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Representing a cubic graph as the intersection graph of

axis-parallel boxes in three dimensions
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Abstract. We show that every graph of maximum degree 3 can be represented as the intersection
graph of axis parallel boxes in three dimensions, that is, every vertex can be mapped to an axis parallel
box such that two boxes intersect if and only if their corresponding vertices are adjacent. In fact, we
construct a representation in which any two intersecting boxes just touch at their boundaries. Further,
this construction can be realized in linear time.
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1 Introduction

We will be considering only simple, undirected and finite graphs. Let F = {S1, S2, . . . , Sn} be a family of
sets. An intersection graph associated with F has F as the vertex set and two vertices Si and Sj are adjacent
if and only if i 6= j and Si∩Sj 6= ∅. It is interesting to study intersection graphs of sets with some restriction,
for example, sets which correspond to geometric objects such as intervals, spheres, boxes, axis-parallel lines,
etc. Many important graph classes arise out of such restrictions: interval graphs, circular arc graphs, unit-
disk graphs and grid-intersection graphs, to name a few. In this paper, we are concerned with intersection
graphs of 3-dimensional boxes. A 3-dimensional axis parallel box (3-box in short) is a Cartesian product of
3 closed intervals on the real line. A graph is said to have a 3-box representation if it can be represented as
the intersection graph of 3-boxes.

In the literature there are several results on representing a planar graph as the intersection graph of
various geometric objects. Among these, the most noted result is the circle packing theorem (also known as
the Koebe-Andreev-Thurston theorem) from which it follows that planar graphs are exactly the intersection
graphs of closed disks in the plane such that the intersections happen only at the boundaries. In [12],
Thomassen gave a similar representation for planar graphs with 3-boxes. He showed that every planar graph
has a strict 3-box representation, that is, intersections occur only in the boundaries of the boxes and two
boxes which intersect have precisely a 2-box (a rectangle) in common. Very recently, Felsner and Francis [7]
strengthened this result by showing that there exists a strict 3-box representation for a planar graph such
that each box is an isothetic cube. In [10,12], it was shown that every planar graph has a strict representation
using at most two rectangles per vertex. Scheinerman and West [11] showed that every planar graph is an
intersection graph of intervals such that each vertex is represented by at most three intervals on the real line.

We consider the question of whether a graph of maximum degree 3 has a 3-box representation. We note
that there exist graphs with maximum degree greater than 3 which do have a 3-box representation. For
example, it is easy to show that a K8 minus a perfect matching does not have a 3-box representation [9].
Considering the effort that has gone into discovering geometric representation theorems for planar graphs,
it is surprising that no such results are known up to now in the case of cubic graphs. It may be because of
the fact that intuitively cubic graphs are farther away from “geometry” compared to planar graphs. In this
paper we present the first such theorem (as far as we know) for cubic graphs:

Theorem 1. Every graph of maximum degree 3 has a 3-box representation with the restriction that two
boxes can intersect only at their boundaries.

1.1 k-box representations and boxicity

The concept of 3-box representation can be extended to higher dimensions. A k-box is a Cartesian product
of closed intervals [a1, b1]× [a2, b2]×· · ·× [ak, bk]. A graph G has a k-box representation if it is the intersection
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graph of a family of k-boxes in the k-dimensional Euclidean space. The boxicity of G denoted by box(G),
is the minimum integer k such that G has a k-box representation. Clearly, Theorem 1 can be rephrased as:
Every graph with maximum degree 3 has boxicity at most 3. The best known upper bound for the boxicity of

cubic graphs is 10; it follows from the bound box(G) ≤ 2
⌊

∆2

2

⌋

+2 by Esperet [6], where ∆ is the maximum

degree of the graph. In [2], it was conjectured that boxicity of a graph is O(∆). However, this was disproved
in [1] by showing the existence of graphs with boxicity Ω(∆ log∆). Theorem 1 implies that the conjecture
is true for ∆ = 3.

Our result also implies that any problem which is hard for cubic graphs is also hard for graphs with a
3-box representation. We list a few of such problems: crossing number, minimum vertex cover, Hamiltonian
cycle, maximum independent set, minimum dominating set and maximum cut.

We give a brief literature survey on boxicity. It was introduced by Roberts in 1969 [9]. Cozzens [4]
showed that computing the boxicity of a graph is NP-hard. This was later strengthened by Yannakakis [13]
and finally by Kratochv̀ıl [8] who showed that determining whether boxicity of a graph is at most two itself
is NP-complete. Adiga, Bhowmick and Chandran [1] showed that it is hard to approximate the boxicity of
even a bipartite graph within

√
n factor, where n is the order of the graph. In [5], Cozzens and Roberts

studied the boxicity of split graphs. Chandran and Sivadasan [3] showed that box(G) ≤ tree-width (G) + 2.
Chandran, Francis and Sivadasan [2] proved that box(G) ≤ 2χ(G2), where χ is the chromatic number and
G2 is the square of the graph.

Boxicity is a direct generalization of the concept of interval graphs. A graph is an interval graph if and
only if it can be expressed as the intersection of a family of intervals on the real line. Since a 1-box is an
interval, it follows that interval graphs are precisely the class of graphs with boxicity at most 1 1. Now we
present an alternate characterization of k-box representation in terms of interval graphs. This is used more
frequently than its geometric definition.

Lemma 1. A graph G has a k-box representation if and only if there exist k interval graphs I1, I2, . . . , Ik
such that V (Ii) = V (G), i = 1, 2, . . . , k and E(I1) ∩ E(I2) ∩ · · · ∩ E(Ik) = E(G).

Our proof of Theorem 1 uses Lemma 1; we construct 3 interval graphs such that the given cubic graph is
the intersection of these interval graphs.

We observe that there exist graphs with maximum degree 3 (and hence cubic graphs) with boxicity
strictly greater than 2. For example, Let G be a non-planar cubic graph and Gs be the graph obtained by
subdividing each edge once. Then, box(Gs) > 2. It is an easy exercise to prove this. One way is to show
that if Gs does have a 2-box representation, then a planar embedding for G can be derived from this box
representation, contrary to the initial assumption that G is a non-planar graph. This means that these graphs
do not have a 2-box representation, that is, they cannot be expressed as the intersection graphs of rectangles
on the plane. The rest of the paper is devoted to the proof of Theorem 1.

1.2 Notation

Let G be a graph. The notation (x, y) ∈ E(G) ((x, y) /∈ E(G)) means that x is (not) adjacent to y in G. For
U ⊆ V (G), G[U ] denotes the graph induced by U in G. The open neighborhood of U , denoted by N(U,G) is
the set {x ∈ V (G) \ U |∃y ∈ U such that (x, y) ∈ E(G)}. The length of a path is the number of edges in the
path. We consider an isolated vertex as a path of length 0. Suppose G and H are graphs defined on the same
vertex set. G ∩H denotes the graph with V (G ∩H) = V (G) (= V (H)) and E(G ∩H) = E(G) ∩ E(H).

Consider a non-empty set X and let Π be an ordering of the elements of X . Π denotes the reverse of Π ,
that is, for any x, y ∈ X , Π(x) < Π(y) if and only if Π(x) > Π(y). Let A and B be disjoint subsets of X .
The notation Π(A) < Π(B) implies the following: ∀a ∈ A, b ∈ B, Π(a) < Π(b).

Lemma 2. If every cubic graph has a 3-box representation, then, every graph of maximum degree 3 also has
a 3-box representation. The statement holds even when the intersections are restricted to the boundaries of
the boxes.

1 The only graph with boxicity 0 is the complete graph.
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Proof. Let H be a non-cubic graph with maximum degree 3. We will show that there exists a cubic graph H ′

such that H is an induced subgraph of H ′. Here is one way of constructing H ′ from H . Let D = 3|V (H)| −
∑

v∈V (H) d(v), where d(v) is the degree of v. Let CD be a D-length cycle such that V (CD) ∩ V (H) = ∅.

We construct H ′ as follows: Let V (H ′) = V (H) ∪ V (CD). H ′ contains all the edges contained in H and CD

and in addition, each vertex v ∈ V (H) is made adjacent to 3 − d(v) unique vertices from V (CD), where
d(v) is the degree of v. Clearly, H ′ is cubic and by Theorem 1, has a 3-box representation. Since H is an
induced subgraph of H ′, any box representation of H ′ can be converted to a box representation of H by
simply retaining only the boxes of vertices belonging to H . ⊓⊔

In view of Lemma 2, we note that it is enough to prove that a cubic graph has a 3-box representation.
Therefore, in our proof of Theorem 1, we will assume that the graph is cubic.

2 Structural prerequisites

2.1 Special cycles and paths

Definition 1. Special cycle: An induced cycle C is a special cycle if for all x ∈ C, C \ {x} is not a
subgraph of an induced cycle or path of size ≥ |C|+ 1.

Definition 2. Special path: An induced path P is a special path if

1. it is maximal in the sense that it is not a subgraph of an induced cycle or a longer induced path, and
2. for any end point of P , say x, P \ {x} is not a subgraph of an induced cycle of size ≥ |P | or an induced

path of length ≥ |P |+ 1.

Observation 1. Any connected graph with at least 3 vertices contains a special cycle or path.

This is easy to see. Among all sets of vertices which induce cycles or paths in the graph, consider the largest
sets. If one of these sets induces a cycle, then, clearly this is a special cycle since there is no larger induced
path or cycle in the graph. If none of them induces a cycle, then, each of these sets induces a special path
since there is no induced longer path or an induced cycle of the same size in the graph.

2.2 Partitioning the vertex set of a cubic graph

Let G be a cubic graph and let V = V (G). We partition V in two stages. In Algorithm 1, we obtain the
primary partition: V = S ⊎ N1 ⊎ A1. This is followed by a finer partitioning in Algorithm 2: N1 = R ⊎ N
and A1 = B ⊎ A.

Algorithm 1:

input : Cubic graph G

output: S ,N1,A1 such that V = S ⊎ N1 ⊎A1.
Let V ′ = V and S = ∅;1

while there is a connected component in G[V ′] with at least 3 vertices do2

Let T ⊆ V ′ be a set which induces a special cycle or path; // which exists by Observation 13

S ←− S ∪ T ;4

V ′ ←− V ′ \ {T ∪N(T,G[V ′])};5

end6

A1 = V ′;7

N1 = N(S , G);8

Observation 2. We have some easy observations from Algorithm 1:

3



1. S induces a collection of cycles and paths in G.
2. Every vertex in S has at least one neighbor in N1. Therefore, every vertex in N1 is adjacent to at most

two vertices in A1.
3. For any u ∈ S and v ∈ A1, u and v are not adjacent.
4. A1 induces a collection of isolated vertices and edges in G. This observation follows from the fact that

G[A1] does not contain any special cycle or path and therefore, from Observation 1, does not contain any
component with three or more vertices.

Algorithm 2:

input : Cubic graph G, N1, A1

output: N ,A,R,B such that N1 = R ⊎N and A1 = B ⊎ A.
Let R = B = ∅;1

foreach v ∈ N1 do2

// Recall that v is adjacent to at least one vertex in S and therefore to at most 2
vertices in A1.

if v is adjacent to two vertices A1 \ B, then3

Let X1(v) = N(v, G[A1 \ B]); // the two neighbors of v in A1 \ B4

Let X2(v) = N(X1(v), G[A1 \ B]); // neighbors of neighbors of v in A1 \ B5

R←− R ∪ {v};6

B ←− B ∪ (X1(v) ∪X2(v));7

end8

end9

N = N1 \ R;10

A = A1 \ B;11

Observation 3. Some observations from Algorithm 2.

1. Every vertex in N is adjacent to at most one vertex in A.
2. Every vertex in R is adjacent to one vertex in S and two vertices in B. This immediately implies that

(a) R is an independent set and (b) for any u ∈ R and v ∈ N ∪A, u and v are not adjacent.
3. Since B ⊆ A1, for any u ∈ B and v ∈ S, u and v are not adjacent, by Observation 2.3.
4. For any u ∈ B and v ∈ A, u and v are not adjacent. The proof is as follows. Since u ∈ B, it follows that

there exists a w ∈ R such that in Algorithm 2, u ∈ X1(w)∪X2(w). From Observation 2.4, u is adjacent
to at most one vertex in A1. If it does have a neighbor in A1, it must belong to X1(w) ∪X2(w) which is
a subset of B. Since A = A1 \ B, u is not adjacent to any vertex in A.

Observation 4. We have some observations regarding X1(·) and X2(·) which are defined in Algorithm 2.
Let v ∈ R.

