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Abstract

Stabilizing unstable periodic orbits in a chaotic invariant set not only reveals information about its struc-

ture but also leads to various interesting applications. For the successful application of a chaos control

scheme, convergence speed is of crucial importance. Here we present a predictive feedback chaos control

method that adapts a control parameter online to yield optimal asymptotic convergence speed. We study

the adaptive control map both analytically and numerically and prove that it converges at least linearly to a

value determined by the spectral radius of the control map at the periodic orbit to be stabilized. The method

is easy to implement algorithmically and may find applications for adaptive online control of biological and

engineering systems.
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I. INTRODUCTION

Some chaotic attractors contain infinitely many unstable periodic orbits. These can be seen as a

“skeleton” for the chaotic attractor, therefore revealing important information about the dynamics

of the system itself. By suitable perturbations the stability of these unstable periodic points can

be changed; a control perturbation renders them stable. Such “chaos control” has applications in

many fields [1], including biological [2] and artificial neural networks [3, 4].

In the last twenty years, different methods for stabilizing unstable periodic orbits have been

suggested. The seminal work by Ott, Grebogi, and Yorke (OGY) [5] and its implementations

employ arbitrary small perturbations of a parameter of the system to stabilize a known unstable

periodic orbit of a discrete time dynamical system. A successful application of the OGY method,

however, requires prior knowledge about or online analysis of the dynamics to determine fixed

points and their stability properties.

A different approach is given by predictive feedback control (PFC) [6, 7] which overcomes this

disadvantage. In this approach the future state of the dynamics calculated from the current state is

fed back into the system to stabilize a periodic orbit. This feedback control is noninvasive, i.e., the

control strength vanishes upon convergence, and is extremely easy to implement. It is a special

case of a recent effort to stabilize all periodic points of a discrete time dynamical system [8, 9]

which is also closely related to nonlinear successive over-relaxation methods [10, 11]. It has been

extensively studied [12–16] and extended [17, 18] with respect to its original purpose as a tool for

examining the structure of chaotic attractors.

In any real world application, speed of convergence is of crucial importance. For example, if

a robot is controlled by stabilizing periodic orbits in a chaotic attractor [3], the time it needs to

react to a changing environment is bounded by the time the system needs to converge to a periodic

point of a given period. Hence, in praxis, one desires to tune the control parameter such that the

spectral radius of the unknown periodic point which the system converges to is minimized. To the

best of our knowledge, previous works on chaos control have not considered convergence speed

while maintaining its simplicity in terms of implementation. Adaptation of the control parameter

has an impact on convergence speed. However, existing adaptation mechanisms [3, 19] have two

major shortcomings; they do not optimize for speed and, for adaptation of heuristic nature, may

adapt the parameter to regimes where stabilization fails.

Here we introduce an adaptation method that overcomes these shortcomings. It adaptively
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tunes the control parameter online to achieve optimal asymptotic convergence speed. This work is

organized as follows. In the second section we review the PFC method and introduce the notation

that will be used throughout the paper. In the third section, we present the adaptation method and

prove its convergence properties. As an example, the well-known logistic map is studied both

analytically and numerically in Sections 4 and 5 before giving some concluding remarks.

II. PRELIMINARIES

A differentiable map f : Rn → Rn gives rise to a dynamical system through the evolution

equation

xk+1 = f(xk) (1)

with xk ∈ Rn for all k ∈ Z. The sequence (xk), k ∈ N is called an orbit of the dynamical system

with initial condition x0 and if f ◦p(xk) = xk+p for all k ≥ 0 we say that the orbit is periodic with

period p. Here,

f ◦p = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
p times

denotes the p-fold composition of f . Let Fix(f) := {x ∈ Rn | f(x) = x} be the set of fixed

points, i.e., periodic points of period one. Note that any periodic orbit is a fixed point of the p-th

iterate of the map f so we will use the expressions fixed point and periodic orbit interchangeably.

Let A ⊂ Rn be a forward invariant subset of Rn with respect to f , i.e., f(A) ⊂ A. If periodic

points are dense in A and f maps transitively, then we call A a chaotic set. Julia sets [20], as

described below, are examples of such chaotic sets. Let df |x denote the derivative of f at x ∈ Rn

and id : Rn → Rn the identity map.

The results of [9] are now summarized as follows:

Proposition II.1. Suppose x∗ ∈ Fix(f) and the derivative df |x∗ and df |x∗−id are real, nonsingu-

lar and diagonalizable. Then there exist parameters µ > 0 and an orthogonal matrix Ck ∈ O(n)
such that x∗ is an attractive fixed point of the map gµ obtained from f through the transformation

S(µ,Ck) : f 7→ id+µCk(f − id) =: gµ.

