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Abstract

In this work we study mixed mode oscillations in a model of secretion of GnRH (Gonadotropin Re-
leasing Hormone). The model is a phantom burster consisting of two feedforward coupled FitzHugh-
Nagumo systems, with three time scales. The forcing system (Regulator) evolves on the slowest
scale and acts by moving the slow null-cline of the forced system (Secretor). There are three modes
of dynamics: pulsatility (transient relaxation oscillation), surge (quasi steady state) and small os-
cillations related to the passage of the slow null-cline through a fold point of the fast null-cline.
We derive a variety of reductions, taking advantage of the mentioned features of the system. We
obtain two results; one on the local dynamics near the fold in the parameter regime corresponding
to the presence of small oscillations and the other on the global dynamics, more specifically on
the existence of an attracting limit cycle. Our local result is a rigorous characterization of small
canards and sectors of rotation in the case of folded node with an additional time scale, a feature
allowing for a clear geometric argument. The global result gives the existence of an attracting
unique limit cycle, which, in some parameter regimes, remains attracting and unique even during
passages through a canard explosion.
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1 Introduction

Mixed Mode Oscillations (MMOs) is a term used to describe trajectories that combine small oscil-
lations and large oscillations of relaxation type, both recurring in an alternating manner. Recently
there has been a lot of interest in MMOs that arise due to a generalized canard phenomenon,
starting with the work of Milik, Szmolyan, Loeffelmann and Groeller [20]. Such MMOs arise in the
context of slow-fast systems with at least two slow variables and with a folded critical manifold (set
of equilibria of the fast system). The small oscillations arise during the passage of the trajectories
near a fold, due to the presence of a so-called folded singularity. The dynamics near the folded
singularity is transient, yet recurrent: the trajectories return to the neighborhood of the folded
singularity by way of a global return mechanism.

An important step on the way to an understanding of MMOs is the analysis of the flow near
the folded singularities. Of particular importance are special solutions called canards. The term
canard was first used to denote periodic solutions of the van der Pol equation that stayed close to
the unstable slow manifold (approximated by the middle branch of the fast nullcline) [2]. One of
the characteristic features of canard cycles is that they exist only for an exponentially small range
of parameter values. This very sharp transition was then termed canard explosion [4]. The related
term canard solution has been used to denote solutions connecting from a stable slow manifold
to an unstable slow manifold. Such canards, sometimes also called maximal canards, organize
the dynamics in a similar way as invariant sets which separate different dynamical regimes (e.g.,
separatrices of saddle points). In systems with more than one slow variable, canards occur in a
more robust fashion and underlie the presence of the small oscillations near the folded singularity
in MMOs.

A prototypical example of a folded singularity with small oscillations is the folded node, studied
by Benôıt [1], by Wechselberger and Szmolyan [25], and by Wechselberger [27]. These articles
focused on the local aspects of the dynamics. An exposition of how the dynamics near the folded
node can be combined with a global return mechanism to lead to MMOs was given in [3]. This work
was used as a basis of various explanations of MMO dynamics found in applications [24, 23, 11].
A shortcoming of the folded node approach is the lack of connection to a Hopf bifurcation, which
seems to play a prominent role in many MMOs. This led to the interest in another, more degenerate
folded singularity, known as Folded Saddle Node of type II (FSNII), originally introduced in [20]
and recently analyzed in some detail by Krupa and Wechselberger [19]. Guckenheimer [12] studied
a very similar problem in the parameter regime yet closer to the Hopf bifurcation, calling it singular
Hopf bifurcation. For a more comprehensive overview we refer the reader to the recent review article
[7].

Two notions that are central to the study of MMOs are secondary canards and sectors of
rotation. Secondary canards [27, 3] are trajectories which originate in the attracting slow manifold,
make a number of small oscillations in the fold region, and continue to the unstable slow manifold.
There is ample numerical evidence of the existence and role of secondary canards ([8, 9]), as well
as some partial theoretical results ([13, 27, 19, 16]). It has been highlighted that two trajectories
crossing the region between two consecutive canards display the same number of small oscillations.
Hence, the regions separated by secondary canards have been called sectors of rotation ([3]). As a
parameter changes, a periodic orbit may move closer to a canard and pass to the adjacent sector
of rotation. This transition has never been studied in detail. It is similar to a canard explosion,
although more complicated, as chaotic behavior can be expected.

The main result of this paper is that, in the context of our phantom burster problem, there
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exists an attracting MMO orbit for all parameter values, also during the passage between different
sectors. In addition we obtain a result on the existence of secondary canards of rotational type that
is complementary to the results in [27, 16, 19] and relevant to the context of the phantom burster.

It is important to note that, even if canards are more robust in three-dimensional slow-fast
systems, they are still difficult to find numerically as well as particular types of MMOs. Forward
integration is not possible due to the exponential expansion along the slow manifold, leading to
exponential magnification of numerical errors. A breakthrough in the numerical detection and
continuation of canards and MMOs has been achieved by Desroches et. al. [8] who used a boundary
value approach in the context of numerical continuation with the software package Auto.

In this article we investigate the presence of MMOs in the following system:

εδẋ = −y + f(x), (1a)

δẏ = a0x+ a1y + a2 + cX, (1b)

δẊ = −Y + g(X), (1c)

Ẏ = X + b1Y + b2, (1d)

with
f : x→ λ3x

3 + λ1x,
g : x→ µ3x

3 + µ1x,
λ3, µ3 < 0, λ1, µ1 > 0,

ai, c > 0,
0 < ε, δ << 1.

System (1) has been proposed in [5, 6, 26] to model the dynamics of GnRH secretion by hy-
pothalamic neurons in female mammals. Subsystem (1a)-(1b), called the Secretor, represents the
mean-field approximation of the GnRH neuron population dynamics. It is driven, through the
coupling term cX, by subsystem (1c)-(1d), called the Regulator, representing the activity of the
interneuron population that conveys the periodic action of the ovarian steroids onto the GnRH
neuron population. The time scale difference between the two oscillators is a transcription of the
ratio between the ovarian cycle duration (few weeks) and the period of the secretory activity of the
GnRH neuron population (few hours).

From the point of view of dynamical classification, system (1) is a phantom burster with the
additional feature that it has multiple time scales. Both the Regulator (1c)-(1d) and the driven
Secretor (1a)-(1b) are slow-fast systems of Fitzhugh-Nagumo type and there is a time scale difference
between the two. The parameters controlling the time scales are ε and δ.

We are interested in the case when the Regulator displays a stable relaxation limit cycle. Then,
in a certain region of the parameter space (see [6]), the X-driven Secretor alternates between a fast
oscillatory regime (when it displays an attracting relaxation limit cycle) and a stationary regime
(when the current point tracks an attracting singular point). As a result, the signal generated by y,
that represents the GnRH secretion along time, displays a periodic alternation of pulsatile regimes
and surges as illustrated in Figure 1. During the transition from a surge back to the subsequent
pulse phase, a pause corresponding to a segment of small oscillations may occur.

In this article, we analyze the dynamical mechanism based on three different time scales that
underlies the occurrence of the small oscillations. We prove that, for certain choices of the parameter
values, the MMOs, including the pulse phase, surge and pause, exist and are stable limit cycles,
even when close to a secondary canard. More precisely, we prove that canards with a specified
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(when the current point tracks an attractive singular point). As a result, the signal generated by y,
that represents the GnRH secretion along time, displays a periodic alternation of pulsatile regimes
and surges as illustrated in Figure 1. During the transition from a surge back to the subsequent
pulse phase, a pause corresponding to a period of small oscillations may occur.
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Figure 1: The signal y(t) generated along a typical orbit of system (1) displays a periodic alternation
of pulsatile phases, surges and pauses. The pauses consist of small oscillations.

In this article, we analyze the dynamical mechanism based on three different time scales that
underlies the occurrence of the small oscillations. We prove that, for certain choices of the parameter
values, the MMOs, including the pulse phase, surge and pause, exist and are stable limit cycles,
even when close to a secondary canard. More precisely, we prove that canards with a specified
number of small oscillations are unique (with fixed choices of slow manifolds) and that any two
adjacent canards differ by one rotation. Thus we prove that sectors of the same rotation (or simply
sectors of rotation) exist and the passage, as a parameter varies, through a secondary canards adds
(or subtracts) one small oscillation to the globally attractive orbit.

The paper is organized as follows. In Section 2 we present the phantom burster dynamics of (1),
discuss the different phases of the orbits and state the main result (Theorem 1). Section 3 is devoted
to the local analysis of canard oscillations in a three time scale reduced system (Theorem 2). In
Section 4 we analyze the return mechanism and prove Theorem 1. Section 5 contains numerical
results illustrating our results. The article ends with a discussion section.

2 Multiple time scale phantom bursting

In this section we give a qualitative description of the dynamics we are interested in and state
the main result. Parts of this section are a review and we refer the reader to [4, 5] for more
details. We begin by sketching the basic features of the dynamics of the decoupled Regulator
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Figure 1: The signal y(t) generated along a typical orbit of system (1) displays a periodic alternation
of pulsatile phases, surges and pauses. As displayed in the inset, the pauses consist of small
oscillations.

number of small oscillations are unique (with fixed choices of slow manifolds) and that any two
adjacent canards differ by one rotation. Thus we prove that sectors of the same rotation (or simply
sectors of rotation) exist and the passage, as a parameter varies, through a secondary canards adds
(or subtracts) one small oscillation to the globally attracting orbit.

