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ON B-SPLINE FRAMELETS DERIVED FROM THE

UNITARY EXTENSION PRINCIPLE

ZUOWEI SHEN AND ZHIQIANG XU

Abstract. Spline wavelet tight frames of [20] have been used widely
in frame based image analysis and restorations (see, e.g. survey ar-
ticles [15, 22]). However, except for the tight frame property and the
approximation order of the truncated series (see [13,20]), there are few
other properties of this family of spline wavelet tight frames to be known.
This paper is to present a few new properties of this family that will
provide further understanding of it and, hopefully, give some indications
why it is efficient in image analysis and restorations. In particular, we
present a recurrence formula of computing generators of higher order
spline wavelet tight frames from the lower order ones. We also represent
each generator of spline wavelet tight frames as certain order of deriva-
tive of some univariate box spline. With this, we further show that each
generator of sufficiently high order spline wavelet tight frames is close to
a right order of derivative of a properly scaled Gaussian function. This
leads to the result that the wavelet system generated by a finitely many
consecutive derivatives of a properly scaled Gaussian function forms a
frame whose frame bounds can be almost tight.

1. Introduction

This paper is to investigate the family of the spline wavelet tight frames
derived from [20]. We start with basic notions. For given Ψ := {ψ1, . . . , ψr} ⊂
L2(R), the wavelet system generated by Ψ is defined as

X(Ψ) := {ψℓ,n,k := 2n/2ψℓ(2
n · −k) : 1 ≤ ℓ ≤ r; n, k ∈ Z}.

The system X(Ψ) ⊂ L2(R) is called a tight frame if

f =
∑

g∈X(Ψ)

〈f, g〉g

holds for all f ∈ L2(R). If X(Ψ) ⊂ L2(R) is a tight frame system of L2(R)
generated by a Multiresolution analysis (MRA), then its generators Ψ are
called as a framelet.
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The MRA starts from a refinable function ϕ. A compactly supported
function ϕ is refinable if it satisfies a refinement equation

(1) ϕ(x) = 2
∑

j∈Z

ajϕ(2x − j),

for some sequence a ∈ ℓ2(Z). Refinable equation (1) can be written via its
Fourier transform as

ϕ̂(ω) = â(
ω

2
) · ϕ̂(ω

2
), a.e. ω ∈ R.

We call the sequence a the refinement mask of ϕ and â(ω) the refinement

symbol of ϕ. Here, we use f̂ to denote the Fourier transform of f ∈ L1(R),
which is defined as

f̂(ω) :=

∫ ∞

−∞
f(x) exp(−iωx)dx.

For a refinable function ϕ ∈ L2(R), let V0 be the closed shift invariant
space generated by {ϕ(· − k) : k ∈ Z} and Vj := {f(2j ·) : f ∈ V0}, j ∈ Z.
It is known that when ϕ is compactly supported, then {Vj}j∈Z forms a
multiresolution analysis. Recall that a multiresolution analysis is a family
of closed subspaces {Vj}j∈Z of L2(R) that satisfies: (i) Vj ⊂ Vj+1, (ii)

⋃
j Vj

is dense in L2(R) and (iii)
⋂

j Vj = {0} (see [2] and [19]).

A special family of refinable functions is B-splines. Let ϕ(m) be the cen-
tered B-spline of order m, which is defined in Fourier domain by

(2) ϕ̂(m)(ω) = e−
iωjm

2 sinc(
ω

2
)m,

where

(3) sinc(x) :=

{
sin(x)/x, for x 6= 0

1, for x = 0
; and jm :=

{
0, m is even

1, m is odd
.

Then ϕ(m) is refinable with refinement symbol

â(m)(ω) = e−
iωjm

2 cosm(
ω

2
).

The tight framelets can be constructed by the unitary extension principle
(UEP) of [20] from a given multiresolution analysis. For a given B-spline

ϕ(m) of order m, it was shown in [20] that the m functions, Ψ(m) = {ψ(m)
ℓ :

ℓ = 1, . . . ,m}, defined in Fourier domain by

(4) ψ̂
(m)
ℓ (ω) := iℓe−

iωjm
2

√(
m

ℓ

)
cosm−ℓ(ω/4) sinm+ℓ(ω/4)

(ω/4)m
,

form a tight wavelet frame in L2(R), i.e. Ψ(m) is a framelet set. We call

Ψ(m) as the B-spline framelet of order m. The B-spline framelet is either
symmetric or anti-symmetric and has small supports for a given smoothness
order. Similar with B-splines, each B-spline framelet has an analytic form.
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Since the publication of the unitary extension principle (UEP) of [20]
in 1997, there are many theoretic developments and applications of MRA
based wavelet frames. In particular, the B-spline framelets Ψ(m) derived
from the UEP in [20] are widely used in various applications, which include
image inpainting in [5]; image denoising in [8]; high and super resolution
image reconstruction in [10]; deblurring and blind debluring in [6–9]; and
image segmentation in [14]. The interested reader should consult the survey
articles [15,22] for details.

The paper is organized as follows: Section 2, which contains two subsec-
tions, is for some basic properties of B-spline framelets. In particular, in

sub-section 2.1, we present recurrence formulas for B-spline framelets ψ
(m)
ℓ ,

in which the well-known recurrence formula of B-splines can be viewed as a
special form of recurrence formulas of B-spline framelets. This gives a fast
algorithm for computing them. We further show that the B-spline framelets
can be derived from the ℓth derivative of some univariate box spline in sub-
section 2.2, This was implicity used in [4], to approximate the some deriva-
tives of a function. In Section 3, we investigate the asymptotic property of

B-spline framlets ψ
(m)
ℓ , ℓ = 1, . . . ,m. We firstly prove that the univariate

box splines defined in Section 2 uniformly converge to a Gaussian function
under a mild condition, and we further show that

max
1≤ℓ≤m

max
x∈R

|ψ(m)
ℓ (x)−G

(m)
ℓ (x)| . (lnm)5/2

m3/2
,

where G
(m)
ℓ is the ℓth derivative of some scaled Gaussian function G(x) (see

Section 3.2 for the detailed definition).
This leads to discover that wavelet system generated by a finite number

of consecutive directives of scaled Gaussian function form a frame whose
bounds are almost tight, and that is done in Section 4.

2. Properties of B-spline framelets

In this section, we give a recurrence formula of the B-spline framelets
which computes higher order framelets from lower order ones. We also
show that one can represent the derivatives of higher order framelets by
lower order framelets. Furthermore, we derive another set of formulas that
represents each framelet as a derivative of a univariate box spline which is
already implicitly used in [4], where a theory is developed to connect the
PDE based and spline wavelet based image restorations.

2.1. Recurrence formulas of B-spline framelets. While the recurrence
formulas for B-splines and their derivatives are well-known (see [1]), the
corresponding formulas for B-spline framelets are not available yet. This
section is to establish such formulas. Let Bm := ϕ(m)(· + jm/2), where

ϕ(m) is given in (2) and jm is defined (3). Recall the following well-known
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recurrence formula of B-splines:

(5) Bm+1(x) =
2x+m+ 1

2m
Bm

(
x+

1

2

)
+
m+ 1− 2x

2m
Bm

(
x− 1

2

)
.

Based on (5), one can compute B-splines fast and easily which makes B-
splines useful. The derivative of B-splines can be computed by the lower
order splines as given below:

(6)
d

dx
Bm+1(x) = Bm

(
x+

1

2

)
−Bm

(
x− 1

2

)
.