In particular, S(µ,Ck) preserves the set of fixed points, that is Fix(f) = Fix(gµ).

In fact, it can be shown that the number of matrices Ck needed to stabilize all fixed points of

a given map f is quite limited. They depend on the local stability properties of fixed points and
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Figure 1: Sketch of the dependence of the spectral radius ρx∗(µ) on µ for some fixed point x∗ according to

Proposition II.1.

there are types of fixed points that can be stabilized for Ck ∈ {± id}. For a given x∗ ∈ Fix(f)

with χj ∈ C, j ∈ {1, . . . , n}, being the eigenvalues of dgµ|x∗ we want to denote by

ρx∗(µ) := max
j∈{1,...,n}

{|χj|}

the spectral radius, i.e., the maximum of the absolute values of the eigenvalues of the derivative of

gµ at x∗. We have

dgµ|x = id+µCk(df |x − id). (2)

for all x ∈ Rn. In other words, the proposition above ensures the existence of µ and Ck(x
∗)

for a given x∗ ∈ Fix(f) such that the transformation S(µ,Ck) gives ρx∗(µ) < 1, cf. Figure 1.

Therefore, with these parameters, the fixed point x∗ of f is an attracting fixed point for gµ.

The results above are directly related to predictive feedback chaos control methods. A transfor-

mation Tη : f 7→ g is called a chaos control transformation if g can be written as g = f + ηc with

control perturbation c : Rn → Rn and η ∈ R. Note that in case Ck ∈ {± id} the transformations

S(Ck, µ) are chaos control transformations since

gµ = f + (1∓ µ)(id−f)

with η = 1−µ. Therefore, we will refer to these transformations S(µ,Ck) as PFC transformations.

Without loss of generality we restrict ourselves to the case Ck = id.

The results of Proposition II.1, however, give little information about the speed of convergence,

except for the fact that when decreasing µ towards zero convergence takes longer and longer as

the spectral radius approaches one. In the vicinity of a stabilized fixed point, convergence is at
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least linear and the rate of convergence is bounded from above by the quantity ρx∗(µ). In order to

obtain an adaptation method that increases the speed of convergence we therefore have to minimize

ρx∗(µ) using the control parameter µ. For a random initial condition, we do not know to what fixed

point x∗ (if any) the trajectory will converge to. We only have a converging sequence xk → x∗. In

other words, we are looking for a way to obtain a sequence µk → µ∞ where

µ∞ = sup

µ > 0

∣∣∣∣∣∣ ∀µ̃ > 0 : ρx∗(µ) ≤ ρx∗(µ̃)
and assumptions of

Prop. II.1 are satisfied

 (3)

the optimal µ to minimize ρx∗(µ). Define λ∞ := ρx∗(µ∞).

In applications, the control parameter µ plays a double role; on the one hand, it can be used to

turn chaos control on and off, µ = 1, on the other hand it is the crucial parameter to stabilize the

periodic orbits and to determine the speed of convergence.

Define the class of functions

F(µ0, p) := {f | card ({x ∈ Fix(f ◦p) | ρx(µ0) < 1 for Ck = id}) > 0} ,

with parameters p ∈ N, and µ0 > 0 and where card denotes the cardinality of a set. The sets

F(µ0, p) are the functions f with a chaotic set that have at least one periodic orbit of period p

which can be stabilized for the given parameters.

III. AN ADAPTATION METHOD TO ACCELERATE CHAOS CONTROL

In this section, suppose f ∈ F(µ0, p) for some µ0 > 0 and without loss of generality, p = 1,

since we can replace f with the p-th iterate. Suppose gµ is the transformed map after applying

S(µ, id). Furthermore we assume that for all times k < 0 the system evolves according to Equa-

tion (1), i.e., with η = 1− µ = 0, along a trajectory of points in the chaotic set A. At time k = 0

the control parameter µ is set to µ0. Therefore, because of the assumptions on f , there is at least

one periodic orbit of period p on the chaotic attractor which is now an attracting periodic orbit.

