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2-NORM ERROR BOUNDS AND ESTIMATES FOR LANCZOS

APPROXIMATIONS TO LINEAR SYSTEMS AND RATIONAL

MATRIX FUNCTIONS∗

A. FROMMER†, K. KAHL† , TH. LIPPERT‡ , AND H. RITTICH†

Abstract. The Lanczos process constructs a sequence of orthonormal vectors vm spanning a
nested sequence of Krylov subspaces generated by a hermitian matrix A and some starting vector b.
In this paper we show how to cheaply recover a secondary Lanczos process starting at an arbitrary
Lanczos vector vm. This secondary process is then used to efficiently obtain computable error
estimates and error bounds for the Lanczos approximations to the action of a rational matrix function
on a vector. This includes, as a special case, the Lanczos approximation to the solution of a linear
system Ax = b. Our approach uses the relation between the Lanczos process and quadrature as
developed by Golub and Meurant. It is different from methods known so far because of its use of
the secondary Lanczos process. With our approach, it is now in particular possible to efficiently
obtain upper bounds for the error in the 2-norm, provided a lower bound on the smallest eigenvalue
of A is known. This holds in particular for a large class of rational matrix functions including best
rational approximations to the inverse square root and the sign function. We compare our approach
to other existing error estimates and bounds known from the literature and include results of several
numerical experiments.

Key words. Lanczos process, CG method, rational matrix functions, multishift CG, error
estimates, error bounds, Gauss quadrature
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1. Introduction. Our main interest in this paper is in error bounds and error
estimates for Lanczos approximations of the action of a rational matrix function on a
given vector. To set the stage, we consider in this introduction the most familiar case
where the rational function is f(t) = t−1, i.e., we consider a linear system

Ax = b (1.1)

where A ∈ Cn×n is hermitian positive definite (hpd), large and sparse. The method
of choice to solve such a system is the conjugate gradient (CG) method of Hestenes
and Stiefel [22] in which—given an initial guess x0—the m-th iterate xm is taken from
the affine Krylov subspace

x0 +Km(A, r0), where Km(A, r0) = span{r0, Ar0, . . . , Am−1r0}

such that its residual rm = b−Axm is orthogonal toKm(A, b). This Galerkin condition
is equivalent to requiring that xm minimizes the A-norm of the error x∗ − xm, where
x∗ = A−1b, over all x ∈ x0 + Km(A, b). Algorithmically, CG is implemented using
short recurrences which makes the method very efficient computationally.

In order to obtain a stopping criterion for the CG iteration it is important to have
some information on the error x∗ − xm. A simple measure for the error is the norm
of the residual rm = b −Axm, since by the definition of the A2-norm

‖rm‖2 = 〈A(x∗ − xm), A(x∗ − xm)〉 = ‖x∗ − xm‖2A2 .
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For linear systems, the residual is a quantity which is easily available. If the data in
the matrix A is not known exactly, ‖b− Ax‖ ≤ ǫ translates into ‖b− (A+∆A)x‖ ≤
ǫ+ ‖∆A‖ · ‖x‖, which bounds the residual of the perturbed matrix A+∆A, provided
we know a bound on ‖∆A‖. This shows that the residual is a convenient error measure
particularly when we have inaccurate initial data.

The energy norm, i.e., the A-norm, of the error, ‖x∗ − xm‖A = 〈x∗ − xm, A(x∗ −
xm)〉1/2 is often the most natural measure for the error, since it relates to physically
meaningful quantities in many applications. Also, the 2-norm of the error, 〈x∗ −
xm, x∗ − xm〉1/2, is of interest as an operator independent measure for the error,
particularly in connection with rational matrix functions.

For any z ∈ Cn we have

λmin ≤ ‖z‖A2

‖z‖2
≤ λmax and λ

1/2
min ≤ ‖z‖A2

‖z‖A
≤ λ1/2

max,

where λmin and λmax denote the smallest and largest eigenvalues of A, respectively.
Hence we have, for example,

‖z‖2 ≤
1

λmin
‖z‖A2, ‖z‖A ≤ 1√

λmin

‖z‖A2

but the factors 1
λmin

and 1√
λmin

represent only a worst case bound; for a given z the

ratio of the norms can be substantially smaller. Moreover, the extremal eigenvalues
or bounds for them are not necessarily available.

In [27, 29], see also [19] it was shown that one can enhance the CG iteration
at very low computational cost to obtain, in addition to the iterates, estimates and
bounds for the error of the current iterate in a retrospective manner: For a given small
positive integer k, error estimates for the iterate at step m can be determined at step
m+ k (A-norm and 2-norm); see also [38, 39] for an estimate for the 2-norm obtained
at iteration m + 2k. These estimates become more and more precise as k increases.
While for the A-norm one can obtain lower and upper bounds in this manner, one gets
only a lower bound in the case of the 2-norm. We will give more details in section 5.

These error estimates and bounds rely on an elegant theory relating an integral
representation of the error norms with orthogonal polynomials, Gaussian quadrature
rules and the Lanczos process, see [17, 18] and the book [19]. In the present paper
we propose to use this theory in a different manner to be able to determine lower
and also upper bounds for the error in the 2-norm. Actually, instead of dealing with
the CG iteration for a linear system, our focus will be, more generally, on Lanczos
approximations to the action f(A)b of a rational matrix function f on a vector b,
in this manner continuing the work from [15]. In the matrix function case, there
is no natural and easily accessible “residual”, and, as opposed to the linear system
case, the A-norm is not a “natural”, physically motivated measure for the error any
more. We therefore focus on the 2-norm. Note that upper bounds for the error are
particularly useful, since a stopping criterion based on the upper bound being less
than a prescribed threshold guarantees that the actual error is indeed less than this
threshold.

2. Lanczos process and Lanczos approximations. In this section we recall
the Lanczos process (cf. [19] or [37]) and the related Lanczos approximations to vectors
of the form f(A)b, with f a function defined on the positive real axis and b ∈ Cn.
Note that for f : t → t−1 the vector f(A)b is the solution of the linear system A−1b.
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Assuming that v1 ∈ Cn is normalized to ‖v1‖2 = 1, the Lanczos process computes
orthonormal vectors v1, v2, . . . such that v1, . . . , vm form an orthonormal basis of the
nested sequence of Krylov subspaces Km(A, v1), m = 1, 2, . . .. Algorithmically, vm+1

is obtained by orthogonalizing Avm against all previous vectors. Since A is hermitian,
it is actually sufficient to orthogonalize against vm and vm−1, see Algorithm 2.1.

