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ACCELERATION OF UNIVARIATE GLOBAL OPTIMIZATION ALGORITHMS
WORKING WITH LIPSCHITZ FUNCTIONS

AND LIPSCHITZ FIRST DERIVATIVES∗

DANIELA LERA† AND YAROSLAV D. SERGEYEV‡

Abstract. This paper deals with two kinds of the one-dimensional global optimization problems over a closed
finite interval: (i) the objective function f(x) satisfies the Lipschitz condition with a constant L; (ii) the first
derivative of f(x) satisfies the Lipschitz condition with a constant M . In the paper, six algorithms are presented for
the case (i) and six algorithms for the case (ii). In both cases, auxiliary functions are constructed and adaptively
improved during the search. In the case (i), piece-wise linear functions are constructed and in the case (ii) smooth
piece-wise quadratic functions are used. The constants L and M either are taken as values known a priori or
are dynamically estimated during the search. A recent technique that adaptively estimates the local Lipschitz
constants over different zones of the search region is used to accelerate the search. A new technique called the local
improvement is introduced in order to accelerate the search in both cases (i) and (ii). The algorithms are described
in a unique framework, their properties are studied from a general viewpoint, and convergence conditions of the
proposed algorithms are given. Numerical experiments executed on 120 test problems taken from the literature
show quite a promising performance of the new accelerating techniques.

Key words. Global optimization, Lipschitz functions, Lipschitz derivatives, balancing local and global infor-
mation, acceleration.
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1. Introduction. Let us consider the one-dimensional global optimization problem of finding
a point x∗ belonging to a finite interval [a, b] and the value f∗ = f(x∗) such that

f∗ = f(x∗) = min{f(x) : x ∈ [a, b]},(1.1)

where either the objective function f(x) or its first derivative f ′(x) satisfy the Lipschitz condition,
i.e., either

|f(x)− f(y)| ≤ L|x− y|, x, y ∈ [a, b],(1.2)

or

|f ′(x) − f ′(y)| ≤M |x− y|, x, y ∈ [a, b],(1.3)

with constants 0 < L <∞, 0 < M <∞.
Problems of this kind are worthy of a great attention because of at least two reasons. First,

there exists a large number of real-life applications where it is necessary to solve univariate global
optimization problems stated in various ways (see, e.g., [2, 3, 4, 5, 8, 10, 16, 18, 23, 24, 26, 28,
29, 30, 31, 32, 35, 36]). This kind of problems is often encountered in scientific and engineering
applications (see, e.g., [9, 14, 15, 21, 24, 30, 31, 33, 36]), and, in particular, in electrical engineering
optimization problems (see, e.g., [5, 6, 17, 20, 27, 33]). On the other hand, it is important to
study one-dimensional methods proposed to solve problems (1.1), (1.2) and (1.1), (1.3) because
they can be successfully extended to the multi-dimensional case by numerous schemes (see, for
example, one-point based, diagonal, simplicial, space-filling curves, and other popular approaches
in [7, 12, 13, 19, 21, 30, 33]).
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Fig. 1.1. A piece-wise linear support function constructed by the method of Piyavskii after five evaluations of
the objective function f(x)

In the literature, there exist several methods for solving the problems (1.1), (1.2) and (1.1),
(1.3) (see, for example, [12, 13, 30, 33, 21], etc.). For solving the problem (1.1), (1.2) Piyavskii
(see [23]) has proposed a popular method that requires an a priori overestimate of the Lipschitz
constant L of the function f(x): in the course of its work, the algorithm constructs piece-wise
linear support functions for f(x) over every subinterval [xi−1, xi], i = 2, ..., k, where the points
x1, ..., xk are points previously produced by the algorithm (see Fig. 1.1) at which the objective
function f(x) has been evaluated, i.e., zi = f(xi), i = 2, ..., k.

In the present paper, to solve the problem (1.1), (1.2) we consider Piyavskii’s method and
algorithms that dynamically estimate the Lipschitz information for the entire region [a, b] or for
its subregions. This is done since the precise information about the value L Piyavskii’s method
requires for its correct work is often hard to get in practice. Thus, we use two different procedures
to obtain an information on the constant L: the first one estimates the global constant during the
search (the word “global” means that the same estimate is used over the whole region [a, b]), and
the second, called “local tuning technique” that adaptively estimates the local Lipschitz constants
in different subintervals of the search region during the course of the optimization process.

Then, in order to accelerate the search, we propose a new acceleration tool, called “local
improvement”, that can be used together with all three ways described above to obtain the Lipschitz
information in the framework of the Lipschitz algorithms. The new approach forces the global
optimization method to make a local improvement of the best approximation of the global minimum
immediately after a new approximation better than the current one is found.

The proposed local improvement technique is of a particular interest due to the following
reasons. First, usually in the global optimization methods the local search phases are separated
from the global ones. This means that it is necessary to introduce a rule that stops the global
phase and starts the local one; then it stops the local phase and starts the global one. It can
happen (see, e.g., [12, 13, 30, 33, 21], etc.), that the global search and the local one are realized by
different algorithms and the global search is not able to use all evaluations of f(x) made during
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Fig. 1.2. Breiman-Cutler-Gergel piece-wise quadratic non-differentiable support function constructed after five
evaluations of the objective function f(x)

the local search losing so an important information about the objective function that has been
already obtained. The local improvement technique introduced in this paper does not have this
defect and allows the global search to use all the information obtained during the local phases. In
addition, it can work without any usage of the derivatives and this is a valuable asset when one
solves the problem (1.1), (1.2) because, clearly, Lipschitz functions can be non-differentiable.

Let us consider now the problem (1.1), (1.3). For this case, using the fact that the first
derivative f ′(x) of the objective function satisfies the Lipschitz condition (1.3), Breiman and Cutler
(see [1]) have suggested an approach that constructs at each iteration piece-wise quadratic non-
differentiable support functions for the function f(x) over [a, b] using an a priori given overestimate
of M from (1.3). Gergel (see [8]) has proposed independently a global optimization method that
constructs similar auxiliary functions (see Fig. 1.2) and estimatesM dynamically during the search.

