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Abstract. In this paper, we consider the one-dimensional Cahn–Hilliard equation perturbed by
additive noise and study the dynamics of interfaces for the stochastic model. The noise is smooth
in space and defined as a Fourier series with independent Brownian motions in time. Motivated
by the work of Bates and Xun on slow manifolds for the integrated Cahn–Hilliard equation, our
analysis reveals the significant difficulties and differences in comparison to the deterministic problem.
New higher order terms that we estimate appear due to Itô calculus and stochastic integration
and dominate the exponentially slow deterministic dynamics. Using a local coordinate system and
defining the admissible interface positions as a multidimensional diffusion process, we derive a first
order linear system of stochastic ordinary differential equations approximating the equations of front
motion. Furthermore, we prove stochastic stability of the approximate slow manifold of solutions
over a very long time scale and evaluate the noise effect.

Key words. one-dimensional stochastic Cahn–Hilliard equation, slow manifold, interface mo-
tion, additive noise, dynamics, stability

AMS subject classifications. 35K55, 35K40, 60H30, 60H15

DOI. 10.1137/120861941

1. Introduction.

1.1. The problem. The standard Cahn–Hilliard equation is a simple model for
the phase separation of a binary alloy at a fixed temperature proposed in [18, 19]. This
model was extended by Cook [25, 43] in order to incorporate thermal fluctuations in
the form of an additive noise. In this paper, we consider the one-dimensional Cahn–
Hilliard equation posed on (0, 1) with an additive stochastic term:

(SC-H) ut = (−ε2uxx + f(u))xx + ∂xẆε, 0 < x < 1, t > 0,

with no-flux boundary conditions of Neumann type:

ux = uxxx = 0 at x = 0, 1.(1.1)

The nonlinearity f = f(u) is the derivative of a smooth double equal-well potential
F taking its global minimum value 0 at u = ±1 [1] with nondegenerate minima. A
typical example is F (u) := 1

4 (u
2 − 1)2 with f(u) := u3 − u. The parameter ε > 0 is

a small atomistic interaction length modeling the width of layers that develop during
the initial phase separation of spinodal decomposition (cf. [13, 14]). In the later
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stages of the separation process ε measures the width of transitions between the pure
phases u = ±1. Here, Ẇε is a space-time noise smooth in space and is defined as the
formal derivative of an ε-dependent Wiener process Wε. As is common in stochastic
phase-field models, the noise scales with ε. See, for example, the work of Funaki [35]
or Shardlow [47] on the stochastic Allen–Cahn equation. Here the noise strength is
controlled by ε; more specifically, it is bounded by O(εδ) for some δ > 9/2. For details
see Assumption 2.3.

A characteristic feature of the Cahn–Hilliard equation model is the conservation

of total mass
∫ 1

0 u(t, x)dx, which we now fix to be M ∈ (−1, 1). Substituting ũ(t, x) :=∫ x

0 u(t, y)dy we obtain the equivalent integrated stochastic Cahn–Hilliard equation

(ISC-H) ũt = −ε2ũxxxx + (f(ũx))x + Ẇε, 0 < x < 1, t > 0,

associated with the boundary conditions

ũ(t, 0) = 0, ũ(t, 1) = M,

ũxx(t, 0) = ũxx(t, 1) = 0.
(1.2)

Carr and Pego in [22, 23] presented a detailed analysis of the slow evolution of patterns
of the singularly perturbed Ginzburg–Landau equation. They proved existence and
persistence of metastable patterns and analyzed the equations governing their mo-
tion. These metastable states have been characterized in terms of the global unstable
manifolds of equilibria. In [8, 9], Bates and Xun extended their argument and studied
the dynamics of the one-dimensional Cahn–Hilliard equation in a neighborhood of
an equilibrium having N + 1 transition layers, using several estimates presented in
[22, 23]. They determined the exponentially slow speed of the layer motion and de-
scribed precisely the layer motion directions. In addition, they established existence
of an N -dimensional unstable invariant manifold attracting solutions exponentially
fast uniformly in ε. Related works in this direction are [10, 36, 45].

Motivated by the work of Bates and Xun for the deterministic problem, we study
dynamics for the stochastic model. Due to stochastic integration, new higher order
terms appear that we estimate using techniques and ideas of [8, 9, 22, 23]. In what
follows, we shall refer frequently to some important definitions and results presented in
the aforementioned articles; therefore, we give some details concerning our notation.
Following [22, 23], we use the letter f for the nonlinearity in (SC-H) and denote by
F the double equal well potential. In [8, 9] the symbol W ′ is used in place of f ; we
avoided such a notation since we denote by the standard symbol Ẇ the additive noise.