Algorithm 2.1: Lanczos process

1 choose v1 such that ‖v1‖ = 1
2 let β0 = 0, v0 = 0
3 for j = 1, . . . ,m do

4 wj = Avj − βj−1vj−1

5 αj = vHj wj

6 wj = wj − αjvj
7 βj = ‖wj‖2
8 if βj = 0 then stop
9 vj+1 = (1/βj) · wj

10 end

The Lanczos process can be summarized via the Lanczos relation

AVm = Vm+1Tm = VmTm + βm · vm+1e
H
m, (2.1)

where Vm = [v1| . . . |vm] ∈ Cn×m is the matrix containing the Lanczos vectors, em =
(0, . . . , 0, 1)H ∈ Cm and

Tm =




α1 β1

β1 α2
. . .

. . .
. . . βm−1

βm−1 αm

βm




=

[
Tm

βm · eHm

]
∈ R

(m+1)×m

with Tm a (real) symmetric tridiagonal matrix.

Throughout the whole paper we will use the notation ej to denote the j-th canon-
ical unit vector from Cℓ, where we explicitly mention the dimension ℓ of the space
when necessary. We just used em ∈ Cm, em = (0, . . . , 0, 1)H , and we will often use
e1 ∈ Cm, e1 = (1, 0, . . . , 0)H etc. For ease of terminology, we will also call Tm a
tridiagonal matrix, although it is not square.

The following two basic properties of the Lanczos process will be important for
this paper.

Lemma 2.1.

(i) Shift invariance [33]: Let σ ∈ C and put Aσ = A− σI. Assume that we start
the Lanczos process for Aσ with the same initial vector vσ1 = v1 as for the
Lanczos process for A. Then the matrices V σ

m, T
σ

m of the Lanczos relation
(2.1) for Aσ, starting with vσ1 , are given by

V σ
m = Vm, T

σ

m = Tm − σ

[
I

0 · · · 0

]
.
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(ii) Essential uniqueness of the Lanczos relation: Assume that we have Vm+1 =
[Vm | vm+1] ∈ Cn×(m+1) with orthonormal columns, and Tm ∈ C(m+1)×m

tridiagonal with positive off-diagonal entries, satisfying

AVm = Vm+1Tm. (2.2)

Then (2.2) is the Lanczos relation for the matrix A with starting vector v1,
i.e., the columns of Vm+1 are the Lanczos vectors and the entries of Tm the
corresponding coefficients.

Proof. The first result follows directly by inspection of the Lanczos process,
Algorithm 2.1. For part (ii) we note that (2.2), together with the assumption that
Vm+1 has orthonormal columns and that Tm is tridiagonal, already implies that for
j = 1, . . . ,m the vector vj+1 is a positive scalar multiple of the vector wj which we
obtain from orthogonalizing Avj against vj and vj−1. Since ‖vj+1‖ = 1, the scalar
factor must be 1/‖wj‖, which is exactly how the Lanczos process proceeds.

The m-th Lanczos approximation xm to the action f(A)b of a matrix function
f(A) on a vector b is given as

xm = Vmf(V H
m AVm)V H

m b = ‖b‖ · Vmf(Tm)e1,

where the Lanczos process is started with v1 = (1/‖b‖)·b. The Lanczos approximation
is motivated by the fact that it is equivalent to setting xm = qm−1(A)b, where qm−1 is
the polynomial of degree m− 1 which interpolates f in the eigenvalues of Tm, i.e., the
Ritz values of A with respect to the subspace Km(A, b). For details, cf. [14, 23, 36, 42].

In the case of a linear system Ax = b we want to compute A−1b, i.e., we have
f(t) = t−1. The m-th Lanczos approximation xm is then given as

xm = ‖b‖ · VmT−1
m e1. (2.3)

This is equivalent to the Galerkin condition b−Axm ⊥ Km(A, b) with xm ∈ Km(A, b).
Indeed, if we put xm = Vmym we see that b−AVmym ⊥ Km(A, b) iff ym solves

V H
m (b −AVmym) = 0,

wherein V H
m b = ‖b‖e1 and, due to (2.1), V H

m AVm = Tm. The Lanczos approximation
xm is thus mathematically equivalent to them-th iterate of the CG method with initial
guess x0 = 0. Note that if one wants to use an initial guess x0 6= 0, CG iteratively
obtains corrections to x0 which are the Lanczos approximations for A−1b − x0 =
A−1r0, r0 = b−Ax0.

The residuals of the CG iterates are related to the Lanczos vectors as stated in
the following lemma, cf. [32].

Lemma 2.2. Let xm be the m-th CG iterate and rm = b − Axm its residual.
Moreover, let vm+1 be the m + 1-st Lanczos vector, where the Lanczos process is
started with v1 = (1/‖r0‖) · r0. Then

rm = ρm · vm+1

with

ρm = −eHmym · ‖b‖ · βm, where ym = T−1
m e1 ∈ C

m.

Moreover, we have ρm = (−1)m‖rm‖.
4



Proof. All stated results can be found in [32]. As an indication for the reader we
just give a short sketch for the representation of ρm in the case x0 = 0: Using (2.1)
the residual rm of the CG iterates xm from (2.3) are given as

b−Axm = b− ‖b‖ ·AVmT−1
m e1 = b− ‖b‖ · Vm+1TmT−1

m e1

= ‖b‖ · Vm+1

(
e1 − TmT−1

m e1
)
= ‖b‖ · Vm+1

(
e1 −

(
I

βmeHmT−1
m

)
e1

)

= −‖b‖ · βm · (eHmT−1
m e1) · vm+1.

There are various ways to cheaply update the Lanczos approximation xm from
(2.3) to xm+1. The standard way is to update the (root-free) Cholesky factorization of
Tm to one of Tm+1, thus arriving at the familiar coupled two-term recurrence of the CG
algorithm; see [37], e.g. Another possibility is to use the fact that vm = p̂m(A)b where
p̂m is the characteristic polynomial of Tm. The Lanczos relation (2.1) gives a three-
term recurrence for p̂m. By Lemma 2.2, we have rm = pm(A)b with pm(t) = ρmp̂m(t),
ρm = 1/p̂m(0). Since xm = qm−1(A)b with pm(t) = 1 − tqm−1(t), the recurrence for
the pm implies one for the iterates xm. Note that p̂m(0) 6= 0, since the zeros of pm are
the eigenvalues of Tm and thus contained in [λmin, λmax]. We refer to [37] for a more
detailed description of this approach. For future reference, this three-term recurrence
variant of the CG method is given in Algorithm 2.2.