1. |X1(v)| = 2.
2. Since X1(v) ∪ X2(v) ⊆ A1, from Observation 2.4 it follows that every vertex in X1(v) ∪ X2(v) has at

most one neighbor in A1 and this neighbor is in X1(v) ∪X2(v).
3. If the two vertices in X1(v) are adjacent, then, X2(v) is empty.
4. If X2(v) is not empty, then, again from Observation 2.4, every vertex in X2(v) is adjacent to exactly

one vertex in X1(v) and |X2(v)| ≤ 2.

2.2.1 Partitioning S:

We partition S into C, the set of vertices which induce special cycles and P , the set of vertices which induce
special paths. P is further partitioned into Pe, the set of end points and Pi, the set of interior points of all
the paths.
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Definition 3. Second end points of a path of length at least 2 are the interior vertices of the path which
are adjacent to at least one of its end points.

The set of second end points of the paths in P is denoted by P2e and P2i = Pi \ P2e.

Lemma 3. Every vertex in N1 is adjacent to at least one vertex in C ∪ Pi.

Proof. Let v ∈ N1. Since N1 = N(S, G), v is adjacent to at least one vertex in S. If v is not adjacent to
any vertex in C ∪ Pi, it implies that all its neighbors in S belong to Pe. Let P be the first path in P to be
extracted in Algorithm 1 with v as its neighbor. Since v is not adjacent to any vertex in Pi, it follows that
it is adjacent to at least one end point of P and none of its interior vertices. Since P is the first component
of S to be extracted with v as the neighbor, it means that v is still present in V ′ when P is chosen as the
special path. If v is adjacent to both the end points of P , then P ∪ {v} induces a cycle in G[V ′] and if v is
adjacent to only one end point, then P ∪ {v} induces a path in G[V ′] at that stage. In either case we have a
contradiction to the fact that P is a special path of G[V ′]. ⊓⊔

2.3 The graph induced by S ∪ R ∪ B

Lemma 4. For each u ∈ R, let Γ (u) = {u} ∪ X1(u) ∪ X2(u), where X1(·) and X2(·) are as defined in
Algorithm 2. Then,

1. R∪ B =
⊎

u∈R

Γ (u),

2. Γ (u) is a component in the graph induced by R∪ B, and
3. Γ (u) is isomorphic to one of the graphs illustrated in Figure 1.

Proof. From Algorithm 2, it is clear that R ∪ B =
⋃

u∈R
Γ (u). Therefore, to prove the first statement we

need to only show that for two distinct vertices u, v ∈ R, Γ (u)∩ Γ (v) = ∅. Let us assume that u was added
to R before v in the algorithm. Since any x ∈ X1(u) ∪X2(u) is present in B when v is being added to R, it
implies that x /∈ X1(v) ∪X2(v). Hence proved.

Note that Γ (u) is connected. We will show that no vertex in Γ (u) is adjacent to any vertex in Γ (v), for
any v which was added to R after u in Algorithm 2. Clearly, this will imply that Γ (u) is a component in
the graph induced by R∪ B. First, let us consider u. Since u is adjacent to one vertex in S, it has only two
neighbors in A1 and these two neighbors are in X1(u). This implies that it is not adjacent to any vertex in
Γ (v) since Γ (u) ∩ Γ (v) = ∅.

Consider any vertex x ∈ X1(u) ∪ X2(u). From Observation 4.2 and the fact that Γ (u) ∩ Γ (v) = ∅, we
can infer that x is not adjacent to any vertex in X1(v)∪X2(v). Now, suppose x is adjacent to v. Since x ∈ B
when v is being added to R, we infer that v is adjacent to at most one vertex in A1 \ B at that stage. This
implies that v does not satisfy the condition in Line 3 in the algorithm, a contradiction since v belongs to
R. Hence proved.

From Observation 4, it is easy to infer that each component Γ (u) is isomorphic to one of the five graphs
shown in Figure 1. Let X1(u) = {x1, x

′
1}. If x1 or x′

1 has a neighbor in X2(u), then, it will be denoted by x2

or x′
2 respectively. We have the following five graphs: In each graph, u is adjacent to x1 and x′

1.

(a) x1 is adjacent to x′
1, and therefore, X2(u) = ∅.

(b) x1 is not adjacent to x′
1 and X2(u) = ∅.

(c) x1 is not adjacent to x′
1 and X2(u) = {x2}.

(d) x1 is not adjacent to x′
1 and X2(u) = {x′

2}.
(e) x1 is not adjacent to x′

1 and X2(u) = {x2, x
′
2}. ⊓⊔

From Lemma 4 and Observations 3.3 and 3.4, it follows that every vertex in B is adjacent to either one
or two vertices in R ∪ B and no vertex in S ∪ A. This implies that every vertex in B is adjacent to either
one or two vertices in N . Based on this, we partition B into two parts:

Definition 4. B1 and B2: B1 is the set of vertices of B which have one neighbor in N and B2 is the set of
vertices of B which have two neighbors in N .
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x1 x′1

x′2

u

x1

u

(e)(d)(c)(b)(a)

x1 x′1 x′1x1
x2

x′1
x′2

x′1

x1
x2

Fig. 1. In the graph induced by R ∪ B, each component Γ (u), u ∈ R is isomorphic to one of the graphs
illustrated in the figure. Here, u has exactly two neighbors in B, x1 and x′

1. These neighbors if not adjacent
can each have at most one neighbor in B which are denoted by x2 and x′

2 respectively.

Recall that from Observation 3.2, each vertex of R has a unique neighbor in S. In fact, we can infer more:

Lemma 5. Let u ∈ R. The unique vertex of S to which u is adjacent to belongs to P2i.

Proof. Let x be the unique neighbor of u in S. Let a and b be the remaining neighbors of u. From Observation
3.2, a, b ∈ B. We need to show that x ∈ P2i. We will prove by contradiction. Let T be the special cycle or
path in S which contains x. Since T is the only component in S with v as a neighbor, it implies that in
Algorithm 1, v is in V ′ when T is being chosen as the special path or cycle. Since a, b ∈ B, it implies that
they belong to A1 and therefore, they too are present in V ′ when T is being chosen. Moreover, a and b are
not adjacent to any vertex in T (Observation 3.3). Now, we have the following cases to consider:

x ∈ C: This implies that T is a special cycle. Let x′ ∈ T be a vertex adjacent to x. Clearly, (T \{x′})∪{v, a}
induces a path of length |T |+ 1 in G[V ′] contradicting the fact that T is a special cycle.

x ∈ Pe: This implies that T is a special path. Since v is not adjacent to any other vertex in the path, T ∪{v}
induces a path of length |T |+ 1 in G[V ′], contradicting its maximality and thus T cannot be a special
path.

x ∈ P2e: Again, this implies that T is a special path. Let xe be an end point of T to which x is adjacent to.
Clearly, (T \ {xe}) ∪ {v, a} induces a path of length |T |+ 1 in G[V ′], contradicting the fact that T is a
special path.

Therefore, x ∈ P2i. ⊓⊔

Observation 5. We have the following observations due to Lemma 5.

1. Each vertex in C ∪ P2e is adjacent to exactly one vertex in N . The proof is as follows: Note that each
vertex in C ∪ P2e either belongs to a special cycle or is an interior vertex of a special path in G[C ∪ P ].
Therefore, it has only one neighbor in V \ (C ∪ P) and by Observation 2.2, it must belong to N1. By
Lemma 5, it does not belong to R. Hence, it belongs to N .

2. Every vertex in Pe is adjacent to exactly two vertices in N .

3. Every vertex in P2i is adjacent to exactly one vertex in R∪N = N1.

2.4 The graph induced by B2 ∪ Pe ∪ N

Lemma 6. B2 ∪ Pe is an independent set in G.

Proof. Let x, y ∈ Pe. If x and y are the end points of two different paths in P , clearly, they are not adjacent.
Since each path is special, it has at least 3 vertices which implies that if x and y are end points of the same
path, then they are not adjacent. Hence, Pe induces an independent set in G. Let x, y ∈ B2. By definition,
they have two neighbors each in N . Therefore, if x and y are adjacent, they induce a component in R ∪ B,
which contradicts Statement 3 of Lemma 4. Noting that Pe ⊆ S and B2 ⊆ B, from Observation 3.3, it follows
that no vertex in B2 is adjacent to any vertex in Pe. Hence proved. ⊓⊔
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Observation 6. Consider a vertex v ∈ B2 ∪ Pe. By the definition of B2 and Observation 5.2, it follows
that v is adjacent to exactly two vertices in N . By Lemma 6, v is not adjacent to any vertex in B2 ∪ Pe.
Therefore, in the graph induced by B2 ∪ Pe ∪ N , its degree is 2. Lemma 3 implies that every vertex in N is
adjacent to at most two vertices in B2 ∪ Pe ∪ N . From these two observations, we can infer the following
about the graph induced by B2 ∪ Pe ∪ N .

1. Its maximum degree is 2 and thus is a collection of paths and cycles.
2. All the end points of paths (which also includes isolated vertices) belong to N .
3. A vertex in N is adjacent to a vertex in A only if it is an end point of a path. The proof is as follows:

Let v ∈ N . It has at least one neighbor in S (Observation 2.2). If it has a neighbor in A, then it can
have at most one neighbor in B2 ∪ Pe ∪ N . Hence, proved.

Definition 5. Ne and Nint: N is partitioned into Ne, the set of end points of paths (which includes isolated
vertices) and Nint, the set of interior points of cycles and paths in G[B2 ∪ Pe ∪ N ].

In view of Observation 6.3, a vertex in N is adjacent to a vertex in A only if it belongs to Ne.

Definition 6. Type 1 and Type 2 cycles: Recall that by Observation 6.1, B2∪Pe∪N induces a collection
of cycles and paths. We classify the cycles in the following manner:

Type 1: Cycles whose vertices alternate between N and B2 ∪ Pe.
Type 2: Cycles which are not Type 1. From Lemma 6, it is easy to infer that such a cycle has at least one

pair of adjacent vertices which belong to N .

Lemma 7. If a vertex v ∈ N is adjacent to 2 vertices in B2 ∪ Pe, then its remaining neighbor belongs to
P2i. In other words, v has no neighbor in C ∪ P2e.

Proof. Let v ∈ N be such that it is adjacent to two vertices in B2 ∪ Pe. Let x1 and x2 be these neighbors.
From Lemma 3, it follows that v is adjacent to one vertex in C ∪ Pi. Let this vertex be y. We need to show
that y ∈ P2i.

Suppose T is the first special path or cycle chosen in Algorithm 1 with v as a neighbor. We will first show
that v, x1 and x2 are present in V ′ when T is being chosen. Since T is the first component of S with v as
its neighbor, it implies that v ∈ V ′ at that time. If any of x1 and x2 belongs to B2, then, it is in V ′ because
B2 ⊆ A1 ⊆ V ′ at any time in the algorithm. If any of x1 and x2, say x is in Pe, then again, since T is the
first component of S with v as the neighbor, it follows that x is an end point of either T or a special path
chosen after T . In either case, x belongs to V ′ when T is being chosen. The following observation is crucial
for the proof:

Consider any t ∈ {y, x1, x2}. If t /∈ T , it implies that it is not adjacent to any vertex in T , since otherwise
it would be present in N1 and this is not possible since by assumption y ∈ S and x1, x2 ∈ B2 ∪ Pe.

We will now show that if y ∈ C ∪ P2e, it contradicts the assumption that T is a special cycle or path.
Let us suppose that T is a special cycle. Since x1, x2 /∈ C, it follows that x1, x2 /∈ T and therefore,

y ∈ T . Let y′ ∈ T be adjacent to y. Since x1 /∈ T , it is not adjacent to any vertex of T and therefore,
(T \ {y′}) ∪ {v, x1} induces a path with |T |+ 1 vertices in G[V ′] contradicting the fact that T is a special
cycle. Therefore, from now on we will assume that T is a special path.

If y /∈ T , it implies that at least one of {x1, x2} belongs to T . If only one of them, say x1 ∈ T , then, since
x1 has to be an end point of T , T ∪ {v} induces a longer path in G[V ′] and if both x1, x2 ∈ T , then, T ∪ {v}
induces a cycle. In either case, we have a contradiction to the fact that T is a special path.