The paper is organized as follows. In §2 we present the phantom burster dynamics of (1), discuss
the different phases of the orbits and state the main result (Theorem 1). Section 3 is devoted to
the local analysis of canard oscillations in a three time scale reduced system (Theorem 2). In §4
we analyze the return mechanism and prove Theorem 1. Section 5 contains numerical findings
illustrating our results. The article ends with a discussion section.

2 Multiple time scale phantom bursting

In this section we give a qualitative description of the dynamics we are interested in and state
the main result. Parts of this section are a review and we refer the reader to [5, 6] for more
details. We begin by sketching the basic features of the dynamics of the decoupled Regulator (1c)-
(1d). Subsequently we set constraints on the Secretor’s parameters in order to obtain the right
dynamical behavior, introduce the different reduced systems suitable to describe various stages of
the dynamics, and briefly describe the evolution of the x and y variables in the different stages of
the dynamics. We end the section by stating the main theorem.

2.1 The Regulator dynamics and its influence on the position of the Secretor
slow nullcline and singular points

We define γ > 0 by g′(±γ) = 0 so that the two knees of the cubic X-nullcline Y = g(X) are
(±γ, g(±γ)). The knees split the cubic X-nullcline into three parts : the left and right branches
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where g′ < 0 and the middle where g′ > 0. As mentioned in the introduction, we assume that the
parameters, specifically b1 and b2, are chosen so that the Regulator admits a relaxation limit cycle.
To ensure this property, it is sufficient to assume that b1 is small enough (so that the Y -nullcline
is steep enough) and that the Y -nullcline intersects the cubic X-nullcline Y = g(X) on its middle
branch (where g′ < 0) away from the knees (see [6]). Let us note Xmin and Xmax respectively the
minimal and maximal value of X along the Regulator limit cycle. For later reference we list four
different phases of the evolution of X (see Figure 2):

1. slow motion near the left branch of the cubic Y = g(X) : X increases slowly from Xmin to
−γ,

2. fast motion from the left knee to the right branch of the cubic : X increases quickly from −γ
to Xmax,

3. slow motion near the right branch of the cubic : X decreases slowly from Xmax to γ,

4. fast motion from the right knee to the left branch of the cubic : X decreases quickly from γ
to Xmin.

Figure 2: Limit cycle of (1c)-(1d) and its four different phases.

The value of X drives the Secretor y-nullcline defined by a0x + a1y + a2 + cX = 0. Note
that this nullcline is a straight line whose slope −a0/a1 does not depend on X. As usual in the
Fitzhugh-Nagumo system, a1 is assumed to be small so that the y-nullcline is very steep.

As X increases (resp. decreases), the y-nullcline moves to the left (resp. to the right) in the
Secretor phase space (x, y). Hence, depending on the value of X, the number of singular points
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(lying on the cubic x-nullcline y = f(x)) varies. Also, their nature depends on their position with
respect to the fold points (xf , f(xf )) and (−xf ,−f(xf )) that splits the x-nullcline into three part
(left, middle and right branch). In particular:

a. if a singular point lies on the middle branch outside a O(ε)-neighborhood of the folds, it is
surrounded by a relaxation limit cycle ;

b. if two different singular points lie on the left (resp. right) branch, the lowest (resp. highest)
one is an attracting node and the highest (resp. lowest) one is a saddle ;

c. if the Secretor admits a unique singular point, it is a saddle.

The passage from a to b is a Hopf bifurcation that makes the limit cycle disappear through a canard
explosion and the passage from b to c is a saddle-node bifurcation that makes the saddle and the
node collapse.

In the following, we assume (see hypotheses H1 to H4 in the following section) that for all values
of X between Xmin and Xmax, the Secretor admits three different singular points determined by
their x-component. Of special importance is the middle singular point (corresponding to the x-value
lying between the two others) for which we note the x-component xsing(X).

2.2 Constraints on the Secretor parameters and statement of the main result

To obtain the qualitative behavior of the y-signal generated by full system (1) (Figure 1) we make
the following hypotheses illustrated by Figure 3.

(H1) The y-nullcline should pass through the right fold point of the cubic y = f(x) which generates
the small oscillations. Hence, we assume that, for X = Xmin, the y-nullcline should be on the
right of – and close to – the upper fold (xf , f(xf ):

xf . xsing(Xmin) i.e. Xmin . Xf = −a0xf + a1f(xf ) + a2

c
.

This condition will be discussed in more detail later on.

(H2) Once the y-nullcline has passed the right fold and the relaxation limit cycle of system (1a)-
(1b) appears, the cycle should persist until X = −γ. Hence, we assume that for X = −γ, the
y-nullcline intersect the cubic y = f(x) on its middle branch:

−xf < xsing(−γ) i.e. − a0xf + a1f(−xf ) + a2 − cγ < 0.

(H3) From the beginning of the surge phase, system (1a)-(1b) must admit an attracting node and
a saddle on the left branch of the cubic y = f(x). This condition reads

a0 + a1λ1 > 2
√
a1cλ1Xmax

which is equivalent to:

Xmax < XSN =
(a0 + a1λ1)2

4a1cλ1
.

Let us note that value XSN of X corresponds to the saddle-node bifurcation of the Secretor
occurring when the y-nullcline is tangent to the left branch of the cubic y = f(x).
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H1 : X = Xmin H2 : X = −γ

H3 : X = Xmax H4 : X = γ

Figure 3: Illustration of the four hypotheses (H1) to (H4) on parameters to obtain the right system
behavior.
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(H4) Until the end of the surge phase, system (1a)-(1b) must admit an attracting node and a
saddle on the left branch of the cubic y = f(x) as well. This condition reads:

−xf > xsing(γ) i.e. − a0xf + a1f(−xf ) + a2 + cγ > 0.

Figure 4 gives an instance of the relative positions of the Secretor slow nullcline that can arise
due to the variation in X as (X,Y ) traces the Regulator relaxation cycle under assumptions H1
to H4. Then, the signal generated by variable y displays an alternation of surge, small oscillations
and surge phases as illustrated in Figure 1. We refer to [26] for an expanded explanation of the
model behavior based on this approach.

Figure 4: Instance of the Secretor slow nullcline locations under hypotheses (H1) to (H4).

2.3 Reduced systems

For each phase from 1 to 4 of the Regulator limit cycle, system (1) can be reduced using a specific
approximation. We first recall the general process of desingularization applied to slow-fast systems
near a fold. We introduce the different reduced systems that we will use for the dynamics analysis.

Desingularized Reduced System. When a general slow-fast dynamical system

εẋ = f(x, y, ε), (2a)

ẏ = g(x, y, ε), (2b)
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is considered, with x and y of arbitrary dimension and 0 < ε � 1, one classic way to understand
the overall dynamics is by looking at the slow and the fast dynamics separately. An object of
great importance for both the slow and the fast dynamics of the full system is the so-called critical
manifold C0 defined as the nullcline for the fast variable, that is:

C0 =
{

(x, y); f(x, y, 0) = 0
}
.

Consequently, the critical manifold is the phase space of the reduced system obtained by setting
ε = 0 in equations (2) and which approximates the slow dynamics of the original system; the
reduced system is a differential-algebraic equation. In order to understand the flow of the reduced
system, which then takes place on C0 and is associated with the singular limit ε = 0, the usual
strategy – which we will use several times in the rest of the paper – is to differentiate the algebraic
equation defining C0 with respect to time. This gives

ẋfx(x, y, 0) + ẏfy(x, y, 0) = 0,

ẏ = g(x, y, 0),

which reduces to

ẋfx(x, y, 0) = −g(x, y, 0)fy(x, y, 0), (3a)

ẏ = g(x, y, 0). (3b)

The previous system is singular along the fold set of C0 with respect to the fast variable x, that
is, the set F = {fx(x, y, 0) = 0}. In order to understand the slow flow up to the fold set, one can
desingularize system (3) via a rescaling of factor fx(x, y, 0), which yields the so-called desingularized
reduced system. In that case, special care has to be taken going from the desingularized reduced
system back to the slow system. Indeed the previous rescaling changes the orientation of orbits
when fx(x, y, 0) < 0 and one needs to reverse orientation in order to get the correct direction of
the flow in the original reduced system.

Three dimensional reduction with three time scales during the pulsatile phase. Under
the preceding assumptions, slow motion 1 (Xmin < X < γ) corresponds for system (1a)-(1b) to the
oscillatory phase producing the small oscillations and subsequently the pulses in the y-signal.

The variables X and Y follow the slowest time scale and the current point (X,Y ) remains in
a O(δ)-neighborhood of the cubic. This reads Y = hδ(X) where (X, δ) 7→ hδ(X) is an analytic
function on ]−∞,−γ[×R∗+ and h0 = g. Thus, on ]−∞,−γ[, h′δ(X) = g′(X) +O(δ).

We introduce a reduced system obtained from (1) assuming that Y = hδ(X). We differentiate
this condition, with δ constant:

Ẏ = Ẋh′δ(X).