If we suppose that the the Lipschitz constant M from (1.3) is known, then (see [1, 8]), at an
iteration k > 2, the support functions Φi(x) are constructed for every interval [xi−1, xi], i = 2, ..., k,
(see Fig. 1.2) as follows:

Φi(x) = max{φi−1(x), φi(x)}, x ∈ [xi−1, xi],(1.4)

where

φi−1(x) = zi−1 + z′i−1(x− xi−1)−
M

2
(x − xi−1)

2,

φi(x) = zi − z′i(xi − x)−
M

2
(xi − x)2,

and zi = f(xi), z
′

i = f ′(xi).
It can be noticed that in spite of the fact that f(x) is smooth, the support functions Φi(x)

are not smooth. This defect has been eliminated in [25] where there have been introduced three
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methods constructing smooth support functions that are closer to the objective function than
non-smooth ones.

In this paper, for solving the problem (1.1), (1.3) we describe six different algorithms where
smooth support functions are used. As it was in the case of the problem (1.1), (1.2), the local
tuning and the local improvement techniques are applied to accelerate the search.

The paper has the following structure: in Section 2 we describe algorithms for solving the
problem (1.1), (1.2); in Section 3 we describe methods that use smooth support functions in order
to solve the problem (1.1), (1.3). The convergence conditions to the global minimizers for the
introduced methods are established in both Sections. In Section 4, numerical results are presented
and discussed. Finally, Section 5 concludes the paper.

2. Six methods constructing piece-wise linear auxiliary functions for solving prob-
lems with the Lipschitz objective function. In this Section, we study the problem (1.1) with
the objective function f(x) satisfying the Lipschitz condition (1.2). First, we present a general
scheme describing in a compact form all the methods considered in this Section and then, by spec-
ifying STEP 2 and STEP 4 of the scheme, we introduce six different algorithms. In this Section,
by the term trial we denote the evaluation of the function f(x) at a point x that is called the trial
point.

General Scheme (GS) describing algorithms working with piece-wise linear auxil-
iary functions.
STEP 0. The first two trials are performed at the points x1 = a and x2 = b. The point xk+1,

k ≥ 2, of the current (k+1)-th iteration is chosen as follows.
STEP 1. Renumber the trial points x1, x2, . . . , xk of the previous iterations by subscripts so

that

a = x1 < . . . < xk = b.(2.1)

STEP 2. Compute in a certain way the values li being estimates of the Lipschitz constants of
f(x) over the intervals [xi−1, xi], i = 2, ...k. The way to calculate the values li will be
specified in each concrete algorithm described below.

STEP 3. Calculate for each interval (xi−1, xi), i = 2, ...k, its characteristic

Ri =
zi + zi−1

2
− li

(xi − xi−1)

2
,(2.2)

where the values zi = f(xi), i = 1, ..., k.
STEP 4. Find an interval (xt−1, xt) where the next trial will be executed. The way to choose

such an interval will be specified in each concrete algorithm described below.
STEP 5. If

|xt − xt−1| > ε,(2.3)

where ε > 0 is a given search accuracy, then execute the next trial at the point

xk+1 =
xt + xt−1

2
+
zt−1 − zt

2lt
(2.4)

and go to STEP 1. Otherwise, take as an estimate of the global minimum f∗ from (1.1)
the value

f∗

k = min{zi : 1 ≤ i ≤ k},

and a point

x∗k = argmin{zi : 1 ≤ i ≤ k},

as an estimate of the global minimizer x∗, after executing these operations STOP.
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Let us make some observations with regard to the scheme GS introduced above. During the
course of the (k+1)th iteration a method following this scheme constructs an auxiliary piece-wise
linear function

Ck(x) =

k
⋃

i=2

ci(x)

where

ci(x) = max{zi−1 − li(x − xi−1), zi + li(x− xi)}, x ∈ [xi−1, xi],

and the characteristic Ri from (2.2) represents the minimum of the auxiliary function ci(x) over
the interval [xi−1, xi].

If the constants li are equal or larger than the Lipschitz constant L for all i = 2, ..., k, then
it follows from (1.2) that the function Ck(x) is a low-bounding function for f(x) over the interval
[a, b], i.e., for every interval [xi−1, xi], i = 2, ..., k, we have

f(x) ≥ ci(x), x ∈ [xi−1, xi], i = 2, ..., k.

Moreover, if li = L, we obtain the Piyavskii support functions (see Fig. 1.1).
In order to obtain from the general scheme GS a concrete global optimization algorithm, it

is necessary to define STEP 2 and STEP 4 of the scheme. This section proposes six specific
algorithms executing this operation in different ways. In STEP 2, we can make three different
choices of computing the constant li that lead to three different procedures that are called STEP
2.1, STEP 2.2, and STEP 2.3, respectively. The first way to define STEP 2 is the following.

STEP 2.1.
Set

li = L, i = 2, ..., k.(2.5)

Here the exact value of the a priori given Lipschitz constant is used. Obviously, this rule gives us
the Piyavskii algorithm.

If the constant L it is not available (this situation be can very often encountered in practice), it
is necessary to look for an approximation of L during the course of the search. Thus, as the second
way to define STEP 2 of the GS we use an adaptive estimate of the global Lipschitz constant (see
[30, 33]), for each iteration k. More precisely we have:

STEP 2.2.
Set

li = rmax{ξ,Hk}, i = 2, ..., k,(2.6)

where ξ > 0 is a small number that takes into account our hypothesis that f(x)
is not constant over the interval [a, b] and r > 1 is a reliability parameter. The
value Hk is calculated as follows

Hk = max{Hi : i = 2, ..., k, }(2.7)

with

Hi =
|zi − zi−1|

xi − xi−1
, i = 2, ..., k.(2.8)

In both cases, STEP 2.1 and STEP 2.2, at each iteration k all quantities li assume the same
value over the whole search region [a, b]. However, both the a priori given exact constant L
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and its global estimate (2.6) can provide a poor information about the behavior of the objective
function f(x) over every small subinterval [xi−1, xi] ⊂ [a, b]. In fact, when the local Lipschitz
constant related to the interval [xi−1, xi] is significantly smaller than the global constant L, then
the methods using only this global constant or its estimate (2.6) can work slowly over such an
interval (see [24, 30, 33]).