The aim of this section is to give the corresponding formulas for the B-spline

framelets ψ
(m)
ℓ , ℓ = 1, . . . ,m. To state the formulas conveniently, we present

the formulas for the function ψ̃
(m)
ℓ (·) := ψ

(m)
ℓ (·+ jm

2 ). Note that the Fourier

transform of ψ̃
(m)
ℓ is

(7) ̂̃ψ
(m)

ℓ (ω) = iℓ

√(
m

ℓ

)
cosm−ℓ(ω4 ) sin

m+ℓ(ω4 )

(ω4 )
m

.

We note that the formulas presented in this subsection are used to calculate

the function value and the derivative of ψ̃
(m)
ℓ . Whenm is even, ψ

(m)
ℓ ≡ ψ̃

(m)
ℓ .

When m is odd, one can obtain those of the function ψ
(m)
ℓ by the half-

translation of ψ̃
(m)
ℓ . Hence, the formulas given in this subsection also work

for ψ
(m)
ℓ with a proper shift.

Next, we present the recurrence relations of framelets ψ̃
(m)
ℓ .

Theorem 1. Let m ∈ N be given and 1 ≤ ℓ ≤ m and let the framelet ψ̃
(m)
ℓ

derived from B-spline of order m be given via its Fourier transform as (7).

Then, we have the following recurrence formula between ψ̃
(m+1)
ℓ and ψ̃

(m)
ℓ :

for 1 ≤ ℓ ≤ m:

ψ̃
(m+1)
ℓ (x) =

√
m+ 1

m+ 1− ℓ
(8)

(
2x+m+ 1

2m
ψ̃
(m)
ℓ

(
x+

1

2

)
+
m+ 1− 2x

2m
ψ̃
(m)
ℓ

(
x− 1

2

)
+

ℓ

m
ψ̃
(m)
ℓ (x)

)
;

the recurrence formula between ψ̃
(m+1)
m+1 and ψ̃

(m)
m is:

(9)

ψ̃
(m+1)
m+1 (x) =

2x+m+ 1

2m
ψ̃(m)
m

(
x+

1

2

)
+
2x−m− 1

2m
ψ̃(m)
m

(
x− 1

2

)
−2x

m
ψ̃(m)
m (x).

Proof. We firstly prove (8) which is done in Fourier domain. Note that

d

dω
̂̃ψ
(m)

ℓ (ω) = −i
∫ ∞

−∞
xψ̃

(m)
ℓ (x)e−iωxdx,
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which implies that the Fourier transform of function gℓ(x) := xψ̃
(m)
ℓ (x) is

(10)

ĝℓ(ω) = iℓ+1·4m−1·
√(

m

ℓ

)
cos(

ω

4
)m−ℓ−1 sin(

ω

4
)m+ℓ−1mω cos(ω2 )− 2m sin(ω2 ) + ℓ · ω

ωm+1
.

Note that

2x+m+ 1

2m
ψ̃
(m)
ℓ (x+

1

2
) =

1

m
gℓ(x+

1

2
) +

1

2
ψ̃
(m)
ℓ (x+

1

2
)

and
m+ 1− 2x

2m
ψ̃
(m)
ℓ (x− 1

2
) =

1

2
ψ̃
(m)
ℓ (x− 1

2
)− 1

m
gℓ(x− 1

2
).

A simple manipulation shows that the Fourier transform of the right hand
side of (8) becomes

√
m+ 1

m+ 1− ℓ
(
1

m
exp(

iω

2
)ĝℓ(ω) +

1

2
· (exp( iω

2
) + exp(− iω

2
))̂̃ψ

(m)

ℓ (ω)

− 1

m
exp(− iω

2
)ĝℓ(ω) +

ℓ

m
̂̃
ψ
(m)

ℓ (ω))

= iℓ

√(
m+ 1

ℓ

)
cosm+1−ℓ(ω4 ) sin

m+1+ℓ(ω4 )

(ω4 )
m+1

=
̂̃
ψ
(m+1)

ℓ (ω).

This proves (8). Similarly, the Fourier transform of the right side of (9) is

1

m

(
exp (

iω

2
)(ĝm(ω) +

m

2
̂̃ψ
(m)

m (ω)) + exp (− iω
2
)(ĝm(ω)− m

2
̂̃ψ
(m)

m (ω))− 2ĝm(ω)

)

= im+1 sin
2m+2(ω4 )

(ω4 )
m+1

=
̂̃
ψ
(m+1)

m+1 (ω),

which proves (9). �

Furthermore, combining (8) and (9), we have a recurrence algorithm for

efficiently computing ψ̃
(m)
ℓ , ℓ = 1, . . . ,m. When ℓ < m, we can use (8) to

compute ψ̃
(m)
ℓ by ψ̃

(m−1)
ℓ ; we can use (9) to compute ψ̃

(ℓ)
ℓ by ψ̃

(ℓ−1)
ℓ−1 . Hence,

we finally can reduce the computation of ψ̃
(m)
ℓ to that of ψ̃

(1)
1 . Note that the

function ψ̃
(1)
1 is Haar wavelet and

ψ̃
(1)
1 (x) =





1, if x ∈ [−1/2, 0) ,

−1, if x ∈ [0, 1/2] ,

0, if |x| > 1/2.

We next show the method for computing ψ̃
(4)
2 by a table. In the following

table, for the notation →, we use the formula (8), while for the notation ց,
we use (9):
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B1 B2 B3 B4

ψ̃
(1)
1 ψ̃

(2)
1 ψ̃

(3)
1 ψ̃

(4)
1

ց ψ̃
(2)
2 → ψ̃

(3)
2 → ψ̃

(4)
2

ψ̃
(3)
3 ψ̃

(4)
3

ψ̃
(4)
4

.

Using the method, we compute B5 and corresponding framelets (See Fig-
ure 1).
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Figure 1. The B5 and corresponding framelets.

Next, we give the recurrence formula for the derivatives of ψ̃
(m)
ℓ :

Theorem 2. Let m ∈ N be given and 1 ≤ ℓ ≤ m, and let the framelet ψ̃
(m)
ℓ

derived from B-spline of order m be defined by its Fourier transform as (7).
When 1 ≤ ℓ ≤ m− 1, we have

(11)
d

dx
ψ̃
(m)
ℓ (x) =

√
m

m− ℓ

(
ψ̃
(m−1)
ℓ

(
x+

1

2

)
− ψ̃

(m−1)
ℓ

(
x− 1

2

))
.

When ℓ = m, we have

(12)
d

dx
ψ̃(m)
m (x) = ψ̃

(m−1)
m−1

(
x+

1

2

)
+ ψ̃

(m−1)
m−1

(
x− 1

2

)
− 2ψ̃

(m−1)
m−1 (x).

Proof. We prove (11) here while (12) can be proven similarly. A simple
calculation shows that the Fourier transform of the right side of (11) is

√
m

m− ℓ
·
√(

m− 1

ℓ

)
· iℓ · cos

m−1−ℓ(ω4 ) sin
m−1+ℓ(ω4 )

(ω4 )
m−1

(ei
ω
2 − e−iω

2 )

= 4iℓ+1

√(
m

ℓ

)
cosm−ℓ(ω4 ) sin

m+ℓ(ω4 )

(ω4 )
m−1

.(13)
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Note that the Fourier transform of d
dx ψ̃

(m)
ℓ (x) is

(14) 4 · iℓ+1 ·
√(

m

ℓ

)
cosm−ℓ(ω4 ) sin

m+ℓ(ω4 )

(ω4 )
m−1

.

Combining (13) and (14), we conclude (11). �

Remark 1. Note that ψ̃
(m)
0 = Bm. If we take ℓ = 0 in (8), the recurrence

relation (8) is reduced to (5), which is the recurrence formula for B-splines.
Similarly, if we take ℓ = 0 in (11), then (11) is reduced to the derivative
formula of B-splines (6).