Algorithm 2.2: CG Lanczos (initial guess is zero)

1 set x−1 = 0, ρ0 = ‖b‖, τ0 = 1, v1 = (1/ρ0)b
2 for j = 0, 1, . . . do

3 compute αj+1, βj+1, vj+2 using the Lanczos process for A
4 if j > 0 then

5 τj =
[
1− αj

αj+1

ρ2
j

ρ2
j−1

1
τj−1

]−1

6 end

7 ρj+1 = −τjρj
βj+1

αj+1

8 xj+1 = τj(xj +
1

αj+1
rj) + (1− τj)xj−1

9 rj+1 = ρj+1vj+2

10 end

In our context, the major advantage of Algorithm 2.2 is that it easily also produces
the Lanczos approximations for systems of the form (A− σI)x = b if σ 6∈ [λmin, λmax]
and thus, in particular, if σ is not real. Indeed, as was observed in [11, 13], e.g., due
to Lemma 2.1 the characteristic polynomial p̂σm for the shifted system is related to
that of the non-shifted system via p̂σm(t) = p̂m(t− σ). Since p̂σm(0) = p̂m(−σ) 6= 0, we
see that all Lanczos approximations are well-defined and that we can work out the
three term recurrence for the Lanczos approximations in exactly the same manner as
in the case without the shift σ. We refer to [10] to yet another breakdown free variant,
based on a short recurrence update for QR-factorizations of the matrices Tm. For the
case of real shifts and the standard coupled two-term recurrence, see also [41].

Now, let f : t →∑p
i=1

ωi

t−σi
be a rational function with poles σi outside the interval

[λmin, λmax]. Complex poles σi arise quite naturally in applications, such as rational
approximations to the exponential function. Let v1 = (1/‖b‖) · b be the normalized
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vector for b with which we start the Lanczos process. From the shift invariance,
Lemma 2.1(i), it follows that the m-th Lanczos approximation xm to f(A)b is given
as

xm = ‖b‖ · Vm ·
(

p∑

i=1

ωi(Tm − σiI)
−1e1

)
. (2.4)

This Lanczos approximation always exists, i.e., all matrices Tm−σiI are non-singular,
since the spectrum of Tm is contained in [λmin, λmax] and σi 6∈ [λmin, λmax]. From the
shift invariance property and relation (2.3), we see that the Lanczos iterate xm from
(2.4) is just the linear combination

xm =

p∑

i=1

ωix
(i)
m (2.5)

of the Lanczos approximations x
(i)
m for the solutions of the systems (A − σiI)x = b

(with initial guess x
(i)
0 = 0 for all i).

By the preceeding discussion, all Lanczos approximations can be obtained via
Algorithm 2.2; and by Lemma 2.1(i) we get the same Lanczos vectors vj , indepen-
dently of the shift σi. Hence we can modify Algorithm 2.2 to a multishift variant,
where we perform lines 4 to 9 simultaneously for each shift σi to obtain all p Lanczos

approximations x
(i)
m (and their linear combination xm) using short recurrences and

just one matrix-vector multiplication per step.
The task to which this paper is devoted is to obtain good error estimates for the

Lanczos iterates for a single system Ax = b (see (2.3)), or the action of a rational
matrix function f(A)b (the Lanczos iterates from (2.4)). In the case of the CG iterates
for the system Ax = b, we can express the error as

x∗ − xm = A−1rm with rm = b−Axm,

which, using Lemma 2.2 results in

‖x∗ − xm‖22 = |ρm|2 · vHm+1A
−2vm+1, ‖x∗ − xm‖2A = |ρm|2 · vHm+1A

−1vm+1. (2.6)

For the Lanczos approximation (2.4) for a rational function we can apply Lemma 2.2
to all systems (A− σiI)x

(i) = b to see that we have

r(i)m = b − (A− σiI)x
(i)
m = ρ(i)m vm+1,

so that it is possible to express the error f(A)b − xm =
∑p

i=1 ωi(A − σiI)
−1b − xm

with xm from (2.5) as

p∑

i=1

ωi(A− σiI)
−1b− ωix

(i)
m =

p∑

i=1

ωi(A− σiI)
−1
(
b− (A− σiI)x

(i)
m

)

=

p∑

i=1

ωiρ
(i)
m (A− σiI)

−1vm+1

= gm(A)vm+1,

where

gm(t) =

p∑

i=1

ωiρ
(i)
m

t− σi
. (2.7)
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In the case of a rational function we can thus express the square of the 2-norm of the
error as

(gm(A)vm+1)
H
(gm(A)vm+1) = vHm+1hm(A)vm+1,

where

hm(t) = ḡm(t) · gm(t) = |gm(t)|2.

We have thus shown that the square of the 2-norm and of the A-norm of the
error of the CG iterate (2.3) as well as of the Lanczos approximations (2.4) (only the
2-norm) are given in the form

vHh(A)v,

where h is a known rational function defined on [λmin, λmax] and v is the current (the
m+ 1-st) Lanczos vector.

3. Error bounds and error estimates. In this section we summarize the key
aspects of the theory relating moments, quadrature and orthogonal polynomials, see
[17, 18, 19], which allows us to obtain estimates and often even lower and upper
bounds for quantities of the form vHh(A)v and thus, in light of the discussion at
the end of section 2, for the norm of the error of the Lanczos approximations (2.3)
and (2.4). The error estimates obtained rely on running a new Lanczos process, now
starting with v.

Let (λi, zi), i = 1, . . . , n denote the eigenpairs of A where the vectors zi are or-
thonormal and λ1 ≤ λ2 ≤ . . . ≤ λn. Expanding v in terms of the basis zi we can
write

v =

n∑

i=1

γizi.

Since h(A)v =
∑n

i=1 h(λi)γizi, cf. [14, 23], we have

vHh(A)v =
n∑

i=1

h(λi) · |γi|2 =

∫ b

a

h(t) dγ(t), (3.1)

where [a, b] ⊇ [λmin, λmax], the integral is to be understood as a Riemann-Stieltjes
integral and the discrete measure γ(t) is given as

γ(t) =





0 if t < λmin∑i
j=1 |γj |2 if λi ≤ t < λi+1∑n
j=1 |γj |2 if λn ≤ t

.

We can now use Gauss, Gauss-Lobatto or Gauss-Radau quadrature rules to ap-

proximate
∫ λmax

λmin
h(t)dγ(t). Algorithmically, evaluating these rules turns out to be

very intimately related to the Lanczos process based on the starting vector v. The
precise results are as follows, see [17, 18, 19].