In order to overcome this difficulty, we consider a recent approach (see [24, 30, 33]) called
the local tuning that adaptively estimates the values of the local Lipschitz constants related to the
intervals [xi−1, xi], i = 2, ..., k (note that other techniques using different kinds of local information
in global optimization can be found also in [21, 33, 34]). The auxiliary function Ck(x) is then
constructed by using these local estimates for each interval [xi−1, xi], i = 2, ..., k. This technique
is described below as the rule STEP 2.3.

STEP 2.3.
Set

li = rmax{λi, γi, ξ}(2.9)

with

λi = max{Hi−1, Hi, Hi+1}, i = 3, ..., k − 1,(2.10)

where Hi is from (2.8), and when i = 2 and i = k only H2, H3,
and Hk−1, Hk, should be considered, respectively. The value

γi = Hk (xi − xi−1)

Xmax
,(2.11)

where Hk is from (2.7) and

Xmax = max{xi − xi−1 : i = 2, ..., k}.

The parameter ξ > 0 has the same sense as in STEP 2.2.

Note that in (2.9) we consider two different components, λi and γi, that take into account re-
spectively the local and the global information obtained during the previous iterations. When the
interval [xi−1, xi] is large, the local information is not reliable and the global part γi has a decisive
influence on li thanks to (2.9) and (2.11). When [xi−1, xi] is small, then the local information
becomes relevant, γi is small (see (2.11)), and the local component λi assumes the key role. Thus,
STEP 2.3 automatically balances the global and the local information available at the current
iteration. It has been proved for a number of global optimization algorithms that the usage of the
local tuning can accelerate the search significantly (see [24, 25, 26, 30, 31, 32, 33]).

Let us introduce now possible ways to fix STEP 4 of the GS. At this step, we select an interval
where a new trial will be executed. We consider both the traditional rule used, for example, in [23]
and [33] and a new one that we shall call the local improvement technique. The traditional way to
choose an interval for the next trial is the following.

STEP 4.1.
Select the interval (xt−1, xt) such that

Rt = min{Ri : 2 ≤ i ≤ k}(2.12)

and t is the minimal number satisfying (2.12).

This rule used together with STEP 2.1 gives us Piyavskii’s algorithm. In this case, the new
trial point xk+1 ∈ (xt−1, xt) is chosen in such a way that

Rt = min{Ri : 2 ≤ i ≤ k} = ct(x
k+1) = min{Ck(x) : x ∈ [a, b]}.
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The new way to fix STEP 4 is introduced below.

STEP 4.2 (the local improvement technique).
flag is a parameter initially equal to zero.
imin is the index corresponding to the current estimate of the minimal value
of the function, that is: zimin = f(ximin) ≤ f(xi), i = 1, ..., k.
zk is the result of the last trial corresponding to a point xj in the line (2.1),
i.e., xk = xj .
IF (flag=1) THEN

IF zk < zimin THEN imin = j.
Local improvement: Alternate the choice of the interval (xt−1, xt) among
t = imin+ 1 and t = imin, if imin = 2, ..., k − 1, (if imin = 1 or imin = k
take t = 2 or t = k, respectively) in such a way that for δ > 0 it follows

|xt − xt−1| > δ.(2.13)

ELSE (flag=0)
t = argmin{Ri : 2 ≤ i ≤ k}

ENDIF
flag=NOTFLAG(flag)

The motivation of the introduction of STEP 4.2 presented above is the following. In STEP
4.1, at each iteration, we continue the search at an interval corresponding to the minimal value of
the characteristic Ri, i = 2, ..., k (see (2.12)). This choice admits occurrence of such a situation
where the search goes on for a certain finite (but possibly high) number of iterations at subregions
of the domain that are “distant” from the best found approximation to the global solution and
only successively concentrates trials at the interval containing a global minimizer. However, very
often it is of a crucial importance to be able to find a good approximation of the global minimum
in the lowest number of iterations. Due to this reason, in STEP 4.2 we take into account the rule
(2.12) used in STEP 4.1 and related to the minimal characteristic, but we alternate it with a new
selection method that forces the algorithm to continue the search in the part of the domain close
to the best value of the objective function found up to now. The parameter “flag” assuming values
0 or 1 allows us to alternate the two methods of the selection.

More precisely, in STEP 4.2 we start by identifying the index imin corresponding to the
current minimum among the found values of the objective function f(x), and then we select the
interval (ximin, ximin+1) located on the right of the best current point, ximin, or the interval on
the left of ximin, i.e., (ximin−1, ximin). STEP 4.2 keeps working alternatively on the right and on
the left of the current best point ximin until a new trial point with value less than zimin is found.
The search moves from the right to the left of the best found approximation trying to improve it.
However, since we are not sure that the found best approximation ximin is really located in the
neighborhood of a global minimizer x∗, the local improvement is alternated in STEP 4.2 with the
usual rule (2.12) providing so the global search of new subregions possibly containing the global
solution x∗. The parameter δ defines the width of the intervals that can be subdivided during the
phase of the local improvement. Note that the trial points produced during the phases of the local
improvement (obviously, there can be more than one phase in the course of the search) are used
during the further iterations of the global search in the same way as the points produced during
the global phases.

Let us consider now possible combinations of the different choices of STEP 2 and STEP 4
allowing us to construct the following six algorithms.

PKC: GS with STEP 2.1 and STEP 4.1 (Piyavskii’s method with the a priori Known Constant
L).
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GE: GS with STEP 2.2 and STEP 4.1 (the method using the Global Estimate of the Lipschitz
constant L).

LT: GS with STEP 2.3 and STEP 4.1 (the method executing the Local Tuning on the local
Lipschitz constants).

PKC LI: GS with STEP 2.1 and STEP 4.2 (Piyavskii’s method with the a priori Known
Constant L enriched by the Local Improvement technique).

GE LI: GS with STEP 2.2 and STEP 4.2 (the method using the Global Estimate of L enriched
by the Local Improvement technique).

LT LI: GS with STEP 2.3 and STEP 4.2 (the method executing the Local Tuning on the local
Lipschitz constants enriched by the Local Improvement technique).

Let us consider convergence properties of the introduced algorithms by studying an infinite
trial sequence {xk} generated by an algorithm belonging to the general scheme GS for solving
problem (1.1), (1.2). We remind that the algorithm PKC is Piyavskii’s method and its convergence
properties have been studied in [23]. In order to start we need the following definition.