1.2. The effect of noise. The stochastic Cahn–Hilliard equation being one
of the important examples of the nonlinear Langevin equations, it is based on a
field-theoretic approach to the nonequilibrium dynamics of metastable states (see, for
example, [25, 40, 43]). The multidimensional generalized stochastic Cahn–Hilliard
equation associated with Neumann boundary conditions posed on bounded domains
contains a time dependent noise in the chemical potential and an additive noise de-
fined as the formal derivative of a Wiener process. The chemical potential noise
describes external fields [38, 40, 42], while the free-energy independent noise may
describe thermal fluctuations or external mass supply [25, 38, 40, 43].

Existence and uniqueness of solution for the stochastic problem was first studied
in [26], where the nonlinearity f is a polynomial of odd degree and the problem is
posed on multidimensional rectangular domains. Further, in [20], the author proved
existence of solution and of its density for the stochastic Cahn–Hilliard equation with
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additive noise (in the sense of Walsh; cf. [48]) posed on cubic domains. When the trace
of the Wiener process is finite, existence was analyzed in [30]. In [5], existence for
the generalized stochastic Cahn–Hilliard equation was derived for general convex or
Lipschitz domains; the main novelty was the derivation of space-time Hölder estimates
for the Green’s kernel of the stochastic problem, by using the domain’s geometry,
which can be very useful in many other circumstances. The polynomial nonlinearity
which forces the solution to stay between the pure phases ±1 has been analyzed in
[13, 14, 20, 21, 26, 30], while in [29, 28, 37] a stochastic Cahn–Hilliard equation with
reflection was considered.

In [13, 14] (see [15] for a review), the effect of noise on evolving interfaces during
the initial stage of phase separation is analyzed. The evolution of these interfaces is
stochastic and not yet fully understood. In [13], the authors show that for a solution
starting at the homogeneous state, the probability of staying near a certain finite-
dimensional space of pattern is high as long the solution stays within the distance of
the homogeneous state. Further, in [14], the dynamics of a nonlinear partial differen-
tial equation perturbed by additive noise are considered. Under the assumption that
the underlying deterministic equation has an unstable equilibrium, the authors show
that the nonlinear stochastic partial differential equation exhibits essentially linear
dynamics even far from equilibrium.

On the other hand, interface motion has been studied for many related models like
Allen–Cahn or Ginzburg–Landau and phase-field models; see, for example, [4, 12, 16]
for a rigorous analysis or the results of [32] for formal arguments, which describe the
interfaces as interacting Brownian motions. Numerical results for interface motion are
presented in [39, 47]. The problem of singular perturbation for a reaction-diffusion
stochastic partial differential equation of Ginzburg–Landau type is investigated in
[34]. The motion of interfaces for Cahn–Hilliard equation was studied only in an
unpublished note by Brassesco in 2003, where she studied a solution with a single
interface on R. When properly rescaled, the interface is driven by non-Markovian
dynamics (cf. [12] for a similar result). In [46], the authors present a numerical study
of the late stages of spinodal decomposition with noise.

The deterministic Cahn–Hilliard equation was proposed by Cahn and Hilliard
[18, 17] as a model for the phase separation of a binary alloy at a fixed temperature,
with u(t, x) defining the mass concentration of one of the phases at a point x at time
t. For a more physical background, derivation, and discussion of the deterministic
Cahn–Hilliard equation and related equations, we refer to [7, 17, 18, 31, 33] and the
references therein. Results for the noisy Cahn–Hilliard equation are of great interest
for the study of Ostwald ripening [2, 3, 41] and nucleation [11]. For a survey, including
numerical results and conjectures concerning the nucleation problem, see [15].

1.3. The approximate slow manifold. The space-time noise that we intro-
duce is smooth in space, allowing for the application of the Itô formula. For our study
of the dynamics of transition layers for the stochastic model, we closely follow the
approach of Bates and Xun and of Carr and Pego based on the analysis of an ap-
proximate invariant manifold M. Although constructed in a different way, it can be
thought of as piecing together a rescaled one kink (or front) of steady state solutions
on the whole real line. The elements of the manifold are parametrized by the position
of the fronts given by h ∈ R

N+1. Nevertheless, in our case the dependency on time
is stochastic. This fact leads to the very interesting and difficult problem of further
investigating the properties of M by means of deriving higher order estimates related
to the stationary problem.
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We first present the details necessary for the steady state solutions φ, the param-
eters h, and the manifold M. Given ε > 0, we consider a such that f ′(u) > 0 for all u
satisfying |u± 1| < a. Then (cf. [22]), there exists ρ > 0 such that if � satisfies ε

� < ρ,
a unique solution φ = φ(x, �,±1) exists for the stationary Dirichlet problem

ε2φxx − f(φ) = 0, −�/2 < x < �/2,

φ = 0, x = ±�/2,
(1.3)

that satisfies

(a) φ(x, �,+1) > 0 for |x| < �/2 and |φ(0)− 1| < a,

(b) φ(x, �,−1) < 0 for |x| < �/2 and |φ(0) + 1| < a.