Theorem 3.1. Let T̃k denote the tridiagonal matrix in the Lanczos relation (2.1)
arising after k steps of the Lanczos process with starting vector v, ‖v‖ = 1. Assume
that h is at least 2k times continuously differentiable on an open set containing [a, b].

7



(i) Approximating (3.1) with the Gauss quadrature rule using k nodes tj ∈ (a, b)
gives

vHh(A)v = eH1 h(TG
k )e1 +RG

k [h], where TG
k = T̃k,

with the error RG
k [h] given as

RG
k [h] =

h(2k)(ξ)

(2k)!

∫ b

a




k∏

j=1

(t− tj)



2

dγ(t), a < ξ < b . (3.2)

(ii) Approximating (3.1) with the Gauss-Radau quadrature rule using k− 1 nodes
tj ∈ (a, b) with one additional node fixed at a gives

vHh(A)v = eH1 h(TGR
k )e1 +RGR

k [h].

Here, the tridiagonal matrix TGR
k differs from T̃k in that its (k, k) entry αk

is replaced by α̃k = a+ δk−1, where δk−1 is the last entry of the vector δ with

(T̃k−1 − aI)δ = β2
k−1ek−1. The error RGR

k [h] is given as

RGR
k [h] =

h(2k−1)(ξ)

(2k − 1)!

∫ b

a

(t− a)



k−1∏

j=1

(t− tj)



2

dγ(t), a < ξ < b . (3.3)

(iii) Approximating (3.1) with the Gauss-Lobatto quadrature rule using k−2 nodes
tj ∈ (a, b) and two additional nodes, one fixed at a and one fixed at b, gives

vHh(A)v = eH1 h(TGL
k )e1 +RGL

k [h].

Here, the tridiagonal matrix TGL
k differs from T̃k in its last column and row.

With δ and µ the solutions of the system (T̃k−1−aI)δ = ek−1, (T̃k−1−bI)µ =

ek−1 and α̃k, β̃
2
k−1 the solution of the linear system

[
1 −δk
1 −µk

] [
α̃k

β̃2
k−1

]
=

[
a
b

]
,

the tridiagonal matrix TGL
k is obtained from T̃k by replacing αk by α̃k and

βk−1 by β̃k−1. The error RGL
k [h] is given as

RGL
k [h] =

h(2k−2)(ξ)

(2k − 2)!

∫ b

a

(t− a)(t− b)



k−2∏

j=1

(t− tj)



2

dγ(t), a < ξ < b .

(3.4)
Inspecting the quadrature error terms RG

k [h], RGR
k [h] and RGL

k [h], we get the
following corollary which applies Theorem 3.1 to the rational functions h through
which we expressed the error of the m-th Lanczos approximation as vHm+1h(A)vm+1

at the end of section 2. The corollary is thus the key to obtaining error bounds for
the Lanczos approximations.

Corollary 3.2. The estimates eH1 h(TG
k )e1, e

H
1 h(TGR

k )e1 and eH1 h(TGL
k )e1 from

Theorem 3.1 (i), (ii) and (iii), resp., represent lower or upper bounds for (3.1) if the
derivatives h(2k), h(2k−1) and h(2k−2) have constant sign on the interval [a, b].
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This is true in particular for the rational functions h(t) = ρ2mt−1, h(t) = ρ2mt−2

from (2.6) as well as h(t) = g2m(t) with

gm(t) =

p∑

i=1

ωiρ
(i)
m

t− σi
with ωi ≥ 0, σi ≤ 0, i = 1, . . . , p,

for which h(2k)(t) ≥ 0, h(2k−1) ≤ 0 for t ∈ (0,∞) and k ∈ N.
Proof. The only non-trivial part of the corollary concerns the derivatives of h(t) =

g2m(t). We first note that by Lemma 2.2, sign(ρ
(i)
m ) = (−1)m, independently of i.

Thus, the derivatives of each of the summands of gm(t) have constant sign on [0,∞),
resulting in

sign

(
dℓgm(t)

dtℓ

)
= (−1)ℓ+m for all t ∈ [0,∞).

Using

dℓhm(t)

dtℓ
=

ℓ∑

j=0

(
ℓ
j

)
djgm(t)

dtj
· d

ℓ−jgm(t)

dtℓ−j

we thus see that dℓhm(t)/dtℓ < 0 (> 0) for t ∈ [0,∞) if ℓ is odd (even).
We just note that there is a connection to results from [8, 12] on the monotone

convergence of the Lanczos approximations.
For future reference we state the computational cost of the error estimates from

Theorem 3.1 for those functions h of interest in this paper.
Lemma 3.3. Assume that T̃k is given. Let h(t) = t−1 or h(t) = t−2 or h(t) =

ḡ(t)g(t) with g(t) =
∑p

i=1
ωi

t−σi
. Then the cost for evaluating the estimates from

Theorem 3.1 (i), (ii) and (iii) is O(k).
Proof. Solving a linear system with a tridiagonal matrix of size k has cost O(k).

Thus the cost for obtaining the matrices TGR
k and TGL

k from parts (ii) and (iii) is O(k).
Denote by Tk any of the matrices TG

k , TGR
k and TGL

k . For the case h(t) = |ρm|2 · t−1

we have to solve the linear system Tky = e1 and to compute eH1 y which has cost O(k).
Similarly, for h(t) = |ρm|2 ·t−2 we have to solve Tky = e1 and compute yHy, which has
again cost O(k). Finally, for hm(t) = ḡm(t)gm(t) we have to solve (Tk − σiI)y

(i) = e1
for i = 1, . . . , p, compute y =

∑p
i=1 ωiy

(i) and then yHy, which has total cost O(pk)
which is O(k) if we consider p as fixed.

It is important to note that if one considers evaluating the error estimates for a
sequence of values for k, most of the quantities needed can be obtained by an update
from k to k + 1 with cost O(1) only. For details we refer to [19], e.g.

4. Lanczos restart recovery. We want to use the results of Theorem 3.1 to
obtain bounds or estimates for the error of the iterate xm of the CG iterate (2.3) or
the Lanczos approximation for a rational function (2.4). To avoid ambiguities, let us
call the Lanczos process via which the iterates xm are obtained the primary Lanczos
process. The straightforward way to obtain the error estimates from Theorem 3.1
would be to perform k steps of a new, restarted Lanczos process which takes the
current Lanczos vector vm+1 of the primary process as its starting vector. This results
in the restarted Lanczos relation

AV r
k = V r

k+1T
r
k, where V r

k =
[
vr1 | . . . | vrk

]
, V r

k+1 =
[
V r
k | vrk+1

]
, vr1 = vm+1, (4.1)
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and we can now apply the theorem using the tridiagonal matrix T rk arising from the
restarted process. This is, however, far too costly in practice: computing the error
estimate would require k multiplications with A—approximately the same amount of
work that we would need to advance the primary iteration from step m to m+ k.