2.2. Representing ψ
(m)
ℓ as the ℓth derivative of a univariate box

spline. We first recall the definition of box splines. The box spline B(·|Ξ)
associated with a matrix Ξ ∈ R

s×n is the distribution given by the rule
(see [3])

(15)

∫

Rs

B(x|Ξ)ϕ(x)dx =

∫

[− 1
2
, 1
2
)n
ϕ(Ξu)du, for all ϕ ∈ D(Rs),

where D(Rs) is the test function space. The box spline can be consider as
a volume function of the section of unit cubes (see [3, 24, 25]). If we take
Ξ = (1, 1, . . . , 1) ∈ R

1×m, then the box spline B(·|Ξ) is reduced to a B-spline
of order m. In the following theorem, we show that the B-spline framelet
can be considered as the higher order derivative of a box spline up to a
constant.

Theorem 3. Let m ∈ N be given and 1 ≤ ℓ ≤ m. Suppose that the framelet

ψ
(m)
ℓ is defined by its Fourier transform in (4). Set

Ξm,ℓ := [1, . . . , 1︸ ︷︷ ︸
m−ℓ

,
1

2
, . . . ,

1

2︸ ︷︷ ︸
2ℓ

].

Then

(16) ψ
(m)
ℓ (x) =

√(
m

ℓ

)
· 1

4ℓ
· d

ℓ

dxℓ
B(x− jm

2
|Ξm,ℓ),

where jm is defined in (3). In particular, ψ
(m)
m is the m-order derivative of

B2m(2 · −jm)/4m, where B2m is the B-spline of order 2m.

Proof. This again is proven in Fourier domain. It follows from the definition
of box splines (15) that the Fourier transform of the box spline B(·|Ξm,ℓ) is:

B̂(ω|Ξm,ℓ) =

(
sin ω

2
ω
2

)m−ℓ(sin ω
4

ω
4

)2ℓ

.

Then the Fourier transform of√(
m

ℓ

)
· 1

4ℓ
· d

ℓ

dxℓ
B(x− jm

2
|Ξm,ℓ)
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can be computed as:
√(

m

ℓ

)
· 1

4ℓ
· e−ijmω/2(iω)ℓB̂(ω|Ξm,ℓ)

= iℓ

√(
m

ℓ

)
e−ijmω/2

(
sin ω

2
ω
2

)m−ℓ
(
sin ω

4

)2ℓ
(
ω
4

)ℓ

= iℓ

√(
m

ℓ

)
e−ijmω/2

(
sin ω

4 cos ω
4

ω
4

)m−ℓ (sin ω
4 )

2ℓ

(ω4 )
ℓ

= iℓ

√(
m

ℓ

)
e−ijmω/2 cos

m−ℓ(ω4 ) sin
m+ℓ(ω4 )

(ω4 )
m

= ψ̂
(m)
ℓ (ω),

which proves (16). According to the definition of box splines, we have

B2m(2x− jm) = B(x− jm
2
|Ξm,m).

And hence, ψ
(m)
m is the m-order derivative of B2m(2 · −jm)/4m. �

Theorem 3 states that each framelet of vanishing moment order of ℓ is
the ℓth derivative of a univariate box spline whose support is the same as
the framelet and whose Fourier transform dose not vanish at origin. This
fact is used in [4] to discretize differential operators by using framelets. We
illustrate here for the case where m is even how the framelet coefficients
can be viewed as the samples of a difference of a given function which can
be used to approximate the derivative of this function when it is smooth.
Recall that, if f ∈ L2(R), then

f =

m∑

ℓ=1

∑

k,n∈Z

〈f, ψ(m)
ℓ,n,k〉ψ

(m)
ℓ,n,k.

We next show that the coefficients 〈f, ψ(m)
ℓ,n,k〉 is the ℓ-order difference of a

discretization of f up to a constant. We set

Tnf(x) := 2
n
2

〈
f

(
x+ ·
2n

)
, B(·|Ξ′

m,ℓ)

〉
,

where

Ξ′
m,ℓ := [1, . . . , 1︸ ︷︷ ︸

m−ℓ

,
1

2
, . . . ,

1

2︸ ︷︷ ︸
ℓ

].

Then Tnf can be considered as a discretization of f . We define the difference
operator by

∆ 1
4
Tnf(x) := Tnf

(
x+

1

4

)
− Tnf

(
x− 1

4

)
.
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Now we can give an explanation of the coefficient of 〈f, ψ(m)
ℓ,n,k〉 by the differ-

ence operator ∆ 1
4
. In fact, we have

〈f, ψ(m)
ℓ,n,k〉

= (−1)ℓ

√(
m

ℓ

)
· 1

4ℓ
· 2n/2 · 1

2nℓ
·
〈
f (ℓ)

( ·+ k

2n

)
, B(·|Ξm,ℓ)

〉

= (−1)ℓ

√(
m

ℓ

)
· 1

4ℓ
· 2n/2 · 1

2nℓ
·
∫

[−1/2,1/2)m+ℓ

f (ℓ)
(
Ξm,ℓu+ k

2n

)
du

= (−1)ℓ

√(
m

ℓ

)
· 1

2ℓ
·∆ℓ

1
4

Tnf(k).

Here, the first identity follows from the result of Theorem 3 and the inte-
gration by parts. The second relation is obtained by the definition of box
splines.

Remark 2. Theorem 3 shows that one can obtain the B-spline framelet
by calculating the derivative of box splines, which provides a new path
to construct spline framelets. We hope to construct multivariate spline
framelets by calculating the derivative of some relevant box splines in future
work.

3. The asymptotic property of B-spline framelets

3.1. The asymptotic convergence of univariate box splines. Up to
the normalization, the B-spline tends to Gaussian function pointwise and
in all Lp norms with 2 ≤ p < +∞ as the order tends to infinity (see [23]).
Motivated by the results, in this subsection, we investigate the asymptotic
convergence of univariate box splines, which is helpful to understand the

convergence of ψ
(m)
ℓ , with ψ

(m)
ℓ being the ℓ-order derivative of a box spline

up to a constant.
To state the results conveniently, throughout the rest of this paper, we

shall use the notation X .a,b,... Y to refer to the inequality X ≤ C ·Y , where
the constant C may depend on a, b, . . . , but no other variable. In the next
theorem, we show that the normalized box splines converge uniformly to a
Gaussian function.

Theorem 4. For each k ∈ N, Let

Ξk := [a
(k)
1 , . . . , a

(k)
k ] ∈ R

1×k,

be a given a set of points with a
(k)
j > 0, , j = 1, . . . , k. Let B(·|Ξk) be the box

spline associate with Ξk. Assume that

(17) ‖Ξk‖22 = σ2 + ǫk,
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with σ ∈ R is a fixed constant and limk→∞ ǫk = 0, and assume that

(18) c1 ≤
max1≤j≤k a

(k)
j

min1≤j≤k a
(k)
j

≤ c2

where c1 and c2 are fixed positive constants independent of k. Then,
(19)

max
x

∣∣
√

6

πσ2
exp

(
−6x2

σ2

)
−B(x|Ξk)

∣∣ .c1,c2

(ln k)3

k
+ |ǫk| · |ln(|ǫk|)| · ln(k).

In order to prove Theorem 4, we need the following technical lemma about
the Fourier transform of the box spline B(·|Ξk):

Lemma 5. Under the conditions of Theorem 4,

(20) max
ω

∣∣fk(ω)− exp

(
−(σω)2

24

)∣∣ .c1,c2

(ln k)2

k
+ |ǫk| · |ln|ǫk||,

where

fk(ω) := B̂(ω|Ξk) =

k∏

j=1

sinc

(
a
(k)
j ω

2

)
.

Proof. Without loss of generality, we suppose that for each fixed k

0 < a
(k)
1 ≤ a

(k)
2 ≤ · · · ≤ a

(k)
k .