Suppose y ∈ T . Since we have assumed that y ∈ C ∪P2e, this means y is a second end point of T . Let p′e
be an end point of T adjacent to y and let pe be the other end point. If pe ∈ {x1, x2}, then, (T \ {p′e})∪ {v}
induces a cycle contradicting the fact that T is a special path. If pe /∈ {x1, x2}, it implies that at most
one vertex from {x1, x2} can be an end point of T . Without loss of generality, we assume that x1 is not
an end point of T . This implies that x1 /∈ T and therefore, is not adjacent to any vertex in T . Hence,
(T \ {p′e})∪{v, x1} induces a path with |T |+1 vertices, again contradicting the fact that T is a special path.
Therefore, y ∈ P2i. ⊓⊔
Observation 7. We can assume that |B2 ∪Pe∪N| ≤ n− 2. This is because, since G is cubic, it has a cycle
and therefore, we can always extract a special cycle with at least 3 vertices or a special path with at least 4
vertices from V . Thus, we can ensure that |S \ Pe| ≥ 2. This implies that, |B2 ∪ Pe ∪ N| ≤ n− 2.
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Ne Nint

N1

P2iP2e

C

V

S A1

P R

Pe Pi

AN

B2B1

B

Fig. 2. The partition of the vertex set V of the cubic graph. The first and second level partitions are due
to Algorithms 1 and 2 respectively. The partitioning of P is covered in the beginning of Section 2.2.1. The
partitioning of N and B are due to Definitions 5 and 4 respectively.

1 A C ∪ P using Observation 2.3 and the fact that A ⊆ A1

2 A ∪N R Observation 3.2(b)

3 A B Observation 3.4

4 C P follows directly from the definitions of C and P .
5 C ∪ Pe ∪ P2e R Lemma 5

6 C ∪ P B Observation 3.3

7 Pe Pe Lemma 6

8 Pe P2i follows directly from the definitions of Pe and P2i.

9 Nint A Observation 6.3 and Definition 5

10 R R Observation 3.2(a)

Table 1. Non-adjacency table: In every row, there is no edge between the set in the 1st column and the
set in the 2nd column in G.

2.5 A summary

In this section, we partitioned the vertex set V as follows: V = S⊎N1⊎A1, where S = C⊎P ,N1 = R⊎N and
A1 = B⊎A. Further, P = Pe⊎P2e⊎P2i and B = B1⊎B2. Therefore, V = C⊎Pe⊎P2e⊎P2i⊎N⊎R⊎B1⊎B2⊎A.
This partitioning of V is illustrated in Figure 2. Some of the observations and lemmas which we developed
will be frequently referred to in the sections to come. For the convenience of the reader, we have tabulated
them as follows. In Table 1, we have listed the pairs of sets X,Y ⊆ V which satisfy the property that in
G there is no edge between X and Y . The relevant observation or lemma is listed in the third column. In
Table 2, we list pairs of sets X,Y ⊆ V such that in G, every vertex of X has at most one neighbor in Y .
The corresponding observation or lemma can be found in the third column. In the fourth column, we give
information on whether the vertex in X has at most one neighbor or exactly one neighbor in Y .

3 Construction of a 3-box representation of G

In order to give a 3-box representation of G, we define three interval graphs I1, I2 and I3 and verify that
E(G) = E(I1) ∩ E(I2) ∩ E(I3). Let n = |V |, the number of vertices in G. For any v ∈ V , let f(v, Ij),
j = 1, 2, 3 denote the closed interval assigned to v in the interval representation of Ij . Further, let l(v, Ij)
and r(v, Ij) denote the left and right end points of f(v, Ij) respectively. In each interval graph, the interval
assigned to a vertex is based on the set it belongs to in the partition of V (illustrated in Figure 2). We will
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1 Ne A Observation 6.3 and Definition 5 at most one neighbor

2 B1 N Definition 4 exactly one neighbor

3 C ∪ P2e N Observation 5.1 exactly one neighbor

4 P2i R∪N Observation 5.3 exactly one neighbor

5 R P2i Lemma 5 exactly one neighbor

Table 2. Unique neighbor table: In every row, each vertex belonging to the set in the 1st column has
either (a) at most one neighbor OR (b) exactly one neighbor in the set given in the 2nd column.

also show that for every pair of adjacent vertices x and y, in at least one interval graph Ij , j ∈ {1, 2, 3}, either
l(x, Ij) = r(y, Ij) or l(y, Ij) = r(x, Ij). This is sufficient to prove that their corresponding boxes intersect
only at their boundaries.

3.1 Construction of I1

3.1.1 Vertices of A

We recall from Observation 2.4 that since A ⊆ A1, it induces a collection of isolated vertices and edges in
G.

Definition 7. Let ΠA be an ordering of A which satisfies the condition that the two end points of every
(isolated) edge are consecutively ordered.

The intervals assigned to the vertices of A are as follows:

An isolated vertex u is given a point interval as follows:

f(u, I1) = [2n+ΠA(u), 2n+ΠA(u)]. (1)

End points of an isolated edge (u, v): Without loss of generality, let ΠA(v) = ΠA(u) + 1. We assign the
intervals to u and v as follows:

f(u, I1) = [2n+ΠA(u), 2n+ΠA(u) + 0.5], (2)

f(v, I1) = [2n+ΠA(v)− 0.5, 2n+ΠA(v)]. (3)

Observation 8. Let x, y ∈ A such that ΠA(x) < ΠA(y). If they are adjacent in G, then, r(x, I1) = l(y, I1).
This follows from (2) and (3).

Lemma 8. The graph induced by A in I1 and G are identical, that is, I1[A] = G[A].

Proof. From the interval assignments (1), (2) and (3), we observe the following: for any x ∈ A, (a) the point
2n+ΠA(x) is an end point of f(x, I1) and (b) either f(x, I1) is a point interval or its length is 0.5.

Suppose x, y ∈ A such that ΠA(x) < ΠA(y). From the above observations it follows that x and y
are adjacent in I1 if and only if ΠA(y) = ΠA(x) + 1 and f(x, I1) = [2n + ΠA(x), 2n + ΠA(x) + 0.5] and
f(y, I1) = [2n+ΠA(y)− 0.5, 2n+ΠA(y)]. This implies that x was assigned an interval by (2) and y, by (3).
This happens only if x and y are the end points of an isolated edge in G[A]. Hence proved. ⊓⊔

3.1.2 Vertices of B2 ∪ Pe ∪ N

We define an ordering on this set.

Definition 8. Let Π1 be an ordering of B2 ∪ Pe ∪ N which satisfies the following properties. Let S be a
component induced by B2 ∪ Pe ∪ N . We recall from Section 2.4 that S is either a path or a cycle.
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1. Let S be a path with at least two vertices. Then, for one of the natural orderings of the vertices of S, say
p1p2 . . . pt, we have Π1(pi) = Π1(pi−1) + 1, 2 ≤ i ≤ t.

2. Suppose S is a cycle. We recall that S is either a Type 1 or a Type 2 cycle (Definition 6). Consider one
of the natural orderings of the vertices of S, say c1c2 . . . ctc1 such that if S is a Type 1 cycle, then c1 ∈ N
and if it is a Type 2 cycle, then c1, ct ∈ N . Then, we have, Π1(ci) = Π1(ci−1) + 1, 2 ≤ i ≤ t.

3. Let B2 ∪ Pe ∪ N = ΛType 1 ⊎ ΛType 2 ⊎ ΛPaths where, ΛType 1, ΛType 2 and ΛPaths are the sets of ver-
tices belonging to Type 1 cycles, Type 2 cycles and paths respectively. Then, we have Π1(ΛType 1) <
Π1(ΛType 2) < Π1(ΛPaths).

It is easy to verify that such an ordering exists. We also infer that if S1 and S2 are two different components
of G[B2 ∪ Pe ∪ N ], then, either Π1(S1) < Π1(S2) or Π1(S2) < Π1(S1).

Observation 9. ∀z ∈ B2 ∪ Pe ∪ N , Π1(z) < n − 1. This follows from the fact that |B2 ∪ Pe ∪ N| < n− 1
(Observation 7).

The interval assignments for the vertices of B2 ∪ Pe ∪ N are as follows:

For a vertex in a Type 1 cycle: Let S = c1c2 . . . ctc1 be a Type 1 cycle such that Π1(ci+1) = Π1(ci)+ 1,
1 ≤ i < t.

f(c1, I1) = [Π1(c1), Π1(ct)] ; (4)

f(ci, I1) = [Π1(ci), Π1(ci) + 1] , 1 < i < t; (5)

f(ct, I1) = [Π1(ct), Π1(ct) + 0.5] . (6)

Observation 10. Suppose S = c1c2 . . . ctc1 is a Type 1 cycle such that Π1(ci+1) = Π1(ci) + 1, 1 ≤ i < t.

1. For 1 < i < t, r(ci, I1) = l(ci+1, I1) and therefore, I1[S \ c1] = G[S \ c1]. This is because, from (5) and
(6), r(ci, I1) = Π1(ci) + 1 = Π1(ci+1) = l(ci+1, I1).

2. I1[S] is a supergraph of G[S]. The proof is as follows: c1 is adjacent to all the other vertices of S. This
follows from (4): l(ci, I1) = Π1(ci) ∈ f(c1, I1). From Point 1, ci is adjacent to ci+1, 2 ≤ i < t. Hence,
proved.

3. Let x ∈ Sx and y ∈ Sy, where Sx and Sy induce different Type 1 cycles. Then, (x, y) /∈ E(I1). The proof
is as follows: Without loss of generality, let Π1(Sx) < Π1(Sy). From (4–6), it follows that r(x, I1) ≤
max
a∈Sx

Π1(a) + 0.5 < min
b∈Sy

Π1(b) ≤ l(y, I1). Therefore, (x, y) /∈ E(I1).

For a vertex in a Type 2 cycle: Let S = c1c2 . . . ctc1 be a Type 2 cycle such that Π1(ci+1) = Π1(ci)+ 1,
1 ≤ i < t. We recall from the definition of Π1 that c1, ct ∈ N . They are assigned intervals as follows:

f(c1, I1) = [n+Π1(c1), n+Π1(ct)] , (7)

f(ct, I1) = [n+Π1(ct), n+Π1(ct) + 0.5] . (8)

The remaining vertices are assigned intervals as follows. For 1 < i < t,

if ci ∈ N , then, f(ci, I1) = [n+Π1(ci), n+Π1(ci) + 1] , (9)

if ci ∈ B2 ∪ Pe, then, f(ci, I1) = [n, n+Π1(ci) + 1] . (10)

Observation 11. Let S = c1c2 . . . ctc1 be a Type 2 cycle such that Π1(ci+1) = Π1(ci) + 1, 1 ≤ i < t.

1. I1[S] is a supergraph of G[S]. The proof is as follows: From (7–10), ∀c ∈ S, n+Π1(c) ∈ f(c, I1). From
(7), we note that ∀c ∈ S, n +Π1(c) ∈ f(c1, I1) and therefore, c1 is adjacent to all the other vertices of
S. From (9) and (10), for 1 < i < t, r(ci, I1) = n+Π1(ci) + 1 = n+Π1(ci+1) ∈ f(ci+1, I1). Therefore,
ci is adjacent to ci+1, 1 < i < t.

2. Let x, y ∈ S be two adjacent vertices in G such that neither x nor y is c1. If Π1(x) > Π1(y) and x ∈ N ,
then, l(x, I1) = r(y, I1). This follows by noting that Π1(x) = Π1(y) + 1 and subsequently applying it in
(8–10).
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For a vertex in a path: Let S = p1p2 . . . pt be a path such that Π1(ci+1) = Π1(ci) + 1, 1 ≤ i < t. By
Definition 5, p1, pt ∈ Ne. From Table 2 (row 1), they can be adjacent to at most one vertex in A. Taking
this into consideration, the interval assignments are as follows: Let p ∈ {p1, pt} ⊆ Ne:

if p is not adjacent to any vertex in A, then, f(p, I1) = [n+Π1(p), 2n] , (11)

if p is adjacent to a vertex a in A, then, f(p, I1) = [n+Π1(p), l(a, I1)] . (12)

Note that f(a, I1) is already defined in (1–3). Moreover, l(a, I1) > 2n ≥ n + Π1(p). Therefore, f(p, I1) is
well-defined in (12). If p is an interior point of the path, its interval assignment is as follows:

if p ∈ Nint, then, f(p, I1) = [n+Π1(p), n+Π1(p) + 1] , (13)

if p ∈ B2 ∪ Pe, then, f(p, I1) = [n, n+Π1(p) + 1] . (14)

Observation 12. Let S = p1p2 . . . pt be a path such that Π1(ci+1) = Π1(ci) + 1, 1 ≤ i < t.

1. I1[S] is a supergraph of G[S]. The proof is as follows: For all p ∈ S, n+Π1(p), n+Π1(p) + 1 ∈ f(p, I1).
This is easy to infer from (11–14) and the fact that Π1(p) < n − 1 (Observation 9). This implies that
for 1 ≤ i < t, pi is adjacent to pi+1. Hence, proved.