By replacing the dynamics of Ẏ in (1), one obtains the three-dimensional system with three different
time scales:

εδẋ = −y + f(x), (4a)

δẏ = a0x+ a1y + a2 + cX, (4b)

Ẋ =
X + b1(g(X) +O(δ)) + b2

g′(X) +O(δ)
. (4c)
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Two-dimensional reduction with two time scales during the surge phase. Slow motion
3 (γ < X < Xmax) corresponds to the surge phase. The current point (x, y) follows the attracting
node of (1a)-(1b) lying on the left branch of y = f(x). Hence, both approximation X ' g(X) and
y ' f(x) stand.

By reducing the fastest time scale, i.e., by setting y = f(x) in (1), we obtain the following
system:

δf ′(x)ẋ = a0x+ a1f(x) + a2 + cX, (5a)

δẊ = −Y + g(X), (5b)

Ẏ = X + b1Y + b2. (5c)

Then setting Y = g(X) leads to the following equations:

δf ′(x)ẋ = a0x+ a1f(x) + a2 + cX, (6a)

g′(X)Ẋ = X + b1g(X) + b2. (6b)

Away from the folds of both cubics (where f ′(x) = 0 or g′(X) = 0) we can rewrite (6) as follows:

δẋ =
a0x+ a1f(x) + a2 + cX

f ′(x)
, (7a)

Ẋ =
X + b1g(X) + b2

g′(X)
. (7b)

Hence we have obtained a two-dimensional slow-fast system with slow variableX and fast variable x.

Boundary-layer system during the transitions. During fast motions 2 and 4, (X,Y ) evolves
according to the X time scale and the slowest variable Y is almost constant. By setting δ = 0 in
the rescaled system

εẋ = −y + f(x), (8a)

ẏ = a0x+ a1y + a2 + cX, (8b)

Ẋ = −Y + g(X), (8c)

Ẏ = δ (X + b1Y + b2) , (8d)

one obtains the so-called Boundary-Layer System

εẋ = −y + f(x), (9a)

ẏ = a0x+ a1y + a2 + cX, (9b)

Ẋ = −Y + g(X), (9c)

where Y ' g(−γ) for fast motion 2 and Y ' g(γ) for fast motion 4.

2.4 Different dynamical regimes

Surge. The surge corresponds to phase 3 of §2.1, when X passes from Xmax to γ. The dynamics is
governed by system (7). Initially x decreases to reach the vicinity of the nullcline X = f̃(x), where

f̃(x) = −a0x+ a1f(x) + a2

c
.
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This is coupled with a significant increase of y. Subsequently x grows and y decreases, moving at
the rate given by the slowest time scale O(1/(δε)).

Small oscillations during the post-surge pause. Hypothesis (H1) guarantees that the surge is
followed by a sequence of small oscillations taking place near the fold (xf , f(xf )). As X has already
reached the vicinity of Xmin the dynamics is governed by (4) and can be described as follows. After
the surge, the trajectory is attracted to a stable quasi steady state of node or focus type on the
right branch of y = f(x). As X increases from Xmin, the quasi steady state changes stability as
a pair of complex eigenvalues passes through the imaginary axis, that is, a slow passage through
a Hopf bifurcation occurs [21, 22]. This phenomenon constitutes a delayed transition from surge
to pulsatility. The analysis of the small oscillations (see Figure 5) constitutes a large part of this
article.

(a) (b)
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Figure 5: Small oscillations corresponding to the post-surge pause. Panels (a) and (b) the full
periodic orbit and a zoom in the region of the pause, respectively, in the three-dimensional phase
space (x, y,X); panel (c) shows a stronger zoom on the small oscillations of the pause, together
with the critical manifold C0, the fold curve F (red line) and the folded node (dot) of the three-
dimensional subsystem (4).
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Recall that Xf (introduced in hypothesis (H1)) is defined as the value of X for which the y-
nullcline intersects the cubic x-nullcline at its right fold. We will assume that Xmin . Xf for the
following reason. If Xmin is significantly less than Xf then the quasi steady state is still a node
at the moment when the trajectory is attracted to it. During the passage near the fold the quasi
steady-state turns into a stable focus and subsequently becomes unstable; first it is an unstable
focus and then an unstable node. However, the trajectory is extremely close to the quasi steady
state when it is a focus and only gets repelled from it after it has changed from unstable focus to
unstable node. Hence no small oscillations can be seen. On the other hand, if Xmin . Xf then the
aforementioned quasi steady state can always be a focus, initially stable and subsequently unstable.

An important aspect of the dynamics are canards. A canard segment is a segment of a trajec-
tory which initially stays close to a stable branch of y = f(x) for a time of O(1/ε), subsequently
passes through the fold region and finally remains near the middle branch of y = f(x) for a time
of O(1/ε). A canard is a trajectory containing a canard segment. When a system possesses a
folded singularity, there can be canard trajectories with small oscillations. We then define a k-th
secondary canard as the canard trajectory making k small oscillations near the fold. As part of the
analysis we show that secondary canards separate the trajectories with different numbers of small
oscillations.

Pulsatility. Pulsatility is a region of transient relaxation oscillation corresponding to phase 1 of
§2.1. It is a direct continuation of the pause and the governing system is still (4). As the slow null-
cline of (1a)-(1b) cuts through the middle branch of y = f(x) the dynamics is purely of relaxation
type.

Transitions. The first transition corresponds to phase 4 of §2.1 and follows the surge. The
governing system is (9) with Y = g(γ). The variables (x, y) first evolve on the intermediate
time scale O(1/ε), following the nullcline y = f(x), subsequently jump to the right branch of the
nullcline y = f(x) and then follow the right branch of y = f(x), evolving on the time scale O(1/ε)
and arriving to the vicinity of (xf , yf ) as X reaches the vicinity of Xmin.

The second transition corresponds to phase 2 of §2.1 and precedes the surge. The governing
system is (9) with Y = g(−γ). Before X reaches the vicinity of Xmax, the point (x, y) can move
down along the left branch of y = f(x) and then turn back up the left branch of y = f(x) or
it can jump to the right branch of y = f(x) making another pulse before the surge. There is a
canard phenomenon associated with this behavior which can incur some expansion. Estimating
this expansion is a part of our analysis.

2.5 Statement of the main theorem

Before we can state our main theorem, we need to make one additional assumption:

(H5)
c

δ

∫ xsing(γ)

xsing(Xmax)

(f̃ ′(x))2g′(f̃(x))dx

f ′(x)(f̃(x) + b1g(f̃(x)) + b2)
>

2

ε

∫ xf

−xf

(f ′(x))2dx

a0x+ a1f(x) + a2 − cXf
,

where

f̃(x) = −a0x+ a1f(x) + a2

c
.

Hypothesis (H5) guarantees that the return map around the cycle is contracting.
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Theorm 1 Provided that δ and ε are sufficiently small and (H1)-(H5) hold, there exists a unique
stable limit cycle consisting of a number of small oscillations, a number of pulses and one surge.
Some exceptional limit cycles, existing only in exponentially small parameter regions, contain canard
segments. All the limit cycles are fixed points of a single passage around the cycle of surge, pause
and pulsatility. Varying a regular parameter can lead to a change in the number of pulses or small
oscillations by means of a passage through a canard explosion. There are two canard explosions, one
associated with the upper fold and one with the lower fold. A passage through the canard explosion
at the upper fold yields a transformation of a small oscillation to a pulse or vice versa. The passage
through the canard explosion at the lower fold leads to an addition or a subtraction of a pulse.

3 Folded singularities of system (4)

Folded singularities are usually studied in systems with two slow variables, however in this paper
we need to consider system (4), which has three time scales. The usual approach for classifying
folded singularities is to consider the desingularized reduced system, see [25] for instance. Here we
will mimic this procedure for (4).

3.1 Nature of the folded singularity

Since the fastest variable in (4) is x, we set the left hand side of (4a) to 0, obtaining the constraint
y = f(x). Hence the critical manifold corresponding to the fastest time scale is the cubic surface
C0 = {y = f(x)}. It displays two folds respectively for

x = ±xf = ±
√

λ1

−3λ3
, y = f(x).

By applying the procedure described at the beginning of §2.3, one obtains the desingularized reduced
system

ẋ = −(a0x+ a1f(x) + a2 + cX), (10a)

Ẋ = −δ
(
X + b1(g(X) +O(δ)) + b2

g′(X) +O(δ)

)
f ′(x) = Θδ(x,X). (10b)

Note that the slow flow (4b)-(4c) on C0 has the same orbits as the desingularized reduced system
(10), however one has to reverse the orientation where f ′(x) > 0, that is, on the repelling sheet of
the critical manifold C0.

The equilibria of system (10) on the fold curve F , that is, the folded singularities of the 3D
system, are given by

f ′(xf ) = 0, (11a)

Xf = −1

c
(a0xf + a1yf + a2), (11b)

with yf given by yf = f(xf ). From the expression of f(x), we get

xf = ±
√

-λ1

3λ3
(12a)

Xf =
-1

c

(
±
√

-λ1

3λ3
(a0 +

2

3
λ1a1) + a2

)
, (12b)
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with

yf = xf (λ3x
2
f + λ1) = ±2

3
λ1

√
-λ1

3λ3
.