Let sFix(f) denote the set of these stabilized fixed points.
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A. Close to a fixed point

Recall two facts: any differentiable map h ∈ C1(U) on an open set U ⊂ Rn is Lipschitz-

continuous on any compact K ⊂ U , that is

‖h(x)− h(y)‖ ≤ ‖dh‖K · ‖x− y‖ ,

for all x, y ∈ K where ‖ · ‖K is the supremum of the operator norms induced by a norm ‖ · ‖ on

K and dh is the total derivative. Furthermore, for any contraction h on a Banach space (X, ‖ · ‖),
i.e., a map that satisfies

‖h(x)− h(y)‖ ≤ L ‖x− y‖

with a Lipschitz constant L < 1, the Banach Fixed Point Theorem gives the existence of a unique

fixed point x∗ together with the error estimates ‖x∗ − xk‖ ≤ Lk

1−L ‖x0 − x1‖ and ‖xk+1 − xk‖ ≤
L ‖xk − xk−1‖. Here, xk = h◦k(x0) for an initial condition x0 ∈ X .

Let x∗ ∈ sFix(f) be fixed. According to Proposition II.1 there exists a λ0 < 1 for µ = µ0

sufficiently small such that ρx∗(µ0) < λ0. Therefore, there exists a vector norm ‖ · ‖ such that

we have ‖dgµ|x∗‖op ≤ λ0 for the induced operator norm cf. Figure 2(a). We will omit the index

indicating the operator norm when it is clear from the context. Henceforth all norms denote this

vector norm and the induced operator norm respectively.

Let B(ε, x) denote a ball of radius ε centered at x and by B(ε, x) its closure. Assume that for

ε̃ small enough there is a constant K ≥ 0 such that

|‖dgµ|x∗‖ − ‖dgµ|x‖| ≤ K ‖x∗ − x‖ (4)

for all x with ‖x∗ − x‖ < ε̃ independent of µ. This condition is depicted in Figure 2(b). Now we

can choose ε ≤ ε̃ such that ‖dgµ0|x‖B(ε,x∗) < 1. Put differently, for sufficiently small δ0 > 0 there

exists an ε ∈ (0, ε̃) such that ‖dgµ0|x‖B(ε,x∗) ≤ λ0+δ0 =: L0 < 1. The choice of ε (corresponding

to the size of the ball around x∗) depends on λ0, µ0, and δ0.

Remark III.1. Condition (4) is satisfied in case f has a bounded second derivative on sFix(f)

due to the functional dependence of the derivative of gµ on µ as given by (2).

Algorithm III.2. For given f ∈ F(µ0, p), µ0, λ0, and K let x0 ∈ B(ε, x∗). The convergence

acceleration algorithm consists of the following steps:

Step 1 (Iterate): Calculate x1 = gµ0(x0).
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Figure 2: (a) An appropriately chosen norm approximates the spectral radius from above with ρx∗(µ0) ≤

‖dgµ0 |x∗‖ ≤ λ0. (b) According to Condition (4), ‖dgµ|xk‖ lies in a K ‖x∗ − xk‖-tube around ‖dgµ|x∗‖.

While iterating, this tube becomes smaller and smaller. As another consequence of (4), we have

‖dgµ|x‖B(ε,x∗) in a Kε-tube around ‖dgµ|x∗‖. Therefore, for ε small enough, there is L0 < 1 such that

‖dgµ0 |x‖B(ε,x∗) ≤ L0.

Step 2 (Optimize µ): Minimize the “cost function” ‖dgµ|x1‖ with respect to µ ∈ (0, 1) under the

conditions

l(µ) := ‖dgµ|x1‖+
(

2KL0

1−L0

)
‖x0 − x1‖ < L0 (5a)

µ maximal (5b)

where L0 = λ0 + δ0 as above, cf. Figure 3.

Step 3 (Set quantities): If the minimization under constraints of Step 2 returned a result µopt

then set µ1 := µopt, λ1 := ‖dgµ|x1‖ +
(
KL0

1−L0

)
‖x0 − x1‖, δ1 :=

(
KL0

1−L0

)
‖x0 − x1‖ and

L1 := λ1 + δ1. Otherwise set µ1 := µ0, λ1 := λ0, δ1 := δ0 and L1 := L0.

Repeat the steps with all indices increased by one.

For this method we obtain the following results.

Lemma III.3. With the assumptions of Algorithm III.2 above we have that for any initial condition

x0 ∈ B(ε, x∗) Algorithm III.2 yields a trajectory xk → x∗.
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Figure 3: (a) Inequality (5a) does not always have to be satisfied. (b) Since xk → x∗ we have that after a

finite time N the function l(µ) is below L0 for some µ.