2. Let x, y ∈ S be two adjacent vertices in G. If Π1(x) > Π1(y), x ∈ N and y ∈ B2 ∪ Pe, then, l(x, I1) =
r(y, I1). This follows by noting that Π1(x) = Π1(y) + 1 and subsequently applying it in (11–14).

Observation 13. We have some observations regarding the intervals assigned to vertices of B2 ∪ Pe ∪ N .
We repeatedly make use of Observation 9.

1. If z belongs to a Type 1 cycle, then, (a) l(z, I1) = Π1(z) and (b) 1 ≤ l(z, I1) < r(z, I1) < n. The proof is
as follows: Let z belong to the Type 1 cycle Sz = c1c2 . . . ctc1 such that Π1(ci+1) = Π1(ci)+ 1, 1 ≤ i < t.
From (4–6), it immediately follows that l(z, I1) = Π1(z), l(z, I1) < r(z, I1) and r(z, I1) ≤ Π1(ct)+ 0.5 <
(n− 1) + 0.5 < n.

2. If z ∈ N belongs to a Type 2 cycle or a path then, l(z, I1) = n+Π1(z) and therefore, n < l(z, I1) < 2n−1.
This follows from (7–9) for a Type 2 cycle and (11–13) for a path.

3. If z ∈ B2 ∪ Pe belongs to a Type 2 cycle or a path then, l(z, I1) = n and r(z, I1) = n+Π1(z) + 1 < 2n.
This follows from (10) for a Type 2 cycle and (14) for a path..

4. If x, y ∈ N such that Π1(x) < Π1(y), then, l(x, I1) + 1 ≤ l(y, I1). The proof is as follows: If x and y
belong to Type 1 cycles, then by Point 1 in this observation, l(x, I1) + 1 = Π1(x) + 1 ≤ Π1(y) = l(y, I1).
If y belongs to a Type 1 cycle, then by Definition 8 (Point 3), x also belongs to a Type 1 cycle. Therefore,
it is not possible that y is in a Type 1 cycle and x is not. If x is in a Type 1 cycle and y is not, then,
l(x, I1) + 1 = Π1(x) + 1 < n+Π1(y) = l(y, I1). Finally, if both belong to a Type 2 cycle or a path, then,
l(x, I1) + 1 = n+Π1(x) + 1 ≤ n+Π1(y) = l(y, I1) (from Point 2 in this observation).

5. If x belongs to a Type 1 cycle and y belongs to either a Type 2 cycle or a path, then, x and y are not
adjacent in I1. The proof is as follows: From Point 1 in this observation, r(x, I1) < n and from Points
2 and 3, l(y, I1) ≥ n.

6. If x ∈ N is adjacent to a ∈ A, then, r(x, I1) = l(a, I1). The proof is as follows: By Table 1 (row 9),
x ∈ Ne and by Table 2 (row 1), a should be the only neighbor of x in A. The interval assignment for x
is given in (12) where, r(x, I1) = l(a, I1).

Lemma 9. I1[A ∪ B2 ∪ Pe ∪N ] is a supergraph of G[A ∪ B2 ∪ Pe ∪N ].

Proof. Let x, y ∈ A ∪ B2 ∪ Pe ∪ N be two adjacent vertices in G. If x, y ∈ A, then, by Lemma 8 they are
adjacent in I1. Let x, y ∈ B2∪Pe∪N . They have to belong to the same component in G[B2∪Pe∪N ], which
is either a Type 1 cycle, Type 2 cycle or a path. By Observations 10.2, 11.1 and 12.1, x and y are adjacent
in I1.

Now it remains to be shown that if x ∈ A and y ∈ B2 ∪ Pe ∪ N , then they are adjacent in I1. Noting
that B2 ⊆ B and Pe ⊆ P , y /∈ B2 ∪ Pe (see Table 1, rows 1 and 3). Therefore, y ∈ N . By Observation 13.6,
r(y, I1) = l(x, I1). Therefore, x is adjacent to y in I1. Hence proved. ⊓⊔
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3.1.3 Vertices of B1 ∪ P2e

Let v ∈ B1 ∪P2e. From Table 2 (rows 2 and 3), we note that v has a unique neighbor in N , say v′. f(v′, I1)
is already defined in Section 3.1.2.

if v ∈ B1, then, f(v, I1) = [0, l(v′, I1)] , (15)

if v ∈ P2e, then, f(v, I1) = [−1, l(v′, I1)] . (16)

Lemma 10. For any x ∈ B1 ∪ P2e, r(x, I1) > n and therefore, [0, n] ⊂ f(x, I1).

Proof. From Table 2 (rows 2 and 3), x has a unique neighbor in N , say x′. From (15) and (16), r(x, I1) =
l(x′, I1). We will now show that x′ does not belong to a Type 1 cycle in the graph induced by B2 ∪ Pe ∪N .
Suppose x ∈ B1. Since N ⊆ N1, by Lemma 3, x′ is adjacent to at least one vertex in C ∪ Pi. Since x ∈ B1,
x′ cannot be adjacent to two vertices in B2 ∪ Pe and hence cannot belong to a Type 1 cycle. Now suppose
x ∈ P2e. If x

′ belongs to a Type 1 cycle, then it has two neighbors in B2 ∪ Pe. By Lemma 7, the remaining
neighbor of x′, that is x, does not belong to P2e, which is a contradiction.

Thus, x′ belongs to either a Type 2 cycle or a path in B2 ∪Pe ∪N . From Observation 13.2, l(x′, I1) > n
and therefore, r(x, I1) > n. From the interval assignments for x in (15) and (16), it immediately follows that
[0, n] ⊂ f(x, I1). ⊓⊔

3.1.4 Vertices of R

∀v ∈ R, f(v, I1) = [−1, n] . (17)

Consider the set of vertices which have been assigned intervals until now: A∪(B2∪Pe∪N )∪(B1∪P2e)∪R =
V \ (P2i ∪ C).

Lemma 11. I1[V \ (P2i ∪ C)] is a supergraph of G[V \ (P2i ∪ C)].

Proof. Let x, y ∈ V \ (P2i ∪ C) be two adjacent vertices in G. If x, y ∈ A ∪ B2 ∪ Pe ∪ N , then by Lemma 9,
x is adjacent to y in I1. Let x ∈ B1 ∪ P2e ∪R. By Lemma 10, [0, n] ⊂ f(x, I1).

If y ∈ B1 ∪ P2e, again by Lemma 10, [0, n] ⊂ f(y, I1) and if y ∈ R, then by (17), [0, n] ⊂ f(y, I1) and
therefore, x is adjacent to y. If y ∈ A, then, since B1 ⊆ B and P2e ⊆ P , by Table 1 (rows 1–3) x cannot
be adjacent to y in G. Suppose y ∈ B2 ∪ Pe. If y belongs to a Type 1 cycle, then by Observation 13.1(b),
f(y, I1) ⊂ [1, n]. Otherwise, from Observation 13.3, l(y, I1) = n. In either case, x is adjacent to y in I1.
Finally, suppose y ∈ N . By Table 1 (row 2), x /∈ R, which implies that x ∈ B1 ∪ P2e. From Table 2 (rows 2
and 3), y is the unique neighbor of x in N . By (15) and (16), r(x, I1) = l(y, I1) and therefore, x and y are
adjacent in I1. Hence proved. ⊓⊔

3.1.5 Vertices of P2i

Suppose v ∈ P2i. Let v
′ be its unique neighbor in R∪N (see Table 2 row 4). Note that f(v′, I1) is already

defined Sections 3.1.2 and 3.1.4.

if v′ ∈ R, then, f(v, I1) = [−1,−1] , (18)

if v′ ∈ N , then, f(v, I1) = [−1, l(v′, I1)] . (19)

Lemma 12. I1[V \ C] is a supergraph of G[V \ C].
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Proof. Let x, y ∈ V \ C be two adjacent vertices in G. By Lemma 11, if x, y ∈ V \ (C ∪ P2i), then, they are
adjacent in I1. Suppose x ∈ P2i. By definition, x is an interior vertex of a special path in P and therefore,
it is adjacent to two vertices from the path. Moreover, it is not adjacent to any end point of this path since
otherwise it would be present in P2e. Therefore, two of the neighbors of x are in P2i ∪P2e. By Table 2 (row
4), the third neighbor of x has to be in R ∪ N . From this we infer that y ∈ P2i ∪ P2e ∪ R ∪ N . Note that
l(x, I1) = −1 by (18) and (19). If y ∈ P2i ∪ P2e ∪ R, then by the interval assignments (16–19), it follows
that l(y, I1) = −1. If y ∈ N , then, by (19), r(x, I1) = l(y, I1). In either case, x is adjacent to y in I1. Hence
proved. ⊓⊔

Observation 14. If x ∈ P2i and y ∈ R are adjacent in G, then, r(x, I1) = l(y, I1). From Table 2 (row 4),
y is the only neighbor of x in R∪N . The interval assignment for x is given by (18) and for y by (17), from
which it follows that r(x, I1) = l(y, I1) = −1.

3.1.6 Vertices of C

We recall that C induces a collection of cycles in G.

Definition 9. Notation η(·) and special vertex: We recall from Table 2 (row 3) that every vertex x ∈ C
has a unique neighbor in N . We denote this neighbor by η(x). We define a vertex c ∈ C as the special vertex
of C if l(η(c), I1) = min

c′∈C
l(η(c′), I1). Note that η(c) is already assigned an interval in Section 3.1.2.

Suppose C is a cycle in C. Let C = c1c2 . . . ctc1 be a natural ordering of the vertices of C such that c1 is the
special vertex of C. The interval assignments are as follows:

f(c1, I1) = [l(η(c1), I1), l(η(c1), I1)] ,

f(ci, I1) =

{

[l(η(c1), I1), l(η(ci), I1) + 0.5] , i = 2, t,
[l(η(c1), I1) + 0.5, l(η(ci), I1) + 0.5] , otherwise.

(20)

Since l(η(c1), I1) < l(η(ci), I1) for i 6= 1, we observe that the intervals are well-defined.

Observation 15. Let C = c1c2 . . . ctc1 be a cycle in C with c1 being the special vertex.

1. c1 is adjacent to only c2 and ct in I1. Further, r(c1, I1) = l(c2, I1) = l(ct, I1). This is easy to infer from
(20).

2. C \ {c1} is a clique in I1. Since l(η(c1), I1) ≤ l(η(c), I1), c ∈ C, from (20), it follows that ∀c ∈ C \ {c1},
l(η(c1) + 0.5, I1) ∈ f(c, I1).

3. For every vertex c ∈ C, l(η(c), I1) ∈ f(c, I1) and therefore, c is adjacent to η(c) in I1. The proof fol-
lows: Since c1 is a special vertex, by definition, l(η(c1), I1) ≤ l(η(c), I1), and therefore from the interval
assignments in (20), l(η(c), I1) ∈ f(c, I1).

Now we will show the following:

Lemma 13. I1 is a supergraph of G.

Proof. Let x, y ∈ V be two adjacent vertices in G. If x, y ∈ V \C, then, by Lemma 12, x and y are adjacent in
I1. If x, y ∈ C, then, they belong to the same component (which is a special cycle) in G[C]. From Observation
15 (Points 1 and 2), we can infer that they are adjacent in I1. The only case remaining is the one in which
one vertex is in C and the other in V \ C.

Suppose x ∈ C and y ∈ V \ C. Since x belongs to a special cycle in C, it has two neighbors in the cycle.
The remaining neighbor is y. By Table 2 (row 3), y ∈ N . Moreover, by the notation introduced in Definition
9, y = η(x). From Observation 15.3, it follows that y is adjacent to x in I1. Hence proved. ⊓⊔

Recall that we need to show that E(G) = E(I1) ∩ E(I2) ∩ E(I3). For this, we will have to prove that
every missing edge in G is missing in at least one of the three interval graphs. Note that there is no edge
between A and V \ (A∪N ) (Table 1 rows 1–3). Now we will show that all these missing edges of G are also
missing in I1.
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Lemma 14. Let x ∈ A and y ∈ V \ (A ∪N ). Then, (x, y) /∈ E(I1).

