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Abstract

In this work, we consider a class of differentiable criteria for sparse image computing
problems, where a nonconvex regularization is applied to an arbitrary linear transform of
the target image. As special cases, it includes edge preserving measures or frame-analysis
potentials commonly used in image processing. As shown by our asymptotic results, the
ℓ2 − ℓ0 penalties we consider may be employed to provide approximate solutions to ℓ0-
penalized optimization problems. One of the advantages of the proposed approach is that
it allows us to derive an efficient Majorize-Minimize subspace algorithm. The convergence
of the algorithm is investigated by using recent results in nonconvex optimization. The fast
convergence properties of the proposed optimization method are illustrated through image
processing examples. In particular, its effectiveness is demonstrated on several data recovery
problems.

∗A preliminary version of this work has appeared in [18].
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21 Introduction

The objective of this paper is to show that, for a wide range of variational problems in image
processing, an estimation x̂ ∈ R

N of the target image can be efficiently obtained by using a
class of nonconvex, regularizing criteria that promote sparsity. More specifically, we focus on
the following penalized optimization problem:

minimize
x∈RN

(
Fδ(x) = Φ(Hx− y) + Ψδ(x)

)
, (1)

where H 6= 0 is a matrix in R
Q×N , y is a vector in R

Q, Φ: RQ → R and Ψδ : RN → R

are functions, and δ is a positive scalar. We are mainly interested in the case when Φ is a
differentiable function. This includes the classical squared Euclidean norm. The problem then
reduces to a penalized least squares (PLS) problem [55, 56]. Another case of interest is when
Φ is the separable Huber function [31, Example 5.4] which is useful for limiting the influence of
outliers in some observed data. Other examples shall be mentioned subsequently.

Note that the considered optimization problem is frequently encountered in the field of
inverse problems. Then, y is some vector of observations related to the original image x ∈ R

N

through a linear model of the form
y = Hx + w, (2)

where H models the measurement process (e.g. a convolution operator or a projection operator),
w is an additive noise vector, Φ is a data-fidelity term and Ψδ is a regularization term.

An efficient strategy to promote images formed by smooth regions separated by sharp edges,
is to use regularization functions of the form

(∀x ∈ R
N) Ψδ(x) =

S∑

s=1

ψs,δ(‖Vsx− cs‖) + ‖V0x‖2, (3)

where ‖ · ‖ denotes the Euclidean norm, and, for every s ∈ {1, . . . , S}, cs ∈ R
Ps , Vs ∈ R

Ps×N

and ψs,δ : R → R. An important example of such a framework is when, for every s ∈ {1, . . . , S},
Ps = 1 and cs = 0, and V =

{
V ⊤
s , s ∈ {1, . . . , S}

}
⊂ R

N constitutes a frame of RN , leading to
a so-called frame-analysis regularization [24]. For every s ∈ {1, . . . , S}, Vs may also be a matrix
serving to compute discrete gradients (or higher-order differences), useful for edge preservation.
In particular, if S = N and, for every s ∈ {1, . . . , N}, Ps = 2, cs = 0 and Vs = [∆h

s ∆v
s ]⊤ where

∆h
s ∈ R

N (resp. ∆v
s ∈ R

N ) corresponds to a horizontal (resp. vertical) gradient operator, and
(∀t ∈ R) ψs,δ(t) = λ|t| with λ > 0, the first term in the right hand side of (3) corresponds to a
discrete version of the isotropic total variation semi-norm [54]. Note that other choices of Vs

lead to different penalization strategies. For instance, one can use nonlocal mean regularization,
which has been recently studied in the context of edge preserving functions in [49].

In order to preserve significant coefficients in V, one may require the functions (ψs,δ)1≤s≤S to
have a slower-than-parabolic growth, as this limits the cost associated with these components.
Two of the main families of such functions known in the literature are:

(i) ℓ2 − ℓ1 functions, i.e. convex, continuously differentiable, asymptotically linear functions
with a quadratic behavior near 0 [1, 16, 37, 62]. Typical examples are the functions
(∀s ∈ {1, . . . , S}) (∀t ∈ R) ψs,δ(t) = λ

√
t2 + δ2 with λ > 0. In the limit case when δ → 0,

the classical ℓ1 penalty is obtained.

(ii) ℓ2 − ℓ0 functions, i.e. asymptotically constant functions with a quadratic behavior near
0 [27, 30, 47, 58, 61]. Typical examples are the truncated quadratic functions (∀s ∈
{1, . . . , S}) (∀t ∈ R) ψs,δ(t) = λmin(t2/(2δ2), 1) with λ > 0. When δ → 0, an ℓ0 penalty
is obtained.



3The last quadratic penalty term x 7→ ‖V0x‖2 in (3) plays a role similar to the elastic net
regularization introduced in [63]. It allows us to guarantee some properties of the minimizers
and minimization algorithms, when H is not injective (e.g. an ideal low-pass filtering operator).

The ℓ2 − ℓ0 approach has been shown in the literature to be advantageous in many appli-
cations, for instance sparse component analysis [44], compressive sensing [32], matrix comple-
tion [41], robust regression [42], segmentation [52], and image recovery [20, 49]. This paper
mainly addresses the latter problem, where ℓ2 − ℓ0 is recognized for its ability to preserve edges
between homogeneous regions [45]. The nonconvexity and sometimes non-differentiability of the
potential function lead however to a difficult optimization problem. In this paper, we consider a
class of nonconvex differentiable potential functions, which can be viewed as smoothed versions
of a truncated quadratic penalty function.

An effective approach for the minimization of differentiable criteria is to consider a subspace
descent algorithm [23, 62]. For such methods, at each iteration, a step size vector allowing
an optimized combination of several search directions is computed through a multidimensional
search. Recently, an original step size strategy based on a Majorize-Minimize (MM) recursion
was introduced in [17]. This latter approach leads to a closed-form algorithm whose practi-
cal efficiency has been demonstrated in the context of image restoration, when using convex
penalized least squares criteria.

Our main contributions in this paper are:

• to establish conditions under which a solution to an ℓ0 penalized criterion can be asymp-
totically obtained by using the considered class of penalty functions;

• to extend the approach in [17] to non necessarily convex minimization problems of the
form (1);

• to provide a proof of convergence of the iterates of the subspace MM algorithm;

• to show the good practical performance of the proposed method for several applications.

It must be stressed that the convergence proofs in this paper rely on recent results underlining
the prominent role played by the Kurdyka- Lojasiewicz inequality [3, 4, 5, 10] in the convergence
study of various iterative optimization methods. Our results constitute a significant improve-
ment over those in [17]. In this previous article, the analysis was restricted to showing that the
gradient of the objective function converges to zero.

The rest of the paper is organized as follows: properties of the considered optimization
problem are first investigated in section 2. Then, we introduce in section 3 a minimization
strategy based on an MM subspace scheme. In section 4, we investigate the general convergence
properties for the proposed algorithm. Finally, section 5 illustrates the performance of our
algorithm through a set of comparisons and experiments in image processing.

2 Considered class of objective functions

In this section, we briefly mention some useful properties of problem (1).

2.1 Existence of a minimizer

First, we provide a preliminary result concerning the existence of a solution to the problem
under the following assumption on the functions in (1) and on the nullspaces KerH and KerV0

of H and V0, respectively.



4Assumption 1. (i) Φ is continuous and coercive (that is lim‖z‖→+∞ Φ(z) = +∞).

(ii) For every δ > 0 and s ∈ {1, . . . , S}, ψs,δ is continuous and takes nonnegative values.

(iii) KerH ∩ KerV0 = {0}.

Proposition 1. Suppose that Assumption 1 holds. Then, for every δ > 0,

(i) Fδ is coercive;

(ii) the set of minimizers of Fδ is nonempty and compact.