Then (17) and (18) imply that

1√
k
.c1,c2 a

(k)
1 ≤ a

(k)
k .c1,c2

1√
k
.

We firstly consider the case |ω| ≥ π/a
(k)
k . Note that sinc(·) is a monotone

decreasing function in [0, π] and

|sinc(ω)| ≤ 1

π
, for |ω| ≥ π.

Then, we have

max
|ω|≥π/a

(k)
k

|fk(ω)| = max
|ω|≥π/a

(k)
k

k∏

j=1

∣∣sinc
(
a
(k)
j ω

2

)
∣∣

≤ max{ 1

πk
,

(
sinc

(
π

2

a
(k)
1

a
(k)
k

))k

} .c1,c2 β
k,

where β < 1 is a positive constant. And hence, when |ω| ≥ π/a
(k)
k ,

(21)
∣∣fk(ω)− exp

(
−(σω)2

24

) ∣∣ ≤ |fk(ω)|+ exp

(
−(σω)2

24

)
.c1,c2

1

k
,

which implies (20).
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We next consider the case where |ω| ≤ π/a
(k)
k . Taylor expansion shows

that, when |ω| ≤ π/a
(k)
k ,

(22) ln fk(ω) =
k∑

j=1

ln

(
sinc

(
a
(k)
j ω

2

))
= −

(
‖Ξk‖22 ·

ω2

24
+ S(ω)

)
,

where

S(ω) =
‖Ξk‖44 · ω4

2880
+

‖Ξk‖66 · ω6

181440
+ · · ·

is a uniformly convergent series on |ω| ≤ π/a
(k)
k . By (22), we now obtain

that, when |ω| ≤ π/a
(k)
k ,

fk(ω) =

k∏

j=1

sinc

(
a
(k)
j ω

2

)
= exp

(
−(σω)2

24

)
· exp

(
−ǫkω

2

24

)
· exp(−S(ω)).

Hence,

∣∣fk(ω)− exp

(
−σ

2ω2

24

) ∣∣(23)

≤ exp(−S(ω)) exp
(
−σ

2ω2

24

)
· |(exp

(
−ǫkω

2

24

)
− 1)|

+exp

(
−σ

2ω2

24

)
· |exp(−S(ω)) − 1|.

Once, we prove that

(24) exp

(
−σ

2ω2

24

)
·
∣∣ exp

(
−ǫkω

2

24

)
− 1
∣∣ . |ǫk| · |ln|ǫk||

and

(25) exp

(
−σ

2ω2

24

)
· |exp(−S(ω)) − 1| . (ln k)2

k
.

Then, combining (23), (24) and (25), we obtain (20).
It remains to prove (24) and (25). We first prove that

exp

(
−σ

2ω2

24

)
· |exp

(
−ǫkω

2

24

)
− 1| . |ǫk| · |ln|ǫk||.

By Taylor’s expansion, when ω2 ≤ 24 · |ln|ǫk||/σ2,

exp

(
−σ

2ω2

24

)
|exp

(
−ǫkω

2

24

)
− 1| ≤ |(exp

(
−ǫkω

2

24

)
− 1)| . |ǫk| · |ln|ǫk||;

when ω2 ≥ 24 · |ln|ǫk||/σ2,

exp

(
−σ

2ω2

24

) ∣∣ exp
(
−ǫkω

2

24

)
− 1
∣∣ ≤ 2 exp

(
−σ

2ω2

24

)
. |ǫk|.

This gives (24).
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We next prove that (25). Note that, when |ω| ≤
√
24 ln k/σ,

(26) exp

(
−σ

2ω2

24

) ∣∣1− exp(−S(ω))
∣∣ . |1− exp(−S(ω))| .c1,c2

(ln k)2

k
.

When
√
24 ln k/σ ≤ |ω| ≤ π/a

(k)
k , we have

exp

(
−σ

2ω2

24

)
≤ 1

k
,

which implies that

(27) exp

(
−σ

2ω2

24

)
|exp(−S(ω))− 1| ≤ 2

k
.

(ln k)2

k
.

Combining (26) and (27), one derives (25). �

Proof of Theorem 4. Note that

1

2π

∫ ∞

−∞
exp

(
−σ

2ω2

24

)
exp(iωx)dω =

√
6

πσ2
exp

(
−6x2

σ2

)
,

1

2π

∫ ∞

−∞
fk(ω) exp(iωx)dω = B(x|Ξk).

Then

max
x

∣∣
√

6

πσ2
exp

(
−6x2

σ2

)
−B(x|Ξk)

∣∣ .
∫ ∞

−∞

∣∣ exp
(
−σ

2ω2

24

)
− fk(ω)

∣∣dω

=

∫

|ω|≤
√

24 ln k
σ

∣∣ exp
(
−σ

2ω2

24

)
− fk(ω)

∣∣dω

+

∫
√

24 ln k
σ

≤|ω|≤ π

a
(k)
k

|exp
(
−σ

2ω2

24

)
− fk(ω)|dω

+

∫

π

a
(k)
k

≤|ω|≤ π

a
(k)
1

|exp
(
−σ

2ω2

24

)
− fk(ω)|dω +

∫

|ω|≥ π

a
(k)
1

|exp
(
−σ

2ω2

24

)
− fk(ω)|dω

.
(ln k)3

k
+ |ǫk| · |ln|ǫk|| · ln k +

√
k

klnk
+ βk .

(ln k)3

k
+ |ǫk| · |ln|ǫk|| · ln k,

where β = max{ 1
π , sinc

(
π
2
a
(k)
1

a
(k)
k

)
} < 1. Here, we use (20) to obtain that

∫

|ω|≤
√

24 lnk
σ

∣∣fk(ω)− exp

(
−σ

2ω2

24

) ∣∣dω .
(ln k)3

k
+ |ǫk| · |ln|ǫk|| · ln k.

Note that a
(k)
k /

√
k, k = 1, 2, . . . , is a bounded sequence and

exp(−σ
2ω2

24
) .

1

klnk
, for ω ≥

√
24 ln k

σ
.
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Using a similar method as the proof of (27), we have that
∫

√

24 ln k
σ

≤|ω|≤ π

a
(k)
k

|fk(ω)− exp

(
−σ

2ω2

24

)
|dω .

√
k

kln k
.

To estimate∫

|ω|≥ π

a
(k)
1

|fk(ω)−exp(−ω2/24)|dω ≤
∫

|ω|≥ π

a
(k)
1

|fk(ω)|dω+
∫

|ω|≥ π

a
(k)
1

exp(−ω2/24)dω,

we use the facts of

∫

|ω|≥ π

a
(k)
1

|fk(ω)|dω ≤
∫

|ω|≥ π

a
(k)
1

(
2

a
(k)
1 ω

)k

dω .
1

k

and ∫

|ω|≥ π

a
(k)
1

exp

(
−ω

2

24

)
dω .

1

k
.

�

Theorem 4 implies that the normalized box spline B(·|Ξm,ℓ) converges
uniformly to a Gaussian function:

Corollary 6. Suppose that

Ξm,ℓ = [1, . . . , 1︸ ︷︷ ︸
m−ℓ

, 1/2, . . . , 1/2︸ ︷︷ ︸
2ℓ

].

Then, for each fixed ℓ,
√
m− ℓ

2 · B(
√
m− ℓ

2x|Ξm,ℓ) converges uniformly to
√

6
π exp(−6x2), as m→ ∞.

Proof. By the definition of box splines, we have
√
m− ℓ

2
B(

√
m− ℓ

2
x|Ξm,ℓ) = B(x| Ξm,ℓ√

m− ℓ/2
).

