2]+1. Then

(i) if s3 = min {s1, s2, s1 + s2 − s0} ≥ 0, then H s1 H s2 ⊂ H s3

(the inclusion symbol ⊂ denotes the continuous embedding);
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(ii) if s > s0 and A′, U ∈ H s−1, then for all multi-indices α with 0 ≤ |α| ≤ s, the commutator [∂αx , A]U :=
∂αx (AU )− A∂αx U ∈ L2 and

∥∥[∂αx , A]U
∥∥

L2 ≤Cs

∥∥A′∥∥
H s−1 ‖U‖H |α|−1 ;

(iii) if s ≥ s0, V ∈ H s with values in Ω, and A ∈C s (Ω) with A(0)= 0, then A(V (·)) ∈ H s and

‖A(V (·))‖H s ≤Cs |A|s ‖V ‖H s (1+‖V ‖s−1
H s ).

Here, Cs is a constant depending only on s and n, and

|A|s := sup
U∈Ω,1≤|α|≤s

|∂αU A(U )|.

Now we estimate the L2-norm of the s-order derivative of the local function W . To this end, we consider the

system

∂t W +
n∑

j=1

Ã j∂x j
W = A−1

0 G(W )+ A−1
0 H(W,∇φ), (16)

where Ã j := A−1
0 A j . Applying the derivative ∂αx , where 1 ≤ |α| ≤ s, we get

∂αx ∂t W +
n∑

j=1

Ã j∂
α
x ∂x j

W = A−1
0 ∂αx G + [∂αx , A−1

0 ]G + A−1
0 ∂αx H

+[∂αx , A−1
0 ]H +

∑n
j=1

[Ã j ,∂αx ]∂x j
W,

where [a,b]c := a(bc)−b(ac).

If we multiply this equation by (∂αx W )t A0, we have

(∂αx W )t A0∂
α
x ∂t W +

n∑

j=1

(∂αx W )t A j∂
α
x ∂x j

W = (∂αx W )t∂αx G + (∂αx W )t A0[∂αx , A−1
0 ]G

+(∂αx W )t∂αx H + (∂αx W )t A0[∂αx , A−1
0 ]H +

n∑

j=1

(∂αx W )t A0[Ã j ,∂αx ]∂x j
W. (17)

Thanks to the symmetry of A0 and A j , we deduce the following equalities

(∂αx W )t A0∂
α
x ∂t W =

1

2
∂t

(
(∂αx W )t A0∂

α
x W

)
−

1

2
(∂αx W )t

(
∂t A0∂

α
x W

)
,

n∑

j=1

(∂αx W )t A j∂
α
x ∂x j

W =
1

2

n∑

j=1

∂x j

(
(∂αx W )t A j∂

α
x W

)
−

1

2

n∑

j=1

(∂αx W )t∂x j
A j∂

α
x W.

Let us observe that, thanks to the strictly dissipative condition, there exists a positive definite matrix B such

that

(∂αx W )t∂αx G =−(∂αx W2)t∂αx (BW2) =−(∂αx W2)t B(∂αx W2)+ (∂αx W2)t [B,∂αx ]W2.

Substituting these equalities in (17) and integrating with respect to the space variable, we obtain

1

2

d

d t

∫
(∂αx W )t A0∂

α
x W d x +

∫
(∂αx W2)t B∂αx W2d x =

∫
(∂αx W2)t [B,∂αx ]W2d x

+
∫

(∂αx W )t

(
A0[∂αx , A−1

0 ]G +
n∑

j=1

A0[Ã j ,∂αx ]∂x j
W + A0[∂αx , A−1

0 ]H

)
d x
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+
1

2

∫
(∂αx W )t

(
∂t A0 +

n∑

j=1

∂x j
A j

)
∂αx W d x +

∫
(∂αx W )t∂αx Hd x. (18)

Let us analyze these integrals separately. Some of them can estimate by classical arguments, following the

approach of [17, 37].

Above all A0 and B are positive definite, so there exist two constants such that

(∂αx W )t A0∂
α
x W ≥ c|∂αx W |2, (∂αx W2)t B∂αx W2 ≥ c|∂αx W2|2. (19)

These inequalities allow us to estimate the left-hand side of (18).

Now, we can estimate the time integral of the first term on the right-hand side of (18) using Lemma (4.5).

Indeed, thanks to the condition (ii) and the regularity of functions, we have

∫t

0

∫∣∣(∂αx W2)t [B,∂αx ]W2

∣∣d xdτ ≤ c

∫t

0

∥∥B ′∥∥
H s−1

(∥∥∂αx W2

∥∥2
L2 +‖W2‖2

H |α|−1

)
dτ. (20)

Then, we consider the second and the third integral on the right-hand side. We know that ∂αx W ∈ H s−|α|

and A0 ∈ H s , so s3 := min {s, s −|α|,2s −|α|− s0 } is a positive constant. Therefore, using the condition (i) of

Lemma (4.5), we obtain that A0∂
α
x W ∈ L2 and

∥∥A0∂
α
x W

∥∥
L2 ≤ c

∥∥∂αx W
∥∥

H s−|α| ‖A0‖H s . Then, using again con-

dition (ii) of the same lemma and the regularity of functions, we deduce that [∂αx , A0]G ∈ L2 and [∂αx , A j ]∂x j
W ∈

L2, for each j = 1, ...,n. As a consequence of these observations, we can calculate

∫t

0

∫∣∣(∂αx W )t A0[∂αx , A−1
0 ]G

∣∣d xdτ

≤ c

∫t

0

[∥∥∂αx W
∥∥2

H s−|α| ‖A0‖2
H s +

∥∥(A−1
0 )′

∥∥2

H s−1 ‖W2‖2
H |α|−1

]
dτ, (21)

and

∫t

0

∫∣∣∣∣∣(∂
α
x W )t A0

n∑

j=1

[Ã j ,∂αx ]∂x j
W

∣∣∣∣∣d xdτ

≤ c

∫t

0
‖A0‖H s

n∑

j=1

∥∥∥Ã′
j

∥∥∥
H s−1

(∥∥∂αx W
∥∥2

H s−|α| +‖∇W ‖2
H |α|−1

)
dτ. (22)

Moreover, in the same way, we get

∫∣∣(∂αx W )t A0[∂αx , A−1
0 ]H

∣∣d x ≤C
∥∥∂αx W

∥∥
H s−|α| ‖A0‖H s

∥∥(A−1
0 )′

∥∥
H s−1 ‖H‖H |α|−1 .