Proof. Let δ > 0. Since, for every s ∈ {1, · · · , S}, ψs,δ ≥ 0, we have

(∀x ∈ R
N ) Fδ(x) ≥ Φ(Hx− y) + ‖V0x‖2 = F (x). (4)

This implies that, for every η ∈ R,

lev≤η Fδ = {x ∈ R
N | Fδ(x) ≤ η} ⊂ lev≤η F . (5)

As Φ is continuous and coercive, inf Φ > −∞. For every x ∈ R
N and η ∈ R, if x ∈ lev≤η F ,

then

Φ(Hx− y) ≤ η (6)

‖V0x‖2 ≤ η − inf Φ. (7)

Then, as a consequence of (6) and the coercivity of Φ, there exists ζ > 0 such that, for every
x ∈ lev≤η F ,

‖Hx‖ ≤ ζ. (8)

The combination of (7) and (8) shows that there exists ζ ′ > 0 such that, for every x ∈ lev≤η F ,
‖Ax‖ ≤ ζ ′ where

A =

[
H

V0

]
. (9)

It can be deduced that, for every x ∈ lev≤η F ∩ (KerA)⊥,

ν‖x‖ ≤ ζ ′ (10)

where ν is the minimum non-zero singular value of A (the existence of which is guaranteed
since A 6= 0). In addition, KerA = KerH ∩ KerV0 = {0}, which implies that (KerA)⊥ =
R
N . Hence, F is a level-bounded function, that is, for every η ∈ R, lev≤η F is bounded

(and possibly empty). Using (5), we can conclude that Fδ is a level-bounded function (or
equivalently, it is coercive [53, Proposition 11.11]). As Fδ is also continuous, (ii) follows from
[53, Theorem 1.9].

Remark 1. (i) In the particular case when H is injective, Assumption 1(iii) is satisfied
if V0 = 0. The injectivity of H obviously holds when H = I in (2), which typically
corresponds to denoising applications.

(ii) When V0 = 0, the existence of a minimizer of Fδ with δ > 0 can also be guaranteed under
other useful conditions. For example, this property holds under Assumptions 1(i) and
1(ii), if KerH ∩

⋂S
s=1 KerVs = {0}, and when for every s ∈ {1, . . . , S}, ψs,δ is coercive.



52.2 Non-convex regularization functions

In the remainder of this work, we will be interested in potentials satisfying the following addi-
tional property:

Assumption 2. (i) (∀s ∈ {1, . . . , S}) (∀(δ1, δ2) ∈ (0,+∞)2) δ1 ≤ δ2 ⇒ (∀t ∈ R) ψs,δ1(t) ≥
ψs,δ2(t).

(ii) There exists λ > 0 such that

(∀s ∈ {1, . . . , S})(∀t ∈ R) lim
δ→0
δ>0

ψs,δ(t) = λχR\{0}(t) (11)

where χR\{0}(t) =

{
0 if t = 0

1 otherwise.

Assumption 2(ii) implies that a binary penalty function is asymptotically obtained. Ex-
amples of functions ψs,δ with s ∈ {1, . . . , S} and δ > 0 satisfying Assumptions 1(ii) and 2 are
provided below:

Example 2. (i) Truncated quadratic potential [57]:

(∀t ∈ R) ψs,δ(t) = λmin

(
t2

2δ2
, 1

)
, λ > 0.

(ii) Geman-McClure potential [28]:

(∀t ∈ R) ψs,δ(t) =
λt2

2δ2 + t2
, λ > 0.

(iii) Welsch potential [21]:

(∀t ∈ R) ψs,δ(t) = λ
(

1 − exp(− t2

2δ2
)
)
, λ > 0.

(iv) Hyberbolic tangent potential:

(∀t ∈ R) ψs,δ(t) = λ tanh
( t2

2δ2

)
, λ > 0.

(v) Tukey biweight potential [9]:

(∀t ∈ R) ψs,δ(t) =

{
λ
(

1 − (1 − t2

6δ2
)3
)

if |t| ≤
√

6δ

λ otherwise
, λ > 0.

The latter four functions are such that ψs,δ(t) ∼ λt2/(2δ2) as t → 0. They can thus be
viewed as smoothed versions of the one-variable truncated quadratic function in Example 2(i)
(see Figure 1).
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Figure 1: Truncated quadratic penalty in Example 2(i) (black, full) and its smooth approximations
ψs,δ(t) as defined in Examples 2(ii) (red, dashed), 2(iii) (blue, dash-dot), 2(iv) (green, dot), and 2(v)
(magenta, cross), for parameters λ = 1 and δ = 1.

2.3 Asymptotic convergence to ℓ0 criterion

The asymptotic behavior of the considered class of potentials can now be derived by showing
the epi-convergence of Fδ to the following block (or group) ℓ0-penalized objective function:

F0 : x 7→ Φ(Hx− y) + λℓ0(V x− c) + ‖V0x‖2, (12)

where V =
[
V ⊤
1 | . . . |V ⊤

S

]⊤
, c =

[
c⊤1 , . . . , c

⊤
S

]⊤
, and ℓ0 denotes the so-called ‘block ℓ0 cost’

[25] defined as

(∀t = [t⊤1 , . . . , t
⊤
S ]⊤ ∈ R

P1+···+PS) ℓ0(t) =

S∑

s=1

χR\{0}(‖ts‖), (13)

where, for every s ∈ {1, . . . , S}, ts ∈ R
Ps . When P1 = . . . = PS = 1, (13) provides the standard

expression of the ℓ0 cost of RS.

Proposition 2. Suppose that Assumptions 1 and 2 hold. Let (δn)n∈N be a decreasing sequence
of positive real numbers converging to 0. Then,

(i) inf Fδn → inf F0 as n→ +∞.

(ii) If (∀n ∈ N) x̂n is a minimizer of Fδn , then the sequence (x̂n)n∈N is bounded and all its
cluster points are minimizers of F0.

(iii) If F0 has a unique minimizer x̃, then x̂n → x̃ as n→ +∞.

Proof. First, note that, according to Assumption 2(i), for every n ∈ N, Fδn+1
≥ Fδn . In addition,

for every n ∈ N, Fδn is a continuous function as a consequence of Assumptions 1(i) and 1(ii).
Then it can be deduced from [53, Theorem 7.4(d)] that (Fδn)n∈N epi-converges to supn∈N Fδn .
The latter function is equal to F0 by virtue of Assumption 2(ii). In addition, (Fδn)n∈N is
eventually level-bounded1 as a consequence of [53, Ex. 7.32(a)], the lower bound in (4) and the

1(Fδn)n∈Nis eventually level-bounded if, for every η ∈ R, there exists some subset N of N such that N \ N is
finite and ∪n∈N lev≤η Fδn is bounded.



7fact that F : x 7→ Φ(Hx−y)+‖V0x‖2 is level-bounded (as shown in the proof of Proposition 1).
We complete the proof by noticing that F0 is lower semicontinuous and proper, and by applying
[53, Theorem 7.33].

The above proposition guarantees that a minimizer of F0 can be well-approximated by
choosing a small enough δ. Note that the existence/uniqueness of a minimizer of F0 is discussed
in the literature on compressed sensing under some specific assumptions [14, 19, 22, 46].

We will now turn our attention to numerical methods allowing us to efficiently solve Problem
(1) when all the involved functions are smooth.