Note that
∂Θδ

∂X
(Xf , xf ) = 0

due to the factor f ′(x). In addition we have f ′′(xf ) = 6λ3xf . Hence, the jacobian matrix J (10) of
system (10) at (xf , Xf ) reads

J (10)(xf , Xf ) =

(
−a0 −c

−6δλ3xf

(
Xf+b1(g(Xf )+O(δ))+b2

g′(Xf )+O(δ)

)
0

)
. (13)

The eigenvalues of the matrix J (10) are given by

ξ± =
1

2

(
−a0 ±

√
a2

0 + 24cλ3xfδ

(
Xf + b1(g(Xf ) +O(δ)) + b2

g′(Xf ) +O(δ)

))
. (14)

It follows that if

Xeval = 24cλ3xf

(
Xf + b1g(Xf ) + b2

g′(Xf )

)
< 0 (15)

then, for small enough δ, there are two real eigenvalues of the same sign, i.e. the folded singularity
is a folded node. Evaluating (15) for c = 0.69, a0 = 1, a1 = 0.02, a2 = 0.8, b1 = 0, b2 = −0.8,
λ3 = −1, λ1 = 1.5, µ3 = −1, µ1 = 4, one obtains Xeval = −3.3248.

3.2 Local form near the folded singularity

We translate the origin to (xf , f(xf ), Xf ), with (xf , Xf ) given by (11), and rescale the x and y
variables. We first set

x = α (x− xf ) ,

y = α (y − f(xf )) ,

where α =
√
−3λ1λ3. In these new coordinates, system (4) reads

εδẋ = −y − x2 − 1

3λ1
x3,

δẏ = a0x+ a1y + α (a0xf + a1f(xf ) + a2 + cX) ,

Ẋ =
X + b1(g(X) +O(δ)) + b2

g′(X) +O(δ)
.

Now we translate the variable X by setting X = X −Xf to obtain the following system

εδẋ = −y − x2 − 1

3λ1
x3, (16a)

δẏ = a0x+ a1y + αcX, (16b)

Ẋ = ϕ+ ψX +O(X
2
, δ). (16c)
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where

ϕ =
Xf + b1g(Xf ) + b2

g′(xf )
.

Finally we introduce new variables (x, y, z) defined by (z,−x, y) = (x, y,X) and rescale the time
to obtain the system:

ẋ = αcy − a0z +O(x), (17a)

ẏ = δ
(
ϕ+ ψy +O(y2, δ)

)
, (17b)

εż = x+ z2 +O(z3). (17c)

For δ = 1, system (17) is analogous to the normal forms considered in [1] and [25]. Assuming that
ε and δ are small constants (perturbation parameters), this system has one fast, one slow and one
super-slow variable. Note that Xeval = 24cλ3xfϕ, λ3 < 0 and c, xf > 0. Hence, if (15) holds then
ϕ > 0 and the folded singularity is a folded node. The case ϕ < 0, or equivalently Xeval > 0, gives
a folded saddle for δ sufficiently small. Finally ϕ = 0 corresponds to a folded saddle-node. Other
types of folded singularities do not occur for δ close to 0.

3.3 Local analysis near the folded node: statement of the result

After dropping the ¯ signs and rescaling time, system (16) reads:

εẋ = −y − x2 − 1

3λ1
x3, (18a)

ẏ = a0x+ a1y + αcX, (18b)

Ẋ = δ(ϕ+ ψX +O(X2, δ)). (18c)

Let the section Σin defined by y = −ρ2, where ρ > 0 is small but fixed. Let Sa,ε be the
attracting Fenichel slow manifold, perturbed from the critical manifold y = x2 + x3/(3λ1), near
the section Σin. Note that Σin is a transverse section of the flow of (18) intersecting Sa,ε close to
the fold but O(1) away from it. In this section we focus on describing the dynamics starting in the
curve Sa,ε ∩ Σin. Each trajectory starting in Sa,ε ∩ Σin enters the neighborhood of the fold, makes
a number of small rotations, and then exits the fold region. The number of small oscillations can
be different for different trajectories. Canards can now be defined as the trajectories that go into
the repelling slow manifold Sr,ε (see §2.4 for an alternative definition). A kth secondary canard is
a canard that makes k small oscillations in the fold region and subsequently runs into Sr,ε.

Suppose the number of the small rotations for two trajectories (x, y,X) and (x̃, ỹ, X̃) is different.
Then there exists a secondary canard with initial condition somewhere on the segment between
(x, y,X) and (x̃, ỹ, Ỹ ). This way we can define sectors of the same rotation, or simply sectors of
rotation, as the segments of Sa,ε ∩ Σin between the consecutive canards. We now state the main
theorem of this section. This theorem leads to a precise definition and description of the sectors of
rotation.

Theorm 2 There exists a number R > 0 such that, for every 0 < ν < R there exists a family of
kth secondary canards with

ν

δ
< k <

R

δ
.
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The canards with consecutive rotation numbers are next to each other. The distance between the
consecutive canards measured in the section Σin is bounded below by C1δ

√
ε and above by C2δ

√
ε,

where C1 and C2 are positive constants.

Corollary 1 The kth sector of rotation, defined as the region between the kth and the (k + 1)st

secondary canard consists of points whose trajectories make k rotations in the fold region.

Our proof of Theorem 2 is based on the application of the blow-up method and builds on the results
of [19]. This section is organized as follows. In 3.4 we introduce the blow-up and its charts. In 3.5
we analyze the dynamics in the entry chart K1, which covers a region near the critical manifold
from Σin to O(

√
ε) away from the fold. In 3.6 we analyze the dynamics in the central chart K2,

which describes the region very close to the singularity. We describe the delayed Hopf bifurcation
occurring in this chart relying on the results of [19]. In 3.7 we prove Theorem 2, building on the
results of Sections 3.5 and 3.6.

3.4 Blow-up

We use the following blow-up function:

Φ : R+ × S4 → R5,

(r, x, y,X, ε) → (r̄x̄, r̄2ȳ, r̄X̄, r̄2ε̄) = (x, y,X, ε).
(19)

In the entry chart y = −1, the blow-up (19) transforms variables (x, y,X, ε) into new variables
(x1, r1, X1, ε1) as follows:

x = r1x1, y = −r2
1, X = r1X1, ε = r2

1ε1. (20)

After the transformation of system (18) and omitting a factor of r1 (which corresponds to a time
rescaling), we obtain the following equations:

ẋ1 = −1

2
x1ε1F (x1, r1, X1)− (−1 + x1

2 + r1
1

3λ1
x3

1), (21a)

ṙ1 =
1

2
r1ε1F (x1, r1, X1), (21b)

Ẋ1 = −1

2
X1ε1F (x1, r1, ε1) + ε1δ(ϕ+ ψr1X1 +O(r2

1X
2
1 , δ)), (21c)

ε̇1 = −ε2
1F (x1, r1, X1), (21d)

where F (x1, r1, X1) = −a0x1 + a1r1 − αcX1.
In the transition chart ε̄ = 1, the blow-up (19) corresponds to the change of variables (x, y,X, ϕ, ε)

into (x2, y2, X2, ϕ2, r2) defined by

x = r2x2, y = r2
2y2, X = r2X2, ε = r2

2, (22)

that is equivalent to
x =
√
εx2, y = εy2, X =

√
εX2. (23)
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After the transformation of system (18), canceling a factor of
√
ε and canceling the equation ε̇ = 0,

we obtain the following equations:

ẋ2 = −y2 − x2
2 −
√
ε

3λ1
x3

2, (24a)

ẏ2 = a0x2 + αcX2 + a1

√
εy2, (24b)

Ẋ2 = δ
(
ϕ+
√
εψX2 +O(εX2

2 , δ)
)
. (24c)

To prove Theorem 2, we need to find trajectories connecting from Sa,ε to Sr,ε. As it will become
clear from our forthcoming analysis, there is a natural extension of Sr,ε to K1. Hence we will be
following the dynamics from K1 to K2 and then back to K1. Consequently, we need to be able to
transform K1 to K2 and vice versa on the overlap of the charts. The transformations between K1
and K2 are given by

x2 =
x1√
ε1
, y2 = − 1

ε1
, X2 =

X1√
ε1
, (K1 to K2), (25)

and

x1 =
x2√−y2

, ε1 = − 1

y2
, X1 =

X2√−y2
, (K2 to K1). (26)

3.5 Extending Fenichel theory in chart K1

The key observation concerning the dynamics of (21) is that there exist center manifolds defined,
approximately, by x1 ≈ ±1. These manifolds are the extensions of the Fenichel slow manifolds Sa,ε
and Sr,ε. Near r1 = 0, they intersect the hyperplane ε1 = 0 according to the equation

−1 + x1
2 + r1

1

3λ1
x3

1 = 0.

The center manifold CMa corresponding to x1 ≈ 1 is attracting and given, near r1 = 0, ε1 = 0, by
the development

x1 = 1− 1

6λ1
r1 +O(ε1, r

2
1).