For sufficiently small ε > 0, it is known that φ ≈ ±1 with transition layers of order
O(ε) near x = ±�/2.

Following [9], we consider the slowly evolving solutions with N+1 layers well sep-
arated and bounded away from the boundary x = 0, 1 and define the set of admissible
positions h of the interfaces
(1.4)

Ωρ :=
{
h ∈ RN+1 : 0 < h1 < · · · < hN+1 < 1 and

ε

ρ
< hj − hj−1, j = 1, . . . , N + 2

}

with h0 := −h1, hN+2 := 2 − hN+1. These interfaces evolve in time, and we expect
them to have a width of order ε. Thus, the distance is bounded below by ε/ρ for some
small ρ. Later we fix ρ = εκ for any small κ > 0.

Let h ∈ Ωρ be given as above, and denote the midpoints between interfaces by

mj :=
hj−1+hj

2 for j = 1, . . . , N +2 with m0 = 0 and mN+1 = 1. Moreover, we define
the function uh : Ij := [mj ,mj+1] → R for the interfaces h by

uh(x) =

[
1− χ

(
x− hj

ε

)]
· φ (

x−mj , hj − hj−1, (−1)j
)

+ χ

(
x− hj

ε

)
· φ (

x−mj+1, hj+1 − hj , (−1)j+1
)
,

(1.5)

where χ : R → [0, 1] is a C∞ cutoff function such that χ = 1 on [1,∞) and χ = 0 on
(−∞,−1]. (See Figure 1.1.)

x

uh

1h1 h2 hN hN+1 hN+2

m2

h0 = −h1

φ(·, 2h1, −1)

mN+1

φ(· − m2, h2 − h1, 1)

φ(· − 1, 2 − 2hN+1,−1)

φ(· − mN+1, hN+1 − hN , 1)

Fig. 1.1. Gluing together positive and negative solutions of (1.3) to obtain uh ∈ M. Note that
m1 = 0, mN+2 = 1, and Ij = [mj ,mj+1].
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Definition 1.1 (approximate slow manifold). The first approximate manifold
of the stochastic Cahn–Hilliard equation solution is defined by

M1 :=
{
uh : h ∈ Ωρ

}
.

Fixing a mass M ∈ (−1, 1), we define as the second approximate manifold the sub-
manifold M of M1 where mass conservation holds, i.e.,

M :=

{
uh ∈ M1 :

∫ 1

0

uhdx = M

}
.

For the integrated equation, we consider the manifold

M̃ :=

{
ũh : uh ∈ M, ũh(x) =

∫ x

0

uhdx

}
.

Remark 1.2. In view of the initial stochastic equation (SC-H), conservation of
mass holds if and only if formally

(1.6)

∫ 1

0

∂xẆεdy = Ẇε(1)− Ẇε(0) = 0.

This is later ensured by our assumptions on Wε, which impose Dirichlet boundary
conditions for Ẇε (cf. Definition 2.2 and Assumption 2.3). A very simple rigorous
example is the following: consider Ẇε := δεg(x)β̇(t), where β̇(t) is a white noise in
time and g a smooth function satisfying g(1) = g(0). Then by integrating in space
the equation (SC-H) and using the fact that∫ 1

0

∂xẆεdy = δεβ̇(t)

∫ 1

0

gx(y)dy = 0,

we obtain mass conservation even with the noise. This example extends to infinite
series of such terms.

Throughout the entire paper we assume that the additive noise in (SC-H) satisfies
(1.6), and therefore the proposed stochastic model exhibits mass conservation.

1.4. The new coordinate system. Along M̃ the natural coordinate system
would be to use the parameters h ∈ Ωρ for the position in M̃ (where N of them
are sufficient due to mass conservation), together with the orthogonal projection onto
M̃. In order to relate the coordinate system to the deterministic flow of (ISC-H), one

approximates the tangent space of M̃ by the span of some functions Eξ
i , i = 1, . . . , N ,

related to eigenfunctions of the linearization to be defined later in the paper. Here,
we follow [8].