Let us point out that classical arguments are not a sucessful strategy to estimate the r.h.s. of the previous

inequality. Since the last term causes the failure of standard approaches, our aim is to show an effective

technique to estimate it.

So, we focus our attention on this term and we get the following inequality:
∥∥∥H(U +U ,∇φ)

∥∥∥
H |α|−1

≤µ
[∥∥ρ

∥∥
L∞

∥∥∇φ
∥∥

H |α|−1 +
∥∥ρ

∥∥
H |α|−1

∥∥∇φ
∥∥

L∞ +ρ
∥∥∇φ

∥∥
H |α|−1

]
.

Now, substituting this estimate in the previous one and integrating with respect to t , we get

∫t

0

∫∣∣(∂αx W )t A0[∂αx , A−1
0 ]H

∣∣d xdτ

≤c A
[

sup
0≤τ≤t

∥∥ρ
∥∥

L∞

∫t

0

(∥∥∂αx W
∥∥2

H s−|α| +
∥∥∇φ

∥∥2
H |α|−1

)
dτ

+ sup
0≤τ≤t

∥∥ρ(τ)
∥∥

H |α|−1

∫t

0

(∥∥∂αx W
∥∥2

H s−|α| +
∥∥∇φ

∥∥2
L∞

)
dτ
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+ρ

∫t

0

(∥∥∂αx W
∥∥2

H s−|α| +
∥∥∇φ

∥∥2
H |α|−1

)]

≤c A
[

Ns (t)
(
N 2

s (t)+
∥∥φ0

∥∥2
H |α| +N 2

α(t)
)
+Nα−1(N 2

s (t)+
∥∥φ0

∥∥2
H s +N 2

s (t))

+ρ
(
N 2

s (t)+
∥∥φ0

∥∥2
H |α| +N 2

α(t)
)]

≤c A
(
N 3

s (t)+c(
∥∥φ0

∥∥
H s )Ns(t)+c(ρ)N 2

s (t)+c(
∥∥φ0

∥∥
H |α| ,ρ)

)
, (23)

where A := sup
0≤τ≤t

‖A0‖H s

∥∥(A−1
0 )′

∥∥
H s−1 .

Next, the last integral of inequality (18) can be studied in the following way:
∫

(∂αx W )t∂αx Hd x ≤µ
∫

|(∂αx W2)t∂αx (ρ∇φ)|d x +µρ

∫
|(∂αx W2)t∂αx (∇φ)|d x

≤µ‖∂αx W2‖L2

(
‖ρ‖L∞‖∇φ‖Hα +‖ρ‖Hα‖∇φ‖L∞

)

+µρ‖∂αx W2‖L2‖∇φ‖Hα ,

which, integrating with respect to the time variable, yields
∫t

0

∫
(∂αx W )t∂αx Hd xdτ ≤ µ sup

0≤τ≤t
‖ρ‖L∞

∫t

0

(
‖∂αx W2‖2

L2 +‖∇φ‖2
Hα

)
dτ

+µ sup
0≤τ≤t

‖ρ‖Hα

∫t

0

(
‖∂αx W2‖2

L2 +‖∇φ‖2
L∞

)
dτ

+µρ

∫t

0

(
‖∂αx W2‖2

L2 +‖∇φ‖2
Hα

)
dτ

≤ cN 3
s (t)+c(‖φ0‖H s ,ρ)Ns(t)+c(ρ)N 2

α(t)+c(
∥∥φ0

∥∥
Hα ,ρ). (24)

Remark 4.6. Let us point out that, in order to estimate the second integral of (24), it is not useful to consider

sup
0≤τ≤t

∥∥∇φ
∥∥

L∞ . Indeed, it is impossible to estimate this term by the functional Ns , since, as deduced by (13),

the order of the functional should be increased up to s +1. While, as noticed in Remark (4.4), we can control

the time integral of
∥∥∇φ

∥∥
L∞ by Ns , without increasing the higher order derivative.

Now, we examine the remaining term of (18). Using (16) and the definition of Ã j , we can write

∂t A0 +
n∑

j=1

∂x j
A j =−A′

0

(
n∑

j=1

Ã j∂x j
W

)
+ A′

0

(
A−1

0 G
)
+ A′

0

(
A−1

0 H
)
+

n∑

j=1

A′
j∂x j

W

=
n∑

j=1

A0

(
Ã′

j∂x j
W

)
+ A′

0

(
A−1

0 G
)
+ A′

0

(
A−1

0 H
)

.

From this equality, recalling that G = (0,−BW2)t , we deduce

∫∣∣∣∣∣(∂
α
x W )t

(
∂t A0 +

n∑

j=1

∂x j
A j

)
∂αx W

∣∣∣∣∣d x ≤c A

(
n∑

j=1

∥∥∥∂x j
W

∥∥∥
L2

+‖W2‖L2

)
∥∥∂αx W

∥∥2
L2

+c A
(∥∥(ρ+ρ)∇φ

∥∥
L2

)∥∥∂αx W
∥∥2

L2

≤c A ( ‖W2‖L2

∥∥∂αx W
∥∥2

L2 +‖∇W ‖L2

∥∥∂αx W
∥∥2

L2

+
∥∥(ρ+ρ)∇φ

∥∥
L2

∥∥∂αx W
∥∥2

L2 ) , (25)

where A := sup
0≤τ≤t

{
‖A0‖H s

n∑
j=1

∥∥∥Ã′
j

∥∥∥
H s−1

+
∥∥A′

0

∥∥
H s−1

∥∥A−1
0

∥∥
H s (1+‖B‖H s )

}
.