Definition 2.1. Convergence to a point x′ ∈ (a, b) is said to be bilateral if there exist two
infinite subsequences of {xk} converging to x′ one from the left, the other from the right.

Theorem 2.1. Assume that the objective function f(x) satisfies the condition (1.2), and let
x′ be any limit point of {xk} generated by the GE or by the LT algorithm. Then the following
assertions hold:

1. convergence to x′ is bilateral, if x′ ∈ (a, b);
2. f(xk) ≥ f(x′), for all trial points xk, k ≥ 1;
3. if there exists another limit point x′′ 6= x′, then f(x′′) = f(x′);
4. if the function f(x) has a finite number of local minima in [a, b], then the point x′ is locally

optimal;
5. (Sufficient conditions for convergence to a global minimizer). Let x∗ be a global minimizer

of f(x). If there exists an iteration number k∗ such that for all k > k∗ the inequality

lj(k) ≥ Lj(k)(2.14)

holds, where Lj(k) is the Lipschitz constant for the interval [xj(k)−1, xj(k)] containing x
∗,

and lj(k) is its estimate (see (2.6) and (2.9)). Then the set of limit points of the sequence

{xk} coincides with the set of global minimizers of the function f(x).
Proof. The proofs of assertions 1–5 are analogous to the proofs of Theorems 4.1–4.2 and

Corollaries 4.1–4.4 from [33]. ✷

Theorem 2.2. Assertions 1–5 of Theorem 2.1 hold for the algorithms PKC LI, GE LI,
and LT LI for a fixed finite tolerance δ > 0 and ε = 0, where δ is from (2.13) and ε is from
(2.3). Proof. Since δ > 0 and ε = 0, the algorithms PKC LI, GE LI, and LT LI use the local
improvement only at the initial stage of the search until the selected interval (xt−1, xt) is greater
than δ. When |xt − xt−1| ≤ δ the interval cannot be divided by the local improvement technique
and the selection criterion (2.12) is used. Thus, since the one-dimensional search region has a
finite length and δ is a fixed finite number, there exists a finite iteration number j such that at
all iterations k > j only selection criterion (2.12) will be used. As a result, at the remaining part
of the search, the methods PKC LI, GE LI, and LT LI behave themselves as the algorithms
PKC, GE, and LT , respectively. This consideration concludes the proof. ✷

The next theorem ensures existence of the values of the parameter r satisfying condition (2.14)
providing so that all global minimizers of f(x) will be located by the four proposed methods that
do not use the a priori known Lipschitz constant.

Theorem 2.3. For any function f(x) satisfying (1.2) with L <∞ there exists a value r∗ such
that for all r > r∗ condition (2.14) holds for the four algorithms GE, LT , GE LI, and LT LI.
Proof. It follows from (2.6), (2.9), and the finiteness of ξ > 0 that approximations of the Lipschitz
constant li in the four methods are always greater than zero. Since L < ∞ in (1.2) and any
positive value of the parameter r can be chosen in the scheme GS, it follows that there exists an
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Fig. 3.1. Constructing smooth support functions by using φi−1(x), πi(x), and φi(x)

r∗ such that condition (2.14) will be satisfied for all global minimizers for r > r∗. This fact, due
to Theorems 2.1 and 2.2, proves the theorem. ✷

3. Six methods constructing smooth piece-wise quadratic auxiliary functions for
solving problems with the Lipschitz first derivative. In this Section, we study the algorithms
for solving problem (1.1) with the Lipschitz condition (1.3) that holds for the first derivative f ′(x)
of the objective function f(x). In this Section, by the term trial we denote the evaluation of both
the function f(x) and its first derivative f ′(x) at a point x that is called the trial point.

We consider the smooth support functions described in [25]. This approach is based on the
fact observed in [25], namely, that at each interval [xi−1, xi] (see Fig. 3.1) the curvature of the
objective function f(x) is determined by the Lipschitz constant M from (1.3). In particular, over
the interval (y′i, yi) it should be f(x) ≥ πi(x) where

πi(x) = 0.5Mx2 + bix+ ci.(3.1)

This means that over the interval (y′i, yi) both the objective function f(x) and the parabola πi(x)
are strictly above the Breiman-Cutler-Gergel’s function Φi(x) from (1.4) where the unknowns
bi, ci, y

′

i, and yi can be determined following the considerations made in [25].

These results from [25] allow us to construct the following smooth support function ψi(x) for
f(x) over [xi−1, xi]:

ψi(x) =







φi−1(x), x ∈ [xi−1, y
′

i],
πi(x), x ∈ [y′i, yi],
φi(x), x ∈ [yi, xi]

(3.2)

where there exists the first derivative ψ′

i(x), x ∈ [xi−1, xi], and

ψi(x) ≤ f(x), x ∈ [xi−1, xi].
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This function is shown in Fig. 3.2. The points yi, y
′

i and the vertex x̄i of the parabola πi(x) can
be found (see [25] for the details) as follows:

yi =
xi − xi−1

4
+
z′i − z′i−1

4M
+
zi−1 − zi + z′ixi − z′i−1xi−1 + 0.5M(x2i − x2i−1)

M(xi − xi−1) + z′i − z′i−1

,(3.3)

y′i = −
xi − xi−1

4
−
z′i − z′i−1

4M
+
zi−1 − zi + z′ixi − z′i−1xi−1 + 0.5M(x2i − x2i−1)

M(xi − xi−1) + z′i − z′i−1

,(3.4)

x̄i = 2yi −
1

M
z′i − xi,(3.5)

where zi = f(xi) and z
′

i = f ′(xi).
In order to construct global optimization algorithms by applying the same methodology used

in the previous Section, for each interval [xi−1, xi] we should calculate its characteristic Ri. For
the smooth auxiliary functions ψi(x) it can be calculated as Ri = ψi(pi), where

pi = argmin{ψi(x) : x ∈ [xi−1, xi]}.