Proof. If the optimization process does not give a result, convergence is ensured by Proposi-

tion II.1 and the Banach Fixed Point Theorem. Without loss of generality, suppose that optimiza-

tion yields a result for k = 1. Then because of (4) and (5a) we have

‖dgµ1|x∗‖B(‖x1−x∗‖,x∗) ≤ ‖dgµ1|x∗‖+K ‖x1 − x∗‖

≤ ‖dgµ1|x1‖+ 2K ‖x1 − x∗‖

≤ ‖dgµ1|x1‖+
(
2KL0

1− L0

)
‖x1 − x0‖

= L1 ≤ L0 < 1.

Therefore, x1 is contained in a ball around the fixed point x∗ on which the map gµ1 is a contraction

with contraction coefficient L1. The same calculation is valid for subsequent optimization steps

for k > 1.

The lemma above ensures that the adaptation does not compromise convergence against the

stabilized fixed point. But will optimization actually take place? For a map withK = 0, adaptation

is not necessary since ‖dgµ|x∗‖ = ‖dgµ|xk‖ and therefore we can set µ straight to the optimal value.

Lemma III.4. With the assumptions of Algorithm III.2 Inequality (5a) is satisfied every finitely

many steps.

Proof. By definition we have ‖dgµ0|x∗‖ ≤ L0 = λ0 + δ0 with δ0 > 0. Hence we have

‖dgµ0|x∗‖ < L0. Let ζ > 0 be such that ζ < L0 − ‖dgµ0|x∗‖. Since ‖xk − xk+1‖ is a Cauchy
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sequence and ‖dgµ0 |xk‖ → ‖dgµ0|x∗‖ there is an N ∈ N such that
(

2KL0

1−L0

)
‖xN − xN−1‖ < ζ

2
and

|‖dgµ0 |x∗‖ − ‖dgµ0|xN‖| < ζ
2
. Thus, we have

‖dgµ0|xN‖+
(
2KL0

1− L0

)
‖xN − xN−1‖ < ‖dgµ0|x∗‖+

ζ

2
+
ζ

2
< ‖dgµ0|x∗‖+ ζ < L0.

Therefore, Inequality (5a) will be satisfied after maximally N = N0 steps.

Inductively, by increasing all indices above by N , the same argument gives a sequence Nl,

l ∈ N, of indices for which Inequality (5a) is satisfied. This completes the proof of the assertion.

Remark III.5. Although the adaptation method gives a sequence µk that minimizes the norm

while ensuring convergence, it is not clear how often optimization yields a result. Additional

conditions on the map f , such as requiring monotonicity of ‖dgµ|xk‖ in xk, influence how often

the parameter µ will be adapted. On the other hand, additional constraints make the theory less

broadly applicable.

If Inequality (5a) is satisfied for some k > 0, then, because of continuity, it holds for a whole

closed neighborhood of µk. This gives µk+1 with ‖dgµk+1
|x∗‖ < ‖dgµk+1

|x∗‖ unless ‖dgµ|x∗‖ is

constant on that interval.

Definition III.6 ([21]). A matrix norm ‖ · ‖ on Rn×n is called minimal for M ∈ Rn×n if ρ(M) =

‖M‖.

The main results of this section can now be summarized in the following theorem.

Theorem III.7. Suppose f ∈ F(µ0, p) for µ0 > 0 such that f satisfies (4) with K ≥ 0 in a

neighborhood of x∗ ∈ sFix(f). Furthermore, let ε, λ0, and δ0 be chosen as described above. Then

for any initial condition x0 ∈ B(ε, x∗) Algorithm III.2 minimizes an upper bound for the spectral

radius ρx∗(µ).

In particular, if the induced operator norm ‖ · ‖op is minimal for dgµ∞ |x∗ , it converges at least

linearly with asymptotic convergence speed λ∞.

Remark III.8. For dimension n = 1, the Euclidean norm is minimal.

Proof. (of Theorem III.7) Lemmas III.3 and III.4 ensure convergence against the fixed point x∗

and adaptation of the control parameter µ after a maximum of some finite number of steps.
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By construction, µk tends to a value which minimizes the norm of the derivative of gµ at x∗.

For arbitrary dimension n we have ρx∗(µk) ≤ ‖dgµk |x∗‖. If in addition the norm is minimal,

in the limit the spectral radius is minimized yielding optimal asymptotic convergence speed, i.e.,

µk → µ∞.

Remark III.9. One could also use convergence acceleration transformations [22] in order to get

a better approximation to ρx∗(µ). However, to exploit the acceleration within the framework of

this theory, one would have to have suitable error estimates for the transformed sequence.