Similarly, there exists an unstable center manifold CMr, corresponding to x1 ≈ −1.
The restriction of the flow to CMa, after canceling a factor of ε1, which amounts to a time

rescaling, is given by

ṙ1 =
1

2
r1F̃ (r1, X1, ε1), (27a)

Ẋ1 = −1

2
X1F̃ (r1, X1, ε1) + δ(ϕ+ ψr1X1 +O(r2

1X
2
1 , δ)), (27b)

ε̇1 = −ε1F̃ (r1, X1, ε1), (27c)

with
F̃ (r1, X1, ε1) = −a0 + (a1 +

a0

6λ1
)r1 − αcX1 +O(ε1, r

2
1)

being the restriction of F to CMa.
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Hyperplanes r1 = 0 and ε1 = 0 are invariant for (27). As ϕ > 0, this system admits two singular
points lying in r1 = ε1 = 0 and defined by their X1 component:

X±1 =
−a0 ±

√
a2

0 − 8δαcϕ

2αc
. (28)

Both values of X1 are negative and, since δ is small,

− a0

αc
. X−1 < X+

1 . 0.

Both singular points are hyperbolic.

At each of the singular point (r1, X1, ε1) = (0, X±1 , 0), the jacobian matrix J
(27)
δ associated with

system (27) reads

J
(27)
δ (0, X±1 , 0)

=

 −1
2(a0 + αcX±1 ) 0 0

−1
2X
±
1

(
a1 + a0

6λ1

)
+ δ

(
ψX±1 +O(δ)

)
1
2

(
a0 + 2αcX±1

)
−1

2O(1)

0 0 a0 + αcX±1

 .

For δ → 0+, one obtains at (0, X+
1 , 0),

J
(27)
0+

(0, X+
1 , 0) =

−a0
2 0 0

0+ a0
2 −1

2O(1)
0 0 a0

 ,

and, at (0, X−1 , 0),

J
(27)
0+

(0, X−1 , 0) =

 0− 0 0

− a0
2αc

(
a1 + a0

6λ1

)
−a0

2 −1
2O(1)

0 0 0+

 .

For δ > 0 small there exists a two-dimensional center manifold associated with the equilibrium
(0, X−1 , 0). For δ = 0 this manifold is defined by the condition F̃ (r1, X1, ε1) = 0 and consists
entirely of equilibria. For δ > 0 the flow on the center manifold becomes weakly hyperbolic. To
estimate the corresponding eigenvalues, we use (28) to obtain the approximation

X−1 = − a0

αc
+

2ϕ

a0
δ +O(δ2). (29)

Using the fact that a0, α, c and ϕ are positive it is easy to see that the eigenvalue corresponding to
the r1-direction is negative and the eigenvalue corresponding to the ε1-direction is positive. Hence
r1 decreases and ε1 increases along trajectories. The flow of (27) is shown in Figure 6 and will be
discussed in more detail below.

Based on the information collected above we can follow the passage of CMa, and thus Sa,ε,
until the entry in the fold region. We define the following sections of the flow of (27a)-(27c):

Σin
1 = {(x1, r1, X1, ε1, ϕ1) : r1 = ρ},
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Figure 6: Flow of (27) obtained by reduction of the flow of the blown-up system in chart K1 to the
attracting center manifold CMa. It induces a transition between the sections Σin

1 and Σout
1 illustrate

by the red orbits. The repulsive two-dimensional center manifold (sky blue) associated with the
singular point (0, X+

1 , 0) (near the origin) contains the one-dimensional stable manifold W s(X+
1 ) of

this singular point the strong unstable manifold W uu(X+
1 ). The attracting center manifold (purple)

associated with the singular point (0, X−1 , 0) is built in the same manner. Along the flow, the X1

direction is expanded away from the sky blue manifold and contracted towards the purple one.

where ρ > 0 is the constant used in the definition of Σin, and

Σout
1 = {(x1, r1, X1, ε1, ϕ1) : ε1 = η},

where η > 0 is a sufficiently small constant. We begin by explaining the meaning of Σin
1 and Σout

1 in
the context of the coordinates (x, y,X) of system (18) and (x2, y2, X2) of system (24). The section
Σin

1 corresponds to the section Σin defined at the beginning of §3.3. Further it follows from (25)
that the section Σout

1 transforms to the section

Σin
2 =

{
(x2, y2, X2) : y2 = −1

η

}
.

Recall that Sa,ε is the attracting Fenichel slow manifold near the section Σin. The set Sa,ε ∩Σin is
approximated by the line {

(x, y,X) : x = ρ, y = −ρ2
}
.
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To see which points in Σout
1 can be reached by trajectories starting in CMa ∩ Σin

1 , we study the
dynamics of system (27) whose flow approximates the flow of (21) on CMa. We see that the X1-
direction is expanded away from the equilibrium at the origin and is contracted towards the center
manifold of the equilibrium (0, X−1 , 0). Hence the projection of the center manifold CMa onto the
X1-direction contains the interval (−a0/(αc), 0). In fact the intersection of the center manifold
with Σout

1 is a thin band containing a line segment which is close to the interval

x1 = 1, − a0

αc
< X1 < 0.

3.6 Delayed Hopf bifurcation and the way in/way out function in chart K2

We use system (24) to compute the way-in/way-out function near the fold. Note that (24) is a
slow-fast system with two fast and one slow variables, with singular parameter δ. The critical
manifold of (24) is given by

x2 = −αc
a0
X2, y2 = −

(
αc

a0

)2

X2
2 .

We will denote this manifold by S0. The linearization of the fast system about S0 is given by the
matrix (

2A(ε)X −1
a0 0

)
(30)

with A(ε) = αc/a0 + O(
√
ε). Note that A(ε) > 0, for sufficiently small ε. Hence, by Fenichel

theory, given a constant η > 0, there exist slow manifolds S−,δ and S+,δ, attracting and repelling
respectively, close to the line segments

−1

η
< X < −η and η < X <

1

η

respectively.
We visualize the flow in the original coordinates (x2, y2, X2) with X2 < 0, in Figure 7 ; the flow

is strongly contracting in a tube around the critical manifold S0. Similarly, Figure 9 shows the flow
near S0 with X2 > 0; there the flow is strongly expanding.

We rectify S0 by translating it to the line (0, 0, X2), which is achieved by a transformation of
the form:

x2 = x̃− αc

a0
X2 +O(

√
ε), y2 = ỹ −

(
αc

a0

)2

X2
2 +O(

√
ε), X2 = X̃.

In the new variables, system (24) reads (after dropping the .̃ signs)

ẋ = −y + 2A(ε)Xx− x2 +O(
√
ε, δ), (31a)

ẏ = a0x+O(
√
ε, δ, x2), (31b)

Ẋ = δ(ϕ+ ψX +O(
√
εX2))., (31c)

Note that
√
ε is a regular parameter in (31). Hence, to simplify the notation, we will suppress the

dependance of A on ε. In Figure 8 we show the flow in the rectified coordinates for both X negative
and positive.
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Figure 7: Transition from Σin
2 to the cylinder Cδ in chart K2. The image of Sa,ε∩Σin in Σin

2 (purple
interval) lies in x2 = 1/

√
η. Under the flow of system (24), trajectories starting from the purple

interval reach the vicinity of the critical manifold S0 by entering the cylinder Cδ.

Note that the eigenvalues of the matrix given by (30) are off the real axis if

−
√
a0

A
< X <

√
a0

A

with negative real part for X < 0 and with positive real part for X > 0. For X < 0, we define the
function Ψ(X) by the formula

Ψ(X) = X∗ with

∫ X∗

X

Z

ϕ+ ψZ
dZ = 0. (32)

The function Ψ is the way in/way out function for all X satisfying

−
√
a0

A
< X < 0.

Heuristically this means that the trajectories attracted to S−,δ near X, will be repelled from S+,δ

near X∗. To state a more precise result we introduce, for X0 < 0, the sections

ΣX0 = {(x, y,X) : X = X0}.

The following result characterizes the transition map from a section ΣX0 to ΣX∗ , X∗ = Ψ(X0).
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Proposition 1 There exist constants η1 > 0 and η2 > 0 with the following property. For any

X0 ∈
]
−
√
a0

A
, 0

[
and (x, y,X0) ∈ ΣX0 sufficiently close to the origin in ΣX0, let (x(t), y(t), X(t)) be the trajectory
of (31) starting at (x, y,X0). Let X∗ = Ψ(X0). There exists t∗ > 0 such that

X(t∗) = X∗,
∀t ∈]0, t∗[, X0 < X(t) < X∗ and x(t)2 + y(t)2 < η1.

Moreover, if the distance between (x, y,X0) and S−,δ ∩ ΣX0 equals δ2(1+α) for some 0 < α < 1/4
then the distance between (x(t∗), y(t∗), X∗) and S+,δ is bounded below by η2δ

2(1+α).

A proof of this result based on the work of Neishtadt [22] can be found in [19], Corollary 5.1.
Reference [19] also contains extensions of Proposition 1 to the case of X0 <

√
a0/A, but we will

not be concerned with these results in this article.