Three different cases can take place.
i) The first one is shown in Fig. 3.2. It corresponds to the situation where conditions ψ′

i(y
′

i) <
0 and ψ′

i(yi) > 0 hold. In this case

pi = argmin{f(xi−1, ψi(x̄i), f(xi)}

and

Ri = min{f(xi−1), ψi(x̄i), f(xi)}.(3.6)
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ii) The second case is whenever ψ′

i(y
′

i) ≥ 0 and ψ′

i(yi) > 0. In this situation, we have (see
[25]) that

Ri = min{f(xi−1), f(xi)}.(3.7)

iii) The third case is when ψ′

i(y
′

i) < 0 and ψ′

i(yi) ≤ 0. It can be considered by a complete
analogy with the previous one.

We are ready now to introduce the general scheme for the methods working with smooth
piece-wise quadratic auxiliary functions. As it has been done in the previous Section, six different
algorithms will be then constructed by specifying STEP 2 and STEP 4 of the general scheme.

General Scheme describing algorithms working with the first Derivatives and con-
structing smooth piece-wise quadratic auxiliary functions (GS D).
STEP 0. The first two trials are performed at the points x1 = a and x2 = b. The point xk+1,

k ≥ 2, of the current (k+1)-th iteration is chosen as follows.
STEP 1. Renumber the trial points x1, x2, . . . , xk of the previous iterations by subscripts so

that

a = x1 < . . . < xk = b.(3.8)

STEP 2. Compute in a certain way the values mi being estimates of the Lipschitz constants of
f ′(x) over the intervals [xi−1, xi], i = 2, ...k. The way to calculate the values mi will be
specified in each concrete algorithm described below.

STEP 3. Initiate the index sets I = ∅, Y ′ = ∅, and Y = ∅. Set the index of the current interval
i = 2 and go to STEP 3.1.
STEP 3.1. If for the current interval [xi−1, xi] the following inequality

π′

i(y
′

i) · π
′

i(yi) ≥ 0(3.9)

does not hold (where π′(x) is the derivative of the parabola (3.1)) then go to STEP
3.2. Otherwise go to STEP 3.3.

STEP 3.2. Calculate for the interval [xi−1, xi] its characteristic Ri using (3.6). Include
i in I and go to STEP 3.4.

STEP 3.3. Calculate for the interval [xi−1, xi] its characteristic Ri using (3.7). If

f(xi−1) < f(xi)

then include the index i in the set Y ′ and go to STEP 3.4. Otherwise include i in
the set Y and go to STEP 3.4.

STEP 3.4. If i < k, set i = i+ 1 and go to STEP 3.1. Otherwise go to STEP 4.
STEP 4. Find the interval (xt−1, xt) for the next possible trial. The way to do it will be specified

in each concrete algorithm described below.
STEP 5. If

|xt − xt−1| > ε,(3.10)

where ε > 0 is a given search accuracy, then execute the next trial at the point

xk+1 =







y′t, if t ∈ Y ′,
x̄t, if t ∈ I,
yt, if t ∈ Y,

(3.11)

and go to STEP 1. Otherwise, take as an estimate of the global minimum f∗ from (1.1)
the value

f∗

k = min{zi : 1 ≤ i ≤ k},
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and a point

x∗k = argmin{zi : 1 ≤ i ≤ k},

as an estimate of the global minimizer x∗, after executing these operations STOP.

Let us make just two comments upon the introduced scheme GS D. First, in STEPS 3.1–3.4
the characteristics Ri, i = 2, ..., k, are calculated by taking into account the different cases i – iii of
the location of the point pi described above. Second, note that the index sets I, Y , and Y ′ have
been introduced in order to calculate the new trial point xk+1 in STEP 5. In fact, the vertex x̄i of
the i− th parabola, i = 2, ..., k, can be outside the interior of the interval [xi−1, xi]. It can happen
that x̄i /∈ [xi−1, xi] whenever ψ

′

i(y
′

i) ≥ 0 and ψ′

i(yi) > 0 (or ψ′

i(y
′

i) < 0 and ψ′

i(yi) ≤ 0), and so the
point y′i (or yi) is selected as new trial point xk+1.

Let us show now how it is possible to specify STEP 2 and STEP 4 of the scheme GS D. As it
has been done in the previous Section for the scheme GS, we first describe three different choices
of the values mi that should be done at STEP 2 and then consider two selection rules that can be
used to fix STEP 4 for choosing the point xk+1. The first possible way to assign values to mi is
the following:

STEP 2.1
Set

mi =M, i = 2, ..., k,(3.12)

where M is from (1.3).

In this case, the exact value of the a priori given Lipschitz constant for the first derivative
f ′(x) is used. As a result, the auxiliary functions ψi(x) from (3.2) are support functions for f(x)
over the intervals [xi−1, xi], i = 2, ..., k. Since it is difficult to know the exact value M in practice,
the choices made in the following STEPS 2.2 and 2.3 (as it was for the methods working with
Lipschitz objective functions) describe how to estimate dynamically the global constantM (STEP
2.2) and the local constants related to each interval [xi−1, xi], i = 2, ..., k (STEP 2.3).

STEP 2.2
Set

mi = rmax{ξ,Hk}, i = 2, ..., k,(3.13)

where ξ > 0 reflects the supposition that f ′(x) is not constant over the interval
[a, b] and r > 1 has the same sense as in the STEP 2.2 of the scheme GS. The
value Hk is computed as

Hk = max{vi : i = 2, ..., k},(3.14)

where

vi =
|2(zi−1 − zi) + (z′i−1 + z′i)(xi − xi−1)|+ di

(xi − xi−1)2
(3.15)

and

di =
√

|2(zi−1 − zi) + (z′i−1 + z′i)(xi − xi−1)|2 + (z′i − z′i−1)
2(xi − xi−1)2.(3.16)

If an algorithm uses the exact value M of the Lipschitz constant (see STEP 2.1 above) then
it is ensured by construction that the points y′i, yi from (3.4) and (3.3) belong to the interval
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[xi−1, xi]. In the case, when an estimate mi of M is used, it can happen that, if the value mi

is underestimated, the points y′i and yi can be obtained outside the interval [xi−1, xi] that would
lead to an error in the work of the algorithm using such an underestimate. It has been proved in
[25] that the choice (3.13)–(3.16) makes this unpleasant situation impossible. More precisely, the
following theorem holds.

Theorem 3.1. If the values mi in GS D are determined by formulae (3.13)-(3.16) then the
points y′i, yi from (3.3), (3.4) belong to the interval [xi−1, xi] and the following estimates take
place:

y′i − xi−1 ≥
(r − 1)2

4r(r + 1)
(xi − xi−1),

xi − yi ≥
(r − 1)2

4r(r + 1)
(xi − xi−1).