Note that, for each fixed ℓ, ‖ Ξm,ℓ√
m−ℓ/2

‖22 = 1. Then, Theorem 4 shows that the

box spline B(x| Ξm,ℓ√
m−ℓ/2

), and hence
√
m− ℓ

2 B(
√
m− ℓ

2x|Ξm,ℓ), converges

uniformly to the Gaussian function
√

6
π exp(−6x2). �

Remark 3. A well-known result is that
√
mBm(

√
mx) converges uniformly

to
√

6
π exp(−6x2) with m → ∞ (see [11, 23]). In fact, the result can be

considered as a particular case of Corollary 6. Note that
√
m ·B(

√
mx|Ξm,0) =

√
mBm(

√
mx).
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If we take ℓ = 0 in Corollary 6, then we have that
√
m ·B(

√
mx|Ξm,0), and

hence
√
mBm(

√
mx), converges uniformly to

√
6
π exp(−6x2) with m→ ∞.

3.2. The asymptotic property of B-spline framelets. By changing
variables, we can observe from Corollary 6 that B(x|Ξm,ℓ) is close to

√
6

π

1√
m− ℓ/2

exp

(
− 12 · x2
2m− ℓ

)
.

Recall that Theorem 3 says that

ψ
(m)
ℓ (x) =

√(
m

ℓ

)
· 1

4ℓ
· d

ℓ

dxℓ
B(x− jm

2
|Ξm,ℓ).

Motivated by the two observations, we consider the relation between ψ
(m)
ℓ (x)

and the ℓth derivative of a Gaussian function G(x), which is defined as

Gm,ℓ(x) := Cm,ℓ · exp
(
− 12 · x2
2m− ℓ

)
,

where

Cm,ℓ =

√
6

π

√(m
ℓ

)
√
m− ℓ/2 · 4ℓ

.

Let

(28) G
(m)
ℓ (x) :=

dℓ

dxℓ
Gm,ℓ(x− jm

2
), ℓ = 1, . . . ,m,

where jm is given in (3), and

G(m) := {G(m)
1 , . . . , G(m)

m }.
Then we have

Theorem 7. Let m ∈ N be given and 1 ≤ ℓ ≤ m, and the framelet ψ
(m)
ℓ

be defined by its Fourier transform in (4) derived from B-spline of order m.
Then,

max
1≤ℓ≤m

max
x∈R

|ψ(m)
ℓ (x)−G

(m)
ℓ (x)| . (lnm)5/2

m3/2
.

In order to prove Theorem 7, we need the following two lemmas:

Lemma 8. The following inequality holds for every ω, such that |ω| ≥
20
√

lnm
m :

max
1≤ℓ≤m

√(
m

ℓ

)
· 1

4ℓ
·
∣∣ωℓ · exp

(
−(m− ℓ

2
)
ω2

24

) ∣∣ .
1

m4
.
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Proof. For the convenient, denote

Fℓ(ω) :=

√(
m

ℓ

)
· 1

4ℓ
· ωℓ · exp

(
−(m− ℓ

2
)
ω2

24

)

and

ωℓ :=

√
24 · ℓ
2m− ℓ

.

For each fixed ℓ ∈ [1,m] ∩ Z, the function Fℓ is increasing on the inter-
val [0, ωℓ], while Fℓ is decreasing on [ωℓ,∞). And hence Fℓ arrives at the
maximum value at ωℓ. According to the inequality

(
m

ℓ

)
≤
(m · e

ℓ

)ℓ
,

we have

lnFℓ(ωℓ) ≤ − ℓ
2
· ln 2(2m − ℓ)

3m
.

Then, when
2 lnm

ln 16− ln 15
≤ ℓ ≤ 2

5
m,

we have that

lnFℓ(ωℓ) ≤ − ℓ
2
· ln 2(2m− ℓ)

3m
≤ − ln 4

3

ln 16
15

lnm ≤ −4 lnm.

This implies that, whenever

2 lnm

ln 16− ln 15
≤ ℓ ≤ 2

5
m

holds, one has

(29) max
ω

Fℓ(ω) ≤ Fℓ(ωℓ) ≤ 1

m4
.

We next consider the case where 2m
5 ≤ ℓ ≤ 4m

5 . Using the inequality
(
m

ℓ

)
≤ 2m,

one gets that

lnFℓ(ωℓ) ≤
ln 2

2
m− ℓ

2
ln

2e(2m − ℓ)

3ℓ
.

Therefore, when 2m
5 ≤ ℓ ≤ 4m

5 , one has that

lnFℓ(ωℓ) ≤
ln 2

2
m− ℓ

2
ln

2e(2m− ℓ)

3ℓ
. −m . −4 lnm,

which implies that, whenever 2m
5 ≤ ℓ ≤ 4m

5 , the following holds:

(30) max
ω

Fℓ(ω) ≤ Fℓ(ωℓ) .
1

m4
.
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We now turn to the case 4
5m ≤ ℓ ≤ m. For this case, we apply the inequality
(
m

ℓ

)
≤
(
m · e
m− ℓ

)m−ℓ

to obtain that

lnFℓ(ωℓ) ≤
m− ℓ

2
ln

m · e
m− ℓ

− ℓ

2
ln

(4m− 2ℓ) · e
3ℓ

. −m . −4 lnm.

Hence, when 4
5m ≤ ℓ ≤ m, we have that

(31) max
ω

Fℓ(ω) ≤ Fℓ(ωℓ) .
1

m4
.

We finally consider the case where 1 ≤ ℓ ≤ 2 lnm
ln 16−ln 15 . Note that, when m is

large enough, we have ωℓ ≤ 20
√

lnm
m . When |ω| ≥ 20

√
lnm
m , Fℓ(ω) reach the

maximum value at ω̄0 := 20
√

lnm
m . Then a simple calculation shows that,

when 1 ≤ ℓ ≤ 2 lnm
ln 16−ln 15 ,

(32) max
|ω|≥20

√

lnm
m

Fℓ(ω) ≤ Fℓ(ω̄0) .
1

m4
.

Combing (29), (30), (31) and (32), we conclude the proof. �

Lemma 9. The following inequality holds for every ω ∈ R,

max
1≤ℓ≤m

√(
m
ℓ

)

4ℓ
·|ω|ℓ·

∣∣sinc
(ω
2

)m−ℓ
sinc

(ω
4

)2ℓ
−exp

(
−(m− ℓ/2)ω2

24

) ∣∣ . ln2m

m
.

Proof. For the convenience, we only provide the proof for the case where
ω ≥ 0. The proof of the other case is similar. By Taylor expansion, when
0 ≤ ω ≤ 3π

2 , we have

sinc
(ω
2

)m−ℓ
sinc

(ω
4

)2ℓ

= exp

(
−(m− ℓ/2)ω2

24

)
exp

(
−(m− 7ℓ/8)ω4

2880
−O(ω6)

)
.

Then, for 20
√

lnm
m ≤ ω ≤ 3π

2 , we have
√(m

ℓ

)

4ℓ
· ωℓ ·

∣∣sinc
(ω
2

)m−ℓ
sinc

(ω
4

)2ℓ
− exp

(
−(m− ℓ/2)ω2

24

) ∣∣

.

√(m
ℓ

)

4ℓ
· ωℓ · exp

(
−(m− ℓ/2)ω2

24

)(
1− exp

(
−(m− 7ℓ/8)ω4

2880

))

≤ 2

√(
m
ℓ

)

4ℓ
· ωℓ · exp

(
−(m− ℓ/2)ω2

24

)
.

1

m4
,
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where the last inequality is obtained by Lemma 8. Next, when 0 ≤ ω ≤
20
√

lnm
m , note that

1− exp

(
−(m− 7ℓ/8)ω4

2880

)
.

ln2m

m

and

Fℓ(ω) =

√(
m
ℓ

)

4ℓ
· ωℓ · exp

(
−(m− ℓ/2)ω2

24

)

is a bounded function. Hence, for 0 ≤ ω ≤ 20
√

lnm
m , we have

√(m
ℓ

)

4ℓ
· ωℓ ·

∣∣sinc
(ω
2

)m−ℓ
sinc

(ω
4

)2ℓ
− exp

(
−(m− ℓ/2)ω2

24

) ∣∣ . ln2m

m
.