Let us analyze these terms separately. First of all, we have
∫t

0
‖W2‖L2

∥∥∂αx W
∥∥2

L2 dτ≤ sup
0≤τ≤t

∥∥∂αx W (τ)
∥∥

L2

∫t

0

(∥∥∂αx W
∥∥2

L2 +‖W2‖2
L2

)
dτ
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≤ Nα(t)(N 2
0 (t)+N 2

α−1(t)),

and

∫t

0
‖∇W ‖L2

∥∥∂αx W
∥∥2

L2 dτ≤ Nα(t)(N 2
1 (t)+N 2

α−1(t)).

Now, we are interested in studying the last term of the inequality (25). Let us observe that

∫t

0

∥∥(ρ+ρ)∇φ
∥∥

L2

∥∥∂αx W
∥∥

L2 dτ≤ sup
0≤τ≤t

∥∥ρ
∥∥

L2

∫t

0

(∥∥∇φ
∥∥2

L∞ +
∥∥∂αx W

∥∥2
L2

)
dτ

+ sup
0≤τ≤t

∥∥ρ(τ)
∥∥

L∞

∫t

0

(∥∥∇φ
∥∥2

L2 +
∥∥∂αx W

∥∥2
L2

)
dτ

+ρ

∫t

0

(∥∥∇φ
∥∥2

L2 +
∥∥∂αx W

∥∥2
L2

)
dτ

≤c(
∥∥φ0

∥∥
H s )Ns(t)+c(ρ)N 2

α(t)+N 3
s (t)+c(

∥∥φ0

∥∥
L2 ,ρ). (26)

Finally, integrating the equation (18) with respect to the time variable and substituting in it inequalities (19),

(20), (21), (22), (23), (24) and (26), we deduce

‖∂αx W (t)‖2
L2 +

∫t

0
‖∂αx W2(τ)‖2

L2 dτ≤c(‖W0‖H s ,
∥∥φ0

∥∥
H s ,ρ)+c(

∥∥φ0

∥∥
H s ,ρ)Ms (t)Ns(t)

+c(ρ)Ms (t)N 2
s (t)+cMs (t)N 3

s (t),

where

Ms (t) := sup
0≤τ≤t

[
‖A0‖2

H s +
∥∥(A−1

0 )′
∥∥2

H s +‖A0‖H s

n∑

j=1

∥∥∥Ã′
j

∥∥∥
H s−1

+‖A0‖H s

∥∥(A−1
0 )′

∥∥
H s−1

+
∥∥B ′∥∥

H s−1 +
∥∥A′

0

∥∥
H s−1

∥∥(A−1
0 )

∥∥
H s (1+‖B‖H s )

+ (1+‖W ‖H s−1 +‖W ‖s−1
H s−1 )2 ‖B‖2

H s−1 +1+‖W ‖H s−1 +‖W ‖s−1
H s−1

+
( n∑

j=1

∥∥Ã j (0)− Ã j (W )
∥∥

H s−1

)2]
. (27)

Therefore, summing up for 1≤ |α| ≤ s, we deduce the following s-order estimate of function W

‖W (t)‖2
H s +

∫t

0
‖W2(τ)‖2

H s dτ≤C (‖W0‖H s ,
∥∥φ0

∥∥
H s ,ρ)+C (

∥∥φ0

∥∥
H s ,ρ)Ms (t)Ns(t)

+C (ρ)Ms (t)N 2
s (t)+C Ms(t)N 3

s (t).

4.4 Proof of the Global Existence Theorem

Now, we are finally able to prove Theorem (4.1), showing the existence of a global smooth solution for sys-

tem (11).

Proof. Let us recall the definition of the functionals

N 2
l (t) := sup

0≤τ≤t
‖W (τ)‖2

H l +
∫t

0
‖W2(τ)‖2

H l dτ+
∫t

0
‖∇W (τ)‖2

H l−1 dτ, for l = 1, ..., s,

N 2
0 (t) := sup

0≤τ≤t
‖W (τ)‖2

L2 +
∫t

0
‖W2(τ)‖2

L2 dτ,
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and the energy estimates, obtained in previous sections,

‖W (t)‖2
L2 +

∫t

0
‖W2(τ)‖2

L2 dτ≤N 2
0 (0)+C (

∥∥φ0

∥∥
L2 )N1(t)+C (ρ)N 2

1 (t)

+C N 3
1 (t)+C (

∥∥φ0

∥∥
L2 ,ρ), (28)

and, for each s ≥ 1,

‖W (t)‖2
H s +

∫t

0
‖W2(τ)‖2

H s dτ≤C (‖W0‖H s ,
∥∥φ0

∥∥
H s ,ρ)+C (

∥∥φ0

∥∥
H s ,ρ)Ms (t)Ns(t)

+C (ρ)Ms (t)N 2
s (t)+C Ms(t)N 3

s (t). (29)

Therefore, to obtain an estimate of the functional N 2
s (t), we have to study also the term

∫t

0
‖∇W (τ)‖2

H l−1 dτ, for l = 1, ..., s.