3 Proposed optimization method

3.1 Subspace algorithm

A classical strategy to minimize the criterion Fδ consists of building a sequence (xk)k∈N of RN

such that
(∀k ∈ N) Fδ(xk+1) ≤ Fδ(xk). (14)

This can be performed by translating the current solution xk at each iteration k ∈ N along a
suitable direction dk ∈ R

N :
xk+1 = xk + αkdk, (15)

where αk > 0 is the step size, and dk is a descent direction. When Fδ is differentiable, this
direction is chosen such that g⊤

k dk ≤ 0 where gk denotes the gradient of Fδ at xk.
A significant practical improvement regarding the convergence rate is achieved by performing

subspace acceleration, i.e. by considering a set of M search directions {d1
k, . . . ,d

M
k } ⊂ R

N and
by defining the new iteration as

xk+1 = xk + Dkuk, (16)

where Dk = [d1
k, . . . ,d

M
k ] ∈ R

N×M is the search direction matrix and uk ∈ R
M is a multivariate

step size, which is computed so as to minimize

fk,δ : u 7→ Fδ(xk + Dku). (17)

The memory gradient subspace algorithm, initially proposed in the late 1960’s by Miele and
Cantrell [43], corresponds to:

(∀k ≥ 1) Dk = [−gk | xk − xk−1]. (18)

When the objective function is quadratic, this algorithm is equivalent to the linear conjugate
gradient algorithm [15]. More recently, several other subspace algorithms have been proposed,
where, at each iteration k ∈ N, Dk usually includes a descent direction (e.g. gradient, Newton,
truncated Newton directions) and a short history of previous directions (see [17, Tab.1] for a
general review).

In addition, the subspace scheme (16) was shown to outperform standard descent algorithms
such as nonlinear conjugate gradient over a set of PLS minimization problems in [17, 62]. The
convergence of Algorithm (16) however requires the design of a proper strategy to determine
the step sizes (uk)k∈N, which we discuss in the next section.



83.2 Majorize-Minimize step size

At each iteration k ∈ N, the minimization of fk,δ using the Majorization-Minimization (MM)
principle is approximately performed by successive minimizations of tangent majorant functions
for fk,δ. Let qk : RM ×R

M → R and let u′ ∈ R
M . The function qk(.,u′) is said to be a tangent

majorant for fk,δ at u′ if

{
(∀u ∈ R

M) qk(u,u′) ≥ fk,δ(u)

qk(u′,u′) = fk,δ(u
′).

(19)

From this point forward, we assume that fk,δ is differentiable. Following [17], we propose to
employ a convex quadratic tangent majorant function of the form:

(∀u ∈ R
M ) qk(u,u′) = fk,δ(u

′) + ∇fk,δ(u′)⊤(u− u′) +
1

2
(u− u′)⊤Bk,u′(u− u′), (20)

where ∇fk,δ(u′) denotes the derivative of fk,δ at u′, and Bk,u′ is an M ×M symmetric positive
semi-definite matrix that ensures the fulfillment of majorization properties (19). The initial
minimization of fk,δ is replaced by a sequence of easier subproblems, corresponding to the
following MM update rule:





u0
k = 0,

∀j ∈ {1, . . . , J}
⌊

u
j
k ∈ Argmin

u∈RM

qk(u,uj−1
k )

(21)

Note that for M = 1, this reduces to the scalar MM line search [36].

3.3 Construction of the majorizing approximation

We now make the following assumption:

Assumption 3. (i) Φ is differentiable with an L-Lipschitzian gradient, i.e.

(∀z ∈ R
Q)(∀z′ ∈ R

Q) ‖∇Φ(z) −∇Φ(z′)‖ ≤ L‖z − z′‖. (22)

(ii) For every s ∈ {1, · · · , S}, ψs,δ is a differentiable function.

(iii) For every s ∈ {1, · · · , S}, ψs,δ(
√
.) is concave on [0,+∞).

(iv) For every s ∈ {1, · · · , S}, there exists ωs ∈ [0,+∞) such that (∀t ∈ (0,+∞)) 0 ≤ ψ̇s,δ(t) ≤
ωst where ψ̇s,δ is the derivative of ψs,δ. In addition, limt→0

t 6=0

ψ̇s,δ(t)/t ∈ R.

We emphasize the fact that Assumptions 3(ii)-(iv) hold for the ℓ2-ℓ0 penalties in Exam-
ples 2(ii)-(v). Morever, Tab. 1 presents several examples of functions fulfilling Assumption 3(i).

By defining
(∀s ∈ {1, . . . , S})(∀t ∈ R) ωs,δ(t) = ψ̇s,δ(t)/t, (23)

(the function ωs,δ is extended by continuity at 0), a tangent majorant can be built as described
below:



9Function name Φ(z) Lipschitz

z = (zq)1≤q≤Q ∈ R
Q constant L

Least squares 1
2z

⊤Λz ‖Λ‖
Λ ∈ R

Q×Q symmetric positive semi-definite

ℓ2- ℓ1
∑Q

q=1 φq(zq) max1≤q≤Q( 1√
ρq

)

[59] (∀t ∈ R) φq(t) =
√
ρq + t2, ρq > 0

Huber
∑Q

q=1 φq(zq) 2 max1≤q≤Q ρq

[31] (∀t ∈ R) φq(t) =

{
ρqt

2 if |t| ≤ νq

ρqνq(2|t| − νq|) if |t| > νq

νq > 0, ρq > 0

Cauchy
∑Q

q=1 φq(zq) max1≤q≤Q( 2
ρq

)

[2] (∀t ∈ R) φq(t) = ln(ρq + t2), ρq > 0

Squared distance to 1
2d

2
B(z) 1

a closed convex set B [6]

Smoothed max [7] ρ ln(
∑Q

q=1 e
zq/ρ), ρ > 0 1/ρ

Inf-convolution infz1+z2=z Φ1(z1) + Φ2(z2) ρ

[6] Φ1 ∈ Γ0(R
Q), Φ2 ∈ Γ0(R

Q)

Φ2 ρ-Lipschitz differentiable, ρ > 0,

such that lim‖z‖→+∞
Φ2(z)
‖z‖ = +∞

Table 1: Some examples of functions Φ with an L-Lipschitzian gradient. (‖Λ‖ denotes the spec-
tral norm of Λ and Γ0(R

Q) denotes the class of proper lower-semicontinuous convex functions
from R

Q to (−∞,+∞].)

Lemma 1. [1] For every x ∈ R
N , let

A(x) = µH⊤H + 2V ⊤
0 V0 + V ⊤Diag {b(x)}V , (24)

where µ ∈ [L,+∞) and b(x) =
(
bi(x)

)
1≤i≤SP

∈ R
SP with P =

∑S
s=1 Ps is such that

(∀s ∈ {1, . . . , S}) (∀p ∈ {1, . . . , Ps}) bP1+···+Ps−1+p(x) = ωs,δ(‖Vsx− cs‖). (25)

Let u′ ∈ R
M and k ∈ N. Then, under Assumption 3, qk(·,u′) with

Bk,u′ = D⊤
k A(xk + Dku

′)Dk, (26)

is a convex quadratic tangent majorant of fδ,k at u′.

Hence, according to (20) and (21), the optimality condition for the choice of the step size in
the MM iteration is given by:

(∀k ∈ N)(∀j ∈ {1, . . . , J}) B
k,uj−1

k

(uj
k − u

j−1
k ) + ∇fk,δ(uj−1

k ) = 0. (27)

This yields the explicit step size formula

u
j
k = u

j−1
k − B−1

k,uj−1

k

∇fk,δ(uj−1
k ), (28)



10where B−1

k,uj−1

k

is the pseudo-inverse of B
k,uj−1

k

∈ R
M×M . One of the main advantages of this

approach is that the computational cost of the required inversion is low, provided that the
number M of search directions remains small. The resulting MM subspace algorithm reads





x0 ∈ R
N ,

∀k ∈ N

u0
k = 0,

∀j ∈ {1, . . . , J}
B

k,uj−1

k

= D⊤
k A(xk + Dku

j−1
k )Dk,

u
j
k = u

j−1
k − B−1

k,uj−1

k

D⊤
k ∇Fk,δ(xk + Dku

j−1
k ),

xk+1 = xk + Dku
J
k .