Proof. From (1–3), l(x, I1) > 2n. Now we will show that r(y, I1) ≤ 2n, from which it immediately follows
that (x, y) /∈ E(I1). If y ∈ B2 ∪Pe, from Observations 13.1 and 13.3, r(y, I1) ≤ 2n− 1. If y ∈ B1 ∪P2e, then
by (15) and (16), r(y, I1) = l(z, I1) for some z ∈ N . If y ∈ P2i, then by (18) and (19), either r(y, I1) = −1
or r(y, I1) = l(z, I1) for some z ∈ N . If y ∈ C, then from (20), r(y, I1) ≤ l(z, I1) + 0.5 for some z ∈ N . If
y ∈ R, then by (17), r(y, I1) = n. From Observations 13.1 and 13.2, ∀z ∈ N , l(z, I1) < 2n− 1 and therefore,
it follows that in each case r(y, I1) < 2n. Thus, (x, y) /∈ E(I1). Hence proved. ⊓⊔

3.2 Construction of I2

3.2.1 Vertices of A

We recall the interval assignment for A in I1 (see Section 3.1.1). Let ΠA be the reverse of ΠA. The interval
assignments for vertices of A in I2 are as follows:

An isolated vertex u is given a point interval as follows:

f(u, I2) = [n+ΠA(u), n+ΠA(u)]. (21)

End points of an isolated edge (u, v): Without loss of generality, let ΠA(v) = ΠA(u) + 1. This implies
that ΠA(v) = ΠA(u)− 1. We assign the intervals to u and v as follows:

f(u, I2) = [n+ΠA(u)− 0.5, n+ΠA(u)],

f(v, I2) = [n+ΠA(v), n+ΠA(v) + 0.5].
(22)

Note that the two intervals intersect at n+ΠA(u)− 0.5 = n+ΠA(v) + 0.5.

Observation 16. The graph induced by A in I2 and G are identical, that is, I2[A] = G[A]. The proof is
similar to that of Lemma 8.

3.2.2 Vertices of N

Let v ∈ N . From Table 2 (row 1), v is adjacent to at most one vertex in A.

if v is not adjacent to any vertex in A, then, f(v, I2) = [0, n], (23)

if v is adjacent to vertex a in A, then, f(v, I2) = [0, l(a, I2)] . (24)

Note that l(a, I2) is already defined in (21) and (22) and satisfies, l(a, I2) > n. Hence, we have the following
observation.

Observation 17. In I2, ∀x ∈ N , [0, n] ⊆ f(x, I2).

Lemma 15. I2[A ∪N ] is a supergraph of G[A ∪N ].

Proof. Let x, y ∈ A ∪ N be two adjacent vertices in G. If x, y ∈ A, from Observation 16, (x, y) ∈ E(I2). If
x, y ∈ N , from Observation 17, (x, y) ∈ E(I2). If x ∈ N and y ∈ A, then by Table 1 (row 9) and Table 2 (row
1), x ∈ Ne and y is its only neighbor in A. From (24), r(x, I2) = l(y, I2) and therefore, (x, y) ∈ E(I2). ⊓⊔

Lemma 16. If x ∈ N and y ∈ A such that (x, y) /∈ E(G), then, (x, y) /∈ E(I1 ∩ I2).

Proof. Suppose x is not adjacent to any vertex in A. In I2, by (23), r(x, I2) = n and by (21) and (22),
l(y, I2) > n and therefore, (x, y) /∈ I2. Let us assume that x is adjacent to some vertex in A, say a. From
Table 1 (row 9), x ∈ Ne and by Table 2 (row 1), a is the only neighbor of x in A. From the interval assignment
in (12), r(x, I1) = l(a, I1) and from (24) r(x, I2) = l(a, I2). If ΠA(a) < ΠA(y), then, l(a, I1) < l(y, I1) (this
is easy to infer from (1–3)) and therefore, (x, y) /∈ I1. Otherwise, since ΠA(a) > ΠA(y), it implies that
ΠA(a) < ΠA(y) which in turn implies that l(a, I2) < l(y, I2) (see interval assignments in (21) and (22)).
Therefore, (x, y) /∈ E(I2). ⊓⊔
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3.2.3 Vertices of C ∪ P

We recall that C ∪ P induces a collection of special cycles and special paths in G.

Definition 10. Π2 is an ordering of C ∪ P such that the following properties are satisfied:

1. Let P be a path in P. For a natural ordering of P , say p1p2 . . . pt, we have Π2(pi) = Π2(pi−1) + 1,
2 ≤ i ≤ t.

2. Suppose C is a cycle in C. For a natural ordering of C, say c1c2 . . . ctc1, where c1 is the special vertex
(recall Definition 9), we have Π2(ci) = Π2(ci−1) + 1, 2 ≤ i ≤ t.

It is easy to see that such an ordering Π2 exists. Also note that if S1 and S2 are two different components
of G[C ∪ P ], then, either Π2(S1) < Π2(S2) or Π2(S2) < Π2(S1). The interval assignments are as follows:

For the vertices of a path: Suppose P = p1p2 . . . pt such that Π2(pi+1) = Π2(pi) + 1, 1 ≤ i < t.

f(pi, I2) = [Π2(pi), Π2(pi) + 1] , 1 ≤ i < t,
f(pt, I2) = [Π2(pt), Π2(pt) + 0.5] .

(25)

Observation 18. Let P = p1p2 . . . pt be a special path from P such that Π2(pi+1) = Π2(pi) + 1, 1 ≤ i < t.
Then, for 1 < i ≤ t, l(pi, I2) = r(pi−1, I2) and hence I2[P ] = G[P ].

For the vertices of a cycle: Suppose C = c1c2 . . . ctc1 such that Π2(ci+1) = Π2(ci) + 1, 1 ≤ i < t.

f(c1, I2) = [Π2(c1), Π2(ct)] ,
f(ci, I2) = [Π2(ci), Π2(ci) + 1] , 1 < i < t,
f(ct, I2) = [Π2(ct), Π2(ct) + 0.5] .

(26)

Observation 19. Suppose C = c1c2 . . . ctc1 is a special cycle from C such that Π2(ci+1) = Π2(ci) + 1,
1 ≤ i < t.

1. For 2 ≤ i ≤ t, l(ci+1, I2) = r(ci, I2) and therefore, I2[C \ c1] = G[C \ c1].
2. I2[C] is a supergraph of G[C]. The proof is as follows: c1 is adjacent to all the other vertices of C in I2

and from Point 1 in this observation, I2[C \ c1] = G[C \ c1].

Observation 20. For every x ∈ C ∪P and y ∈ N , f(x, I2) ⊂ f(y, I2). The proof is as follows: G is a cubic
graph whereas G[C ∪ P ] has maximum degree 2 and therefore, C ∪ P 6= V . This implies that ∀z ∈ C ∪ P,
Π2(z) < n. Taking this into consideration, from interval assignments (25) and (26) we can infer that
0 < l(x, I2) < r(x, I2) < n and therefore, f(x, I2) ⊂ [0, n]. From Observation 17, [0, n] ⊆ f(y, I2). Hence
proved.

Lemma 17. If x, y ∈ C ∪ P belong to different components in G[C ∪ P ], then, (x, y) /∈ E(I2).

Proof. Let x ∈ Sx and y ∈ Sy, where Sx and Sy are two different components of G[C ∪ P ]. Without loss
of generality we will assume that Π2(Sx) < Π2(Sy). Irrespective of whether Sx (or Sy) induces a path or
a cycle in G[C ∪ P ], from (25) and (26), it follows that r(x, I2) ≤ max

a∈Sx

Π2(a) + 0.5 < min
b∈Sy

Π2(b) ≤ l(y, I2).

Therefore, (x, y) /∈ E(I2). ⊓⊔

Lemma 18. The graph induced by C ∪P in G and I1 ∩ I2 are identical, that is, G[C ∪P ] = (I1 ∩ I2)[C ∪P ].

Proof. Let x, y ∈ C ∪ P . First we will show that if (x, y) ∈ E(G), then (x, y) ∈ E(I1 ∩ I2). Clearly, from
Lemma 13, (x, y) ∈ E(I1). Since x and y are adjacent in G, they belong to the same path or cycle in G[C∪P ],
say S. From Observations 18 and 19.2, it follows that I2[S] is a supergraph of G[S]. Therefore, (x, y) ∈ E(I2).
Hence, (x, y) ∈ E(I1 ∩ I2).
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Fig. 3. The interval assignments for each component Γ (u), u ∈ R induced by R ∪ B in the interval graph
I2. The dotted vertical lines are used to indicate that the concerned intervals intersect exactly at their end
points, that is, in (a) r(x1, I2) = l(x′

1, I2), in (c) r(x2, I2) = l(x1, I2), in (d) l(x′
2, I2) = r(x′

1, I2) and in (e)
r(x2, I2) = l(x1, I2) and l(x′

2, I2) = r(x′
1, I2).

Now we will show that if (x, y) /∈ E(G), then, either (x, y) /∈ E(I1) or (x, y) /∈ E(I2). There are two
cases to consider: (1) x and y belong to different components in G[C ∪ P ] and (2) they belong to the same
component. If it is Case (1), then by Lemma 17, (x, y) /∈ E(I2). If it is Case (2), then, let x, y ∈ S, where
S is a component of G[C ∪ P ]. If S is a special path, then by Observation 18, I2[S] = G[S] and therefore,
(x, y) /∈ E(I2). Suppose S is a special cycle. Let S = c1c2 . . . ctc1, where c1 is the special vertex. If neither x
nor y is c1, then, they are not adjacent in I2. This is because, by Observation 19.1, I2[C \{c1}] = G[C \{c1}].
Suppose x = c1, then clearly, y 6= c2, ct. By Observation 15.1, in I1, c1 is adjacent to only c2 and ct. Thus,
x and y are not adjacent in I1. Hence, (x, y) /∈ E(I1 ∩ I2). ⊓⊔

Lemma 19. I2[A ∪N ∪ C ∪ P ] is a super graph of G[A ∪N ∪ C ∪ P ].

Proof. Let x, y ∈ A ∪ N ∪ C ∪ P be two adjacent vertices in G. If x, y ∈ A ∪ N , then by Lemma 15,
(x, y) ∈ E(I2) and if x, y ∈ C ∪ P , then, from Lemma 18 we can infer that (x, y) ∈ E(I2). Therefore, we will
assume that x ∈ A ∪N and y ∈ C ∪ P . By Table 1 (row 1), x /∈ A and hence, x ∈ N . From Observation 20,
f(y, I2) ⊂ f(x, I2). Therefore, (x, y) ∈ E(I2). ⊓⊔

3.2.4 Vertices of R ∪ B

From Lemma 4, we recall that each component in R∪B is isomorphic to one of the graphs shown in Figure 1.
Further, each component contains exactly one vertex from R and is uniquely identified by it; by the notation
introduced in Lemma 4, for every u ∈ R, Γ (u) denotes the component containing u in G[R∪ B].
Definition 11. Notation β(·): In the graph induced by R ∪ B, consider each component Γ (u), u ∈ R.
From Table 2 (row 5), u is adjacent to a unique vertex in P2i. We denote this vertex by β(u).

Interval assignments for vertices of R∪B: Let us consider a component of G[R∪B], say Γ (u), u ∈ R.
From (25), we note that β(u) is assigned a unit interval in I2. The interval assignments for the vertices of
Γ (u) is illustrated in Figure 3.

Remark 1. Let u ∈ R. Every vertex of Γ (u) is assigned a strict sub-interval of f(β(u), I2) and none of these
intervals contains any end point of f(β(u), I2).

Lemma 20. Let z ∈ R and Γ (z) be a component of G[R∪ B].

1. Every vertex in Γ (z) is adjacent to only one vertex in C ∪ P and that is β(z).
2. The graph induced by R∪ B in I2 and in G are identical, that is, I2[R∪ B] = G[R∪ B].

16



Proof. Consider the vertex β(z). Let fo(β(z), I2) denote the open interval (l(β(z), I2), r(β(z), I2)). From
Definition 11, we recall that β(z) ∈ P2i. We first prove the following:

Claim 1. Let p ∈ C ∪ P such that p 6= β(z). Then, fo(β(z), I2) ∩ f(p, I2) = ∅.

Proof. If β(z) and p belong to different components in G[C ∪ P ], then by Lemma 17, (β(z), p) /∈ E(I2) and
therefore, their intervals do not intersect. Suppose β(z) and p are in the same component. Since β(z) ∈ P2i,
β(z) and p belong to a special path. By (25), it follows that f(β(z), I2) and f(p, I2) can intersect only at
l(β(z), I2) or r(β(z), I2). Hence proved.

By Remark 1, for every x ∈ Γ (z), f(x, I2) ⊆ fo(β(z), I2). This implies that x is adjacent to β(z) in I2 and
by Claim 1, x is not adjacent to any other vertex from C ∪ P . Thus, we have proved the first statement.