To this end, we rewrite the first equation of system (11), in the following way

∂t W +
n∑

j=1

Ã j (0)∂x j
W = A−1

0 (W )G(W )+ A−1
0 (W )H(W,∇φ)+L(W,∂x W ),

where L :=
n∑

j=1

(
Ã j (0)− Ã j (W )

)
∂x j

W . Applying the Fourier transform with respect to x, we obtain

∂t Ŵ + i
n∑

j=1

ξ j Ã j (0)Ŵ = �A−1
0 G + �A−1

0 H + L̂. (30)

Let us recall that, in Section (3.2), we proved that the first equation of system (11) without the term H(W,∇φ)

satisfies the condition (SK). As shown by Shizuta and Kawashima [34], this means that there exist a constant

c > 0 and a skew-symmetric real matrix K = K (ξ)∈C∞(Sn−1) satisfying K (−ξ) =−K (ξ) and

1

2

[
K (ξ)Ã(ξ)+

(
K (ξ)Ã(ξ)

)t
]
+|ξ|diag(0, In ) ≥ c|ξ|In+1 , (31)

for every ξ ∈ Sn−1, where Sn−1 is the unit sphere in Rn and

Ã(ξ) :=
n∑

j=1

Ã j (0)ξ j , ξ ∈Rn\{0} .

Now, if we multiply the system (30) by −iŴ t K , then we have

−iŴ t K∂t Ŵ +Ŵ t K
n∑

j=1

ξ j Ã j (0)Ŵ =−iŴ t K (�A−1
0 G + �A−1

0 H + L̂).

Substituting inequality (31) and

2ImŴ t K (�A−1
0 G + �A−1

0 H + L̂) ≤ c|ξ||Ŵ |2 +C |ξ|−1(|�A−1
0 G|2 +|�A−1

0 H |2 +|L̂|2)

in the previous system, we obtain

−i∂t

(
Ŵ t K Ŵ

)
+c|ξ||Ŵ |2 ≤ 2|ξ||Ŵ2|2 +C |ξ|−1(|�A−1

0 G|2 +|A−1
0 Ĥ |2 +|L̂|2).

Let us multiply this last inequality by |ξ|2k−1, with k ≥ 1, and integrate over Rn × [0, t ], so we obtain

c

∫t

0

∫
|ξ|2k |Ŵ |2dξdτ≤2

∫t

0

∫
|ξ|2k |Ŵ2|2dξdτ
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+C

∫
|ξ|2k−1|Ŵ (ξ, t)|2dξ+C

∫
|ξ|2k−1|Ŵ0|2dξ

+C

∫t

0

∫
|ξ|2k−2(|�A−1

0 G|2 +|�A−1
0 H |2 +|L̂|2)dξdτ.

Then, since 2|ξ| ≤ 1+|ξ|2 and k ≥ 1, we deduce that

∫t

0

∑

|α|=k

∥∥∂αx W (τ)
∥∥2

L2 dτ≤c

[∫t

0

(
∑

|α|=k

∥∥∂αx W2(τ)
∥∥2

L2

)
dτ+‖W (t)‖2

H k +‖W0‖2
H k

+
∫t

0

∑

|α|=k−1

(∥∥∂αx (A−1
0 G)

∥∥2

L2 +
∥∥∂αx (A−1

0 H)
∥∥2

L2 dτ
)

,

+
∫t

0

∑

|α|=k−1

∥∥∂αx L
∥∥2

L2 dτ

]
,

which, summing over all α such that |α| ∈ [1, s], yields

∫t

0
‖∇W (τ)‖2

H s−1 dτ≤c

[∫t

0
‖W2(τ)‖2

H s dτ+‖W (t)‖2
H s +‖W0‖2

H s

+
∫t

0

(∥∥A−1
0 G

∥∥2

H s−1 +
∥∥A−1

0 H
∥∥2

H s−1 +‖L‖2
H s−1

)
dτ

]
.

Now, let us recall that L =
n∑

j=1

(
Ã j (0)− Ã j (W )

)
∂x j

W , so using condition (i) of Lemma (4.5), we get

‖L‖H s−1 ≤c
n∑

j=1

∥∥Ã j (0)− Ã j (W )
∥∥

H s−1

∥∥∥∂x j
W

∥∥∥
H s−1

,

then

∫t

0
‖L‖2

H s−1 dτ ≤ cMs (t)N 2
s (t),

where Ms (t) is defined by (27).

Using again Lemma (4.5), we deduce that

∥∥A−1
0 G

∥∥
H s−1 ≤

∥∥A−1
0 (0)G

∥∥
H s−1 +

∥∥[
A−1

0 (W )− A−1
0 (0)

]
G

∥∥
H s−1

≤ c
(
1+

∥∥A−1
0 (W )− A−1

0 (0)
∥∥

H s−1

)
‖G‖H s−1

≤ c(1+‖W ‖H s−1 +‖W ‖s−1
H s−1 )‖B‖H s−1 ‖W2‖H s−1 ,

which yields

∫t

0

∥∥A−1
0 G

∥∥2

H s−1 dτ≤cMs (t)N 2
s−1(t).

Proceeding in the same way, we get

∥∥A−1
0 H

∥∥
H s−1 ≤ c(1+‖W ‖H s−1 +‖W ‖s−1

H s−1 )‖H‖H s−1 ,

so, we have

∫t

0

∥∥A−1
0 H

∥∥2

H s−1 dτ≤Ms (t)

∫t

0

(∥∥ρ
∥∥

L∞
∥∥∇φ

∥∥
H s−1 +

∥∥ρ
∥∥

H s−1

∥∥∇φ
∥∥

L∞ +ρ
∥∥∇φ

∥∥
H s−1

)2
dτ

≤Ms (t)
[

sup
0≤τ≤t

∥∥ρ
∥∥2

L∞

∫t

0

∥∥∇φ
∥∥2

H s−1 dτ
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+ sup
0≤τ≤t

∥∥ρ
∥∥2

H s−1

∫t

0

∥∥∇φ
∥∥2

L∞ dτ+ρ2
∫t

0

∥∥∇φ
∥∥2

H s−1 dτ

+2 sup
0≤τ≤t

∥∥ρ
∥∥

L∞ sup
0≤τ≤t

∥∥ρ
∥∥

H s−1

∫t

0

(∥∥∇φ
∥∥2

H s−1 +
∥∥∇φ

∥∥2
L∞

)
dτ

+2ρ sup
0≤τ≤t

∥∥ρ
∥∥

L∞

∫t

0

∥∥∇φ
∥∥2

H s−1 dτ

+2ρ sup
0≤τ≤t

∥∥ρ
∥∥

H s−1

∫t

0

(∥∥∇φ
∥∥2

L∞ +
∥∥∇φ

∥∥2
H s−1

)
dτ

]