(29)

4 Convergence result

We first provide some preliminary technical lemmas before stating our main convergence result.
In the following, for every k ∈ N and j ∈ {0, . . . , J}, we define

x
j
k = xk + Dku

j
k, (30)

g
j
k = ∇Fδ(x

j
k), (31)

(thus, xJ
k = xk+1 and gJ

k = gk+1). Moreover, we assume that the set of directions (Dk)k∈N
fulfills the following condition:

Assumption 4. For every k ∈ N, the matrix of directions Dk is of size N×M with 1 ≤M ≤ N
and the first subspace direction d1

k is gradient-related i.e.,

g⊤
k d

1
k ≤ −γ0‖gk‖2, (32)

‖d1
k‖ ≤ γ1‖gk‖, (33)

with γ0 > 0 and γ1 > 0.

As emphasized in [8, Sec.1.2] and [17, Sec.III-D], conditions (32) and (33) hold for a large
family of descent directions, such as the steepest descent direction or the truncated Newton
direction.

4.1 Preliminary results

Lemma 2. Under Assumptions 3 and 4, there exists a constant ν > 0 such that, for every

k ∈ N and j ∈ {1, . . . , J}, Fδ(xk) − Fδ(x
j
k) ≥ γ2

0

γ2
1

ν−1‖gk‖2.

Proof. According to Assumption 3(iv) and Eq. (23), for every s ∈ {1, · · · , S}, ωs,δ is upper-
bounded on (0,+∞). Hence, there exists ν > 0 such that, for every x ∈ R

N and v ∈ R
N ,

v⊤A(x)v ≤ ν‖v‖2/2. The result then follows from [17, Theorem 1].

Lemma 3. Under Assumptions 1 and 3, the MM subspace iterates are such that

(∀k ∈ N)(∀j ∈ {0, . . . , J − 1}) Fδ(x
j
k) − Fδ(x

j+1
k ) ≥ η

2
‖xj+1

k − x
j
k‖2 (34)

where η > 0 is the smallest eigenvalue of µH⊤H + 2V ⊤
0 V0.



11Proof. Let k ∈ N and j ∈ {0, . . . , J − 1}. According to (20) and the definition of uj+1
k ,

fk,δ(u
j
k) − qk(uj+1

k ,uj
k) = −1

2
∇fk,δ(uj

k)⊤(uj+1
k − u

j
k). (35)

Furthermore, qk(uj+1
k ,uj) ≥ fk,δ(u

j+1
k ). Thus,

fk,δ(u
j
k) − fk,δ(u

j+1
k ) ≥ −1

2
∇fk,δ(uj)⊤(uj+1

k − u
j
k). (36)

The last inequality also reads

Fδ(x
j
k) − Fδ(x

j+1
k ) ≥ −1

2
∇fk,δ(uj)⊤(uj+1

k − u
j
k). (37)

So, using (26) and (27),

Fδ(x
j
k) − Fδ(x

j+1
k ) ≥ 1

2

(
Dk(uj+1

k − u
j
k)
)⊤

A(xj
k)Dk(uj+1

k − u
j
k) (38)

≥ η

2
‖Dk(uj+1

k − u
j
k)‖2. (39)

In the latter inequality, we make use of the fact that, since KerH ∩KerV0 = {0}, η is positive,
and

(∀x ∈ R
N )(∀v ∈ R

N ) v⊤A(x)v ≥ η‖v‖2. (40)

Lemma 4. Under Assumptions 1 and 3, the MM subspace iterates are such that

(∀k ∈ N)(∀j ∈ {0, . . . , J − 1}) η‖xj+1
k − x

j
k‖ ≤ ‖gj

k‖, (41)

where η > 0 is the same constant as in Lemma 3.

Proof. According to (27), we have, for every k ∈ N and j ∈ {0, . . . , J − 1},

D⊤
k g

j
k + D⊤

k A(xj
k)Dk(uj+1

k − u
j
k) = 0. (42)

Hence, (
Dk(uj+1

k − u
j
k)
)⊤

g
j
k +

(
Dk(uj+1

k − u
j
k)
)⊤

A(xk)Dk(uj+1
k − u

j
k) = 0. (43)

By using (40), (43) leads to

−
(
Dk(uj+1

k − u
j
k)
)⊤

g
j
k ≥ η‖Dk(uj+1

k − u
j
k)‖2. (44)

In addition, the Cauchy-Schwarz inequality leads to

−
(
Dk(uj+1

k − u
j
k)
)⊤

g
j
k ≤ ‖gj

k‖‖Dk(uj+1
k − u

j
k)‖. (45)

Thus, the latter two inequalities yield:

η‖Dk(uj+1
k − u

j
k)‖2 ≤ ‖gj

k‖‖Dk(uj+1
k − u

j
k)‖. (46)

Substituting with (30), we obtain the desired result.



124.2 Convergence theorem

Based on the two previous lemmas, classical results in the optimization literature [48] may allow
us to deduce the convergence of the sequence (xk)k∈N generated by the MM subspace algorithm,
but these results require restrictive conditions on the critical points of the objective function Fδ.
We propose here a more general approach based on recent results in nonconvex optimization
[3, 4, 5]. We first recall the following definition from [40]:

Definition 1. A differentiable function G : RN → R is said to satisfy the Kurdyka- Lojasie-
wicz inequality if, for every x̃ ∈ R

N and every bounded neighborhood E of x̃, there exist three
constants κ > 0, ζ > 0 and θ ∈ [0, 1) such that

‖∇G(x)‖ ≥ κ|G(x) −G(x̃)|θ, (47)

for every x ∈ E such that |G(x) −G(x̃)| < ζ.

The interesting point is that this inequality is satisfied for a wide class of functions. In
particular, it holds for real analytic functions, semi-algebraic functions as well as many oth-
ers [11, 12, 35, 40]. Recall that a function G : RN → R is semi-algebraic if its graph {(x, η) ∈
R
N ×R | η = G(x)} is a semi-algebraic set, i.e. it can be expressed as a finite union of subsets

of RN ×R defined by a finite number of polynomial inequalities. The semi-algebraicity property
is stable under various operations (sum, product, inversion, composition,...). Examples of semi-
algebraic functions include x 7→ ‖Hx − y‖2, Ψδ when the functions (ψs,δ)1≤s≤S are given by
Example 2(ii) or 2(v), the squared distance to a closed convex semi-algebraic set. In turn, exam-
ples of real-analytic functions include x 7→ ‖Hx − y‖2 and Ψδ when the functions (ψs,δ)1≤s≤S

are given by Examples 2(ii)-2(iv). Note that a more general local version of inequality (47) can
also be found in the literature [12].

Let us now state our main convergence result:

Theorem 3. Assume that Fδ satisfies the Kurdyka- Lojasiewicz inequality. Under Assump-
tions 1, 3 and 4, the MM subspace algorithm given by (29) generates a sequence (xk)k∈N con-
verging to a critical point x̃ of Fδ. Moreover, this sequence is of finite length, in the sense that

+∞∑

k=0

‖xk+1 − xk‖ < +∞. (48)

Proof. As (Fδ(xk))k∈N is a decreasing sequence and lev≤Fδ(x0) =
{
x ∈ R

N |Fδ(x) ≤ Fδ(x0)
}

is a bounded set (by virtue of Proposition 1(i)), the sequence (xk)k∈N belongs to a compact
subset E of RN . Hence, there exists a subsequence (xki)i∈N of (xk)k∈N converging to a vector
x̃ of R

N . Besides, since Fδ is a continuous function, (Fδ(xki))i∈N converges to Fδ(x̃). As
(Fδ(xk))k∈N is decreasing, and Proposition 1(i) shows that it is bounded below, we deduce that
(Fδ(xk) − Fδ(x̃))k∈N is a nonnegative sequence converging to 0.