Suppose x ∈ Γ (z) and y ∈ Γ (z′), where z 6= z′. We first note that β(z) 6= β(z′). This is because, since
β(z) ∈ P2i, in G[C ∪ P ], it is the interior vertex of a special path and therefore, two of its neighbors belong
to P . Since its remaining neighbor is z, it cannot be adjacent to z′. By Remark 1, f(x, I2) ⊆ fo(β(z), I2)
and f(y, I2) ⊆ fo(β(z

′), I2). From Claim 1, fo(β(z), I2) ∩ fo(β(z
′), I2) = ∅ and therefore, x is not adjacent

to y. From Figure 3, it is easy to see that I2[Γ (z)] = G[Γ (z)] ∀z ∈ R. Therefore, I2[R∪ B] = G[R∪ B].
Observation 21. Here are some immediate consequences of Lemma 20.

1. If x ∈ R and y ∈ P2i such that (x, y) /∈ E(G), then, (x, y) /∈ E(I2). This follows from noting that
y 6= β(x) and subsequently applying Lemma 20 (Statement 1).

2. For any x ∈ R ∪ B and y ∈ C ∪ Pe ∪ P2e, (x, y) /∈ E(I2). The proof is as follows: Let x ∈ Γ (z), z ∈ R.
From Lemma 20 (Statement 1), x is not adjacent to any vertex in C ∪ P other than β(z) in I2. From
Definition 11, β(z) ∈ P2i and therefore, y 6= β(z).

Lemma 21. I2 is a supergraph of G.

Proof. Let x and y be two adjacent vertices in G. If x, y ∈ A∪N ∪C∪P , then, by Lemma 19, (x, y) ∈ E(I2).
If x, y ∈ R ∪ B, then, by Lemma 20 (Statement 2), (x, y) ∈ E(I2). The only remaining case is when
x ∈ A∪N ∪ C ∪ P and y ∈ R∪B. Let Γ (z), z ∈ R be the component in G[R∪B] containing y. By Table 1
(rows 2, 3, 5 and 6), x /∈ A ∪ C and therefore, x ∈ P ∪ N .

Suppose x ∈ P . By Table 1 (row 6), y /∈ B. Since by assumption y ∈ R ∪ B, it implies that y ∈ R,
which in turn implies that z = y as z is the only vertex from R in Γ (z). From Table 1 (row 5), we can
infer that x ∈ P2i. Now by Definition 11, x = β(y). By Lemma 20 (Statement 1), y is adjacent to x in
I2. Finally, if x ∈ N , then by Observation 20, f(x, I2) ⊃ f(β(z), I2), since β(z) ∈ P2i ⊂ P . By Remark 1,
f(y, I2) ⊂ f(β(z), I2). Therefore, f(y, I2) ⊂ f(x, I2) and x is adjacent to y in I2. ⊓⊔

3.3 Construction of I3

3.3.1 Vertices of B2 ∪ Pe ∪ N

We recall the notations and interval assignments developed for this set in I1, in particular the definition of
Π1 (Definition 8).

For a vertex in a Type 1 cycle: Let S = c1c2 . . . ctc1 be a Type 1 cycle such that Π1(ci+1) = Π1(ci)+ 1,
1 ≤ i < t. We recall that c1 ∈ N and ct ∈ B2 ∪ Pe. The interval assignments are as follows: For 1 ≤ i < t,

if ci ∈ N , then, f(ci, I3) = [Π1(ci), Π1(ci) + 1] , (27)

if ci ∈ B2, then, f(ci, I3) = [Π1(ci), n] , (28)

if ci ∈ Pe, then, f(ci, I3) = [Π1(ci), n+ 1] . (29)

The interval assignment for ct is as follows:

if ct ∈ B2, then, f(ct, I3) = [Π1(c1) + 1, n] , (30)

if ct ∈ Pe, then, f(ct, I3) = [Π1(c1) + 1, n+ 1] , (31)
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Observation 22. Consider a Type 1 cycle S = c1c2 . . . ctc1, such that Π1(ci+1) = Π1(ci) + 1, 1 ≤ i < t.

1. I3[S] is a supergraph of G[S]. The proof is as follows: From Observation 9, Π1(ci) < n − 1. Using this
in (27–29), we note that for 1 ≤ i < t, l(ci, I3) = Π1(ci) and Π1(ci) + 1 ∈ f(ci, I3), and therefore, ci is
adjacent to ci+1 in I3. Next, from (30) and (31), it is easy to infer that f(ct, I3) contains Π1(ci) + 1,
1 ≤ i ≤ t. Therefore, ct is adjacent to all the other vertices of the cycle. Hence proved.

2. r(c1, I3) = l(c2, I3) = l(ct, I3).

Lemma 22. Let x ∈ N and y ∈ B2 ∪ Pe ∪ N be such that x ∈ Sx and y ∈ Sy where both Sx and Sy induce
Type 1 cycles. If (x, y) /∈ E(G), then (x, y) /∈ E(I1 ∩ I3).

Proof. If Sx 6= Sy, by Observation 10.3, (x, y) /∈ E(I1). Suppose Sx = Sy = S. Let S = c1c2 . . . ctc1 such that
Π1(ci+1) = Π1(ci) + 1, 1 ≤ i < t. If neither x nor y is c1, then by Observation 10.1, they are not adjacent
in I1 since I1[S \ {c1}] = G[S \ {c1}]. If x = c1, then, y = cj for some j 6= 2, t. In I3, noting that c1 ∈ N ,
from (27), r(x, I3) = r(c1, I3) = Π1(c1) + 1. From (27–29) l(y, I3) = Π1(y) = Π1(cj) > Π1(c1) + 1. Hence,
(x, y) /∈ E(I3). ⊓⊔

For a vertex in a Type 2 cycle: Let S = c1c2 . . . ctc1 be a Type 2 cycle such that Π1(ci+1) = Π1(ci)+ 1,
1 ≤ i < t. We recall from Definition 8 (Point 2) that c1, ct ∈ N . They are assigned intervals as follows:

f(c1, I3) = [Π1(c1), Π1(c1) + 1] , (32)

f(ct, I3) = [Π1(c1) + 1, Π1(ct) + 0.5] , (33)

For ci, 1 < i < t,

if ci ∈ N , then, f(ci, I3) = [Π1(ci), Π1(ci) + 1] , (34)

if ci ∈ B2, then, f(ci, I3) = [Π1(ci), n] , (35)

if ci ∈ Pe, then, f(ci, I3) = [Π1(ci), n+ 1] . (36)

Observation 23. Let S = c1c2 . . . ctc1 be a Type 2 cycle such that Π1(ci+1) = Π1(ci) + 1, 1 ≤ i < t.

1. I3[S] is a supergraph of G[S]. The proof is as follows: Recalling from Observation 9 that Π1(z) < n− 1,
∀z ∈ B2 ∪ Pe ∪ N , from (32) and (34–36), for 1 ≤ i < t, Π1(ci), Π1(ci) + 1 ∈ f(ci, I3). Therefore, ci is
adjacent to ci+1, 1 ≤ i < t. From (33), for 1 ≤ i < t, Π1(ci) + 1 ∈ f(ct, I3). Therefore, ct is adjacent to
all the other vertices of S. Hence proved.

2. r(c1, I3) = l(c2, I3) = l(ct, I3).
3. Let x, y ∈ S be two adjacent vertices in G such that neither x nor y is ct. If Π1(x) < Π1(y) and x ∈ N ,

then, r(x, I3) = l(y, I3). This follows by noting that Π1(y) = Π1(x) + 1 and subsequently applying it in
(32) and (34–36).

For a vertex in a path: Let S = p1p2 . . . pt be a path such that Π1(pi+1) = Π1(pi) + 1, 1 ≤ i < t. We
recall from Observation 6.2 and Definition 5 that p1, pt ∈ Ne. The interval assignment for pt is as follows:

f(pt, I3) = [Π1(pt), Π1(pt) + 0.5] . (37)

The interval assignment for pi, i < t is as follows:

if pi ∈ N , then, f(pi, I3) = [Π1(pi), Π1(pi) + 1] , (38)

if pi ∈ B2, then, f(pi, I3) = [Π1(pi), n] , (39)

if pi ∈ Pe, then, f(pi, I3) = [Π1(pi), n+ 1] . (40)

Observation 24. Let S = p1p2 . . . pt be a path such that Π1(pi+1) = Π1(pi) + 1, 1 ≤ i < t.
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1. I3[S] is a supergraph of G[S].The proof is as follows: Since by Observation 9, Π1(pi) < n − 1, we can
infer from the interval assignments in (38–40) that, for i < t, the points Π1(pi) and Π1(pi)+ 1 belong to
f(pi, I3). From (37), the point Π1(pt) belongs to f(pt, I3). This implies that for 1 ≤ i < t, pi is adjacent
to pi+1. Hence, proved.

2. Let x, y ∈ S be two adjacent vertices in G. If Π1(x) < Π1(y), x ∈ N and y ∈ B2 ∪ Pe ∪ N , then,
r(x, I3) = l(y, I3). This follows by noting that Π1(y) = Π1(x) + 1 and subsequently applying it in (37–
40).

Observation 25. Here are some observations regarding the intervals assigned to vertices of B2 ∪ Pe ∪ N .
We recall from Observation 9 that for any z ∈ B2 ∪ Pe ∪ N , Π1(z) < n− 1.

1. If z ∈ N , Π1(z) + 0.5 ≤ r(z, I3) ≤ Π1(z) + 1 < n. This follows from the interval assignments in (27),
(32–34) and (37–38).

2. If z ∈ B2 ∪ Pe belongs to a Type 2 cycle or a path, then, l(z, I3) = Π1(z) < n − 1. This follows from
(35–36) for Type 2 cycles and (39–40) for paths respectively.

3. If z ∈ B2, from (28), (30), (35) and (39), r(x, I3) = n.
4. If z ∈ Pe, from (29), (31), (36) and (40), r(x, I3) = n+ 1.

Observation 26. I3[B2 ∪ Pe ∪ N ] is a supergraph of G[B2 ∪ Pe ∪ N ]. The proof is as follows: Let S be a
component of G[B2∪Pe∪N ]. It is either a Type 1 cycle, Type 2 cycle or path. From Observations 22.1, 23.1
and 24.1, it follows that I3[S] is a supergraph of G[S].

Lemma 23. Let x ∈ N and y ∈ B2 ∪ Pe ∪ N be such that x ∈ Sx and y ∈ Sy where Sx and Sy induce a
Type 2 cycle or a path. If (x, y) /∈ E(G), then (x, y) /∈ E(I1 ∩ I3).

Proof. We will consider the following two cases separately: (1) y ∈ N and (2) y ∈ B2 ∪ Pe.

y ∈ N : If Sx 6= Sy, then, (x, y) /∈ E(I3). The proof is as follows: Without loss of generality let Π1(Sx) <
Π1(Sy). From the interval assignments for a vertex of N in a Type 2 cycle (see (32–34)) and a path (see
(37–38)), r(x, I3) ≤ max

a∈Sx

Π1(a) + 0.5 < min
b∈Sy

Π1(b) ≤ l(y, I3) and therefore, (x, y) /∈ E(I3).

Now we consider the case Sx = Sy = S. Let S = s1s2 . . . st, such that Π1(si+1) = Π1(si)+1, for 1 ≤ i ≤ t.
Since x and y are not adjacent in S, by the definition of Π1 (Definition 8, Points 1 and 2 for paths and Type
2 cycles respectively), |Π1(x) −Π1(y)| > 1. Suppose S is a Type 2 cycle. If neither x nor y is st, then, by
(32) and (34), f(x, I3) = [Π1(x), Π1(x) + 1] and f(y, I3) = [Π1(y), Π1(y) + 1]. Since |Π1(x) − Π1(y)| > 1,
f(x, I3) ∩ f(y, I3) = ∅. If x = st, then, in I1, from (8), l(x, I1) = n +Π1(st) while, since y 6= st−1, s1 from
(9), r(y, I1) = n+Π1(y)+1 < n+Π1(st) = l(x, I1). Therefore, (x, y) /∈ E(I1). If S is a path, then, assuming
without loss of generality that Π1(x) < Π1(y), from (37) and (38), r(x, I3) = Π1(x)+1 and l(y, I3) = Π1(y).
Since |Π1(x) −Π1(y)| > 1, r(x, I3) < l(y, I3). Therefore, (x, y) /∈ E(I3).

y ∈ B2 ∪ Pe: First we will show the following:

Claim 2. |Π1(x)−Π1(y)| > 1.

Proof. Suppose Sx = Sy, that is, both x and y belong to the same component. Since x is not adjacent to
y, from the definition of Π1 (Definition 8), |Π1(x) − Π1(y)| > 1. Suppose Sx 6= Sy. Let Sy = s1s2 . . . st
such that Π1(si+1) = Π1(si) + 1, 1 ≤ i < t. If |Π1(x) −Π1(y)| = 1, then, y must be either s1 or st. But,
s1, st ∈ N since Sy is either a Type 2 cycle or a path (by Definition 8). This contradicts the assumption that
y ∈ B2 ∪ Pe.