≤Ms (t)
[

N 2
s (t)

(∥∥φ0

∥∥2
H s +N 2

s−1(t)
)
+N 2

s (t)
(∥∥φ0

∥∥2
H s +N 2

s (t)
)

+ρ2
(∥∥φ0

∥∥2
H s +N 2

s (t)
)
+2N 2

s (t)
(∥∥φ0

∥∥2
H s +N 2

s (t)
)

+2N 2
s (t)

(∥∥φ0

∥∥2
H s +N 2

s (t)
)
+2ρNs(t)

(∥∥φ0

∥∥2
H s +N 2

s (t)
)

+2ρNs(t)
(∥∥φ0

∥∥2
H s +N 2

s (t)
)
+2ρNs−1(t)

(∥∥φ0

∥∥2
H s +N 2

s (t)
)]

≤c(
∥∥φ0

∥∥
H s ,ρ)Ms (t)N 2

s (t)+Ms (t)N 4
s (t)+c(

∥∥φ0

∥∥
H s ,ρ, Ms (t))

+c(
∥∥φ0

∥∥
H s ,ρ)Ms(t)Ns(t)+c(ρ)Ms(t)N 3

s (t).

Consequently, as long as Ms (t)≤C , we obtain

∫t

0
‖∇W ‖2

H s−1 dτ≤cN 2
s (0)+c(

∥∥φ0

∥∥
H s ,ρ)Ms(t)Ns(t)+c(

∥∥φ0

∥∥
H s ,ρ)Ms(t)N 2

s (t)

+c(ρ)Ms (t)N 3
s (t)+cMs (t)N 4

s (t)+c(
∥∥φ0

∥∥
H s ,ρ, Ms (t)).

Combining the previous inequality with (28), (29), we get the estimate

N 2
s (t)≤C N 2

s (0)+C (
∥∥φ0

∥∥
H s ,ρ, Ms (t))+C (

∥∥φ0

∥∥
H s ,ρ, Ms (t))Ns(t)

+C (ρ, Ms (t))N 2
s (t)+C (ρ, Ms (t))N 3

s (t)+C (Ms (t))N 4
s (t).

In conclusion, choosing small initial data and small constant state, from the previous inequality we deduce

the theorem, by classical arguments.

5 Asymptotic Behavior

In this section we study the time decay properties of the global smooth solution to system (10), proceeding

along the lines of [2]. Thanks to the decomposition of the Green function of the linearized problem, we aim

to obtain the H s and L∞ decay estimates of the solution for the considered model.

To this end we rewrite system (10) in the Conservative-Dissipative form as





∂t (U +U )+
n∑

j=1
∂x j

f j (U +U ) = g (U )+h(U +U ,∇φ),

∂tφ= D∆φ+aρ−bφ,

(32)

where

U =
(

ρ
vp

P ′(ρ)

)
, U =

(
ρ

0

)
, f j (U +U ) =

( √
P ′(ρ)v j√

P ′(ρ)
v j v

ρ+ρ + P (ρ+ρ)p
P ′(ρ)

e j

)
,
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g (U )=
(

0

−αv

)
, h(U +U ,∇φ) =

(
0

µ
ρ+ρp
P ′(ρ)

∇φ

)
.

Defined f j (U )= f j (U +U )− f j (U ) and µ= µp
P ′(ρ)

, the system can be rewritten in the following way

∂tU +
n∑

j=1

∂x j

(
f
′
j (U )U

)
= g (U )+

n∑

j=1

∂x j

(
f
′
j (U )U − f j (U )

)
+h(U +U ,∇φ), (33)

and its solution is given by

U (t)=Γh(t)∗U0+
n∑

j=1

∫t

0
∂x j

Γ
h(t −τ)∗

[
f
′
j (U )U (τ)− f j (U (τ))

]
dτ

+
∫t

0
Γ

h(t −τ)∗h(U +U ,∇φ)dτ, (34)

where Γ
h denotes the Green function of the linearized system

∂tU +
n∑

j=1

f
′
j (U )∂x j

U = g (U ).

Let us briefly recall the results on the Green Kernel of multidimensional dissipative hyperbolic systems

obtained by Bianchini et al. in [2]. In their work the authors analyzed the behavior of the function Γ
h(x, t)

for linearized problems. It has been decomposed into two main terms: the diffusive one consisting of heat

kernel and a faster term consisting of the hyperbolic part. In general, the form of the Green function is not

explicit, but it is possible to deal with its Fourier transform. The separation of the Green Kernel into various

parts is done at the level of a solution operator Γh(t) acting on L1(Rn)∩L2(Rn).

They deeply described the behavior of the diffusive part, which is decomposed in four blocks, decaying with

different rates. They showed that solutions have canonical projections on two different components: the

conservative part and the dissipative part. The first one, which formally corresponds to the conservative

part of equations, decays in time like the heat kernel, since it corresponds to the diffusive part of the Green

function. On the other side, the dissipative part is strongly influenced by the dissipation and decays at a

rate t−
1
2 faster than the conservative one.

They considered the Cauchy problem for the linear system in the conservative-dissipative form

∂t w +
n∑

j=1

A j∂x j
w = B w,

and they showed that it is possible to decompose the solution as

w(t)= Γ
h(t)∗w0 = K (t)w0 +K (t)w0,

for any function w0 ∈ L1(Rn)∩L2(Rn), where K (t) is the diffusive part and K (t) is the trasport dissipative

one.