3.7 Proof of Theorem 2

In this section we will use both the original coordinates (x2, y2, X2) and the rectified coordinates
(x, y,X) in the following way. Let Cδ denote a cylinder of radius δ2(1+α) around S−,δ, where
0 < α < 1/4 is a constant. Trajectories starting in Σin

2 , with X2 < 0 will enter Cδ (for small
enough δ) and subsequently exit Cδ, with X2 > 0. We will use the (x2, y2, X2) for the part of the
trajectories outside Cδ and (x, y,X) for the part of the trajectories inside Cδ.

Recall that the interval
x1 = 1, − a0

αc
< X1 < 0

is the image of Sa,ε ∩ Σin in Σout
1 . Translated to Σin

2 this interval has the form

x2 =
1√
η
, − a0

αc
√
η
< X2 < 0.

Recall the center manifold CMa which coincided with the extension to K1 of the slow manifold
Sa,ε. We denote the image of CMa in K2 by transformation (25) also by CMa. Note that the point

(x2, y2, X2) =

(
1√
η
,−1

η
,− a0

αc
√
η

)
is on the critical manifold of system (24). By choosing η < 1/a0, we guarantee that the point where
the eigenvalues change from real to complex, which is given by

X2 = −
√
a0

A
,

is included in the interval (−a0/(αc
√
η), 0) provided that δ is small enough. Consider the segment

of trajectory of (24) starting at a point in CMa ∩ Σin
2 such that

−
√
a0

A
< X < −η0 < 0
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and ending at a point in Cδ. Note that the flow is predominantly in the fast directions and away
from singularities. Hence the passage time is O(ln δ) uniformly in δ and in X2 ∈ (−√a0/A, η0). It
follows that the X2-coordinate of the endpoint of the segment of trajectory also satisfies

−
√
a0

A
< X2 < η0,

provided that δ is small enough.
We proceed using the rectified coordinates (x, y,X). Consider a trajectory starting at a point

in Cδ with X = X0. Such trajectory first follows S−,δ and subsequently S+,δ until X becomes
approximately equal to Ψ(X), see (32). Corollary 5.1 in [19] states that the flow of (24) for
trajectories starting at Cδ is linear at lowest order (this occurs for the specified choice of α).
Moreover, for each X0 verifying

−
√
a0

A
< X0 < −η0 < 0,

there exists X̃∗(X0, δ) such that the transition from Cδ ∩ {X = X0} to {X = X̃∗(X0, δ)} with

X̃∗(X0, δ) = X∗(X0) +O(δ)

is, at lowest order, a pure rotation by the angle R(X0)/δ, where

R(X0) =

∫ Ψ(X0)

X0

√
αcZ
a0
− 1

ϕ+ ψZ
dZ,

We refer the reader to [19], §5, for further detail.
Consider an interval (x0, y0, X) ∈ Cδ with X varying within O(δ) of X0 and for every X consider

the image of (x0, y0, X) by the transition via the flow of (24) to the section {X = X̃∗(X0, δ)}. The
image of the interval is a segment of a very tight spiral, as changing X by O(δ) produces an
increment of the angle greater than 2π while X̃∗(X0, δ) changes very little. Now consider the
continuation of CMr backwards in time, near X̃∗(X0, δ). Since, backwards in time, the trajectories
on CMr follow closely the fast fibers of (24) and converge to S+,δ, they must intersect the mentioned
spiral transversely. If, instead of taking the interval {(x0, y0, X) ∈ Cδ, X = X0 + O(δ)}, we take
a segment of the continuation of CMa to Cδ, we obtain a similar spiral and similar transverse
intersections, separated by a distance bounded below by Kδ, for some constant K > 0 (see Figure
8).

These intersections correspond to secondary canards. A computation shows that

−
√
a0

A
< X0 < −η =⇒ Ψ′(X0) < 0.

Hence the number of rotations of the secondary canards monotonically increases as X0 decreases.
This implies that secondary canards are unique and that the consecutive canards differ by one
rotation. It also follows that the distance between the secondary canards is O(δ). After translating
back to the original coordinates (x, y,X) (blowing down), we obtain the estimate of Theorem 2.
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Figure 8: Way-in/way-out transition near the rectified critical manifold of (31). The trajectory
entering the cylinder Cδ at X = X0 < 0 is first attracted by the slow manifold S−,δ, remain near
S+,δ for a while and exits the cylinder at X = Ψ(X0) > 0. A 2π increment of the exit angle in
(x, y) is obtained by a O(δ) variation of the value X0 of the entry.

Figure 9: Transition from the cylinder Cδ in chart K2 to Sr,ε ∩ Σin
2 (purple interval). The figure

shows segments of trajectories of (24) starting in the interior of the cylinder Cδ and ending in
Sr,ε ∩ Σin

2 . This figure can be understood as the ‘backwards in time’ version of Figure 7.
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3.8 Passage through the fold region – composition of the dynamics in the charts

Using Theorem 2 we can now describe the dynamics in the fold region, starting from the union
of the sectors of rotation in the section Σin to the exit from the fold region. We will restrict our
attention to the trajectories on Sa,ε as all the other trajectories shadow a trajectory on Sa,ε. We
first consider the trajectories that are not close to canards. After passing through Cδ and exiting
through its boundary for X > 0 these trajectories separate quickly from Sr,ε and exit along the fast
fibers. This is a simple and fast transition which does not incur much contraction. This transition
is difficult to study mathematically due to resonance, but we will not focus on it here, referring the
reader to [17].

If the trajectories are close to a canard they will arrive in Σin and must continue to either Σf ,
which is defined by x2 = 0, (in the original coordinates by x = xf ), and subsequently reach Σin, or
they pass to the left branch of the nullcline resembling a canard with head and subsequently reach
Σin.

4 Proof of Theorem 1

4.1 Contraction during the surge

Recall that surge begins as X approaches Xmax and the dynamics is governed by (7). We rewrite
(7) for convenience using a different notation:

δẋ = c
X − f̃(x)

f ′(x)
, (33a)

Ẋ =
X + b1g(X) + b2

g′(X)
, (33b)

with

f̃(x) = −a0x+ a1f(x) + a2

c
=
−a1λ3x

3 − (a0 + a1λ1)x− a2

c
.

Recall the definition of xsing following the statement of Theorem 1 and note that

f̃(xsing(Xmax)) = Xmax,

f̃(xsing(γ)) = γ.

The slow manifold of (33) is defined by X = f̃(x). It turns out that f̃ is an S shaped curve. To
show that we compute the critical points. There are two, given by the formula:

x2 = −a0 + a1λ1

3a1λ3
≈ 30. (34)

Further, f̃ ′′(x) = −6a1λ3x, hence the negative critical point is a maximum and the positive one a
minimum. Let xc+ > 0 > xc− be the critical points. Note that hypothesis (H3) is equivalent to the
condition Xmax < f̃(xc−). The slow and fast dynamics of (33) are shown in Figure 10.

It follows from the slow-fast structure of (33) and from the hypotheses (H3) and (H4) that
the minimal (resp. maximal) value of x during the surge is close to xsing(Xmax) (resp. xsing(γ)).
The passage through surge is always an exponentially strong contraction, with contraction rate
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Figure 10: Slow and fast dynamics of (33) that approximate the flow of the whole system during
the surge. Hypothesis (H3) ensure that X is always smaller than the value of X at the knee. Hence,
at the beginning of the surge, x is near 0 and X = Xmax. Under the fast dynamics (33a), (x,X)
quickly reaches the slow manifold vicinity and then slowly goes down along it following the slow
dynamics (33b). This mechanism is known to induce an exponential contraction between orbits.

O(exp(−C3/δ)), where C3 > 0 is a constant. To compute C3 we follow the approach of [18], §2.
We consider the reduced problem of (33), given by:

0 = −f̃(x) +X, (35a)

Ẋ =
X + b1g(X) + b2

g′(X)
, (35b)

or, parametrized by x,

x′ =
f̃(x) + b1g(f̃(x)) + b2

g′(f̃(x))f̃ ′(x)
. (36)

Let x0(t) be the solution of (36) defined on an interval [0, tendsurge], with x0(0) = xsing(Xmax) and
x0(tendsurge) = xsing(γ). Now, to estimate the contraction, we linearize the layer system

ẋ =
c(X − f̃(x))

f ′(x)
, (37a)

Ẋ = 0. (37b)

Note that:
∂

∂x

[
c(X − f̃(x))

f ′(x)

]
|X=f̃(x)

= c
f̃ ′(x)

f ′(x)
.

Hence, the first order coefficient of the contraction rate is estimated by:

C3 = c

∫ tendsurge

0

f̃ ′(x0(t))

f ′(x0(t))
dt.

Changing the variables and using (36) to express dt as dx/x′ we get

C3 = c

∫ xsing(γ)

xsing(Xmax)

(f̃ ′(x))2g′(f̃(x))dx

f ′(x)(f̃(x) + b1g(f̃(x)) + b2)
. (38)
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4.2 Canard phenomenon during the passage from pulsatility to surge

While X increases from −γ to Xmax the point (x, y) may travel down along the left branch y = f(x)
towards the fold (−xf ,−yf ). Subsequently it either turns back and travels towards xsing(Xmax)
along the left branch y = f(x) or jumps over to the other branch of y = f(x) to complete another
pulse. The transition between these two possibilities is a canard phenomenon, corresponding to
the travel along the middle branch of X. We will not describe this canard phenomenon in detail,
restricting our attention to the computation of the maximal expansion.