Let us introduce now STEP 2.3 that shows how the local tuning technique works in the
situation where the first derivative of the objective function can be calculated.

STEP 2.3
Set

mi = rmax{λi, γi, ξ},(3.17)

where r > 1 and ξ > 0 have the same sense as before, and

λi = max{vi−1, vi, vi+1}, i = 3, ..., k − 1,(3.18)

where the values vi are calculated following (3.15), and when i = 2 and i = k
we consider only v2, v3, and vk−1, vk, respectively. The value γi is computed
as follows

γi = Hk (xi − xi−1)

Xmax
,(3.19)

where Hk is from (3.14) and

Xmax = max{(xi − xi−1), 1 = 2, ..., k}.

As it was in STEP 2.3 of the scheme GS from the previous Section, the local tuning technique
balances the local and the global information to get the estimates mi on the basis of the local
and the global estimates λi and γi. Note also that the fact that y′i and yi belong to the interval
[xi−1, xi] can be proved by a complete analogy with Theorem 3.1 above.

Let us consider now STEP 4 of the scheme GS D. At this step, we should select an interval
[xt−1, xt] containing the next trial point xk+1. As we have already done in Section 2, we consider
two strategies: the rule selecting the interval corresponding to the minimal characteristic Rt and
the local improvement technique. Thus, STEP 4.1 and STEP 4.2 of the scheme GS D correspond
exactly to STEP 4.1 and STEP 4.2 of the scheme GS from Section 2. The obvious difference
consists of the fact that characteristics Ri, i = 2, ..., k are calculated with respect to STEPS
3.1–3.4 of the scheme GS D.

Thus, by specifying STEP 2 and STEP 4 we obtain from the general schemeGS D the following
six algorithms:
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DKC: GS D with STEP 2.1 and STEP 4.1 (the method using the first Derivatives and the a
priori Known Lipschitz Constant M).

DGE: GS D with STEP 2.2 and STEP 4.1 (the method using the first Derivatives and the
Global Estimate of the Lipschitz constant M).

DLT: GS D with STEP 2.3 and STEP 4.1 (the method using the first Derivatives and the Local
Tuning).

DKC LI: GS D with STEP 2.1 and STEP 4.2 (the method using the first Derivatives, the a
priori Known Lipschitz Constant M , and the Local Improvement technique).

DGE LI: GS D with STEP 2.2 and STEP 4.2 (the method using the first Derivatives, the
Global Estimate of the Lipschitz constant M , and the Local Improvement technique).

DLT LI: GS D with STEP 2.3 and STEP 4.2 (the method using the first Derivatives, the Local
Tuning, and the Local Improvement technique).

Let us consider now infinite trial sequences {xk} generated by methods belonging to the general
scheme GS D and study convergence properties of the six algorithms introduced above.

Theorem 3.2. Assume that the objective function f(x) satisfies condition (1.3), and let x′

(x′ 6= a, x′ 6= b) be any limit point of {xk} generated by either by the method DKC or the DGE
or the DLT . If the values mi, i = 2, ..., k, are bounded as below

vi ≤ mi <∞,(3.20)

where vi is from (3.15), then the following assertions hold:
1. convergence to x′ is bilateral, if x′ ∈ (a, b);
2. f(xk) ≥ f(x′), for all trial points xk, k ≥ 1;
3. if there exists another limit point x′′ 6= x′, then f(x′′) = f(x′);
4. if the function f(x) has a finite number of local minima in [a, b], then the point x′ is locally

optimal;
5. (Sufficient conditions for convergence to a global minimizer). Let x∗ be a global minimizer

of f(x) and [xj(k)−1, xj(k)] be an interval containing this point during the course of the
k-th iteration of one of the algorithms DKC, DGE, or DLT . If there exists an iteration
number k∗ such that for all k > k∗ the inequality

Mj(k) ≤ mj(k) <∞(3.21)

takes places for [xj(k)−1, xj(k)] and (3.20) for all the other intervals, then the set of limit

points of the sequence {xk} coincides with the set of global minimizers of the function f(x).
Proof. The proofs of assertions 1–5 are analogous to the proofs of Theorems 5.1–5.5 and

Corollaries 5.1–5.6 from [25]. ✷

The fulfillment of the sufficient conditions for convergence to a global minimizer, i.e., (3.21), are
evident for the algorithm DKC. For the methods DGE and DLT , its fulfillment depends on the
choice of the reliability parameter r. A theorem similar to the theorem 2.3 can be proved for them
by a complete analogy. However, there exist particular cases where the objective function f(x) is
such that its structure ensures that (3.21) holds. In the following theorem, sufficient conditions
providing the fulfillment of (3.21) for the methods DGE and DLT are established for a particular
class of objective functions. The theorem states that if f(x) is quadratic in a neighborhood I(x∗)
of the global minimizer x∗, then to ensure the global convergence it is sufficient that the methods
will place one trial point on the left from x∗ and one trial point on the right from x∗.

Theorem 3.3. If the objective function f(x) is such that there exists a neighborhood I(x∗) of
a global minimizer x∗ where

f(x) = 0.5Mx2 + qx+ n,(3.22)

where q and n are finite constants and M is from (1.3) and trials have been executed at points x−,
x+ ∈ I(x∗), then condition (3.21) holds for algorithms DGE and DLT and x∗ is a limit point
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Problem PKC GE LT PKC LI GE LI LT LI
1 149 158 37 37 35 35
2 155 127 36 33 35 35
3 195 203 145 67 25 41
4 413 322 45 39 39 37
5 151 142 46 151 145 53
6 129 90 84 39 41 41
7 153 140 41 41 33 35
8 185 184 126 55 41 29
9 119 132 44 37 37 35
10 203 180 43 43 37 39
11 373 428 74 47 43 37
12 327 99 71 45 33 35
13 993 536 73 993 536 75
14 145 108 43 39 25 27
15 629 550 62 41 37 37
16 497 588 79 41 43 41
17 549 422 100 43 79 81
18 303 257 44 41 39 37
19 131 117 39 39 31 33
20 493 70 70 41 37 33

Average 314.60 242.40 65.10 95.60 68.55 40.80

Table 4.1

Results of numerical experiments executed on 20 test problems from [11] by the six methods belonging to the
scheme GS; the accuracy ε = 10−4(b− a), r = 1.1

of the trial sequences generated by these methods if (3.20) is fulfilled for all the other intervals.
Proof. The proof is analogous to the proof of Theorem 5.6 from [25]. ✷

Theorem 3.4. Assertions 1–5 of Theorem 3.2 hold for the algorithms DKC LI, DGE LI,
and DLT LI for a fixed finite tolerance δ > 0 and ε = 0, where δ is from (2.13) and ε is from
(2.3). Proof. The proof is analogous to the proof of Theorem 2.2 from Section 2. ✷

4. Numerical experiments. In this section, we present numerical results executed on 120
functions taken from the literature to compare the performance of the six algorithms described in
Section 2 and the six algorithms from Section 3.