Moreover for any multi index β and for every p ∈ [2,+∞] the following estimates hold:

‖Dβ
K (t)w0‖L2 ≤ Ce−ct‖Dβw0‖L2 ,

‖L0DβK (t)w0‖Lp ≤ C (|β|)min{1, t
− m

2

(
1− 1

p

)
− |β|

2 }‖L0w0‖L1
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+C (|β|)min{1, t
− m

2

(
1− 1

p

)
− 1

2−
|β|
2 }‖L−w0‖L1 ,

‖L−DβK (t)w0‖Lp ≤ C (|β|)min{1, t
− m

2

(
1− 1

p

)
− 1

2−
|β|
2 }‖L0w0‖L1

+C (|β|)min{1, t
− m

2

(
1− 1

p

)
−1− |β|

2 }‖L−w0‖L1 ,

where L0 = [I1,0] and L− = [0, I2] are the projectors on the null space and on the negative definite part of B .

5.1 H s Estimates of the Solution

This section is devoted to study the decay rates of solution to the system (32) in the H s -norm.

We define

Es := max
{
‖U0‖L1 , ‖U0‖H s

}
, Ds := max

{∥∥φ0

∥∥
L1 ,

∥∥φ0

∥∥
H s

}
,

and the general functional

Sα
w := sup

0≤τ≤t

{
max

{
1,τα

}
‖w(τ)‖H s

}
.

Then, we shall prove the following theorem

Theorem 5.1. Let (U ,φ) be a global solution to problem (32), with initial conditions

U (x,0) =U0(x), φ(x,0) =φ0(x),

with

U0 ∈ H s+1(Rn)∩L1(Rn), φ0 ∈ H s+1(Rn)∩L1(Rn), for s >
[n

2

]
+1.

Then the following decay estimates hold:

‖U (t)‖H s ≤ min{1, t−
n
4 }C (Es+1,Ds+1,ρ),

‖φ(t)‖H s+1 ≤ min{1, t−
n
4 }C (Es+1 +Ds+1,ρ).

Proof. First we consider the parabolic equation

∂tφ= D∆φ+au−bφ,

and, using the Duhamel’s formula, we can write the solution as

φ(x, t) = (e−bt
Γ

p (t)∗φ0)(x)+
∫t

0
e−b(t−τ)

Γ
p (t −τ)∗aρ(τ)dτ,

where

Γ
p (x, t) :=

e−
|x|2
4Dt

(4πDt)n/2
.

Let us start with the H s+1 estimate:

‖φ(t)‖H s+1 ≤ce−bt ‖φ0‖H s+1 +c

∫t

0
e−b(t−τ)‖aρ(τ)‖L2 dτ

+c

∫t

0
e−b(t−τ)(t −τ)−

1
2 ‖aρ(τ)‖H s dτ
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≤ce−bt ‖φ0‖H s+1 +cS
n
4

U
(t)

∫t

0
e−b(t−τ)(t −τ)−

1
2 min{1,τ−

n
4 }dτ

+cS
n
4

U
(t)

∫t

0
e−b(t−τ) min{1,τ−

1
4 }dτ.

So we obtain the following H s+1 estimate for φ

‖φ(t)‖H s+1 ≤ c(e−bt‖φ0‖H s+1 +min{1, |t −1|−
n
4 }S

n
4

U
(t)+min{1, t−

n
4 }S

n
4

U
(t)),

which yields

S
n
4

φx
(t)≤C (e−bt max{1, t

n
4 }‖φ0‖H s+1 +S

n
4

U
(t)). (35)

Let us notice that from the previous inequality the decay rate of the function φ in H s+1 is the same rate of

the function U in H s .

Proceeding in a similar way, it is possible to get the following estimate for the function φ in the space L1:

‖φ(t)‖L1 ≤ e−bt‖φ0‖L1 +c sup
τ∈(0,t )

‖ρ(τ)‖L1 , (36)

where, thanks to the mass conservation, sup
τ∈(0,t )

‖ρ(τ)‖L1 = ‖ρ0‖L1 .

Now we focus on the estimate of function U . Let us observe that f j (U )− f
′
j (U )U = U 2r j (U ) (where the

product should be intended as the tensor product), therefore, using (34) and the definition of Es , we obtain

‖U (t)‖H s ≤c min{1, t−
n
4 }‖U0‖L1 +ce−ct ‖U0‖H s

+c

∫t

0
min{1,(t −τ)−

n
4 −

1
2 }

n∑

j=1

∥∥U 2(τ)r j (U (τ))
∥∥

L1 dτ

+c

∫t

0
e−c(t−τ)

n∑

j=1

∥∥∥∂x j
(U 2(τ)r j (U )(τ))

∥∥∥
H s

dτ

+
∫t

0
‖Γh(t −τ)∗h(U +U ,∇φ)(τ)‖H s dτ. (37)

At this stage we want to estimate the right hand side of this inequality.

Let us start studying the first integral in (37), as follows

∫t

0
min{1,(t −τ)−

n
4 −

1
2 }

n∑

j=1

∥∥U 2(τ)r j (U (τ))
∥∥

L1 dτ

≤
∫t

0
min{1,(t −τ)−

n
4 −

1
2 }‖U (τ)‖2

L2

n∑

j=1

‖r j (U (τ))‖
L∞(|U |≤δ0)

dτ

≤ c(S
n
4

U
(t))2

∫t

0
min{1,(t −τ)−

n
4 −

1
2 }min{1,τ−

n
2 }dτ.

Then from Lemma 5.2 of [2], we deduce

c

∫t

0
min{1,(t −τ)−

n
4 −

1
2 }

∥∥U 2(τ)r j (U )
∥∥

L1 dτ

≤ c

∫t

0
min{1,(t −τ)−

n
4 −

1
2 }min{1,τ−

n
2 }(S

n
4

U
(t))2

≤ c min{1, t−ν}(S
n
4

U
(t))2, (38)
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where ν= min
{

n
4
+ 1

2
, n

2
, 3

4
n− 1

2

}
.