Finally, We consider the case when ω ≥ 3π
2 . We assert that, when ω ≥ 3π

2 ,
the following inequality holds:

(33) max
1≤ℓ≤m

√(
m

ℓ

)
· |sinc

(ω
2

)
|m−ℓ · |sinc

(ω
4

)
|ℓ ≤

(
8 · e1/8
3π

)m

.

With this assertion, we have
√(m

ℓ

)

4ℓ
· ωℓ ·

∣∣sinc
(ω
2

)m−ℓ
sinc

(ω
4

)2ℓ
− exp

(
−(m− ℓ/2)ω2

24

) ∣∣

≤

√(
m
ℓ

)

4ℓ
· ωℓ ·

(∣∣sinc
(ω
2

)m−ℓ
sinc

(ω
4

)2ℓ ∣∣+
∣∣ exp

(
−(m− ℓ/2)ω2

24

) ∣∣
)

≤
√(

m

ℓ

)(∣∣sinc
(ω
2

)m−ℓ
sinc

(ω
4

)ℓ ∣∣+ 1

4ℓ
·
∣∣ωℓ · exp

(
−(m− ℓ/2)ω2

24

) ∣∣
)

.
1

m4
.

Here, the last inequality is followed by (33) and Lemma 8. It remains to
prove (33). Note that, when ω ≥ 3π

2 ,

|sinc
(ω
2

)
|m−ℓ · |sinc

(ω
4

)
|ℓ ≤ 1

(ω/2)m−ℓ
· 1

(ω/4)ℓ
≤ 1

(3π/4)m−ℓ
· 1

(3π/8)ℓ
.

Then we only need prove

max
1≤ℓ≤m

√(
m

ℓ

)
· 1

(3π/4)m−ℓ
· 1

(3π/8)ℓ
.

(
8 · e1/8
3π

)m

.
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Applying the inequality
(m
ℓ

)
≤
(

m·e
m−ℓ

)m−ℓ
, we have that,

max
1≤ℓ≤m

√(
m

ℓ

)
· 1

(3π/4)m−ℓ
· 1

(3π/8)ℓ
≤
(
8 · e1/8
3π

)m

.

This proves that (33). �

Proof of Theorem 7. Let

M(ω) := max
1≤ℓ≤m

√(m
ℓ

)

4ℓ
·|ω|ℓ·

∣∣sinc
(ω
2

)m−ℓ
sinc

(ω
4

)2ℓ
−exp

(
−(m− ℓ

2
)
ω2

24

) ∣∣,

and

I1 := {ω ∈ R : |ω| ≤ 20

√
lnm

m
}, I2 := {ω ∈ R : 20

√
lnm

m
≤ |ω| ≤ 3π

2
},

I3 := {ω ∈ R : |ω| ≥ 3π

2
}.

Applying Lemma 9 and Lemma 8, we conclude that

∫

I1

M(ω)dω .
(lnm)5/2

m3/2
,

∫

I2

M(ω)dω .
1

m4

respectively. By an argument similar to that leading to (33), we can obtain
that there exists 0 < γ < 1 such that

∫

I3

M(ω)dω . γm .
(lnm)5/2

m3/2
.

This leads to that

max
1≤ℓ≤m

max
x∈R

|ψ(m)
ℓ (x)−G

(m)
ℓ (x)| ≤

∫ ∞

−∞
M(ω)dω

=

∫

I1

M(ω)dω +

∫

I2

M(ω)dω +

∫

I3

M(ω)dω .
(lnm)5/2

m3/2
.

�

Remark 4. It was proved in [17] that, for each fixed ℓ, up to a normal-

ization, a proper scaled ψ
(m)
ℓ uniformly converges to the ℓ-order derivative

of a scaled Gaussian function with m tending to infinity. Our result is in a
different direction. In fact, we show that for sufficiently large m framelets

ψ
(m)
1 , . . . , ψ

(m)
ℓ , . . . , ψ

(m)
m uniformly in x and ℓ close to derivatives of consec-

utive orders 1, . . . ,m of a scaled Gaussian function whose scale depends on
m.



ON B-SPLINE FRAMELETS DERIVED FROM UEP 19

4. Gaussian frame

Theorem 7 leads us to consider whether a wavelet system generated by a
finite number of consecutive derivatives of a properly scaled Gaussian func-
tion forms a frame of L2(R). In this section, we show that the frame property

of X(ψ
(m)
1 , . . . , ψ

(m)
m ) can be transferred to that of X(G

(m)
1 , . . . , G

(m)
m ) where

G
(m)
ℓ is defined as follows: For each fixed m ∈ N, we consider the following

rescaled Gaussian function

Gm,ℓ(x) = Cm,ℓ · exp
(
− 12 · x2
2m− ℓ

)
,

where

Cm,ℓ =

√
6

π

√(m
ℓ

)
√
m− ℓ/2 · 4ℓ

;

and

G
(m)
ℓ (x) =

dℓ

dxℓ
Gm,ℓ(x− jm

2
), ℓ = 1, . . . ,m,

where jm is given in (3), and

G(m) = {G(m)
1 , . . . , G(m)

m }.
Before stating the following main theorem of this section, we recall the

definitions of the frame and Bessel sequence. A family {fj}j∈J ⊂ L2(R) is
called a frame with bounds A and B if

A‖f‖2 ≤
∑

j∈J

|〈f, fj〉|2 ≤ B‖f‖2

holds for all f ∈ L2(R). If A = B, then {fj}j∈J is called a A-tight frame.
Moreover, a family {fj}j∈J ⊂ L2(R) is called a Bessel sequence with a
bound R if ∑

j∈J

|〈f, fj〉|2 ≤ R‖f‖2

holds for all f ∈ L2(R).

Theorem 10. Let X(G(m)) be the wavelet system generated by functions

G(m). Then X(G(m)) is a frame system with frame bounds Am and Bm for
sufficiently large m. Furthermore, the frame is close to be tight as m is
sufficiently large. In fact, asymptotically, we have

lim
m→∞

Am = lim
m→∞

Bm = 1.

To prove Theorem 10, we need the following theorem, which is proven
in [16], together with several lemmas.

Theorem 11 ( [16]). Let {fj}j∈J be a frame of L2(R) with bounds A and B.
Assume that {gj}j∈J ⊂ L2(R) is such that {fj − gj}j∈J is a Bessel sequence



20 ZUOWEI SHEN AND ZHIQIANG XU

with a bound R < A. Then {gj}j∈J is a frame with bounds A

(
1−

√
R
A

)2

and B

(
1 +

√
R
B

)2

.

Let

(34) φ
(m)
ℓ := ψ

(m)
ℓ −G

(m)
ℓ , ℓ = 1, . . . ,m, and Φ(m) := {φ(m)

1 , . . . , φ(m)
m }.

Since X(Ψ(m)) is a tight frame with frame bound 1, to prove that X(G(m))

is a frame, according to Theorem 11, we only need to show that X(Φ(m)) is a
Bessel sequence with a bound Rm → 0. An estimate of the Bessel bound of
a given a sequence is provided in [21] that enables us to estimate the Bessel

bound of X(Φ(m)) (see also [12]). Let

(35) Rm := sup
1≤|ω|≤2

∑

k∈Z

∑

n∈Z

m∑

ℓ=1

|φ̂(m)
ℓ (2nω)| · |φ̂(m)

ℓ (2nω + 2kπ)|.