Fortunately, as we will show now, it is possible to cheaply retrieve the matrix T rk
of the secondary Lanczos process from the matrix Tm+k+1 of the primary Lanczos
process. This Lanczos restart recovery opens the way to efficiently obtain all the error
estimates from Theorem 3.1 in a retrospective manner: At iteration m+ k we get the
estimates for the error at iteration m without using any matrix-vector multiplications
with A and with cost O(k2), independently of the system size n.

For m = 0, 1, . . . fixed, we define the tridiagonal matrix T̂2k+1 as the block of
Tm+1+k ranging from rows and columns max{1, (m + 1) − k} to (m + 1) + k. This
means that T̂2k+1 is the trailing (2k + 1)× (2k + 1) diagonal sub-matrix of Tm+k+1,
except for m+ 1 ≤ k, where its size is (m+ 1) + k × (m+ 1) + k.

The following theorem shows that for Lanczos restart recovery we basically have
to run the Lanczos process for the tridiagonal matrix T̂2k+1, starting with the k+1-st
unit vector ek+1 ∈ C2k+1.

Theorem 4.1. Let the Lanczos relation for k steps of the Lanczos process for
T̂2k+1 with starting vector ek+1 ∈ C2k+1 (em+1 ∈ Cm+1+k if m+ 1 ≤ k) be given as

T̂2k+1V̂k = V̂k+1T̃ k. (4.2)

Then the matrix T̃ k is identical to T
r
k from the restarted Lanczos relation (4.1),

T
r
k = T̃ k. (4.3)

Proof. For notational simplicity, we only consider the case m+1 > k where T̂2k+1

has its full size (2k+1)× (2k+1). Recall the Lanczos relation for m+ k steps of the
primary Lanczos process given in (2.1),

AVm+k = Vm+k+1Tm+k.

Since vm+1 ∈ Km(A, v1) we have Kk+1(A, vm+1) ⊆ Km+k+1(A, v1). Hence we
can express the vectors vri , i = 1, . . . , k+1 of the restarted Lanczos process, see (4.1),
in terms of a basis of Km+k+1(A, v1). The columns of Vm+k+1 form such a basis, i.e.,
we have

vri = Vm+k+1qi, qi ∈ C
m+k+1, i = 1, . . . , k + 1.

The vectors qi are orthonormal, since the vectors vri and the columns of Vm+k+1 are
orthonormal, too. Putting Qi = [q1 | . . . | qi] ∈ C(m+k+1)×i we thus have

V r
i = Vm+k+1Qi, i = 1, . . . , k,

so that the restarted Lanczos relation (4.1) can be written as

AVm+k+1Qk = Vm+k+1Qk+1T
r
k. (4.4)

All columns of Vm+k+1Qk = V r
k are fromKk(A, vm+1) ⊆ Km+k(A, v1), so the columns

of AVm+k+1Qk are all from Km+k+1(A, v1), on which the projector Vm+k+1V
H
m+k+1

10



m − k + 1→

m + k + 1→

Qk+1Qk

m + 1→ ← k + 1→

← 1→

zero

rows

m − k

← 2k + 1→

Tm+k+1

V̂k
T̂2k+1 V̂k+1

Fig. 4.1. Illustration for the proof of Theorem 4.1. Dark grey: non-zero entries; light grey and
indices in the middle: restarted Lanczos; indices on the left: primary Lanczos.

acts as the identity. From (4.4) we therefore get

Vm+k+1 V
H
m+k+1AVm+k+1︸ ︷︷ ︸
=Tm+k+1 by (4.1)

Qk = Vm+k+1Qk+1T
r
k,

and since Vm+k+1 has full column rank we have

Tm+k+1Qk = Qk+1T
r
k. (4.5)

The matrix Qk+1 has a special sparsity pattern: Since vr1 = vm+1, we have
q1 = em+1, the m+1-st unit vector in Cm+k+1. The matrix Tm+k+1 being tridiagonal,
a trivial induction shows that qi holds non-zeros only in those components j for which
|j − (m + 1)| < i, see also Figure 4.1. Consequently, Qk has non-zeros only in rows
m− k+ 2 to m+ k, and Qk+1 only in rows m− k+ 1 to m+ k + 1. Defining V̂k and
V̂k+1 as the matrices consisting of the last 2k+1 rows (rows m− k+1 to m+ k+1)
of Qk and Qk+1, respectively, we see that V̂k+1 is identical to [V̂k | v̂k+1], that it has
orthonormal columns and that v̂1 = ek+1, the k+1-st unit vector in C2k+1. Moreover,
with T̂2k+1 as defined in the theorem, we obtain from (4.5)

T̂2k+1V̂k = V̂k+1T
r
k.

Due to the essential uniqueness of the Lanczos relation, Lemma 2.1(ii), this finishes
our proof.

The above theorem shows that we can retrieve T rk from Tm+k+1 by performing

k steps of the Lanczos process for the (2k + 1) × (2k + 1) tridiagonal matrix T̂2k+1.
Here each step needs O(k) operations1, so that the overall cost for computing T rk is
O(k2). Together with Lemma 3.3 we conclude that the total cost for computing the
error estimates from Theorem 3.1 is also O(k2) .

Algorithm 4.1 shows how we suggest to use the results exposed so far. It computes
the Lanczos approximations xm for g(A)b with g(t) =

∑p
i=1

ωi

t−σi
and the estimates

1Since ṽj is non-zero only in positions k+1− (j− 1), . . . , k+1+(j− 1), step j actually has only
cost O(j). This refined analysis does, however, not affect the O-analysis of the total cost
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ℓm−k, um−k for the error at iteration m−k based on the Gauss and the Gauss-Radau
rule. By Corollary 3.2, these estimates represent lower and upper bounds, respectively,
if all poles σi are negative and ωi ≥ 0 for all i. The algorithm can be modified to also
obtain error estimates or bounds based on the Gauss-Lobatto rule and to get bounds
for the A-norm in case we deal with a linear system.