In order to estimate the next term in (37), we use Lemma 5.3 of [2] which yields

n∑

j=1

∥∥∥∂x j
(U 2r j (U ))

∥∥∥
H s

≤ sup
j=1,...,n

c(δ0,‖u‖H s ,‖r j ‖C s+|β|(|u|≤δ0))‖U‖L∞
n∑

j=1

∥∥∥∂x j
U

∥∥∥
H s

≤ c ‖U‖H s ‖U‖H s+1 . (39)

Then we have
∫t

0
e−c(t−τ)

n∑

j=1

∥∥∥∂x j
(U 2r j (U ))(τ)

∥∥∥
H s

≤c

∫t

0
e−c(t−τ) ‖U (τ)‖H s ‖U (τ)‖H s+1 dτ

≤cS
n
4

U
(t)Es+1

∫t

0
e−c(t−τ) min{1,τ−

n
4 }dτ

≤c min{1, t−
n
4 }S

n
4

U
(t)Es+1. (40)

In the last inequalities, we have used Lemma 5.2 of [2] and the estimate of Theorem (4.1) to controll the

norm of the function U in H s .

Finally we estimate the last integral of (37) in the following way

∫t

0
‖Γh(t −τ)∗h(U +U ,∇φ)(τ)‖H s dτ≤

∫t

0
‖K (t −τ)h(U +U ,∇φ)(τ)‖H s dτ

+
∫t

0
‖K (t −τ)h(U +U ,∇φ)(τ)‖H s dτ.

For the first term, we have:

∫t

0
‖K (t −τ)h(U +U ,∇φ)(τ)‖H s dτ≤

∫t

0
ce−c(t−τ)‖∇φ(τ)‖H s (ρ+‖ρ(τ)‖H s )dτ

≤ρS
n
4

φx
(t)

∫t

0
ce−c(t−τ) min{1,τ−

n
4 }dτ

+S
n
4

φx
(t)S

n
4

U
(t)

∫t

0
ce−c(t−τ) min{1,τ−

n
2 }dτ

≤c min{1, t−
n
4 }ρS

n
4

φx
(t)

+c min{1, t−
n
2 }S

n
4

φx
(t)S

n
4

U
(t). (41)

In order to complete our estimate, we need to study the contribution of the diffusive part of the hyperbolic

Green function. Since we are interested in the slowest decay estimate of the solution U , we focus on the first

component:

∫t

0
‖K (t −τ)h(U +U ,∇φ)(τ)‖H s dτ

≤
∫t

0

n∑

j=1

∥∥∥K1 j+1(t −τ)∂x j
φ(ρ+ρ)(τ)

∥∥∥
H s

dτ

≤c

∫t

0
min{1,(t −τ)−

n
4 −1}ρ‖φ(τ)‖L1 dτ

+cS
1
4

φx
(t)S

1
4

U
(t)

∫t

0
min{1,(t −τ)−

n
4 −

1
2 }min{1,τ−

n
2 }dτ. (42)

Thanks to (36), we deduce that

c

∫t

0
min{1,(t −τ)−

n
4 −1}ρ‖φ(τ)‖L1 dτ≤ c min{1, t−

n
4 −1}ρ‖φ0‖L1 +c‖ρ0‖L1ρt−

n
4 . (43)
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In conclusion, substituting (38), (40), (41),(43), in (37), we have

‖U (t)‖H s ≤c
(
min{1, t−

n
4 }Es +min{1, t−

n
4 }S

n
4

U
Es+1 +min{1, t−ν}(S

n
4

U
(t))2

+min{1, t−
n
4 }ρS

n
4

φx
(t)+min{1, t−

n
2 }S

n
4

φx
(t)S

n
4

U
(t)

+ min{1, t−
n
4 }S

n
4

φx
(t)S

n
4

U
(t)+µmin{1, t−

n
4 −1}ρ‖φ0‖L1 +‖ρ0‖L1ρt−

n
4

)
.

So we obtain

S
n
4

U
(t) ≤c

(
Es +S

n
4

U
(t)Es+1+ (S

n
4

U
(t))2 +ρS

n
4

φx
(t)+ρDs +S

n
4

φx
(t)S

n
4

U
(t)

)
.

Now, we substitute inequality (35) in the previous one, obtaining, for t > δ> 0,

S
n
4

U
(t)≤C (1+S

n
4

U
(t)+ (S

n
4

U
(t))2),

where C =C (Es ,Ds+1,ρ).

From this inequality we deduce that, if the initial data and the perturbation ρ are sufficiently small, then we

have

‖U (t)‖H s ≤C min{1, t−
n
4 },

∥∥φ(t)
∥∥

H s+1 ≤C min{1, t−
n
4 }.

5.2 L∞ Estimates of the Solution

We now estimate the L∞-norm of solutions to the system (32). As done before, we define the functional

Rα
w (t) := sup

0≤τ≤t

{
max

{
1,τα

}
‖w(τ)‖L∞

}
,

and

Es := max
{
‖U0‖L1 , ‖U0‖H s

}
, Ds := max

{∥∥φ0

∥∥
L1 ,

∥∥φ0

∥∥
H s

}
.

We want to prove the following theorem

Theorem 5.2. Let (U ,φ) be a global solution to system (32), with initial conditions

U (x,0) =U0(x), φ(x,0) =φ0(x),

with

U0 ∈ H s+1(Rn)∩L1(Rn), φ0 ∈ H s+1(Rn)∩L1(Rn), for s =
[n

2

]
+2.

Then the following decay estimates hold:

‖U (t)‖L∞ ≤ min{1, t−
n
4 }C (Es ,Ds+1,ρ), ‖φ(t)‖L∞ ≤ min{1, t−

n
4 }C (Es ,Ds+1,ρ).