Now, by invoking Lemma 2 (with j = J), we have that, for every k ∈ N,

γ20
γ21
ν−1‖gk‖2 ≤ Fδ(xk) − Fδ(xk+1) = Fδ(xk) − Fδ(x̃) −

(
Fδ(xk+1) − Fδ(x̃)

)
. (49)

According to the  Lojasiewicz property, there exist constants κ > 0, ζ > 0 and θ ∈ [0, 1) such
that

‖∇Fδ(x)‖ ≥ κ|Fδ(x) − Fδ(x̃)|θ, (50)



13for every x ∈ E such that |Fδ(x) − Fδ(x̃)| < ζ. We now apply to the convex function
ϕ : [0,+∞) → [0,+∞) : u 7→ u1/(1−θ) the following gradient inequality

(∀(u, v) ∈ [0,+∞)2) ϕ(v) ≥ ϕ(u) + ϕ̇(u)(v − u) (51)

which, after a change of variables, can be rewritten as

(∀(u, v) ∈ [0,+∞)2) u− v ≤ (1 − θ)−1uθ(u1−θ − v1−θ). (52)

Combining the latter inequality with (49) leads to

Fδ(xk) − Fδ(x̃) −
(
Fδ(xk+1) − Fδ(x̃)

)
≤ (1 − θ)−1(Fδ(xk) − Fδ(x̃))θ∆k (53)

where
∆k =

(
Fδ(xk) − Fδ(x̃)

)1−θ −
(
Fδ(xk+1) − Fδ(x̃)

)1−θ
. (54)

Thus,

‖gk‖2 ≤
γ21
γ20
ν(1 − θ)−1(Fδ(xk) − Fδ(x̃))θ∆k. (55)

Since (Fδ(xk))k∈N converges to Fδ(x̃), there exists k∗ ∈ N, such that, for every k ≥ k∗, 0 ≤
Fδ(xk) − Fδ(x̃) < ζ. By applying the  Lojasiewicz inequality,

(∀k ≥ k∗) ‖gk‖2 ≤
γ21
γ20
νκ−1(1 − θ)−1‖gk‖∆k. (56)

This allows us to deduce that

+∞∑

k=k∗

‖gk‖ ≤ γ21
γ20
νκ−1(1 − θ)−1

(
Fδ(xk∗) − Fδ(x̃)

)1−θ
. (57)

Furthermore, according to (30),

η

2
‖xk+1 − xk‖2 =

η

2

∥∥∥
J−1∑

j=0

(xj+1
k − x

j
k)
∥∥∥
2

(58)

which, by using Lemma 3 and the convexity of the squared norm, yields for every k ∈ N,

η

2
‖xk+1 − xk‖2 ≤

ηJ

2

J−1∑

j=0

‖xj+1
k − x

j
k‖2

≤ J
J−1∑

j=0

Fδ(x
j
k) − Fδ(x

j+1
k ) = J

(
Fδ(xk) − Fδ(xk+1)

)
. (59)

By proceeding similarly to the derivation of (56), we obtain: for every k ≥ k∗,

η

2
‖xk+1 − xk‖2 ≤ J(1 − θ)−1

(
Fδ(xk) − Fδ(x̃)

)θ
∆k ≤ Jκ−1(1 − θ)−1‖gk‖∆k. (60)

By using the fact that, for every (u, v) ∈ [0,+∞)2, (uv)1/2 ≤ u+ v
4 , and taking u = Jη−1κ−1(1−

θ)−1∆k and v = 2‖gk‖, (60) leads to

‖xk+1 − xk‖ ≤ Jη−1κ−1(1 − θ)−1∆k +
1

2
‖gk‖. (61)



14By summing now over k and using (54) and (57), we finally obtain

+∞∑

k=k∗

‖xk+1 − xk‖ ≤ κ−1(1 − θ)−1(Jη−1 +
γ21
γ20

ν

2
)
(
Fδ(xk∗) − Fδ(x̃)

)1−θ
. (62)

This gives us the desired finite length property. In addition, since this condition implies that
(xk)k∈N is a Cauchy sequence, it converges towards a single point, which is necessarily x̃.
Finally, due to the continuity of Fδ and Lemma 2, (gk)k∈N converges to zero. As (xk, Fδ(xk)) →
(x̃, Fδ(x̃)), the closedness property of the gradient implies that ∇Fδ(x̃) = 0, i.e. x̃ must be a
critical point of Fδ .

Note that the inexact gradient methods that are studied in [5] are distinct from the subspace
algorithms we consider.

5 Simulation results

The aim of this section is to illustrate and analyze the performance of the proposed algorithm in
the context of Problem (1). We also show the nonconvex penalization functions in Example 2 to
be appropriate for image processing applications. To this end, four image processing problems
are considered, namely denoising, segmentation, deblurring and tomographic reconstruction.
For each of them, the produced image x̂ ∈ R

N is defined as a minimizer of the function Fδ,
where Φ, H, y and V depend on the considered application. For the elastic net regularization
term, we choose V0 = τI, τ ≥ 0. For deblurring and tomographic applications, the linear
operator H is not necessarily injective. Thus, we set τ equal to a small positive value in order
to fulfill Assumption 1(iii). In the two other cases, τ is set to zero.

For every s ∈ {1, . . . , S}, we have set cs = 0. For the potential function ψs,δ, we have

tested the smooth convex ℓ2 − ℓ1 function ψs,δ : t 7→ λ(
√

1 + t2/δ2 − 1) with λ > 0 (SC)
and the smooth nonconvex functions in Example 2(ii) (SNC(ii)), Example 2(iii) (SNC(iii)),
Example 2(iv) (SNC(iv)) and Example 2(v) (SNC(v)). Moreover, in the denoising and seg-
mentation examples, we provide optimization results for four state-of-the-art combinatorial
optimization algorithms, namely the α-expansion [13] (α-EXP), Quantized-Convex Move Split-
ting [33] (QCSM), Tree-Reweighted (TRW) [34] and Belief Propagation (BP) [26] algorithms,
for which the nonsmooth nonconvex truncated quadratic function in Example 2(i) (NSNC) is
considered. When the linear degradation operator is not the identity matrix, we do not provide
any comparison with the combinatorial algorithms. Indeed, although a few algorithms [51, 50]
are applicable to inverse problems involving a linear degradation operator, these methods are
well-founded only for a sparse convolution operator H. Moreover, they rely on an adaptation
of the graph cut α-expansion algorithm, which is shown in our segmentation and denoising
examples to be outperformed by our approach.

The computation of the proposed MM subspace algorithm requires specifying the direction
set Dk, for every k ∈ N, and the number of MM sub-iterations J . First, the memory-gradient
direction matrices,

(∀k ≥ m) Dk = [−gk | xk − xk−1 | · · · | xk−m+1 − xk−m] ∈ R
N×(m+1), (63)

with memory parameter m ≥ 0, is considered. Moreover, in all our experiments, we set J =
1. This choice was observed to yield the best results in terms of convergence profile in the
context of MM-based step size computation [17, 36]. In the following, we compare our proposed
subspace algorithm, denoted hereafter by 3MG-m (for Majorize-Minimize Memory Gradient)



15with three other iterative first order descent methods. The methods we compare against are
namely the nonlinear conjugate gradient (NLCG) algorithm [29], the L-BFGS algorithm [39]
with the memory parameter set to 3, and the fast version of half quadratic (HQ) algorithm
[1]. For each descent algorithm, the MM scalar line search with J = 1 is employed for the
computation of the step size. In the case of HQ, the inner optimization problems are solved
partially with conjugate gradient iterations. Note that this algorithm has been previously
studied in the context of nonconvex regularization functions in [20, 52]. In order to limit
the influence of possible local minima in the nonconvex case, the result of 10 iterations of
convex minimization using an ℓ2 − ℓ1 penalty is employed as an initialization. In the convex
case, minimization is started with the constant null image. The computational complexity is
evaluated in terms of iteration number and computational time in seconds necessary to achieve
the global stopping rule ‖gk‖/

√
N < 10−4. C++ codes were compiled with the Intel compiler

icpc (version 12.1.0) and were run on an Intel(R) Xeon(R) CPU X5570 at 2.93GHz, in a single
thread.