Proceeding as in §4.1 we consider the slow flow of the system (9), given by

ẋ =
a0x+ a1f(x) + a2 + cX

f ′(x)
, (39a)

Ẋ = −Y0 + g(X). (39b)

and its solution (x0(t), X0(t)) with initial conditions x(0) = −xf and X(0) = Xf . The maximal
amount of expansion occurs for trajectories traveling along the middle branch of y = f(x) from the
vicinity of (−xf ,−yf ) to (xf , yf ) and is estimated by∫ tmax

0
f ′(x0(t))dt

where tmax is the time when x0(t) reaches the upper fold (xf , yf ), i.e. tmax is defined by x0(tmax) =
xf . Changing the variables, we get∫ tmax

0
f ′(x0(t))dt =

∫ xf

−xf

(f ′(x))2dx

a0x+ a1f(x) + a2 + cX0(t(x))

where t(x) is defined by x0(t(x)) = x, with −xf ≤ x ≤ xf . Now since −Xf < X(t) < Xmin we
have ∫ xf

−xf

(f ′(x))2dx

a0x+ a1f(x) + a2 + cX0(t(x))
<

∫ xf

−xf

(f ′(x))2dx

a0x+ a1f(x) + a2 − cXf
.

Let

C4 =

∫ xf

−xf

(f ′(x))2dx

a0x+ a1f(x) + a2 − cXf
. (40)

It follows that the amount of contraction incurred due to the canard phenomenon is approximately
equal to eC4/ε.

4.3 Putting the pieces together

In this section we put together all the phases of the dynamics, the surge, the pulsatility, the small
oscillations, and the intermediate phases to get a transition around the entire cycle. We assume
the δ = O(ε), or more specifically, δ ≤ ε. We introduce four sections of the flow corresponding to
the different phases of the dynamics.

Let η be a small constant. We can now define the sections of the flow:

Σin = {(x, y,X, Y ) : y = f(xf )− η},
Σf = {(x, y,X, Y ) : x = xf},

Σsurge = {(x, y,X, Y ) : x = xsing(Xmax) + η},
Σendsurge = {(x, y,X, Y ) : x = xsing(γ)− η}.
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The sections are shown in Figure 11. As shown in §4.1 the transition map from Σsurge to Σendsurge

is a contraction with rate O(e−C3/δ).
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Figure 11: The four sections of the flow of system (1) represented in the (x, y)-plane.

The transition from Σendsurge to Σin involves a passage through a folded node point and hence
there are canard type phenomena occurring there. However, the passage of the Regulator through
this point is fast (O(1/δ)). Hence we can assume that the trajectories stay away from the canards
so that no significant expansion is present.

If we restrict our attention to the interior of the sectors, staying away from the canards, then
the transition from Σin to Σsurge involves no significant expansion. Close passage to canards can be
due to the folded node near the upper fold or due to the canard phenomenon during the passage
from pulsatility to surge described in §4.2.

We can now quickly describe what happens if the trajectories stay away from the canards.
Consider the region in Σin consisting of the rotation sectors described in Theorem 2. The image
of this region in Σsurge is contained in a compact subset of Σsurge. The image of this set by the
transition from Σsurge to Σendsurge is contained in a ball of radius O(e−C3/δ), which we denote by Bδ.
By adjusting a parameter, for example c, we can arrange that the image of Bδ in Σin is contained
in the union of the rotation sectors. We first consider the case when the image of Bδ in Σin is not
close to a canard. We can now consider the return map from Σendsurge to itself restricted to Bδ.
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This transformation is well defined (maps Bδ into itself) and is an exponential contraction. This
proves the existence of a unique stable periodic orbit.

We now consider the case when trajectories starting in Σsurge pass near canards. One way that
a canard segment can be involved in the recurrent dynamics is if the image of Bδ in Σin intersects
two sectors (with ε and δ small enough, it cannot intersect more due to the estimate on the size
of the sectors given in Theorem 2). There are now a few possibilities for how the trajectories can
continue (see Figure 12).

1. Trajectories that are not close to a canard transition to the pulsatility stage in the same as
in the case when no passage near canards was involved. Near such trajectories no significant
expansion is incurred.

2. Trajectories that are close to canards, after passing through K2, return to Σin through a
segment of trajectory which looks like a canard cycle (with or without head). The maximal
amount of expansion near such trajectories is incurred for maximal-like canards. The amount
of expansion is estimated below.

3. Small canards, that return to Σf and then to Σin
2 , without passing through Σin. The amount

of contraction near such trajectories is negligible.

In both cases 2 and 3, X −Xf is already positive as the trajectory reaches Σout
2 so that a simple

passage to pulsatility takes place following the return of the trajectory to Σin.

 -2  -1 0 1 2
 -3

 -2

 -1

0

x

y

Σf

Σin

Σin
2Σout

2

Figure 12: A “regular” canard and a small canard.

The maximal expansion by this transition is eC4/ε, where C4 is introduced in (40). To understand
this estimate consider two points in Σin which are endpoints of two trajectories starting in Σin at
two points very close to each other but on the opposite side of the maximal canard. The flow
backwards in time can contract the distance by the maximal contraction, backward in time, along
the middle part of the fast nullcline, which is bounded below by e−C4/ε, with the constant C4

computed analogously as C3, see §4.1.
Another way that trajectories starting in Σsurge may pass near a canard comes about by means of

addition of a pulse at the end of pulsatility, or, in other words, by means of the canard phenomenon
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described in §4.2. As described in §4.2 the maximal expansion is also bounded by eC4/ε. The
cumulative effect of the expansion coming from the two sources is e2C4/ε.

Consequently, as long as
2C4

ε
<
C3

δ
, (41)

the return map from Σendsurge to itself is an exponential contraction of O(e−C3/δ+2C4/ε). Note that,
for a fixed value of ε, this condition is fulfilled for δ small enough. In the estimate, we include the
expansion incurred by the passage near both of the canard phenomena. Hence there exists a unique
periodic orbit for every parameter value. This periodic orbit may contain a canard segment, which
corresponds to a transition consisting of subtracting (respectively adding) a small oscillation and
adding (respectively subtracting) a pulse at the beginning of the pulsatility stage, or it may include
a canard segment corresponding to the addition of a pulse at the end of the pulsatility phase (the
canard phenomenon described in §4.2).

5 Numerical study

We carried out numerical computation and continuation of periodic orbits in order to better describe
the dynamics of our original four-dimensional system and visualize in more details the different
transitions that shape the periodic orbits investigated in this work. We computed families of
periodic orbits solutions of system (1) displaying pulses and surge, depending on various system
parameters, using numerical continuation. We could then detect various canard-induced transitions
affecting the number of pulses and the presence of a pause after the surge (see Figures 13, 14 and 15
below). We also computed attracting and repelling slow manifolds, as well as secondary canards,
near the folded node of system (18a)–(18c), which approximates the behavior of the full system
during the pause and explain its small oscillations (see Figure 16 below).

Systems with different time scales are well known to pose numerical problems because of their
intrinsic stiffness, in particular when computing periodic orbits or, more generally, orbit segments
[14, 15]. The use of numerical continuation in the context of slow-fast dynamical systems has
significantly increased over the last two decades. First, in the classic framework of limit cycle
continuation, where very sharp transitions such as canard explosions could be finely rendered.
Second, and more recently [8], in the context of manifold computation, where slow manifolds were
approximated by families of orbit segments computed by continuing a parametrized family of two-
point boundary value problems (BVP). The combination of orthogonal collocation to compute
an orbit segment solution of a BVP, with a predictor-corrector algorithm to move one or several
parametrized conditions of the BVP, proved very efficient compared to shooting methods. Indeed,
solutions of singularly perturbed ODEs display very sensitive dependence on initial conditions and
parameter variations. In this context, orthogonal collocation gives a better approximation of such
an orbit segment by distributing the error along the orbit instead of accumulating it at one end
point as with shooting. Furthermore, the continuation algorithm gives a good rendering of the
piece of manifold of interest, where orbit segments are distributed according to arc length, hence,
accounting for the changes of local curvature of the manifold. In this way, one can integrate
slow-fast ODEs with suitable boundary conditions using the BVP solver embedded in numerical
continuation packages such as Auto [10]. We now illustrate the use of numerical continuation tools
to investigate system (1).
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5.1 Continuation of periodic orbits in parameter a2

We start by a periodic orbit continuation that illustrates the various transitions, upon changes of
parameter a2, that take place in between different parts of the typical periodic orbit of system (1)
as shown in Figure 1. The other parameters are fixed at values previously fixed, that is, c = 0.69,
a0 = 1, a1 = 0.02, a2 = 0.8, b1 = 0, b2 = −0.8, λ3 = −1, λ1 = 1.5, µ3 = −1, µ1 = 4. The solution
branch of periodic orbits is presented in Figure 13 where we choose to display on the vertical axis the
maximum in y for each orbit as a measure of the solutions along the branch. The branch appears
to be quite complicated with several rapid transitions that manifest themselves by quasi-vertical
segments along the branch and that all have to do with canard trajectories. We identified two
different types of transitions, affecting the periodic orbits at two different stages; before the surge,
corresponding to the creation or annihilation of a pulse, and after the surge during the pause,
corresponding to the transition of a small oscillation to a pulse. These transitions correspond
to the canard phenomenon discussed in §4.2 and the canard phenomenon related to the small
oscillations discussed in §3.1. Each transition takes place within an exponential small variation
of the parameter, therefore thus corresponding to a quasi-vertical segment on the branch. We
will now describe our numerical results, which reveal an intricate sequence of canard explosions
corresponding to the two types of transitions.
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Figure 13: Family of periodic orbits solution of the original system (1) when a2 is varied. The
vertical axis shows the maximum in y for each computed limit cycle along the branch. Eight orbits
have been highlighted with black dots on the branch and given numbers from 1 to 8; they are shown
in the two subsequent figures.