We denote the L2(0, 1) inner product by 〈u, v〉 := ∫ 1

0 uvdx and the induced L2-

norm by ‖ · ‖ and we introduce the symbol g̃(t, x) :=
∫ x

0 g(t, y)dy for any g, which is
spatially integrable.

Due to mass conservation, we reduce the parameter space Ωρ by one dimension.
Define

ξ := (ξ1, . . . , ξN ) = (h1, . . . , hN )

and consider hN+1 as a function of ξ. Thus, for ũh
j := ∂ũh

∂hj
and ũξ

j :=
∂ũξ

∂ξj
we obtain

ũξ
j =

∂ũh

∂hN+1
· ∂hN+1

∂hj
+

∂ũh

∂hj
.

D
ow

nl
oa

de
d 

02
/2

5/
19

 to
 1

37
.2

50
.1

00
.4

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FRONT MOTION STOCHASTIC CAHN–HILLIARD EQUATION 3247

Eξ
1

ũ

ũξ

M̃

ṽ

Fig. 1.2. The local coordinate system ũ = ũξ + ṽ around M̃ for N = 1 (two interfaces). Note

that Eξ
1 ≈ ũξ

1, which is the tangential vector along the manifold.

We use ũ → (ξ, ṽ) as coordinate system around M̃. As sketched in Figure 1.2, let us
split a solution ũ of (ISC-H) into a sum of stochastic processes

(1.7) ũ(t) := ũξ(t) + ṽ(t).

Here the position on M̃ is given by ũξ ∈ M̃, while the distance from M̃ is given by
ṽ, which is defined as the following projection such that

(1.8) 〈ṽ, Eξ
j 〉 = 0 for j = 1, . . . , N.

It turns out that the functions Eξ
j are good approximations to the first eigenfunctions

of the linearized integrated Cahn–Hilliard operator, which in turn are good approxi-
mations to the tangent space of M̃. They are defined as follows:

Eξ
j (x) := w̃j(x)−Qj(x) , w̃j(x) := ũh

j (x) + ũh
j+1(x) ,

Qj(x) :=

(
−1

6
x3 +

1

2
x2 − 1

3
x

)
w̃jxx(0) +

1

6
(x3 − x)w̃jxx(1) + xw̃j(1) , j = 1, . . . , N .

The Qj are exponentially small terms (cf. [8, pp. 437–439]), taking care of the bound-

ary values of Eξ
j . More precisely, w̃j are good approximations of these eigenfunctions,

while w̃j(0) = 0, and w̃j(1), w̃jxx(0), w̃jxx(1) are exponentially small quantities. In-

troducing the polynomial correction terms Qj in the definition of Eξ
j (x) modifies the

w̃j so that Eξ
j are good approximations and satisfy exactly the boundary conditions

of the linearized integrated Cahn–Hilliard operator, i.e.,

Eξ
j = Eξ

jxx = 0 for x = 0, 1.

For short-hand notation, we also define higher derivatives using indices:

(1.9) Eξ
il :=

∂Eξ
i

∂ξl
, Eξ

ilk :=
∂2Eξ

i

∂ξl∂ξk
, and ũξ

kl :=
∂2ũξ

∂ξk∂ξl
.

1.5. Assumptions on the noise and layers. Throughout this paper the fol-
lowing three fundamental assumptions are considered for the noise and transition
layers:

(a) The noise is sufficiently regular in space and of small strength. As derived,
the manifold used in this paper is stable and attractive for a long time-scale with
high probability and thus is a good approximation of the stochastic Cahn–Hilliard
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equation solution, if the noise Ẇε is sufficiently regular in space (cf. Assumption 2.3)
and its strength is bounded by O(εδ) for some δ > 9/2. The noise is presented in
detail in Definition 2.2 as the formal derivative of a Wiener process Wε given by a
Fourier series of independent Brownian motions in the sense of Da Prato and Zabczyk
[27].

(b) We analyze local solutions of the (ISC-H): The coordinates ξ of the projec-
tion onto the manifold perform a diffusion process. A main difference in stochastic
dynamics of interfaces in comparison to the deterministic problem is that due to the
noise, the movements of the layers are corelated, and thus the resulting stochastic
ODE system given by (2.1) may be nonlinear for a general noise definition.

In order to make the analysis tractable, when we derive the equations of motion
for the interface we assume that the coordinates ξ of the projection onto the manifold
perform a multidimensional diffusion process. By this natural assumption, we consider
that the interfaces solve a very general stochastic ordinary equation driven by aWiener
process.