Then, for arbitrary f ∈ L2(R), the following inequality holds
∑

φ∈X(Φ(m))

|〈f, φ〉|2 ≤ Rm‖f‖22,

i.e. Rm is the Bessel up bound of the system X(Φ(m)). Next, we estimate
Rm. For this, we need the following lemmas.

Lemma 12. Let φ̂
(m)
ℓ be the Fourier transform of φ

(m)
ℓ defined in (34).

Then the following three estimates for |φ̂(m)
ℓ | holds:

(i)

|φ̂(m)
ℓ (ω)| ≤

√(
m

ℓ

)
· 2

m+ℓ+1

|ω|m , |ω| ≥ 20.

(ii)

|φ̂(m)
ℓ (ω)| .

√(
m

ℓ

)(ω
4

)ℓ
·m · ω4, |ω| ≤

√
1

m
.

(iii)

max
1≤ℓ≤m

max
ω∈R

|φ̂(m)
ℓ (ω)| .

ln2m

m
.

Proof. First a simple calculation leads to

|φ̂(m)
ℓ (ω)| = |ψ̂(m)

ℓ (ω)− Ĝ
(m)
ℓ (ω)|

=
∣∣∣
√(

m

ℓ

)
ωℓ

4ℓ

(
sinc

(ω
2

)m−ℓ
sinc

(ω
4

)2ℓ
− exp

(
−(m− ℓ

2
)
ω2

24

)) ∣∣∣.
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For (i), when |ω| ≥ 20, a simple argument shows that

|ω
ℓ

4ℓ
| exp

(
−(m− ℓ

2
)
ω2

24

)
≤ 2m+ℓ

|ω|m ,
∣∣(ω
4
)ℓ · sinc(ω

2
)m−ℓ · sinc(ω

4
)2ℓ
∣∣ ≤ 2m+ℓ

|ω|m ,

which implies that

|φ̂(m)
ℓ (ω)| ≤

√(
m

ℓ

)
· 2

m+ℓ+1

|ω|m .

For (ii), the Taylor expansion shows that, when |ω| ≤ π,

ln
(
sinc(

ω

2
)m−ℓsinc(

ω

4
)2ℓ
)
= −

(
(m− ℓ

2
)
ω2

24
+ (m− 7

8
ℓ)

ω4

2880
+O(ω6)

)

Then, when |ω| ≤
√

1
m ,

|sinc(ω
2
)m−ℓsinc(

ω

4
)2ℓ − exp

(
−(m− ℓ

2
)
ω2

24

)
|

= exp

(
−(m− ℓ

2
)
ω2

24

) ∣∣∣ exp
(
−(m− 7

8
ℓ)

ω4

2880
−O(ω6)

)
− 1
∣∣∣

. m · ω4,

which implies that

|φ̂(m)
ℓ (ω)| .

√(
m

ℓ

)
·
(ω
4

)ℓ
·m · ω4.

Finally, the conclusion of (iii) can be obtained by Lemma 9 directly.
�

Lemma 13. Let Rm be given by (35). Then

Rm .
ln5m

m
; and lim

m→∞
Rm = 0.

Proof. Let

Rm,1 := sup
1≤|ω|≤2

∑

n∈Z

m∑

ℓ=1

|φ̂(m)
ℓ (2nω)|2,

Rm,2 := sup
1≤|ω|≤2

∑

k∈Z\{0}

∑

n∈Z

m∑

ℓ=1

(
|φ̂(m)

ℓ (2nω)| · |φ̂(m)
ℓ (2nω + 2kπ)|

)
.

Then, we have that

(36) Rm ≤ Rm,1 +Rm,2.

To estimate Rm, we consider Rm,1 and Rm,2, respectively. We first esti-
mate Rm,1. For this, we rewrite

Rm,1 = sup
1≤|ω|≤2

∑

n∈Z

m∑

ℓ=1

|φ̂(m)
ℓ (2nω)|2 = sup

1≤|ω|≤2
[S1(ω) + S2(ω) + S3(ω)],
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where

S1(ω) :=
∑

n≥5

m∑

ℓ=1

|φ̂(m)
ℓ (2nω)|2, S2(ω) :=

∑

−⌊log2 m⌋<n<5

m∑

ℓ=1

|φ̂(m)
ℓ (2nω)|2,

S3(ω) :=
∑

n≤−⌊log2 m⌋

m∑

ℓ=1

|φ̂(m)
ℓ (2nω)|2.

By (i) in Lemma 12, we obtain that, for 1 ≤ |ω| ≤ 2,

S1(ω) =
∑

n≥5

m∑

ℓ=1

|φ̂(m)
ℓ (2nω)|2

≤ 4
∑

n≥5

m∑

ℓ=1

(
m

ℓ

)
4m+ℓ

(2nω)2m

= 4
∑

n≥5

4m

(2nω)2m

m∑

ℓ=1

(
m

ℓ

)
4ℓ

.

(
5

256

)m

.

Using (ii) in Lemma 12, when 1 ≤ |ω| ≤ 2,

S3(ω) =
∑

n≤−⌊log2 m⌋

m∑

ℓ=1

|φ̂(m)
ℓ (2nω)|2 =

∑

n≥⌊log2 m⌋

m∑

ℓ=1

|φ̂(m)
ℓ (

ω

2n
)|2

.
∑

n≥⌊log2 m⌋

m∑

ℓ=1

(
m

ℓ

)( ω

4 · 2n
)2ℓ

·m2 ·
(
ω4

24n

)2

=
∑

n≥⌊log2 m⌋

m2 ·
(
ω4

24n

)2 m∑

ℓ=1

(
m

ℓ

)( ω

4 · 2n
)2ℓ

≤ m2
∑

n≥⌊log2 m⌋

(
ω4

24n

)2(
1 +

( ω

4 · 2n
)2)m

. m2
∑

n≥⌊log2 m⌋

(
1

24n

)2
(
1 +

(
1

2n+1

)2
)m

.
1

m6
.

Here, the last inequality uses the fact of {
(
1 +

(
1

2n+1

)2)m}n≥⌊log2 m⌋, m∈Z+

being a bounded sequence and

∑

n≥⌊log2 m⌋

(
1

24n

)2

=
∑

n≥⌊log2 m⌋

1

256n
=

256

255
· 1

256⌊log2 m⌋
.

1

m8
.
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Moreover, by (iii) in Lemma 12, we have

S3(ω) =
m∑

ℓ=1

∑

−⌊log2 m⌋≤n≤5

|φ̂ℓ(2nω)|2 .
ln5m

m
.

Combining the results above, we obtain that

(37) Rm,1 = sup
1≤|ω|≤2

[S1(ω) + S2(ω) + S3(ω)] .
ln5m

m
.

We next turn to

Rm,2 = sup
1≤|ω|≤2

∑

k∈Z\{0}

m∑

ℓ=1

∑

n∈Z

(
|φ̂(m)

ℓ (2nω)| · |φ̂(m)
ℓ (2nω + 2kπ)|

)
.

To state conveniently, we set

β(2kπ) := sup
1≤|ω|≤2

m∑

ℓ=1

∑

n∈Z

|φ̂(m)
ℓ (2nω)| · |φ̂(m)

ℓ (2nω + 2kπ)|.

Then

Rm,2 ≤
∑

k∈Z\{0}

β(2kπ).

Set k0 := 10. When 1 ≤ |k| ≤ k0 − 1, using the argument similar to the one
in the estimation of Rm,1 = β(0), we can show that

β(2kπ) .
1

m
for 1 ≤ |k| ≤ k0 − 1.

We claim that, when |k| ≥ k0,

(38) β(2kπ) .
3m

|2kπ|m/2
.

And hence,

(39) Rm,2 =


 ∑

1≤|k|≤k0−1

+
∑

|k|≥k0


 β(2kπ) .