The choice of the size neighborhoodB(ε, x∗) depends on the desired estimate of the contraction

constant. It is clearly bounded from above since we have to make sure that there is a contraction.

On the other hand, it is desirable to take a neighborhood as large as possible to make the method

applicable to as many initial conditions as possible.

B. From local to global

We want to consider the situation where the control is turned on at a random point in time. We

choose indices such that this time is k = 0. In general, the initial condition x0 for the adaptation

method is unknown and it is likely to be outside of a neighborhood B(ε, x∗) as defined in the

section above. One possible scenario is the existence of a chaotic attractor that makes up part

of the old chaotic attractor and ending up in its basin of attraction when the control parameter is

turned up. Another likely scenario is to have x0 close to the boundary of the basin of attraction of

one of the stabilized fixed points. An initial condition close to the basin boundary implies a long

transient iteration before the adaptation method becomes applicable.

We want to quantify the latter scenario. Since we assumed the system to follow the evolution

equation xk = f(xk−1) for all k ≤ 0, x0 is distributed on the attractor according to some f -

invariant measure m on A. Suppose m is an ergodic probability measure on A. So m(U) is the

probability that x0 ∈ U at time k = 0 for any measurable subset U ⊂ A.

Let B(ε(x∗), x∗) denote the neighborhoods of x∗ ∈ sFix(f) for which the acceleration method

described in the previous section is applicable for all initial conditions within that neighborhood.

Because of f ∈ F(µ0, p) at least one of these balls is not empty. Define

V0 = V =

 ⋃
x∈sFix(f)

B(ε(x), x)

 ∩ A
10



to be the part of the union of all these neighborhoods on the attractor. Thus, if V is measurable,

m(V ) is a lower bound for the probability that the adaptation method described above converges

if the parameter µ is set to µ0 at a random point in time and dynamics evolved on the chaotic set

before. Furthermore, we define Vk :=
⋃
l≤k g

◦(−l)
µ0 (V ). Now Pk = m(Vk) is a lower bound on the

probability that the algorithm will converge after letting the transformed system evolve for k time

steps after being initialized with µ = µ0 at time k = 0.

As k → ∞ tends to infinity the set Vk will converge to the union of the basins of attraction of

the stabilized fixed points. Hence, we obtain a function

ϕ(µ0) := lim
k→∞

m(Vk)

depending on the initial parameter µ0. The value lim infµ0→0 ϕ(µ0) = ϕ̃ for some ϕ̃ ∈ [0, 1]

determines the size of the basin of attraction of the stabilized fixed point.

IV. ADAPTIVE PFC FOR THE LOGISTIC MAP

As an example, we apply the PFC transformation to the logistic map given by the quadratic

polynomial `r(x) = rx(1 − x) with the real parameter 1 < r ≤ 4. It is well known that there

are parameter values for which the dynamics is chaotic on some subset A of the unit interval

I = [0, 1]. In particular, for r = 4 the whole unit interval is a chaotic set. Here, we study the

period one orbits; higher periods can be treated similarly.

A. Calculating the Adaptation Parameters

First, we want to calculate the quantities for the adaptation method described in §III A. The

second derivative of `r exists everywhere on R and is bounded on compact subsets. Within this

section let h′ denote the derivative of a differentiable function h. Here, we treat the cases Ck ∈
{± id} simultaneously by allowing the control parameter µ for the transformed function

gµ,r(x) = S(µ,Ck)(`r)(x) = x+ µ(`r(x)− x)

to range within the interval [−1, 1]. For µ = 1 we obtain the original system and around µ = 0

either, where Ck = id when µ is positive and Ck = − id when µ is negative.

11



Since
∣∣g′′µ,r(x)∣∣ = |µ| |`′′r(x)| = 2r |µ| for all x ∈ I , the maximum in µ is taken for |µ| = 1.

Therefore, if we set K = 8, we obtain a constant independent also of the parameter r and the sign

of Ck.

The two fixed points of fr are x∗ = 0 and x∗ = r−1
r

. The derivatives at the fixed points are

g′µ,r(0) = 1 + µ(r − 1) and g′µ,r(
r−1
r
) = 1 − µ(r − 1). Hence, x∗ = 0 is stable for µ negative

(Ck = − id) and x∗ = r−1
r

for µ positive (Ck = id). To apply the adaptive method, the initial

parameters need to be determined as in §III A: for a given µ0 the bound λ0 can be calculated

directly from the derivative. Furthermore, we have to find ε that defines a neighborhood of x∗

for the initial condition x0 and a given initial µ0. From the local stability and (4) we obtain that

convergence is ensured if

λ0 = 1 + |µ0| (r − 1) > −1, (6a)

Kε− |µ0| (r − 1) < 0, (6b)

Kε+ |µ0| (r − 1) < 2 (6c)

For either x∗ this gives |µ0| < 2
r−1 . This results in a bound for the size of the neighborhood of x∗

in which the map is a contraction,

ε < min

{
2− µ0(r − 1)

K
,
µ0(r − 1)

K

}
.