5.1 Image denoising

The first problem considered in this section corresponds to the recovery of an image x from
noisy observations u = x + w where w is a realization of a zero-mean white Gaussian noise.
The vector x here corresponds to the Word image of size N = 128× 128 pixels. The variance of
the noise was adjusted to correspond to a signal-to-noise ratio (SNR) of 15 dB (Figure 2). The
recovery of the original image is performed by solving (1) where Q = 2N ,

H =

[
I

I

]
y =

[
u

0

]
, (64)

and

(∀z = (zq)1≤q≤2N ) Φ(z) =
1

2




N∑

q=1

z2q + β
2N∑

q=N+1

d2B(zq)


 , (65)

where dB denotes the distance to the closed convex interval B = [0, 255] and β > 0 is a weighting
factor. Then, Φ is Lipschitz differentiable with Lipschitz constant L = max(1, β). In the sequel,
we choose β = 1 so that we have L = 1. Moreover, the penalization term (3) is used, with τ = 0
and an anisotropic penalization on neighboring pixels i.e., S = 2N , and for every s ∈ {1, . . . , N}
(resp. s ∈ {N+1, . . . , 2N}), Ps = 1 and Vs corresponds to a horizontal (resp. vertical) gradient
operator. This anisotropic term is chosen so as to compare more fairly our approach with the
combinatorial methods.

Parameters λ and δ were chosen to maximize the SNR between the original image and its
reconstructed version. In Figure 3, the reconstructed images are displayed and the corresponding
SNR and MSSIM [60] values are provided. Morever, the absolute values of the reconstruction
errors x̂ − x are illustrated. It should be noticed that the nonconvex regularization strategy
with penalty function SNC(ii) leads to the best results in terms of reconstruction quality.

5.1.1 Influence of memory size

We first analyze the effect of the memory size m on the performance of our algorithm. We recall
that the detailed performance analysis of 3MG algorithm with respect to the size of the memory
was provided in [17], but it was restricted to the convex case. The results in Tab. 2 illustrate that
the choice where memory equals one, which corresponds to a subspace with size 2, leads to the
best results in terms of computational time. Hence, our experiments confirm the conclusions
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(a) (b)

Figure 2: (a) Original image with 128 × 128 pixels and (b) noisy image with SNR = 15 dB,
MSSIM = 0.66, and noise standard deviation equal to 10.

(a) (b) (c)

Figure 3: (a) Denoising results and absolute reconstruction error with SC penalty using 3MG,
λ = 0.3, δ = 0.07, SNR = 20.41 dB, MSSIM = 0.89, (b) with NSNC penalty using TRW,
λ = 350, δ = 3.5, SNR = 22.8 dB, MSSIM = 0.93, and (c) with SNC(ii) penalty using 3MG,
λ = 280, δ = 7.25, SNR = 22.74 dB, MSSIM = 0.92.



17drawn in [17] for the convex case. Consequently, m = 1, i.e. Dk = [−gk | xk − xk−1] for
all k ≥ 1 was retained for the remaining experiments presented in the paper, and the shorter
notation 3MG is employed for denoting the 3MG-1 algorithm.

Penalty function (λ, δ) Algorithm Iteration Time Fδ SNR (dB)

SNC(ii) (280, 7.25) 3MG-0 998 1.08 1.54 · 106 22.74

3MG-1 270 0.35 1.54 · 106 22.74

3MG-2 247 0.38 1.54 · 106 22.74

3MG-3 248 0.44 1.54 · 106 22.74

3MG-4 243 0.51 1.54 · 106 22.74

3MG-5 239 0.59 1.54 · 106 22.74

SNC(iii) (301, 8.76) 3MG-0 536 0.66 1.59 · 106 22.55

3MG-1 101 0.21 1.59 · 106 22.55

3MG-2 159 0.28 1.59 · 106 22.55

3MG-3 158 0.32 1.59 · 106 22.55

3MG-4 156 0.36 1.59 · 106 22.55

3MG-5 155 0.41 1.59 · 106 22.55

SNC(iv) (381, 10) 3MG-0 287 0.61 1.8 · 106 22.47

3MG-1 69 0.16 1.8 · 106 22.47

3MG-2 70 0.19 1.8 · 106 22.47

3MG-3 67 0.21 1.8 · 106 22.47

3MG-4 66 0.22 1.8 · 106 22.47

3MG-5 67 0.28 1.8 · 106 22.47

SNC(v) (386, 9) 3MG-0 202 0.42 1.8 · 106 22.48

3MG-1 49 0.11 1.8 · 106 22.48

3MG-2 51 0.13 1.8 · 106 22.48

3MG-3 51 0.16 1.8 · 106 22.48

3MG-4 52 0.17 1.8 · 106 22.48

3MG-5 52 0.21 1.8 · 106 22.48

Table 2: Denoising problem with word image. Influence of memory parameter m in 3MG
algorithm.

5.1.2 Comparison with NLCG algorithm

The NLCG algorithm is based on the following iterations:

(∀k ≥ 1) xk+1 = xk + αk(−gk + βk(xk − xk−1)), (66)

where αk > 0 is the step size and βk ∈ R is the conjugacy parameter. Tab. 3 summarizes
the performances of NLCG for five different conjugacy strategies described in [29]. Contrary
to the convex case, in the nonconvex case the conjugacy formula has a major influence on the
convergence speed (see Tab. 3 results related to NLCG in rows 1-6 and 7-30). In particular the
conjugacy strategies FR and DY do not appear well-adapted to the nonconvex problems. On



18the other hand, the HS, LS and PRP+ conjugacy parameters yield good numerical performance.
Thus, they have been selected for the numerical experiments in the following. For comparison,
we include in Tab. 3 the results of 3MG for m = 1. Although the superiority of 3MG versus
NLCG is not established theoretically, these experimental results are very promising. They show
that 3MG algorithm is faster than the considered non-linear conjugate gradient algorithms.

Penalty function (λ, δ) Algorithm Iteration Time Fδ SNR (dB)

SC (0.3, 0.07) NLCG-HS 138 0.84 2.7 · 106 20.41

NLCG-FR 305 1.86 2.7 · 106 20.41

NLCG-PRP+ 143 0.87 2.7 · 106 20.41

NLCG-LS 158 0.96 2.7 · 106 20.41

NLCG-DY 223 1.35 2.7 · 106 20.41

3MG 122 0.22 2.7 · 106 20.41

SNC(ii) (280, 7.25) NLCG-HS 1250 2.34 1.54 · 106 22.74

NLCG-FR > 10000 − − −
NLCG-PRP+ 292 0.55 1.54 · 106 22.74

NLCG-LS 320 0.79 1.54 · 106 22.74

NLCG-DY > 10000 − − −
3MG 270 0.35 1.54 · 106 22.74

SNC(iii) (301, 8.76) NLCG-HS 112 0.26 1.59 · 106 22.55

NLCG-FR > 10000 − − −
NLCG-PRP+ 179 0.42 1.59 · 106 22.55

NLCG-LS 210 0.54 1.59 · 106 22.55

NLCG-DY > 10000 − − −
3MG 101 0.21 1.59 · 106 22.55

SNC(iv) (381, 10) NLCG-HS 102 1.1 1.8 · 106 22.47

NLCG-FR 3289 36.3 1.8 · 106 22.47

NLCG-PRP+ 79 0.9 1.8 · 106 22.47

NLCG-LS 90 1 1.8 · 106 22.47

NLCG-DY 3342 36.8 1.8 · 106 22.47

3MG 69 0.16 1.8 · 106 22.47

SNC(v) (386, 9) NLCG-HS 52 0.15 1.8 · 106 22.48

NLCG-FR > 10000 − − −
NLCG-PRP+ 55 0.16 1.8 · 106 22.48

NLCG-LS 56 0.16 1.8 · 106 22.48

NLCG-DY > 10000 − − −
3MG 49 0.11 1.8 · 106 22.48

Table 3: Denoising problem with word image. Influence of conjugacy parameter βk in NLCG
algorithm.