Two series of experiments have been done. In both of them the choice of the reliability
parameter r has been done with the step 0.1 starting from r = 1.1, i.e., r = 1.1, 1.2, etc. in order
to ensure convergence to the global solution for all the functions taken into consideration in each
series. It is well known (see detailed discussions on the choice of r and its influence on the speed
of Lipschitz global optimization methods in [21, 30, 33]) that in general, for higher values of r
methods of this kind are more reliable but slower. It can be seen from the results of experiments
(see Tables 4.1 – 4.6) that the tested methods were able to find the global solution already for very
low values of r. Then, since there is no sense to make a local improvement with the accuracy δ
that is higher than the final required accuracy ε, in all the algorithms using the local improvement
technique the accuracy δ from (2.13) has been fixed δ = ε. Finally, the technical parameter ξ (used
only when at the initial iterations a method executes trials at the points with equal values) has
been fixed to ξ = 10−8 for all the methods using it.

In the first series of experiments, a set of 20 functions described in [11] has been considered.
In Tables 4.1 and 4.2, we present numerical results for the six methods proposed to work with
the problem (1.1), (1.2). In particular, Table 4.1 contains the numbers of trials executed by the
algorithms with the accuracy ε = 10−4(b− a), where ε is from (2.3). Table 4.2 presents the results
for ε = 10−6(b− a). The parameter r = 1.1 was sufficient for the algorithms GE, LT , and GE LI,
LT LI while the exact values of the Lipschitz constant of the functions f(x) have been used in the
methods PKC and PKC LI.
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Problem PKC GE LT PKC LI GE LI LT LI
1 1681 1242 60 55 55 57
2 1285 1439 58 53 61 57
3 1515 1496 213 89 51 61
4 4711 3708 66 63 63 59
5 1065 1028 67 59 65 74
6 1129 761 81 63 65 61
7 1599 1362 64 65 55 59
8 1641 1444 194 81 67 49
9 1315 1386 64 61 59 57
10 1625 1384 65 59 63 57
11 4105 3438 122 71 63 61
12 3351 1167 114 67 57 55
13 8057 6146 116 8057 6146 119
14 1023 1045 66 57 49 49
15 7115 4961 103 65 61 59
16 4003 6894 129 63 65 63
17 5877 4466 143 69 103 103
18 3389 2085 67 65 61 57
19 1417 1329 60 61 57 53
20 2483 654 66 61 61 53

Average 2919.30 2371.75 95.90 464.20 366.35 63.15

Table 4.2

Results of numerical experiments executed on 20 test problems from [11] by the six methods belonging to the
scheme GS; the accuracy ε = 10−6(b− a), r = 1.1

Problem DKC DGE DLT DKC LI DGE LI DLT LI
1 15 16 14 15 16 15
2 10 12 12 10 13 13
3 48 58 56 57 27 25
4 14 14 11 14 14 11
5 17 16 15 17 20 18
6 22 24 22 21 25 21
7 10 12 11 11 13 11
8 44 52 50 45 25 25
9 10 13 12 10 13 13
10 9 12 12 9 12 12
11 24 26 22 26 25 21
12 19 21 21 19 23 21
13 197 63 25 37 45 26
14 13 17 17 14 20 20
15 55 43 17 43 33 18
16 66 54 26 49 45 26
17 51 45 32 33 39 27
18 5 9 9 5 9 9
19 11 11 11 11 11 11
20 22 24 25 19 23 25

Average 33.10 27.10 21.00 23.25 22.55 18.40

Table 4.3

Results of numerical experiments executed on 20 test problems from [11] by the six methods belonging to the
scheme GS D; the accuracy ε = 10−4(b− a), r = 1.2

In Tables 4.3 and 4.4, we present numerical results for the six methods proposed to work
with the problem (1.1), (1.3). We have considered the same two accuracies in Tables 4.1 and 4.2:
ε = 10−4(b−a) for the experiments shown in Table 4.3 and ε = 10−6(b−a) for the results presented
in Table 4.4. The reliability parameter r has been taken equal to 1.2.

All the global minima have been found by all the methods in all the experiments presented in
Tables 4.1–4.4. In the last rows of Tables 4.1 – 4.4, the average values of the numbers of trials points
generated by the algorithms are given. The first (quite obvious) observation that can be made
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Problem DKC DGE DLT DKC LI DGE LI DLT LI
1 22 22 16 22 22 17
2 12 16 16 12 17 17
3 57 69 66 63 37 35
4 19 19 16 19 20 17
5 21 19 18 21 24 22
6 26 27 26 27 28 28
7 12 16 15 13 18 16
8 48 61 60 49 33 33
9 12 16 15 12 16 16
10 11 16 16 11 17 17
11 37 37 29 37 35 29
12 27 31 28 29 31 27
13 308 93 29 55 61 30
14 16 21 21 17 25 25
15 87 66 21 67 51 22
16 101 81 28 65 63 28
17 73 66 38 51 61 39
18 5 14 14 5 14 14
19 13 15 15 13 15 15
20 24 27 27 25 28 28

Average 46.55 36.60 25.70 30.65 30.80 23.75

Table 4.4

Results of numerical experiments executed on 20 test problems from [11] by the six methods belonging to the
scheme GS D; the accuracy ε = 10−6(b− a), r = 1.2

with respect to the performed experiments consists of the fact that the methods using derivatives
are faster than the methods that do not use this information (compare results in Tables 4.1 and
4.2 with the results in Tables 4.3 and 4.4, respectively).