The optimal bound ε < 1
K

is achieved for µ0(r − 1) = 1.

It is desirable to choose ε as large as possible (to cover as many initial conditions as possible)

while keeping the whole expression on the left hand side of (6a) inequality as small as possible (a

smaller contraction constant L0 leads to stronger contraction). This choice depends on the initial

guess µ0.

Remark IV.1. The chaotic set A depends on the choice of the parameter r, so we obtain a family

of chaotic sets Ar. Note that we do not necessarily have 0 ∈ Ar or r−1
r
∈ Ar. We have A4 = I

so that the two fixed points are contained in A4. Otherwise, for a given fixed point x∗, ε has to be

chosen large enough such that Ar ∩B(ε, x∗) 6= ∅.

The constant parameters K = 8 and µ0, λ0, and ε as given by (6) together with an approxima-

tion of the measure on A are the basis of the calculations of lower bounds for the probability of

convergence in the following section.
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B. PFC on the complex plane

The quadratic polynomial defining the logistic map can also be seen as a polynomial over the

complex numbers. Iteration of complex polynomials is a classical example in complex analytic

dynamics and the theory developed there can tell us something about the effect of the PFC trans-

formation S(µ,Ck) for Ck ∈ {± id}. Here, this geometric point of view allows us to calculate the

full basin of attraction of the stabilized fixed points. In particular, we also obtain convergence for

general, complex valued initial conditions in a neighborhood of the periodic orbits in the complex

plane.

Recall some notions from one-dimensional complex dynamics [20]. Suppose f : C → C is

holomorphic. A point z ∈ Ĉ = C ∪ {∞} is said to be in the Fatou set F (f) if there is an open

neighborhood of z on which the family of iterates
{
f ◦k | k ∈ N

}
is normal. Its complement is

called the Julia set J(f) and constitutes the boundary of all Fatou components that contain any

stable periodic orbits. Both of these sets are forward and backward invariant with respect to the

map f . The Julia set is a chaotic set in our sense. Henceforth, we denote the complex variable by

z.

Let f ∈ C[z] be a complex polynomial. Note that the result of the PFC transformation gµ,r again

is a polynomial of the same degree in the complex variable z unless f is constant or µ = 0. The

logistic map is defined as a polynomial of degree two. The dynamics of quadratic polynomials

are conjugate to the dynamics of a polynomial z2 + c where c is a complex parameter. The

parameter c can be characterized in terms of the orbit of the only finite critical point z = 0 (since

(z2 + c)′(0) = 0), where the points for which that orbit is bounded constitute the Mandelbrot set

M. For c ∈ M there can be bounded Fatou components corresponding to the basin of attraction

of a stable periodic orbit.

The logistic family described above is conjugate to the subset
[
−2, 1

4

]
of the intersection ofM

with the real axis. Since gµ,r again is a real quadratic polynomial of degree two for `r and these

polynomials only keep the real axis invariant if c ∈ R, every gµ,r is conjugated to a quadratic

polynomial z2 + c with real c. For given r, the relationship between this complex parameter c and

the control parameter µ is given by

cr(µ) =
1

4

(
1− µ2(r − 1)2

)
for µ 6= 0. Hence, varying the parameter µ results in a “shift” of the dynamics up the real axis

until it approaches c = 1
4

as µ → 0. From the equation above, one can also see that the dynamics

13
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Figure 4: Julia sets for parameters µ = −0.65 (left) and µ = −0.2 (right) for Ck = − id. The Julia set

of gµ,4 is depicted in dark gray whereas the Julia set of the original map, i.e., the unit interval, is depicted

in medium gray. The fixed points z∗ = 0 and z∗ = 3
4 are marked by black dots. Shaded circles indicate

B(ε, z∗) for µ0 = µ.

of gµ,r are conjugated for µ = 1 and µ = −1, the former case corresponding to the unperturbed

system.

What does stabilization of fixed points mean in terms of complex analytic dynamics? An

unstable fixed point is contained in the Julia set. The goal of stabilization is to turn this fixed

point into a stable one, i.e., that it now belongs to a bounded Fatou component. That is, the

transformation should deform the Julia set in a way that it does not contain the targeted periodic

point anymore.