Proof. Proceeding as done before, we obtain L∞ estimates for φ and ∇φ. First of all we show that

‖φ(t)‖L∞ ≤ce−bt ‖φ0‖L∞ +c

∫t

0
e−b(t−τ)‖aρ(τ)‖L∞dτ
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≤ce−bt ‖φ0‖L∞ +cR
n
4

U
(t)

∫t

0
e−b(t−τ) min{1,τ−

n
4 }dτ,

which yields

‖φ(t)‖L∞ ≤ c
(
e−bt‖φ0‖L∞ +min{1, t−

n
4 }R

n
4

U
(t)

)
.

In a similar way, we get

‖∇φ(t)‖L∞ ≤ c
(
e−bt‖∇φ0‖L∞ +min{1, |t −1|−

n
4 }R

n
4

U
(t)

)
.

This means that

R
n
4

φ ≤C (Ds +R
n
4

U
(t)), (44)

R
n
4

φx
≤C (Ds+1 +R

n
4

U
(t)). (45)

Now let us consider the solution of our system written in the form (33), i.e.

U (t)=Γh(t)∗U0 +
n∑

j=1

∫t

0
∂x j

Γ
h(t −τ)∗

[
f ′

j (U )U (τ)− f j (U (τ))
]

dτ

+
∫t

0
Γ

h (t −τ)∗h(U +U ,∇φ)(τ)dτ.

Thanks to the decomposition of the Green function, we estimate the L∞-norm of U in the following way

‖U (t)‖L∞ ≤c min{1, t−
n
2 }‖U0‖L1 +ce−ct‖U0‖H s

+
∫t

0
min{1,(t −τ)−

n
2 −

1
2 }

n∑

j=1

∥∥U 2r j (U )(τ)
∥∥

L1 dτ

+
∫t

0
e−c(t−τ)

n∑

j=1

∥∥∥∂x j
(U 2r j (U )(τ))

∥∥∥
H s

dτ

+
∫t

0
‖Γh(t −τ)h(U +U ,∇φ)(τ)‖L∞dτ. (46)

The third term in the r.h.s. of (46) is estimated as:

∫t

0
min{1,(t −τ)−

n
2 −

1
2 }

n∑

j=1

∥∥U 2r j (U )(τ)
∥∥

L1 dτ≤ c min{1, t−
n
2 }E 2

s .

While the next term in (46) can be estimated as

n∑

j=1

∫t

0
e−c(t−τ)

∥∥∥∂x j
(U 2r j (U )(τ))

∥∥∥
H s

dτ≤ cR
n
4

U
(t)Es+1

∫t

0
e−c(t−τ) min{1,τ−

n
4 }dτ

≤ c min{1, t−
n
4 }R

n
4

U
(t)Es+1,

where we have used the inequality (39).

Proceeding in a similar way, we control the last term in (46) as follows

∫t

0
‖Γh(t −τ)∗h(U +U ,∇φ)(τ)‖L∞dτ≤

∫t

0
‖K (t −τ)h(U +U ,∇φ)(τ)‖L∞dτ

+
∫t

0
‖K (t −τ)h(U +U ,∇φ)(τ)‖L∞dτ.
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Let us start from the second integral on the right hand side:

∫t

0
‖K (t −τ)h(U +U ,∇φ)(τ)‖L∞dτ≤c min{1, t−

n
4 }ρS

n
4

φx
(t)

+c min{1, t−
n
2 }S

n
4

φx
(t)S

n
4

U
(t),

thanks to Lemma 5.2 of [2] .

Now we need to estimate the contributions of the diffusive part of the hyperbolic Green function

∫t

0
‖K (t −τ)h(U +U ,∇φ)(τ)‖L∞dτ

≤
∫t

0

n∑

j=1

‖K1 j+1(t −τ)ρ(τ)∂x j
φ(τ)‖L∞dτ+

∫t

0

n∑

j=1

‖∂x j
K1 j+1(t −τ)ρφ(τ)‖L∞dτ

≤S
n
4

U
(t)S

n
4

φx
(t)

∫t

0
min{1,(t −τ)−

n
2 −

1
2 }min{1,τ−

n
2 }dτ

+c

∫t

0
min{1,(t −τ)−

n
2 −1}ρe−bτdτ+c

∫t

0
min{1,(t −τ)−

n
2 −1}ρ‖ρ0‖L1 dτ

≤min{1, t−
n
2 }S

n
4

U
(t)S

n
4

φx
(t)+c

(
min{1, t−

n
2 −1}ρ+ t−

n
2 ρ‖ρ0‖L1

)
.

In conclusion, we obtain

‖U (t)‖L∞ ≤c
[

min{1, t−
n
2 }‖U0‖L1 +e−ct ‖U0‖H s +min{1, t−

n
2 }E 2

s

+min{1, t−
1
2 }R

n
4

U
(t)Es+1+min{1, t−

n
4 }ρS

n
4

φx
(t)

+min{1, t−
n
2 }S

n
4

φx
(t)S

n
4

U
(t)+µ(min{1, t−

n
2 −1}ρ+ t−

n
2 ρ‖ρ0‖L1 )

]
.

Let us recall that S
n
4

U
, S

n
4

φx
≤ C . Then, substituting inequalities (44) and (45) in the previous one and multi-

plying by max{1, t
n
4 }, we obtain

R
n
4

U
(t)≤C (1+R

n
4

U
(t)),

where C =C (Es+1,Ds+1,ρ).

In conclusion, if initial data and the constant state ρ are sufficiently small, for the L∞-norm of the solution

(U ,φ) we obtain the following estimates

‖U (t)‖L∞ ≤ min{1, t−
n
4 }C (Es+1,Ds+1,ρ),

∥∥φ(t)
∥∥

L∞ ≤ min{1, t−
n
4 }C (Es+1,Ds+1,ρ).
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