Then, it can be seen from Tables 4.1 and 4.2 that both accelerating techniques, the local
tuning and the local improvement, allow us to speed up the search significantly when we work
with the methods belonging to the scheme GS. With respect to the local tuning we can see that
the method LT is faster than the algorithms PKC and GE. Analogously, the LT LI is faster
than the methods PKC LI and GE LI. The introduction of the local improvement also was very
successful. In fact, the algorithms PKC LI, GE LI, and LT LI work significantly faster than the
methods PKC, GE, and LT , respectively.

The effect of the local tuning and local improvement techniques is very well marked in the case
of the problem (1.1), (1.2), i.e., when the first derivative of the objective function is not available.
In the case of methods proposed to solve the problem (1.1), (1.3), where the derivative of the
objective function can be used to construct algorithms, the effect of the introduction of the two
acceleration techniques is always present but is not so strong (see Tables 4.3 and 4.4). This happens
because the smooth auxiliary functions constructed by all the methods belonging to the scheme
GS D are much better than the piece-wise linear functions build by the methods belonging to the
class GS. The smooth auxiliary functions are very close to the objective function f(x) providing so
already in the case of the slowest DKC algorithm a very good speed and, as a result, leaving less
space for a possible acceleration that can be obtained thanks to applying the local tuning and/or
the local improvement techniques. However, also in this case, the algorithm DLT LI is two times
faster than the method DKC (see Tables 4.3 and 4.4). Finally, it can be clearly seen from Tables
4.1 – 4.4 that the acceleration effects produced by both techniques are more pronounced when
the accuracy of the search increases. This effect takes place for the methods belonging to both
schemes, GS and GS D.

In the second series of experiments, a class of 100 one-dimensional randomized test functions
from [22] has been taken. Each function fj(x), j = 1, ..., 100, of this class is defined over the
interval [−5, 5] and has the following form

fj(x) = 0.025(x− x∗j )
2 + sin2((x− x∗j ) + (x− x∗j )

2) + sin2(x − x∗j ),(4.1)
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Fig. 4.1. Graph of the function number 38 from (4.1) and trial points generated by the 12 methods while
minimizing this function.

where the global minimizer x∗j , j = 1, ..., 100, is chosen randomly from interval [−5, 5] and differ-
ently for the 100 functions of the class. Fig. 4.1 shows the graph of the function no. 38 from the
set of test functions (4.1) and the trial points generated by the 12 methods while minimizing this
function, with accuracy ε = 10−4(b− a). The global minimum of the function, f∗ = 0, is attained
at the point x∗ = 3.3611804993. In Fig. 4.1 the effects of the acceleration techniques, the local
tuning and the local improvement, can be clearly seen.

Table 4.5 shows the average numbers of trial points generated by the six methods that do
not use the derivative of the objective functions, while Table 4.6 contains the results of the six
methods that use the derivative. In columns 2 and 4, the values of the reliability parameter r are
given. In Table 4.5, the asterisk denotes that in the algorithm LT LI (for ε = 10−4(b − a)) the
value r=1.3 has been used for 99 functions, and for the function no. 32 the value r=1.4 has been
applied. Tables 4.5 and 4.6 confirm for the second series of experiments the same conclusions that
have been made with respect to the effects of the introduction of the acceleration techniques for
the first series of numerical tests.
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Method r ε = 10−4 r ε = 10−6

PKC 400.54 2928.48
GE 1.1 167.63 1.1 1562.27
LT 1.1 47.28 1.1 70.21
PKC LI 44.82 65.70
GE LI 1.1 40.22 1.2 62.96
LT LI 1.3* 38.88 1.2 60.04

Table 4.5

Average number of trial points generated by the six methods belonging to the scheme GS on 100 test functions
from [22] with the accuracies ε = 10−4 and ε = 10−6

Method r ε = 10−4 r ε = 10−6

DKC 125.85 170.65
DGE 1.1 87.53 1.1 121.01
DLT 1.1 49.00 1.1 53.53
DKC LI 43.72 62.88
DGE LI 1.1 38.46 1.1 58.61
DLT LI 1.1 28.50 1.1 40.57

Table 4.6

Average number of trial points generated by the six methods belonging to the scheme GS D on 100 test
functions from [22] with the accuracies ε = 10−4 and ε = 10−6

5. Conclusions. In this paper, there have been considered two kinds of the one-dimensional
global optimization problems over a closed finite interval: (i) problems where the objective function
f(x) satisfies the Lipschitz condition with a constant L; (ii) problems where the first derivative of
f(x) satisfies the Lipschitz condition with a constant M .

Two general schemes describing numerical methods for solving both problems have been de-
scribed. Six particular algorithms have been presented for the case (i) and six algorithms for the
case (ii). In both cases, auxiliary functions constructed and adaptively improved during the search
have been used. In the case (i), piece-wise linear functions have been described and constructed.
In the case (ii), smooth piece-wise quadratic functions have been applied.

In the introduced methods, the Lipschitz constants L and M for the objective function and its
first derivative were either taken as values known a priori or were dynamically estimated during the
search. A recent technique that adaptively estimates the local Lipschitz constants over different
zones of the search region was used to accelerate the search in both cases (i) and (ii) together
with a newly introduced technique called the local improvement. Convergent conditions of the
described twelve algorithms have been studied.

The proposed local improvement technique is of a particular interest due to the following
reasons. First, usually in the global optimization methods the local search phases are separated
from the global ones. This means that it is necessary to introduce a rule that stops the global phase
and starts the local one; then it stops the local phase and starts the global one. It happens very
often that the global search and the local one are realized by different algorithms and the global
search is not able to use all evaluations of the objective function made during the local search
losing so an important information about the objective function that has been already obtained.

The local improvement technique introduced in this paper does not have this drawback and
allows the global search to use all the information obtained during the local phases. In addition, it
can work both with and without the derivatives and this is a valuable asset when one solves the Lip-
schitz global optimization problems because, clearly, Lipschitz functions can be non-differentiable.

Numerical experiments executed on 120 test problems taken from the literature have shown
quite a promising performance of the new accelerating techniques.
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