Algorithm 4.1: Lanczos approximations for rational function with 2-norm
error estimates/bounds

1 set x−1 = 0, ρ0 = ‖b‖, τ0 = 1
2 choose k
3 for m = 0, 1, . . . do

4 compute αm+1, βm+1, vm+2 using the Lanczos process for A
5 for i = 1, . . . , p do /* loop over poles */

6 if m > 0 then

7 τ
(i)
m =

[
1− αm−σi

αm+1−σi

(
ρ(i)
m

ρ
(i)
m−1

)2
1

τ
(i)
m−1

]−1

8 end

9 ρ
(i)
m+1 = −τ

(i)
m ρ

(i)
m

βm+1

αm+1−σi

10 x
(i)
m+1 = τ

(i)
m

(
x
(i)
m +

ρ(i)
m

αm+1−σi
vm+1

)
+
(
1− τ

(i)
j

)
x
(i)
m−1

11 end

12 xm+1 =
∑p

i=1 ωix
(i)
m+1

13 if m > k then

14 perform k steps of the Lanczos process for the trailing
(2k + 1)× (2k + 1) diagonal sub-matrix of Tm+1, this yields the
tridiagonal matrix T rk ∈ C

k×k

15 ℓm−k = ‖gm(T rk )e1‖2 /* gm is given in (2.7) */

16 um−k = ‖gm(TGR
k )e1‖2 /* T̃GR

k given in Theorem 3.1(ii) */

17 end

18 end

5. Comparison with existing methods. Let us first consider a single linear
system Ax = b. If we solve this system via the CG method, we (implicitly) perform
a “primary” Lanczos process. Assume that n iterations give the exact solution xn =
‖b‖·VnT

−1
n e1, see (2.3). Then the A-norm of the error of the m-th iterate, ‖xm−xn‖A,

can be expressed as

‖xm − xn‖2A = ‖b‖2 ·
(
eH1 T−1

n e1 − eH1 T−1
m e1

)
.

The matrix Tm is available, in principle, from the CG iteration. Its Cholesky factor-
ization can be updated easily from one step to the next. Also, it can be shown that
eH1 T−1

m e1 is a positive number which increases montonically with m. This implies
that ηk,m := ‖b‖2 · (eH1 T−1

m+ke1 − eH1 T−1
m e1) is a lower bound for ‖xm − xn‖2A for any

k > 0. The challenge is to obtain a numerically stable way to update ηk,m as the
CG iteration proceeds. Starting with [4, 5], many papers have been devoted to this
topic, see [18, 20, 27, 28, 29, 38, 39], summarized in Golub’s and Meurant’s book [19].
In order to also obtain upper bounds for the A-norm of the error—provided bounds
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on the spectrum of A are known—the approach sketched so far can be extended to
include Gauss-Radau and Gauss-Lobatto type estimates by (implicitly) using the ma-
trices TGR

k and TGL
k defined in Theorem 3.1. Meurant’s CGQL algorithm (CG with

Lanczos quadrature) from [27] (see also [19] and [30]) does so and thus computes
upper and lower bounds for the A-norm of the error along with the CG iterates. As
was already noted in [22], ηk,m can be computed using just the CG coefficients of it-
erations m to m+ k. This is based on the fact that the CG-algorithm in its standard
form updates the iterates as xm+1 = xm + γmpm, where the search directions are A-

orthogonal so that ‖xm+k − xm‖2A =
∑k−1

i=0 |γm+i|2 · ‖pm+i‖2A. The CGLQ algorithm
[27] implements this approach, and the analysis by Strakoš and Tichý [38, 39] shows
that this approach represents to date the most stable computation of ηk,m, because
problems due to loss of orthogonality in the primary Lanczos process are eliminated.
Recently, the paper [30] shows how to transport this approach to also obtain upper
bounds on the A-norm of the error. In all these approaches, the additional cost for
getting the estimates and bounds is O(k) per iteration. We note that the approach
presented in the present work also respects the philosophy, motivated in [39], e.g.,
to rely on local orthogonality only. Indeed, we just work with the quantities from
iterations m− k, . . . ,m+ k when computing the error estimate for iteration m.

For the 2-norm of the error one can use the relation, cf. [19, Corollary 21.7],

‖xm − xn‖2 = ‖b‖2 ·
(
eH1 T−2

n e1 − eH1 T−2
m e1

)
− 2

eHmT−2
m e1

eHmT−1
m e1

‖xm − xn‖2A.

and proceed in a similar manner as before. This is explained in detail in [19]; the
resulting estimate is not necessarily a lower bound any more. Another estimate for the
2-norm of the error was proposed in [38]. It involves the CG coefficients of iterations
m to m+2k to obtain an estimate for the error at iteration m and it was shown there
that this estimate is actually a lower bound. Note that none of the approaches for the
2-norm estimates has a “Gauss-Radau” counterpart which would allow for estimates
that represent upper bounds.

For the case of a rational matrix function g(A)b, with iterates obtained via the
Lanczos approximation (2.4), the paper [15] extends the approach of [38] to get es-
timates for the 2-norm of the error. If all poles σi are negative and all coefficients
ωi are positive, these estimates were proven to be lower bounds in [15]. If there are
complex poles, the estimates in [15] were derived for the CG method based on the
bilinear form 〈x, y〉 = yTx rather than yHx. Again, there is no variant which would
compute upper bounds for the error in the 2-norm. Therefore, in [16], a different
approach was used to get an upper bound: Using a global optimization algorithm,
the maximum cm = maxt∈[λmin,λmax] |gm(t)| for g from (2.7) is bounded from above
by c̄m which then is a bound for the error in the 2-norm. While one succeeds in
getting upper bounds for the error with this approach, it is quite costly due to the
global minimization, and the upper bounds are not necessarily very precise.

As an alternative to the quadrature approach for the case of the CG iteration,
the paper [3] suggests to use vector extrapolation on the current residual r and Ar to
obtain error estimates. They can be modified to yield bounds, provided the smallest
and largest eigenvalue of A are known. The computation of Ar can be avoided by
using quantities available from the Lanczos process, but the extrapolation requires
inner products with full vectors. Hence the cost for the error estimates of [3] is O(n).

6. Numerical experiments. In this section we illustrate the quality of the error
bounds developed in this paper for several rational functions arising from applications.
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Fig. 6.1. Error bounds and exact error for the CG iterates for Ax = b, A matrix s1rmq4m1 for
k = 10. Left column: no preconditioning, right column: incomplete Cholesky preconditioning. Top
row: Algorithm 4.1, bottom row: comparison with other methods.

All experiments were carried out on a standard workstation using Matlab R2011a.