1

m
+
∑

|k|≥k0

3m

|2kπ|m/2
.

1

m
.

Combing (37) and (39), we obtain that

Rm = Rm,1 +Rm,2 .
ln5m

m
,

which implies the conclusion.
Finally, we prove (38). A simple observation is that β(2kπ) = β(−2kπ).

Hence, we only need consider the case where k ≥ k0. For the convenience,
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let

β+(2kπ) := sup
1≤|ω|≤2

m∑

ℓ=1

∑

n∈Z+

(
|φ̂(m)

ℓ (2nω)| · |φ̂(m)
ℓ (2nω + 2kπ)|

)
,

β−(2kπ) := sup
1≤|ω|≤2

m∑

ℓ=1

∑

n<0

(
|φ̂(m)

ℓ (2nω)| · |φ̂(m)
ℓ (2nω + 2kπ)|

)
.

Then β(2kπ) ≤ β+(2kπ) + β−(2kπ). To estimate β+(2kπ), we furthermore
set

β++(2kπ) := sup
1≤ω≤2

m∑

ℓ=1

∑

n∈Z+

|φ̂(m)
ℓ (2nω)| · |φ̂(m)

ℓ (2nω + 2kπ)|,

β−+(2kπ) := sup
−2≤ω≤−1

m∑

ℓ=1

∑

n∈Z+

|φ̂(m)
ℓ (2nω)| · |φ̂(m)

ℓ (2nω + 2kπ)|.

Then β+(2kπ) = max{β++(2kπ), β−+ (2kπ)}. Note that k ≥ k0 = 10, by
Lemma 12,

β++(2kπ) = sup
1≤ω≤2

m∑

ℓ=1

∑

n∈Z+

|φ̂(m)
ℓ (2nω)| · |φ̂(m)

ℓ (2nω + 2kπ)|

.

m∑

ℓ=1

∑

n∈Z+

(
m

ℓ

)
2m+ℓ

(2n + 2kπ)m

=
∑

n∈Z+

m∑

ℓ=1

(
m

ℓ

)
2m+ℓ

(2n + 2kπ)m

≤
∑

n∈Z+

6m

(2n + 2kπ)m
≤
∑

n∈Z+

6m

2m · 2nm/2 · (2kπ)m/2

.
3m

(2kπ)m/2
.

We next consider

β−+(2kπ) = sup
−2≤ω≤−1

m∑

ℓ=1

∑

n∈Z+

|φ̂(m)
ℓ (2nω)| · |φ̂(m)

ℓ (2nω + 2kπ)|

= sup
1≤ω≤2

m∑

ℓ=1

∑

n∈Z+

|φ̂(m)
ℓ (2nω)| · |φ̂(m)

ℓ (2nω − 2kπ)|.

A simple observation is that max{|2nω|, |2nω − 2kπ|} ≥ kπ ≥ k0π. Then
using (i) in Lemma 12, we obtain that

|φ̂(m)
ℓ (2nω)| · |φ̂(m)

ℓ (2nω − 2kπ)| .
(
m

ℓ

)
· 2m+ℓ

(kπ)m
.
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Set n0 := ⌈log2(2kπ)⌉ + 5. Then,

sup
1≤ω≤2

m∑

ℓ=1

∑

0≤n≤n0

|φ̂(m)
ℓ (2nω)| · |φ̂(m)

ℓ (2nω − 2kπ)|

.
∑

0≤n≤n0

m∑

ℓ=1

(
m

ℓ

)
2m+ℓ

(kπ)m
=

∑

0≤n≤n0

2m

(kπ)m

m∑

ℓ=1

(
m

ℓ

)
· 2ℓ

≤
∑

0≤n≤n0

6m

(kπ)m
. log2(2kπ) ·

6m

(kπ)m
.

We next consider

sup
1≤ω≤2

m∑

ℓ=1

∑

n0+1≤n

|φ̂(m)
ℓ (2nω)| · |φ̂(m)

ℓ (2nω − 2kπ)|.

By (i) in Lemma 12, when n ≥ n0 + 1,

sup
1≤ω≤2

|φ̂(m)
ℓ (2nω)| ≤

√(
m

ℓ

)
2m+ℓ

(2kπ)m
, sup

1≤ω≤2
|φ̂(m)

ℓ (2nω−2kπ)| ≤
√(

m

ℓ

)
2m+ℓ

(2n − 2kπ)m
.

Hence,

sup
1≤ω≤2

m∑

ℓ=1

∑

n≥n0+1

|φ̂(m)
ℓ (2nω)| · |φ̂(m)

ℓ (2nω − 2kπ)|

≤
m∑

ℓ=1

∑

n≥n0+1

(
m

ℓ

)
2m+ℓ

(2kπ)m
· 2m+ℓ

(2n − 2kπ)m

≤ 4m · 5m
(2kπ)m

∑

n≥n0+1

1

(2n − 2kπ)m
.

(
10

kπ

)m

, k ≥ k0.

Therefore,

β−+(2kπ) . log2(2kπ) ·
6m

(kπ)m
+

(
10

kπ

)m

.

This concludes that

β+(2kπ) = max{β++(2kπ), β−+ (2kπ)} .
3m

(2kπ)m/2
.

Using (ii) in Lemma 12 and a similar analysis with above, we can obtain
that

β−(2kπ) = sup
1≤|ω|≤2

m∑

ℓ=1

∑

n<0

|φ̂(m)
ℓ (2nω)| · |φ̂(m)

ℓ (2nω + 2kπ)|

. m · 4m

(2kπ)m
.
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Table 1. The numerical results of frame bounds of X(G(m))

m 2 3 4 5 6 7 8
A 0.3855 0.5266 0.5898 0.6407 0.6803 0.7095 0.7274
B 1.9020 1.6239 1.5179 1.4390 1.3811 1.3403 1.3159

Putting everything together, we have that

β(2kπ) = β+(2kπ) + β−(2kπ) .
6m

(2
√
2kπ)m

+m · 4m

(2kπ)m
.

3m

(2kπ)m/2
.

This proves (38).
�

Proof of Theorem 10. Recall that

Φ(m) = {φ(m)
1 , . . . , φ(m)

m }, φ(m)
ℓ = ψ

(m)
ℓ −G

(m)
ℓ , ℓ = 1, . . . ,m;

and that X(Ψ(m)) is a tight frame with frame bound 1, where Ψ(m) =

{ψ(m)
1 , . . . , ψ

(m)
m }. Lemma 13 shows that X(Φ(m)) is a Bessel sequence with

a bound Rm → 0. Then Theorem 11 leads that X(G(m)) is a frame with
frame bound Am = (1 −

√
Rm)2 and Bm = (1 +

√
Rm)2 as m sufficiently

large. Furthermore, it can be close to a tight frame, since limm→∞Am =
limm→∞Bm = 1, which completes the proof. �

Remark 5. Although Theorem 10 confirms the case where m is sufficiently
large, the result of Theorem 10 seems to hold for small m (m can be as small
as 2). For small m, combining (35) and Theorem 11, we can estimate the

frame bounds of X(G(m)) numerically. We list the frame bound estimation

of X(G(m)), 2 ≤ m ≤ 8, in Table 1, which clearly shows the frame property

of X(G(m)) for small m. For example, for m = 2, X(G(2)) is a frame with
frame bounds A ≈ 0.3855 and B ≈ 1.9020. Figure 2 shows that the graphs

of the functions of G
(2)
1 and G

(2)
2 , respectively.
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Figure 2. The graphs of G
(2)
1 (x) = −

√
32/πx exp(−4x2)

(left) and G
(2)
2 (x) =

√
27/(8π)(12x2 − 1) exp(−6x2) (right).
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