195.1.3 Summary

We summarize the results by comparing the performance of continuous and discrete algorithms
with SC, SNC and NSNC potential functions (see Tab. 4). One can observe that the considered
discrete optimization algorithms lead to a SNR which is very similar to that obtained with
smooth nonconvex regularization. However, they are more demanding in terms of computational
time than 3MG. Thus, we can conclude that the 3MG algorithm behaves well in comparison
with the considered continuous and discrete algorithms.

5.2 Image segmentation

In the second experiment, we consider the segmentation of Rice image of size N = 256 × 256
(see Figure 4). We define the segmented image as a minimizer of Fδ, where H = I, y identifies
with the original image and (∀z ∈ R

N ) Φ(z) = 1
2‖z‖2. The anisotropic penalization term is

again used with τ = 0 for the same reason as earlier. Figs. 5 and 6 illustrate the resulting
images and their gradient for SC, NSNC and SNC(iii) penalty functions, when regularization
parameters (λ, δ) are tuned in order to obtain the best visual results in terms of segmentation.
The gradients of the resulting images are evaluated by displaying, for every n ∈ {1, . . . , N},
Gn = ‖∆nx̂‖ with ∆n = [∆h

n ∆v
n]⊤ ∈ R

2×N where ∆h
n ∈ R

N and ∆v
n ∈ R

N represent the
first-order difference operators in the horizontal and vertical directions. Finally, the intensity
values along the (arbitrarily chosen) 50th line of each image are plotted in Figure 7 to better
illustrate the behaviors of the different approaches.

According to Tab. 5, the best performance in terms of computational time is obtained by
the 3MG algorithm with the SC penalty. However, the convex penalization strategy leads to
poor segmentation results. Indeed, the boundaries of the reconstructed image are smooth and
the background suffers from staircasing effect. In contrast, the nonconvex penalties give rise to
truly piecewise constant images. The considered algorithms for the truncated quadratic penalty
lead to segmented images very similar to the one obtained with SNC regularization. However,
Tab. 5 shows that they are more demanding in terms of computational time than 3MG.

5.3 Image deblurring

Our third experiment corresponds to the problem of restoring the montage image x, with size
256× 256, from blurred and noisy observations u = Rx+w where w is a realization of a zero-
mean white Gaussian noise and R models a linear uniform blur with size 3 × 3. The recovery
of the original image is performed by solving (1) with Q = 2N ,

H =

[
R

I

]
y =

[
u

0

]
,

and

(∀z = (zq)1≤q≤2N ) Φ(z) =
1

2




N∑

q=1

z2q + β
2N∑

q=N+1

d2B(zq)


 ,

where dB denotes the distance to the closed convex interval B = [0, 255] and β = 0.01. Fur-
thermore, function Ψδ is given by (3) with τ = 10−10 and S = 2N . We consider, for ev-
ery s ∈ {1, . . . , N}, an isotropic regularization between neighbooring pixels, i.e., Ps = 2 and
Vs = [∆h

s ∆v
s ]⊤ where ∆h

s ∈ R
N (resp. ∆v

s ∈ R
N ) corresponds to a horizontal (resp. ver-

tical) gradient operator, and, for every s ∈ {N + 1, . . . , 2N}, the Hessian-based penalization
from [38] i.e., Ps = 3 and Vs = [∆hh

s

√
2∆hv

s ∆vv
s ]⊤ where ∆hh

s ∈ R
N , ∆hv

s ∈ R
N and

∆vv
s ∈ R

N model the second-order finite difference operators between neighbooring pixels,
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Penalty function (λ, δ) Algorithm Iteration Time Fδ SNR (dB)

SC (0.3, 0.07) 3MG 122 0.22 2.7 · 106 20.41

NLCG-HS 138 0.35 2.7 · 106 20.41

NLCG-PRP+ 143 0.37 2.7 · 106 20.41

NLCG-LS 158 0.96 2.7 · 106 20.41

L-BFGS 209 0.73 2.7 · 106 20.41

HQ 670 3.03 2.7 · 106 20.41

SNC(ii) (280, 7.25) 3MG 270 0.35 1.54 · 106 22.74

NLCG-HS 1250 2.34 1.54 · 106 22.74

NLCG-PRP+ 292 0.55 1.54 · 106 22.74

NLCG-LS 320 0.79 1.54 · 106 22.74

L-BFGS 332 0.96 1.54 · 106 22.73

HQ 1025 3.84 1.54 · 106 22.74

SNC(iii) (301, 8.76) 3MG 101 0.21 1.59 · 106 22.55

NLCG-HS 112 0.26 1.59 · 106 22.55

NLCG-PRP+ 179 0.42 1.59 · 106 22.55

NLCG-LS 210 0.54 1.59 · 106 22.55

L-BFGS 351 1.08 1.59 · 106 22.55

HQ 604 2.53 1.59 · 106 22.54

SNC(iv) (381, 10) 3MG 69 0.16 1.8 · 106 22.47

NLCG-HS 102 0.27 1.8 · 106 22.47

NLCG-PRP+ 79 0.21 1.8 · 106 22.47

NLCG-LS 90 1 1.8 · 106 22.47

L-BFGS 94 0.32 1.8 · 106 22.46

HQ 287 1.36 1.8 · 106 22.47

SNC(v) (386, 9) 3MG 49 0.11 1.8 · 106 22.48

NLCG-HS 52 0.15 1.8 · 106 22.48

NLCG-PRP+ 55 0.16 1.8 · 106 22.48

NLCG-LS 56 0.16 1.8 · 106 22.48

L-BFGS 80 0.25 1.8 · 106 22.48

HQ 202 1.1 1.8 · 106 22.48

NSNC (350, 3.5) α-EXP 4 4.67 1.31 · 106 22.69

QCSM 2 1.25 1.31 · 106 22.60

TRW 5 1.65 1.31 · 106 22.80

BP 18 5.33 1.31 · 106 22.73

Table 4: Results for the denoising problem.



21

Figure 4: Initial gray level image with 256 × 256 pixels.

(a) (b) (c)

Figure 5: (a) Segmented images and their gradient for SC penalty using 3MG, λ = 2, δ = 0.2,
(b) for NSNC penalty using TRW, λ = 1550, δ = 3.5, and (c) for SNC(iii) penalty using 3MG,
λ = 1500, δ = 8.
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(a) (b) (c)

Figure 6: Detail of segmented images and their gradient (a) for SC penalty using 3MG, λ = 2,
δ = 0.2, (b) for NSNC penalty using TRW, λ = 1550, δ = 3.5, and (c) for SNC(iii) penalty
using 3MG, λ = 1500, δ = 8.