As a first example, we look at the CG iterates for a linear system Ax = b,
where A is the matrix s1rmq4m1 from the matrix group Cylshell of the University
of Florida matrix collection, see [6, 7]. It arises from a finite element discretization
of a cylindrical shell. We chose this example because of its relatively high condition
number which is of the order of 106, despite its small size (n = 5, 489). The solution
x was generated randomly, then explicitly computing b = Ax as the right hand side.
We do not a priori know a lower bound a on the spectrum. We thus monitored the
smallest eigenvalue of the tridagonal matrix Tm which is known to converge to λmin

from above. As soon as for some iteration, k0 say, the relative change in the smallest
eigenvalue λ was less than 10−4, we put a = 0.99 · λ. Hence, in principle, we obtain
upper bounds only for iterations beyond k0. To have the complete picture, though,
we afterwards added the upper bounds obtained with this value for a for iterations
1 to k0 − 1. For the unpreconditioned system (left column of Figure 6.1) we see
that the CG method converges very slowly. Even with k = 10, the error bounds
obtained with Algorithm 4.1 are quite severe over- and underestimations of the exact
error. The second row gives error estimates obtained with other methods. On the
one hand, we used the method from [38] in which we chose the parameter k = 5,
meaning that we use information from the next 2k = 10 CG iterations, just as we do
in Algorithm 4.1 with k = 10. On the other hand, we also tested the recommended,
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third extrapolation based method from [3]. This method can be modified to also give
error bounds, provided we know the extremal eigenvalues of A, and the results for
these bounds are also given. We can see that the bounds and estimates obtained with
the extrapolation based methods are worse than the bounds obtained via the new
approach. The same holds for the other extrapolation based methods from [3], for
which we do not reproduce the results here. The estimate from [38], which actually is
a lower bound in this case, is comparable to and slightly more accurate than the lower
bound obtained with Algorithm 4.1. The right column of Figure 6.1 shows that we
get much faster convergence and much better error bounds when we use a standard,
0-fill incomplete Cholesky factorization of A as a preconditioner. This means that we
perform Algorithm 4.1 for the matrix L−1AL−H instead of A and L−1b instead of
b, where A = LLH + R is the incomplete Cholesky factorization of A. The bound a
for the smallest eigenvalue of the preconditioned matrix was obtained as before. A
comparison between the new approach (first row) and existing methods (second row)
leads to similar conclusions as in the non-preconditioned case. We also included results
obtained with the method from [29] for comparison. The error estimates obtained for
comparable parameters (k = 10) appear quite similar to those obtained with our
new method. For the non-preconditioned matrix the error estimates with the method
from [29] were extremely small (e.g., 10−30 after 1000 iterations, and even less for
later iterations), so that we did not reproduce them in the left column of Figure 6.1.
We suspect that in this case the bad conditioning induces an instability which we
could not avoid although we used the most stable, QR-based implementation of the
method from [29].

It can be noticed that for the preconditioned system the upper bounds obtained
with Algorithm 4.1 are not as close to the exact error than the lower bounds, whereas
it is the other way around for the non-preconditioned system. As a rule, we observed
that for better conditioned systems, the lower bounds tend to be closer than the upper
bounds, even if we work with very accurate estimates a for the smallest eigenvalue.
A theoretical justification for this behavior is still missing.

Our second example deals with rational approximations to the sign function, as it
is used within the Neuberger overlap operator in lattice QCD. QCD (quantum chro-
modynamics) is the physical theory of quarks and gluons as the constituents of matter.
To evaluate this theory non-perturbatively, one has to work with discretizations on a
4-dimensional space-time lattice amongst which the Wilson fermion matrix I−κDW is
the most important one. DW describes a nearest neighbor coupling on an equispaced
4d grid where each grid point holds 12 variables. Recent progress aiming at preserving
the physically important “chiral symmetry” (cf. [2]) on the lattice lead to Neuberger’s
overlap operator DN which has the form P +sign(PDW ), P a simple unitary matrix.
The matrix PDW is hermitian and indefinite. In order to solve systems with DN one
uses a Krylov subspace method, so that in each step one has to compute sign(PDW )b
for some vector b. The matrix Q := PDW is hermitian and indefinite. We report on
numerical results obtained with the matrix D available in the matrix group QCD at
the UFL sparse matrix collection as configuration conf5.4-00l8x8-2000.mtx with
κc = 0.15717. Q is then given as Q = P (I − 4

3κcD), with P the permutation

P = I3 ⊗




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


⊗ I n

12
.

15



The dimension of the system is n = 12 · 84 ≈ 50 000. We compute sign(Q)b for
a randomly generated vector b. To this purpose, we first compute two numbers
0 < a1 < a2 such that spec(Q) ⊂ [−a2,−a1] ∪ [a1, a2]. We then approximate sign(t)
on [−a2,−a1]∪ [a1, a2] with the Zolotarev rational approximation, see [34]. It has the
form ĝ(t) =

∑s
i=1 ωi

t
t2+αi

, ωi, αi > 0 and it is an ℓ∞-best approximation. The number

of poles s was chosen such that the ℓ∞-error was less than 10−7, that is s = 11. To
compute ĝ(Q)b, we actually computed g(Q) · (Qb) with

g(t) =
s∑

i=1

ωi
1

t2 + αi
. (6.1)

Since Q2 is hermitian and positive definite, Algorithm 4.1 will produce lower and
upper bounds for the exact error. In our computations we used a deflation technique
common in realistic QCD computations [40]: We precompute the first, λ1, . . . , λq

say, eigenvalues of smallest modulus. With Π denoting the orthogonal projection
onto the space spanned by the corresponding eigenvectors, we then have sign(Q)b =
sign(Q)(I − Π)b + sign(Q)(Πb). Here we know sign(Q)(Πb) explicitly, so that we
now just have to approximate sign(Q)(I −Π)b. In this manner, we effectively shrink
the eigenvalue intervals for Q, so that we need fewer poles for an accurate Zolotarev
approximation and, in addition, the linear systems to be solved converge more rapidly.
In QCD practice, this approach results in a major speedup, since sign(Q)b must
usually be computed repeatedly for various vectors b. For Algorithm 4.1 it has the
additional advantage that we immediately have a very good value for a, the lower
bound on the smallest eigenvalue of Q2 for which we can take λ2

q .
Figure 6.2 shows the results that we obtain deflating q = 30 eigenvalues. The

(effective) condition number of the (deflated) matrix Q2 is approximately 50, 000. As
in our first example, the top row reports upper and lower bounds from Algorithm 4.1
whereas the bottom row gives the estimates from [15] which we know to be a lower
bound in this case. As before, we see that going from k = 2 to 10 results in a
significant gain in accuracy.