Suppose Π1(x) < Π1(y). From Observation 25.1, r(x, I3) ≤ Π1(x) + 1 and from Observation 25.2,
l(y, I3) = Π1(y). We have from Claim 2,Π1(x)+1 < Π1(y) and hence (x, y) /∈ E(I3). SupposeΠ1(x) > Π1(y).
From Observation 13.3, r(y, I1) = n + Π1(y) + 1 and from Observation 13.2, l(x, I1) = n + Π1(x). From
Claim 2, Π1(y) + 1 < Π1(x) and hence (x, y) /∈ E(I1). ⊓⊔
Observation 27. If x ∈ N and y ∈ B2 ∪ Pe ∪ N such that (x, y) /∈ E(G), then, (x, y) /∈ E(I1 ∩ I3). The
proof is as follows: If one of x and y belongs to a Type 1 cycle and the other belongs to a Type 2 cycle or
path, from Observation 13.5, (x, y) /∈ E(I1). If both x and y belong to Type 1 cycles, then, by Lemma 22,
(x, y) /∈ E(I1∩I3). If both x and y belong to Type 2 cycles and paths, then, by Lemma 23, (x, y) /∈ E(I1∩I3).
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3.3.2 Vertices of B1 ∪ C ∪ P2e

Let v ∈ B1 ∪ C ∪P2e. By Table 2 (rows 2 and 3), it follows that v is adjacent to exactly one vertex in N ; let
v′ be this vertex.

If v ∈ C ∪ P2e, then, f(v, I3) = [r(v′, I3), n+ 1] , (41)

If v ∈ B1, then, f(v, I3) = [r(v′, I3), n] , (42)

Note that v′ is already assigned an interval in Section 3.3.1.

3.3.3 Vertices of P2i

Let v ∈ P2i. By Table 2 (row 4), v has a unique neighbor in R∪N ; let v′ be this vertex.

if v′ ∈ R, then, f(v, I3) = [n+ 1, n+ 1] , (43)

if v′ ∈ N , then, f(v, I3) = [r(v′, I3), n+ 1] . (44)

Lemma 24. Let x ∈ P2i and y ∈ B. (x, y) /∈ E(I2 ∩ I3).

Proof. Recall the notation β(·) introduced in Definition 11. Let y ∈ Γ (z) for some z ∈ R. If x 6= β(z), then
by Lemma 20 (Point 1), (x, y) /∈ E(I2). If x = β(z), then, it implies that x is adjacent to z and by Table
2 (row 4), z is its only neighbor in R ∪ N . Since z ∈ R, the interval assigned to x is given in (43), from
which l(x, I3) = n + 1. If y ∈ B1, then by (42), r(y, I3) = n. If y ∈ B2, from Observation 25.3, r(y, I3) = n.
Therefore, (x, y) /∈ E(I3). ⊓⊔

3.3.4 Vertices of R

Every vertex is assigned the following interval:

∀v ∈ R, f(v, I3) = [n, n+ 1]. (45)

Lemma 25. I3[B1 ∪ C ∪ P2e ∪ P2i ∪R] is a supergraph of G[B1 ∪ C ∪ P2e ∪ P2i ∪R].

Proof. First we prove the following:

Claim 3. For any x ∈ C ∪ P2e ∪R, [n, n+ 1] ⊆ f(x, I3).

Proof. For any z ∈ N , from Observation 25.1, r(z, I3) ≤ Π1(z) + 1 < n. From (41), for every x ∈ C ∪ P2e,
l(x, I3) = r(z, I3) for some z ∈ N . Since r(x, I3) = n+ 1, it implies that [n, n + 1] ⊂ f(x, I3). If x ∈ R, by
(45), [n, n+ 1] = f(x, I3). Hence proved.

To prove the lemma, we need to show that if (x, y) ∈ E(G), then, (x, y) ∈ E(I3), where x, y ∈ B1 ∪
C ∪ P2e ∪ P2i ∪ R. For any x ∈ P2i, from (43–44), r(x, I3) = n + 1 and using Claim 3, we infer that
I3[C ∪ P2e ∪ P2i ∪ R] is a clique. For any x ∈ B1, from (42), r(x, I3) = n and again by using Claim 3, we
observe that I3[C ∪ P2e ∪ B1 ∪ R] is a clique. Therefore, the only case we have to consider is x ∈ P2i and
y ∈ B1. However, from Table 1 (row 6), this case is not possible. Hence proved. ⊓⊔

Lemma 26. I3[V \ A] is a supergraph of G[V \ A].
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Proof. Let x, y ∈ V \A be two adjacent vertices in G. Note that V \A = (B2∪Pe∪N )∪(B1∪C∪P2e∪P2i∪R).
If x, y ∈ B2 ∪Pe ∪N , by Observation 26, x and y are adjacent in I3. If x, y ∈ B1 ∪C ∪P2e ∪P2i ∪R, then by
Lemma 25, x and y are adjacent in I3. The remaining case is x ∈ B2∪Pe∪N and y ∈ B1∪C ∪P2e∪P2i∪R.

Let x ∈ B2. From Table 1 (row 6) we note that y /∈ C ∪ P2e ∪ P2i. Therefore, y ∈ B1 ∪ R. If y ∈ B1, by
(42), r(y, I3) = n and if y ∈ R, by (45), l(y, I3) = n. By Observation 25.3, r(x, I3) = n and therefore, x is
adjacent to y in I3.

Let x ∈ Pe. From Table 1 (rows 6, 4, 8 and 5 respectively) y /∈ B1 ∪ C ∪ P2i ∪R. Therefore, y ∈ P2e. By
(41), r(y, I3) = n+ 1 and by Observation 25.4, r(x, I3) = n+ 1. Hence, x is adjacent to y in I3.

Let x ∈ N . From Table 1 (row 2), y /∈ R. This implies that y ∈ B1 ∪ C ∪ P2e ∪ P2i. From Table 2 (rows
2, 3 and 4), x is the unique neighbor of y in N . From (41), (42) and (44), l(y, I3) = r(x, I3). Hence, x is
adjacent to y in I3. ⊓⊔

Lemma 27. If x ∈ N and y ∈ V \ A such that (x, y) /∈ E(G), then, (x, y) /∈ E(I1 ∩ I3).

Proof. If y ∈ B2 ∪Pe∪N , then by Observation 27, (x, y) /∈ E(I1 ∩ I3). If y ∈ R, then by (45), l(y, I3) = n. If
y ∈ P2i and is not adjacent to any vertex inN , then by (43), l(y, I3) = n+1. By Observation 25.1, r(x, I3) < n
and therefore, in both the cases, (x, y) /∈ E(I3). Now we consider the remaining cases (1) y ∈ P2i such that
y has a neighbor in N and (2) y ∈ B1 ∪C ∪P2e. From Table 2 (rows 4, 2 and 3 respectively), in each case, y
has exactly one neighbor in N and let this vertex be z. Since x 6= z, either Π1(x) < Π1(z) or Π1(z) < Π1(x).

SupposeΠ1(x) < Π1(z). In I3, from the interval assignments for vertices of C∪P2e, B1 and P2i in (41), (42)
and (44) respectively, l(y, I3) = r(z, I3). From Observation 25.1, r(x, I3) ≤ Π1(x)+1 < Π1(z)+0.5 ≤ r(z, I3).
Hence, (x, y) /∈ E(I3).

Suppose Π1(x) > Π1(z). In I1, from the interval assignments for vertices of B1, P2e and P2i in (15),
(16) and (19) respectively, r(y, I1) = l(z, I1). For C in (20), r(y, I1) ≤ l(z, I1) + 0.5. From Observation 13.4,
l(x, I1) ≥ l(z, I1) + 1 and therefore, (x, y) /∈ E(I1). Hence proved. ⊓⊔

Lemma 28. Let x ∈ N and y ∈ V \ A such that (x, y) ∈ E(G). Then, for some I ∈ {I1, I3}, either
l(x, I) = r(y, I) or l(y, I) = r(x, I).

Proof. Note that V \ A = (B2 ∪ Pe ∪ N ) ∪ (B1 ∪ C ∪ P2e ∪ P2i ∪ R). Suppose y ∈ B2 ∪ Pe ∪ N . Since x is
adjacent to y, they belong to the same component in G[B2 ∪ Pe ∪ N ], which is either a Type 1 cycle, Type
2 cycle or a path. Let this component be S = s1s2 . . . st, where Π1(si+1) = Π1(si) + 1, 1 ≤ i < t. Suppose
S is a Type 1 cycle. If neither x nor y is c1, then by Observation 10.1, this condition is satisfied in I1. If
x or y is c1, then by Observation 22.2, this is satisfied in I3. Suppose S is a Type 2 cycle. If x or y is c1,
say x = c1, then by Observation 23.2, r(x, I3) = l(y, I3). Now we will assume that neither x nor y is c1.
Suppose Π1(x) > Π1(y). By Observation 11.2, l(x, I1) = r(y, I1). Moreover, since ct ∈ N , this holds for the
case x = ct and y = ct−1 too. Therefore, we can assume that x, y /∈ {c1, ct}. If Π1(x) < Π1(y), then, by
Observation 23.3, l(y, I3) = r(x, I3). Finally, suppose S is a path. If y ∈ N , then, without loss of generality
we can assume that Π1(x) < Π1(y) and therefore, by Observation 24.2, the condition is satisfied in I3. If
y ∈ B2 ∪ Pe and Π1(x) < Π1(y), then, again by Observation 24.2, r(x, I3) = l(y, I3) and if Π1(x) > Π1(y),
by Observation 12.2 r(y, I3) = l(x, I3).

Suppose y ∈ B1 ∪ C ∪ P2e ∪ P2i. By Table 2 (rows 2, 3 and 4), x is the unique neighbor of y in N . From
(41), (42) and (44), it follows that l(y, I3) = r(x, I3). By Table 1 (row 2), x is not adjacent to any vertex in
R. Thus, we have covered all possible cases for y ∈ V \ A. Hence, proved. ⊓⊔

Observation 28. If x ∈ R and y ∈ B are adjacent in G, then, l(x, I3) = r(y, I3) = n. This follows from the
fact that B = B1 ∪ B2, (42), (45) and Observation 25.3.

3.3.5 Vertices of A

Every vertex is assigned the following interval:

∀v ∈ A, f(v, I3) = [1, n+ 1]. (46)
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Lemma 29. I3 is a supergraph of G.

Proof. By Lemma 26, I3[V \A] is a supergraph of G[V \A]. From the interval assignments in I3 for vertices
in V \ A, it is easy to infer that if x ∈ V \ A, then, f(x, I3) ⊂ [1, n + 1]. Since by (46), for any y ∈ A,
f(y, I3) = [1, n+1], it follows that y is adjacent to x. Clearly, I3[A] is a clique. Therefore, I3 is a supergraph
of G. ⊓⊔

3.4 Proof of E(G) = E(I1) ∩ E(I2) ∩ E(I3)

We will prove Theorem 1 by showing that E(G) = E(I1) ∩ E(I2) ∩ E(I3). We have already proved that I1,
I2 and I3 are supergraphs of G (in Lemmas 13, 21 and 29, respectively). In this section, we will show the
following: If two vertices s and t are not adjacent in G, then there exists at least one interval graph I ∈
{I1, I2, I3}, such that (s, t) /∈ I. Recall the partitioning of V illustrated in Figure 2: V = A∪N ∪C∪R∪B∪P .
Now we will consider one by one all possible cases and in each case show that s and t are not adjacent in at
least one of the interval graphs.

s ∈ A, t ∈ V : If t ∈ A, then by Lemma 8, (s, t) /∈ E(I1). If t ∈ N , then by Lemma 16, (s, t) /∈ E(I1 ∩ I2)
and if t ∈ V \ (A ∪N ), then by Lemma 14 (s, t) /∈ E(I1).

s ∈ N , t ∈ V \ A: By Lemma 27, (s, t) /∈ E(I1 ∩ I3).

s ∈ C, t ∈ V \ (A ∪ N ) = C ∪ P ∪ R ∪ B: If t ∈ C ∪ P , by Lemma 18, (s, t) /∈ E(I1 ∩ I2). If t ∈ R ∪ B,
by Observation 21.2, (s, t) /∈ E(I2).

s ∈ P, t ∈ V \ (A∪N ∪ C) = P ∪R∪ B: If t ∈ P , by Lemma 18, s and t are not adjacent in either I1
or I2. Let t ∈ R ∪ B. If s ∈ Pe ∪ P2e, then by Observation 21.2, (s, t) /∈ E(I2). Finally, let s ∈ P2i. If t ∈ R,
then by Observation 21.1 (s, t) /∈ E(I2) and if t ∈ B, by Lemma 24, (s, t) /∈ E(I2 ∩ I3).

s, t ∈ R ∪ B: By Lemma 20 (Statement 2), (s, t) /∈ E(I2).