Let us consider the case r = 4 in more detail. The Julia set J(`r=4) = I is equal to the whole

unit interval. The probability distribution m is given by a beta distribution with parameters both

equal to 1
2

(cf. for example [23]), i.e., with probability density function

p(x) =
(
πx

1
2 (1− x) 1

2

)−1
.

Suppose Ck = id and µ small enough. In this case z∗ = 3
4

is the stabilized fixed point. In the

previous section we calculated the maximum size of the ball around the fixed point for which the

14
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Figure 5: Julia sets for parameters µ = −0.65 (left) and µ = −0.2 (right) for Ck = id. The Julia set of

gµ,4 is depicted in dark gray whereas the Julia set of the original map, i.e., the unit interval, is depicted

in medium gray. The fixed points z∗ = 0 and z∗ = 3
4 are marked by black dots. Shaded circles indicate

B(ε, z∗) for µ0 = µ.

adaptation method works straight away. This radius is given by ε < 1
8

and

P0 = m(V0) ≤ m(B(ε, z∗) ∩ I) = m

([
5

8
,
7

8

])
=

∫ 7
8

5
8

dx

πx
1
2 (1− x) 1

2

=
2

π

(
arctan

(√
3

5

)
− arccot

(√
7
))
≈ 0.1895.

In Figure 4, one can see that the whole unit interval is contained in the bounded Fatou component.

Backward iteration takes this set closer to the boundary of this Fatou component. This means that,

for µ0 small,

ϕ(µ0) = 1,

P0 ≤ Pk = m(Vk) ≤ 1 and ϕ̃ = 1. Therefore, trajectories will converge to the stabilized periodic

point with probability one.

The picture is slightly different forCk = − id and µ small enough. Now, z∗ = 0 is the stabilized

fixed point. Again we have ε < 1
8

and therefore

P0 = m(V0) ≤ m(B(ε, z∗) ∩ I) = m

([
0,

1

8

])
=

∫ 1
8

0

dx

πx
1
2 (1− x) 1

2

=
2

π
arccot

(√
7
)
≈ 0.2301.

In this case backward iteration yields a different result as can be seen in Figure 5. Part of the set

of initial conditions A is in the basin of attraction of infinity and the intersection with the Julia

15



set is exactly the fixed point z∗ = 3
4
. Therefore, the probability to converge with a random initial

condition is less than one. Integrating the probability density function gives

ϕ(µ0) =

∫ 3
4

0

dx

πx
1
2 (1− x) 1

2

=
2

3
.

Therefore, we have ϕ̃ = 2
3

and P0 ≤ m(Vk) ≤ 2
3
. In contrast to the case Ck = id this means that

for Ck = id and z∗ = 0 a trajectory with an initial condition on I distributed according to m will

diverge with a probability of one third.

When considering higher periods of such a polynomial map, the Julia sets are more complicated

as the degree of the iterated polynomial rises exponentially. The situation changes qualitatively

when considering the predictive feedback control dynamics of higher dimensional maps by inter-

preting them as functions Cn → Cn. In general, the dynamics of holomorphic, higher-dimensional

maps is more diverse since even low-dimensional invertible maps give rise to complicated dynam-

ics [24].

V. NUMERICAL RESULTS

To compare the speed of the adaptive method (ACC) with the original PFC chaos control in a

real world application, we performed numerical simulations for the logistic map `4. The results

for Ck = + id, µ0 ∈ [0, 1] and periods one and two are summarized in Figure 6. One can clearly

see that for most initial values of the control parameter, the adaptive method yields an increase

in convergence speed. The results for Ck = − id and period one are similar but the convergence

probability is lower (not shown) in accordance with the results of the previous section, cf. Figure 5.

In the case of period p = 2, the orbits stabilized by negative µ are the period one orbits, which is

reflected in our numerical results (not shown). A non-optimized, ad hoc choice of parameters for

the adaptive method ofK = 8 and L0 = 0.99 (independent of the initial condition) were employed

in the simulations. The criterion for convergence time T was given by |xT − xT−1| ≤ 10−10 but

reliability was determined after checking for the correct period.