Figure 6.3 gives the results for Algorithm 4.1 with k = 10 for a configuration on
a 164 lattice, resulting in a matrix Q of dimension ≈ 800, 000. We again deflated
the 30 smallest eigenvalues. The condition number of the deflated matrix Q2 is now
approximately 3, 700, i.e., less than for the 84 lattice. Therefore, the convergence
speed as well as the quality of the bounds are better than for the 84 lattice.

As a last example we consider the [10/10] Padé approximation to the exponential
function. Using [m/m] Padé approximations is very common for approximating the
matrix exponential; cf. [1, 25, 31]. Matlab’s expm uses Padé approximations along
with the scaling and squaring approach [26]. The partial fraction expansion of the
[10/10] Padé approximation to the exponential has the form

1 +

5∑

i=1

ωi

t− σi
+

ωi

t− σi
=: 1 + g(t),

where all the coefficients ωi and poles σi are non-real. We want to compute (I+g(A))b,
so we focus on g(A)b. Due to the complex poles and coefficients we cannot easily
obtain information on the sign of the derivatives of gm, implying that this time we do
not know whether Algorithm 4.1 really obtains bounds for the error.

Figure 6.4 reports the results that we get when computing g(A)b with A the
negative discrete Laplacian on a 200 × 200 grid, b a random vector. Computing
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Fig. 6.2. Error bounds and exact error for Zolotarev approximation for sign(Q) in lattice QCD,
84 lattice. Left column: k = 2, right column: k = 10. Top row: Algorithm 4.1, bottom row: method
from [15]

exp(A)b for the negative discrete Laplacian A (or a scalar multiple thereof) is a
common task when using exponential integrators in semi-discretized parabolic partial
differential equations, see [21].

For this example, taking k = 2 in Algorithm 4.1 is already sufficient to obtain
error estimates which are very close to the exact error. Although we do not have
a theoretical justification, the error estimates produced by Algorithm 4.1 turn out
to indeed represent (tight) lower and upper bounds for the error. The right part
of Figure 6.4 shows the error and the error estimates obtained with the approach
suggested in [15]. Note that due to the complex shifts, this approach amounts to
perform a variant of the CG method which uses the indefinite bilinear form 〈x, y〉T =
yTx on Cn. This method thus does not obtain the same iterates as Algorithm 4.1,
but we see that the norm of the error is quite similar for both approaches. The error
estimate from [15] is much less precise for the first half of the iterations, whereas for
the second half of the iterations it is comparable to the estimates from Algorithm 4.1.

The matrix exponential is also used in the analysis of large graphs like those de-
scribing social networks. If A is the adjacency matrix of such an undirected graph,
then exp(A)ij denotes the communicability (see [9]) between nodes i and j. Accord-
ingly, exp(A)ei gets us the communicabilities of node i with all other nodes. For our
numerical experiments we took i = 1 and we used the graph dblp-2010 from group
LAW of the University of Florida sparse matrix collection. It describes the co-author
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Fig. 6.3. Error bounds and exact error for Zolotarev approximation for sign(Q) in lattice QCD,
164 lattice, Algorithm 4.1, k = 10.
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Fig. 6.4. Error bounds and exact error for Padé approximation to the exponential, A negative
discrete Laplacian on 200× 200 mesh.

relation between all authors appearing in the DBLP database of journal papers in
computer science as of some day in the year 2010. This graph has more than 300,000
nodes and about 1.5 million vertices. Note that A is an indefinite matrix. For this
matrix the error estimates from [15] could not be applied, since the use of the indefi-
nite bilinear form produced breakdowns in the algorithm. In Figure 6.5 we give only
one (the “lower bound” ℓm) of the estimates from Algorithm 4.1 for k = 2 and k = 10.
The “upper” bound um behaves quite similarly (where we compute a as in the second
example). For k = 2 the estimates appear to systematically represent a lower bound.
For k = 10 we clearly see that the estimate does not represent an upper nor lower
bound for the error, but we get an estimate for the error which is never more than a
factor of 5 off the exact error.

7. Conclusions. Building on the theory of Golub and Meurant we proposed a
novel use of this theory which allows, in particular, to obtain estimates, lower and
upper bounds for the 2-norm of the error of the action of a rational matrix function on
a vector. Such estimates are important for rational matrix functions as they can be
used as a stopping criterion. Upper bounds have the advantage to provide a reliable
stopping criterion: If we stop the iteration once the upper bound is less than a given
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Fig. 6.5. Error bounds and exact error for Padé approximation to the exponential, A adjacency
matrix for dblp-2010 graph, k = 2 and k = 10 in Algorithm 4.1

threshold ǫ, the exact error is also smaller than ǫ. Our new approach relies on a
secondary, restarted Lanczos process which can be obtained very efficiently at cost
which is independent of the matrix size. Numerical examples show that the new
approach can give very good error bounds with the quality of the bounds depending
on the number k of steps in the secondary Lanczos process and on the condition of the
matrix function. The effects of rounding errors were not studied, but our approach
follows the philosophy put forward in [38, 39] in that it only makes use of “local
orthogonality”, the secondary Lanczos process involving just the last 2k iterations
of the primary Lanczos process. Our approach can, in principle, be extended to the
preconditioning idea from [24], where instead of f(A)b one computes r(τI−A)−1b with
r the rational function r(t) = f(τ − t−1), see also [15, 35]. However, the conditions of
Corollary 3.2 on the signs of the poles and the coefficients will usually not be fulfilled
for r, so that we cannot expect to obtain lower and upper bounds.
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[38] Z. Strakoš and P. Tichý, On error estimation in the conjugate gradient method and why it
works in finite precision computations, ETNA, Electron. Trans. Numer. Anal., 13 (2002),

20



pp. 56–80.
[39] , Error estimation in preconditioned conjugate gradients, BIT Numerical Mathematics,

45 (2005), pp. 789–817.
[40] J. van den Eshof, A. Frommer, T. Lippert, K. Schilling, and H. van der Vorst, Numer-

ical methods for the QCD overlap operator. I: Sign-function and error bounds., Comput.
Phys. Commun., 146 (2002), pp. 203–224.

[41] J. van den Eshof and G. L. Sleijpen, Accurate conjugate gradient methods for families of
shifted systems, Appl. Numer. Math., 49 (2004), pp. 17–37.

[42] H. van der Vorst, An iterative solution method for solving f(A)x = b, using Krylov subspace
information obtained for the symmetric positive definite matrix A., J. Comput. Appl.
Math., 18 (1987), pp. 249–263.

21