3.5 Proof of Theorem 1

We have proved that G has a 3-box representation. Now we will show that in this 3-box representation, any
two intersecting boxes intersect only at their boundaries and hence complete the proof of Theorem 1. For
this to happen, the following condition needs to be satisfied:

Condition 1. Let s and t be adjacent in G. For some I ∈ {I1, I2, I3}, either l(s, I) = r(t, I) or l(t, I) =
r(s, I).

As in the previous section, we will consider one by one all the possible cases:

s ∈ A, t ∈ V : If t ∈ A, then by Observation 8 and if t ∈ N , by Observation 13.6, Condition 1 is satisfied.
By Table 1 (rows 1–3), s is not adjacent to any vertex in V \ (A ∪N ).

s ∈ N , t ∈ V \ A: By Lemma 28, Condition 1 is satisfied.

s ∈ C, t ∈ V \ (A ∪ N ) = C ∪ P ∪ R ∪ B: By Table 1 (rows 4–6), t /∈ P ∪ R ∪ B. Therefore, the only
case to be considered is t ∈ C. Let s, t ∈ C, where C ⊆ C is a special cycle. Let C = c1c2 . . . ct where c1 is
the special vertex. If x = c1, then by Observation 15.1, Condition 1 is satisfied. If neither x nor y is c1, then
by Observation 19.1, Condition 1 is satisfied in I2.

s ∈ P, t ∈ V \ (A ∪ N ∪ C) = P ∪ R ∪ B: If t ∈ P , then by Observation 18, Condition 1 is met in I2.
If t ∈ R, then from Table 1 (row 5) we infer that s ∈ P2i. By Observation 14, Condition 1 is met in I1. By
Table 1 (row 6), t /∈ B.
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s ∈ R, t ∈ V \ (A∪N ∪ C ∪ P) = R∪B: By Table 1 (row 10) t /∈ R. By Observation 28, Condition 1
is satisfied in I3.

s, t ∈ B: Condition 1 is satisfied in I2 (See Figure 3).
Thus, we have completed the proof for cubic graphs. Now, applying Lemma 2, it follows that any graph

with maximum degree 3 has a 3-box representation. Thus, we have proved Theorem 1.

4 Algorithmic aspects

Now we briefly explain how our construction of the 3-box representation can be realized in O(n) time, where
n is the number of vertices in the graph. Firstly, we note that the process can be split into three stages: (1)
Partitioning the vertex set as illustrated in Figure 2, (2) ordering the vertices of A, B2 ∪ Pe ∪N and C ∪ P
according to Definitions 7, 8 and 10 and finally, (3) assigning intervals to all the vertices. In Stage (1) the first
step is to extract special cycles and special paths as described in Algorithm 1. This is the only non-trivial
part of the construction and we analyze its complexity in the appendix. We will show that a special cycle
or path can be extracted from a graph with maximum degree 3 in time linear to the number of vertices in
it. This will imply that Algorithm 1 can be implemented in O(n) time. Algorithm 2 takes O(n) time since
in every iteration we need to only check if a vertex in N1 has two neighbors in A1 in that iteration and
accordingly move or retain the vertex and its neighbors. It is easy to see that the finer partitioning of P , N
and B can be accomplished in linear time. Stage (2) involves ordering the vertices of sets A, B2∪Pe∪N and
C ∪ P component wise. Since each of these sets induce a graph of maximum degree 2, they can be ordered
in linear time. Stage (3) only involves assignment of intervals to the vertices and can be achieved in linear
time.

5 Conclusion

We showed that every graph of maximum degree 3 has a 3-box representation and therefore, its boxicity
is at most 3. One interesting question is whether we can characterize cubic graphs which have a 2-box
representation. Answering this will also determine if the boxicity of a cubic graph can be computed in
polynomial time. One could also try to extend the proof techniques used in this paper to graphs with
maximum degree 4 and 5 in order to improve the bounds on their boxicity.
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A Appendix

Let G be a graph with maximum degree 3.

A.1 Extending a non-special induced cycle or path

Suppose C is a non-special induced cycle in G. Then, by Definition 1, it follows that there exists a vertex
x ∈ C, such that C \ {x} belongs to a cycle or path of length |C| + 1. We call such a vertex a removable
vertex. Extending a non-special induced cycle C corresponds to removing a removable vertex x and adding
two new vertices a and b such that (C \{x})∪{a, b} is an induced cycle or a path. There are only two possible
ways in which a non-special induced cycle can be extended and these are illustrated in Figure 4. The vertices
which are added to or removed from C in an extension operation are called participating vertices. In the
figure, x, a and b are the participating vertices.

a

b

(a) (b)

Removable vertex
x

Removable vertex

a

b

This edge may

or may not be present

x−1x−1

x+1
x+1

x

Fig. 4. The possible ways in which a non-special induced cycle can be extended. The vertices marked black
are the participating vertices.

Lemma 30. Suppose C is a non-special induced cycle and x ∈ C. It takes constant time to verify whether
x is a removable vertex or not. If x is a removable vertex, then, the extension of C by removing x can again
be achieved in constant time.

Proof. Consider the possible ways in which C can be extended as shown in Figure 4. To verify if x is a
removable vertex, we need to only check if the vertices a and b exist. Similarly, given that x is a removable
vertex, we need to only find a and b to extend C by removing x. Recalling that ∆(G) ≤ 3, it is easy to see
that this can be done in constant time. ⊓⊔

Let P be a non-special induced path in G. By Definition 2, it implies that either:

1. it is not maximal in the sense that it is part of an induced cycle or a longer induced path, or
2. for some end point of P , say x, P \ {x} belongs to an induced cycle of size ≥ |P | or an induced path of

length ≥ |P |+ 1. We call x a removable end point of P .
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Extending a non-special path P corresponds to the following operations:

1. If P is not maximal, then, we add a new vertex y to P such that P ∪ {y} is an induced path or cycle.
Clearly, y must be a neighbor of an end point of P such that it is not adjacent to any interior vertex of
P .

2. If P is maximal, then, we remove a removable end point x and either
(a) add a single new vertex a such that (P \ {x})∪ {a} is an induced cycle (note that in this case a has

to be adjacent to the neighbor of x in P ) OR
(b) add two new vertices a and b such that (P \ {x})∪ {a, b} is an induced cycle or a path (in this case,

a and b are adjacent and a is adjacent to the neighbor of x in P ).
This is illustrated in Figure 5.

As in the case of extending a cycle, the vertices which are added to or removed from P are called partici-
pating vertices. In case 1, y is the participating vertex. In case 2(a), x and a are participating vertices and
in case 2(b), x, a and b are participating vertices.

a

x

Removable end point

b

a

Removable end point
x

(a) (b)

This edge may or
may not be present

x
−1

x
−1

Fig. 5. The ways in which a non-special induced path can be extended. The vertices marked black are the
participating vertices.

Lemma 31. If P is an induced path, then, in constant time, it can be verified whether it is a special path
or not. If not, then, in constant time it can be extended.

Proof. First we need to check if P is maximal or not, that is, whether it is part of a larger induced cycle or
a longer induced path. This can be done in constant time. If P is maximal, then, we need to check if there is
a removable end point and then extend P by removing it. For this, as shown in Figure 5, we need to check
if the vertices x, a and b exist. Since ∆(G) ≤ 3, it is easy to see that this can be done in constant time. It is
also trivial to verify that the extension can be achieved in constant time. Hence proved. ⊓⊔

A.2 An algorithm to find a special cycle or path

We now give an iterative algorithm to obtain a special cycle or path. The outline of the algorithm is as
follows: Let S be the set which holds the vertices of the special cycle or path at the termination of the
algorithm. We start with S containing an arbitrary vertex. In each iteration, we extend it as described in
Section A.1. The algorithm terminates when S induces a special cycle or path. In Algorithm 3, we present
an outline of this procedure.

A.2.1 Potential removable vertices

From Lemma 31, we note that in constant time we can recognize a non-special induced path and extend it.
However, in view of Lemma 30, to recognize and extend a non-special induced cycle in constant time, we
first need a strategy to find a removable vertex. For efficiently finding removable vertices, we maintain a list
of potential removable vertices which is updated in each iteration.
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Algorithm 3:

input : Graph G with maximum degree 3
output: Set S ⊆ V (G) which induces a special cycle or path in G

Let S = {x} where x is an arbitrary vertex;1

Let R = ∅, the set of potential removable vertices of S;2

Let specialFlag = 0; // If set to 1, it implies that S is a special cycle or path3

while specialFlag = 0 do4

if S induces a cycle then5

if R = ∅ then6

specialFlag = 1; // No removable vertices and therefore, S is a special cycle (see7

Observation 29)

else8

Choose any vertex x from R;9

Extend S by removing x as described in Section A.1;10

end11

else if S induces a path then12

if S is a special path then13

specialFlag = 1;14

else15

Extend S as described in Section A.1;16

end17

end18

Update R as described in Section A.2.1;19

end20

Definition 12. Potential removable vertices: A vertex x ∈ S is a potential removable vertex if it has
two neighbors in S, say x−1 and x+1 and satisfies at least one of the following conditions: There are two
vertices a and b such that

1. a is adjacent to only x−1 (or x+1) in S \ {x} and b is adjacent to a and not any vertex in S \ {x}. This
corresponds to case (a) in Figure 4; OR

2. a is adjacent to x−1 in S \ {x} and b is adjacent to only x+1 in S \ {x}. This corresponds to case (b) in
Figure 4.

From the definition of removable vertices at the beginning of Section A.1, we infer the following:

Observation 29. If S induces a cycle, then, all potential removable vertices in S will correspond to remov-
able vertices. If there are no potential removable vertices, then, it implies that S is a special cycle.

Lemma 32. In constant time, we can check if a particular vertex in S is a potential removable vertex.

The proof is similar to that of Lemma 30.
In the algorithm, we maintain a set of all potential removable vertices, which we denote as R. From

Observation 29, it follows that if S induces a cycle, we can decide whether it is special or not by just
checking if R is empty or not. Therefore, given an induced cycle and the corresponding R, we can recognize
in constant time whether it is a special cycle or not. Now, we show that after each extension of S, R can be
updated in constant time.

Lemma 33. In each iteration of Algorithm 3, the set of potential removable vertices, R can be updated in
constant time.

Proof. Let us consider a vertex x ∈ R before extension of S. Let X denote the set containing x and the
associated vertices x−1, x+1, a and b (see Definition 12). Since S is extended, there are participating vertices.
We observe that x will remain as a potential removable vertex if no vertex in X and no neighbor of X is a
participating vertex. This implies that if a vertex is at a distance 5 or more from any participating vertices,
then, clearly its status as a potential removable vertex or not remains unchanged. Therefore, we need to
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only check all the vertices at a distance 4 or less from each participating vertex. The number of such vertices
is a constant since ∆(G) = 3 and by Lemma 32 verifying for each vertex takes only constant time. Hence
proved. ⊓⊔

Lemma 34. If the special cycle or path extracted by Algorithm 3 is of size l, then, the total number of
iterations required is at most 2l + 2.

Proof. We will prove the lemma by showing that in Algorithm 3, for every two iterations (excluding the last
two) the size of S increases by at least 1. If S induces a cycle at the beginning of the ith iteration, then from
Section A.1, it follows that S is extended to a cycle or path of size |S| + 1 at the end of the iteration. If S
induces a path at the beginning of the ith iteration, either S is extended to a cycle or path of size |S| + 1
or to a cycle of size |S| at the end of the iteration. In the latter case, assuming S is not a special cycle in
the (i + 1)th iteration, it is extended to a cycle or path of size |S|+ 1 at the end of the (i + 1)th iteration.
Hence, proved. ⊓⊔

From Lemmas 30–33, it follows that Lines 10, 16 and 19 in Algorithm 3 require constant time. The sets
S and R may be implemented as doubly linked lists and with each vertex we can associate membership flags
and pointers to its place in each of the linked lists. Given this setup, each iteration requires constant time.
From Lemma 34, the number of iterations is bounded by 2l+2. Therefore, the algorithm takes O(l) time to
terminate. Since the total number of vertices in the set of special cycles and paths will be bounded above by
n, the overall running time of Algorithm 1 is O(n).
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