0 50 100 150 200 250

100

120

140

160

180

200

Figure 7: Comparison of 50th line of segmented images using SC (thin line), NSNC (crosses)
and SNC(iii) (thick line) potential functions. The 50th line of the original image is indicated in
dotted plot.
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SC (2, 0.2) 3MG 132 0.99 6.69 · 106

NLCG-HS 144 1.49 6.69 · 106

NLCG-PRP+ 143 1.47 6.69 · 106

NLCG-LS 148 1.54 6.69 · 106

L-BFGS 215 3.44 6.69 · 106

HQ 898 18.19 6.69 · 106

SNC(iii) (1500, 8) 3MG 491 3.43 1.59 · 107

NLCG-HS 1578 14.93 1.59 · 107

NLCG-PRP+ 463 4.25 1.59 · 107

NLCG-LS 598 5.64 1.59 · 107

L-BFGS 632 9.57 1.59 · 107

HQ 3553 65.2 1.59 · 107

NSNC (1550, 3.5) α-EXP 9 57.97 5.58 · 106

QCSM 1 7.05 5.52 · 106

TRW 5 6.71 5.52 · 106

BP 50 61.83 5.52 · 106

Table 5: Results for the segmentation problem.

as described in [38, Sec.III-A]. For s ∈ {N + 1, . . . , 2N} we consider the ℓ2 − ℓ1 function
ψs,δ : t 7→ ρ(

√
1 + t2/(θδ)2 − 1), where ρ and θ take positive values. Tab. 6 presents the results

for SC and SNC(ii) regularization of the image gradient (i.e. ψs,δ for s ∈ {1, . . . , N} ). Pa-
rameters (ρ, θ, λ, δ) are tuned to maximize the SNR of the restored image. In both cases, the
3MG algorithm outperforms the three considered descent algorithms in terms of time efficiency.
Additionally, the nonconvex strategy leads to better results in terms of SNR (see Figure 8).
One can also observe that in this case the staircasing effect is reduced (see some image details
in Figure 9).

5.4 Image reconstruction

In our last experiment, we consider the problem of reconstructing an image x ∈ R
N from noisy

tomographic acquisitions, modeled as

u = Rx + w, (67)

where R is the Radon projection matrix whose (r, n) element (1 ≤ r ≤ R, 1 ≤ n ≤ N)
models the contribution of the nth pixel to the rth datapoint, and w represents an additive
noise component. In this example, we consider one slice of the standard Zubal phantom [64]
with dimensions N = 128 × 128, and R = 46336 measurements from 181 projection lines and
256 angles. This image is corrupted with a zero-mean independent and identically distributed
Laplacian noise (SNR = 23.5 dB). Figure 11 shows the original image and its noisy sinogram.

The reconstruction is performed by minimizing Fδ with Q = R+N ,

H =

[
R

I

]
y =

[
u

0

]
, (68)
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(a) (b)

Figure 8: (a) Original image with 256×256 pixels and (b) blurred noisy image with SNR= 18.65
dB, MSSIM = 0.82, 3 × 3 uniform blur, noise standard deviation equal to 4.

(a) (b)

Figure 9: Deblurring results with (a) SC penalty using 3MG, ρ = 0.56, θ = 0.18, λ = 0.042,
δ = 4.19, SNR = 26.90 dB, MSSIM = 0.94 and (b) with SNC(ii) penalty using 3MG, ρ = 41.55,
θ = 0.86, λ = 3.68, δ = 18.65, SNR = 27.69 dB, MSSIM = 0.94.



25Penalty function(ρ, θ, λ, δ) Algorithm Iteration Time Fδ SNR

SC (0.56, 0.18, 0.042, 4.19) 3MG 121 8.36 8.22 · 106 26.90

NLCG-HS 121 8.92 8.22 · 106 26.90

NLCG-PRP+ 129 9.32 8.22 · 106 26.90

NLCG-LS 131 9.51 8.22 · 106 26.90

L-BFGS 162 12.42 8.22 · 106 26.90

HQ 418 94.3 8.22 · 106 26.90

SNC(ii) (41.55, 0.86, 3.68, 18.65) 3MG 196 11.58 7.92 · 106 27.69

NLCG-HS 243 15.93 7.92 · 106 27.69

NLCG-PRP+ 221 14.41 7.92 · 106 27.69

NLCG-LS 246 15.62 7.92 · 106 27.69

L-BFGS 216 14.78 7.92 · 106 27.69

HQ 616 104.9 7.92 · 106 27.69

Table 6: Results for the deblurring problem.

and

(∀z = (zq)1≤q≤Q) Φ(z) =
1

2




R∑

q=1

√
1 + (zq/ρ)2 + β

Q∑

q=R+1

d2B(zq)


 (69)

with B = [0, 255]. Thus, Φ has a Lipschitz gradient with constant L = max( 1
2ρ2
, β). In the

sequel, we take β = 10−2. Furthermore, the regularization function (3), with τ = 10−10 and
an isotropic edge-preserving penalty is considered i.e., S = N and, for every s ∈ {1, . . . , N},
Ps = 2 and Vs = [∆h

s ∆v
s ]⊤ where ∆h

s ∈ R
N (resp. ∆v

s ∈ R
N ) corresponds to a horizontal

(resp. vertical) gradient operator.
Figure 11 shows the results obtained for penalization strategies SC and SNC(ii), with (λ, δ, ρ)

tuned to maximize the SNR of the restored image. We note that the SNC penalty leads to better
results in terms of reconstruction quality. In particular, it appears to be well-suited to the
reconstruction of the boundaries of the image, as demonstrated in Figure 12. Tab. 7 illustrates
the performance of the 3MG algorithm, in comparison with the three tested descent algorithms,
when either the SC or the SNC(ii) penalty function is used. In this example, the proposed
algorithm outperforms the others, in terms of both iteration number and computational time.
In the nonconvex case, because of the presence of local minimizers, the four algorithms do not
lead to the same final SNR value. It can be noticed that the smallest final criterion value is
obtained with the 3MG algorithm.

6 Conclusion

In this work, we have considered a class of smooth nonconvex regularization functions and we
have proposed an efficient minimization strategy for solving the associated variational problems
in imaging applications. Connections with ℓ0 penalized problems were given asymptotically.
In addition, a novel convergence proof of the proposed subspace MM algorithm relying on the
Kurdyka- Lojasiewicz inequality was given. Numerical experiments were carried out to compare
the proposed approach with other state-of-the art continuous optimization methods (both for
nonconvex and convex penalizations) and with discrete optimization approaches dealing with a
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(a) (b)

Figure 10: (a) Initial gray level image with 128 × 128 pixels and (b) noisy sinogram with
SNR=23.5 dB.

(a) (b)

Figure 11: Reconstructed image using (a) SC penalty function with 3MG, λ = 0.06, δ = 2.9,
ρ = 1.6, SNR = 18.05 dB, MSSIM = 0.81, or (b) using SNC(ii) penalty function with 3MG,
λ = 1.2, δ = 11.1, ρ = 2.2, SNR = 21.13 dB, MSSIM = 0.92.

(a) (b) (c)

Figure 12: (a) Detail of the original image and corresponding reconstructions with (b) convex
penalty function and (c) nonconvex penalty function.
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SC (0.06, 2.9, 1.6) 3MG 253 59.3 1.1 · 106 18.05

NLCG-HS 358 84.1 1.1 · 106 18.05

NLCG-PRP+ 410 96.4 1.1 · 106 18.05

NLCG-LS 507 141.3 1.1 · 106 18.05

L-BFGS 349 82.3 1.1 · 106 18.05

HQ 728 337 1.1 · 106 18.05

SNC(ii) (1.2, 11.1, 2.2) 3MG 516 119.8 8.6214 · 106 21.13

NLCG-HS 618 143 8.6228 · 106 20.89

NLCG-PRP+ 876 204 8.6229 · 106 20.89

NLCG-LS 1212 360 8.6228 · 106 20.89

L-BFGS 870 203 8.6225 · 106 21.17

HQ 1152 530 8.6236 · 106 20.85

Table 7: Results for the tomography problem.

truncated quadratic penalization. In the four presented image processing examples, we argue
that the proposed approach constitutes an appealing alternative to the existing methods in
terms of recovered image quality and computational time.
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