To be more specific, we introduce a labeling scheme for periodic orbits of (1). We say that and
orbit is of type (p, s) if it involves p pulses and s small oscillations. Our first transition can be
described as (p, s)→ (p+ 1, s) (or (p, s)→ (p−1, s)), while the second one as (p, s)→ (p+ 1, s−1)
((p, s) → (p − 1, s + 1)). We find two different scenarios in which both transitions occur. In the
first scenario, they happen one after the other, which corresponds to two exponentially small bands
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of parameter values with associated quasi-vertical segment of the branch, separated by an order 1
interval of parameter values where the branch is, in comparison, quite flat. In the second scenario,
they happen within the same exponentially small parameter variation. We isolate two sets of four
orbits each along the branch, numbered 1 to 4 for the first set and 5 to 8 for the second, that
undergo the first and the second transition, respectively. We now focus on each transition with the
associated set of four chosen orbits.

An example of the first scenario with both transitions is presented in Figure 14, where we show
the time profile of y for the orbits 1 to 4 on the branch in Figure 13. This transition affects the
number of small oscillations of the pause, this is why we enlarge each panel in the region of the
pause and show the zoom in an inset; each panel is labeled with the number of the corresponding
orbit in the solution branch. From orbit 1 to orbit 4, the pause gains one small oscillation, which
corresponds to the loss of one pulse after the pause. However, one notices that there is very little
difference between orbit 3 and orbit 4 in the pause. This is because this part corresponds to the
second transition, where the change takes place before the surge with the appearance of one more
pulse. In other words there are two canard explosions, which, using our labeling scheme, can be
described as (8, 3) → (7, 4) and (7, 4) → (8, 4), giving a net result of an (8, 3) → (8, 4) transition.
Both transitions are canard-mediated, which one would see when plotting the orbits in the (x, y)-
plane (see right panels of Figure 14). However, within this first scenario they are separated by an
O(1) parameter interval.

The second scenario is illustrated in Figure 15 where orbits 5 to 8 from the solution branch
are represented in the phase plane (x, y). Here, both transitions seem to occur within the same
exponentially small a2-variation. Hence, one has two canard explosions in this plane : the first
one corresponds to the transformation of a pulse into an additional small oscillation on the pause
(visible essentially from orbit 5 to 6), the second one corresponds to the gain of one pulse before the
surge (visible essentially from orbit 6 to 8). Hence, starting from 7 pulses and 4 small oscillations
in case 5, one obtains 7 pulses and 4 small oscillations in case 8. The whole transition can be
described as (7, 4) → (6, 5) → (7, 5). Note that the transitions in both scenarios are the same,
the only difference is in the length of the parameter interval separating them. The two types of
transitions are well explained by our theory, however we have no explanation for the very intriguing
fact that, in the second scenario, there are two canard explosions occurring simultaneously.

5.2 Computation of slow manifolds and secondary canards on the pause

We now illustrate the change of small oscillations on the pause, upon parameter variation, by
computing slow manifolds and secondary canards of system (18a)–(18c), which represents a good
approximation of the full system (1) in the region of the pause. This system is three-dimensional
and possesses a folded node for the parameter values we consider (see section 3.3). We computed
slow manifolds and secondary canards near this folded node using the BVP strategy developed
in [8, 9]. That is, we approximate the manifolds by a one-parameter family of orbit segments with
initial conditions moving on a curve traced on the critical manifold C0, away from the fold F , and
end conditions restricted to a planar cross-section near the folded node. For simplicity, we take
the one-dimensional manifold of initial conditions to be of the form C0 ∩ {x = x0} (where x0 is
chosen so that this line is at a large enough distance from the fold curve), and the two-dimensional
manifold in which the end conditions lie to be of the form Σend = {X = Xend}, with X0 close to 0
(Σ0 corresponds to a cross-section containing the folded node). The dimensions of these manifolds
of boundary conditions are chosen so that the resulting BVP is well-posed.
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Figure 14: First transition on the branch shown in Figure 13 upon variation of a2. From 1 to 4,
the pause of the periodic attractor loses one small oscillations. We show the time profile of y to
illustrate this transition on the left panels and the projection of the orbit onto the (x, y)-plane on
the right panels.
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Figure 15: Second transition on the branch shown in Figure 13 upon variation of a2. From 5 to
8, the start of the surge undergoes a canard explosion. We show the time profile of y to illustrate
this transition on the left panels and the projection of the orbit onto the (x, y)-plane on the right
panels.

34



y

X
x

Sa
ε

Sr
ε

(a)

Σ0.025

Σ-0.025

  -0.0045 0 0.045
 -0.25

0

0.25

y

x

• •
•

Σ0

(b)

Sa
ε ∩ Σ0

Sr
ε ∩ Σ0

Figure 16: Attracting (Saε ) and repelling (Srε ) slow manifolds of system (18) near its folded node.
Panel (a) shows a representation of these manifolds together with three secondary canards in the
3D phase space, in between the cross sections Σ−0.025 := {X = −0.025} and Σ0.025 := {X = 0.025}.
Panel (b) shows the intersection curves of the slow manifolds Saε and Srε in Σ0 := {X = 0}.

In Figure 16, we show the result of these manifold computations. Panel (a) shows an attracting
slow manifold (red) Saε and a repelling one (blue) Srε , computed in between sections Σ−0.025 and
Σ0.025, together with three secondary canards (black curves) that correspond to transversal inter-
sections between Saε and Srε ; we also show the intersection curves (red and blue curves) of the slow
manifolds with both cross sections. The spiralling behavior of the slow manifolds is typical of the
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folded node scenario [27, 3]. In panel (b), we present the intersection curves of the slow manifolds
with the cross section Σ0 that contains the folded node; once more, the figure is, as expected, very
similar with previously computed slow manifolds in similar dynamical contexts [14, 27, 3, 8].

6 Conclusion

In this paper we have studied the existence of MMOs in a system known as a phantom burster,
consisting of two dimensional, unidirectionally coupled slow-fast oscillators or, in other words, one
oscillator forcing the other by controlling the position of its null-cline. An additional feature of this
system is the presence of three time scales; the dynamics of the forcing oscillator is slower than
the dynamics of the one being forced. The orbits display alternatively three modes of dynamics:
small oscillations near a fold, relaxation-type oscillations and a quasi steady state. Consequently,
we needed to deal with quite complicated solutions, on the other hand the abundant structure of
the system allowed us to obtain extensive results.

We have obtained two main results, one of global nature, namely the existence of a unique
attracting periodic solution, and one of local nature, analyzing secondary canards of a folded node
with an additional slow time scale. The local result relies strongly on the additional slow time scale
and gives an elegant and rigorous proof of the existence of secondary canards and of the sectors
of rotation. The global result relies on the local result and on the existence of strong contraction
during the quasi steady-state phase of the dynamics. This result is rather elementary in nature,
but it yields a surprising conclusion: in certain regions of the parameter space, the transition from
an MMO with n small oscillations to an MMO with n+ 1 small oscillations is free of complicated
dynamics, a unique stable periodic orbit exists through the canard transition. This way we have
obtained a complete characterization of the dynamics for all values of the control parameter.

We were able to obtain rather strong results due to the simplicity of the system in question,
but we hope that some of the ideas and techniques can be extended to other situations, involving
three time scale dynamics and/or having the phantom burster structure. One simple but powerful
idea we used was to identify the phase of the dynamics of the slowest system (fast, slow, quasi
steady-state) to design a reduced system fitting the part of the dynamics in question. This way
we derived important reductions that greatly simplified the analysis. Clearly this technique will
be applicable in other contexts of multiple time scale systems, even if there is two way coupling
between the systems with different time scales.

The continuation results of Section 5 gave a very nice and accurate illustration of our theo-
retical results, as well as pointed to an intriguing phenomenon that we did not expect, namely
a prediction of a double canard explosion. In this context it would be interesting to extend the
continuation results to lower values of δ, which is a numerical challenge. A more detailed numerical
and theoretical study of the double canard explosion will be a subject of future work.

We would like to point out that the system we have studied has been used to model different
modes of GnRH (Gonadotropic Releasing Hormone) secretion and transitions between them. The
biological mechanisms underlying the transitions between the surge mode and the pulsatility mode
in the physiological GnRH secretion pattern are still poorly understood. Therefore, our study may
contribute to the development of tools and insights that can be used in the study of this very
important problem.
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