The convergence reliability, i.e., the fraction of trials where the above criterion is fulfilled after

some time T , is not improved by the adaptive method. However, it is possible to amend the adap-

tation method to lead to convergence for most initial conditions x0 within the convergent regime,

independent of the initial value of the control parameter µ0 (the modified method is denoted by

ACCD). When adapting, the ACC method has to check whether Criterion (5a) is fulfilled. If this
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Figure 6: Speed and reliability comparison of the original PFC chaos control (µ = µ0 fixed) and both

ACC and ACCD for the logistic map `4 with p = 1 (left) and p = 2 (right). Times are only plotted

if more than 1% of initial values that lead to convergence to the correct period. Gray shading indicate

the convergence reliability; dark gray corresponds to all methods converging, light gray to the reliability of

ACCD. Convergence time T is given by |xT − xT−1| ≤ 10−10 calculated for 1000 random initial conditions

after a transient of random length.

is not the case after M iterations, the modified method simply reduces µ to a certain fraction v.

To prevent µ of becoming too small, we imply a threshold θ below which µ cannot decay. Put in

other words, the modified method ACCD will automatically decrease µ towards zero to reach the

convergence regime if Inequality (5a) is not satisfied within a given number of steps.

The modified method ACCD behaves like the original ACC method for initial values of µ0 in

the convergent regime while leading to convergence outside of it, cf. Figure 6 (here M = 50,

v = 0.7, θ = 0.1 for period p = 1, and θ = 0.05 for period p = 2). Failure of convergence that

is due to the existence of a range of diverging initial conditions, however, will persist, even with

the decay. The results are similar for a broad parameter range (e.g., decay rate v ∈ [0.65, 0.99] and

decay kick-in time M ∈ [10, 100]). For a decay rate too close to 100% or a too large decay kick-in

time, it will take many iterations to reach the convergent interval. On the other hand, if the decay

kick-in time is too small or does not exist at all, µk decreases even if it is in the convergent interval

as Criterion (5a) is not fulfilled all the time, unnecessarily increasing convergence time.
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VI. DISCUSSION

Here we presented a method which adapts the control parameter µ of the PFC method in or-

der to accelerate the systems convergence to a periodic orbit. In contrast to heuristically chosen

methods, our adaptation does not compromise convergence. The algorithm converges in a neigh-

borhood of every periodic orbit that was stabilized by the stabilizing transformation. Assuming

the existence of an invariant, ergodic probability measure on the chaotic attractor, we obtain an

analytic bound for the probability Pk that the system converges to a periodic orbit if the chaos

control is switched on at an arbitrary point in time. Although these results are stated in the frame-

work of discrete time dynamical systems, they can also be applied to stabilize continuous time

systems after discretization such as taking Poincaré sections. The logistic map provides an exam-

ple for which we can calculate the parameters for the method. We estimated the probability of

convergence and highlighted its dependence on the fixed point to be stabilized and the associated

matrix Ck.

Our method was stated in the general context of “chaotic sets.” In general, such sets do not need

to be local or even global attractors of the dynamical system. In fact, the Julia sets considered

in the example are repelling rather than attracting. In applications, however, an attractor would

be desirable such that the process of stabilization becomes repeatable. That is, after the control

perturbation is turned off by choosing the appropriate value for the control parameter, the dynamics

would return to the attractor and the process can be started over again.

Apart from its role as a chaos control method, the estimates described in §III B give information

on the PFC method itself. It allowed us to calculate the size of the basin of attraction for varying µ

in our example. Decreasing µ always leads to slower convergence since the eigenvalues converge

to one as µ→ 0. So is it possible to find an optimal µ0 for a given map? Since any adaptation

method increases the computational cost of the chaos control method, a priori estimates of such

crucial quantities are of importance. Furthermore, the choice of the stabilization matrix Ck de-

pends on the type of fixed points in the chaotic attractor. Hence, global statistics for a given map

f of the periodic orbits and their stability properties might yield some a priori estimates.

Our numerical studies suggest that it is possible to get reliable convergence without a priori

knowledge of the exact values for the parameters. A slight modification of the method yields a

hybrid method that finds the regime of control parameter in which the dynamics converge online

and then adapt it to the optimal value. This simplification, however, comes at a cost in conver-
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gence speed. By definition, PFC cannot distinguish between a periodic orbit of period p and any

q|p, a divisor of p. Our numerical calculations, however, indicate that this does not influence re-

liability of the chaos control method. This is most likely caused by the exponential growth of the

number of periodic orbits. In the future, it would be desirable to add a mechanism that rigorously

distinguishes between the target period and its divisors to prove optimal convergence.

An adaptation method for chaos control is a step towards solving the intuitively contradictory

problem of optimizing speed while maintaining simplicity in implementation. However, as dis-

cussed above, it leads to further challenging research questions that have to be addressed in the

future.
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