To be more precise, let ũ be the solution of (ISC-H), where Wε is an ε-dependent
Wiener process defined in Definition 2.2. We assume that the projection coordinates
ξ(t) (positions of the interface) is a stochastic diffusion process in R

N . Since the
specific Wε is introduced in (ISC-H), then the only underlying probability space is
the Wiener space corresponding to Wε. Therefore, diffusion is driven by Wε and is
defined for any k = 1, . . . , N by

dξk = bk(ξ)dt+ 〈σk(ξ), dWε〉

for some unknown vector field b : R
N → R

N and some variance σ on R
N . The

unknown functions b, σ might depend not only on ξ but also on time t and the
distance from the manifold ṽ.

As a result, we apply Itô calculus to the general system (2.1) in order to calculate
explicitly the corelations of layers movements and derive finally closed forms of b and
σ. The assumption of ξ being a diffusion process is justified later in Theorem 3.2
after the derivation of the SDE for the motion of the interfaces. More specifically, the
diffusion process ξ exists locally as a solution of the SDE defined up to a stopping time
since the nonlinearities are only locally Lipschitz. It is possible to continue solutions
until they leave the domain of definition of the equations close to M̃. In addition,
as long as ξ is well defined and ‖ṽ‖ sufficiently small, then ũ given by ũ := ũξ + ṽ is
well defined and solves the initial (ISC-H) equation (cf. Theorem 3.2). Further, by
attractivity and stochastic stability, we derive that the time of existence is with high
probability larger than the exit time from some slow channel (neighborhood of the
approximate manifold), in which we study the stability result. So, local solutions of
the form ũ := ũξ + ṽ for ξ given as the solution of a diffusion process for the specific
σ and b defined by (3.12) and (3.13), respectively, exist and solve (ISC-H). Local
solutions of (ISC-H) of this type until some stopping time τ∗ ≤ Tε are analyzed and
approximated in this paper.

(c) The number of transition layers is fixed. This is a natural assumption, which is
also present in the work of Carr and Pego [22] and Bates and Xun in [8, 9]. Suggested
by Fusco and Hale in [36] and further analyzed in [22, 8, 9], a geometric method was
adopted and developed for the construction of a slow manifold of functions approxi-
mating a metastable state. This construction is valid for a fixed number of transition
layers.

D
ow

nl
oa

de
d 

02
/2

5/
19

 to
 1

37
.2

50
.1

00
.4

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FRONT MOTION STOCHASTIC CAHN–HILLIARD EQUATION 3249

In [8], the study of dynamics of the one-dimensional Cahn–Hilliard equation con-
siders the slow evolution of patterns in a neighborhood of an equilibrium having N+1
transition layers. Further, in the aforementioned paper, the authors constructed an
N -dimensional approximate invariant manifold consisting of states with a fixed num-
ber of N + 1 transition layers and a narrow tubular neighborhood or channel around
this manifold. Solutions starting nearby approach this channel exponentially fast.
In addition, [9] verifies the existence of an N -dimensional invariant manifold and all
solutions inside the slow channel are attracted exponentially fast to this invariant
manifold. The change of numbers of layers is only possible either by a rare stochas-
tic event or when the solution leaves the slow channel after moving slowly along the
manifold.

In our analysis, we study the dynamics for the stochastic problem locally in time,
i.e., as long as the number of transition layers is fixed and thus indeed the layer loca-
tions are well separated and bounded away from the boundary points 0, 1 (cf. [22, 8, 9]
for the deterministic problem). This is also justified by the fact that, as we prove, for
a sufficiently bounded noise strength stability and attractivity of the manifold hold in
the stochastic case also, at least for a very long time scale and with high probability. Of
course the solution can leave the manifold at the boundary by a layer breaking down.

Moreover, due to rare stochastic events an extra “bump” (layer) could be formed.
In our case this interesting event is rather unlikely, since the strength of the additive
noise is sufficiently low so that the manifold M̃ is stable and attractive with high
probability. Apart from large deviation results the rigorous mathematical study on
extra layers generation is highly not trivial. See, for example, the work of Chen [24] on
generation, propagation, and annihilation of metastable patterns for the deterministic
Allen–Cahn equation. Therefore, this is not analyzed in the present paper.

2. Main results. The SDE system for the motion of fronts is given by the
projection onto the manifold M̃, using the coordinate system of section 1.4. We then
prove that M̃ is locally exponentially attracting and show that solutions stay with
high probability in a small slow tube around M̃, until large times or until one of
the layers becomes small. The flow along M̃ is well described by the SDE for the
interfaces ξ. Depending on the strength of the noise, we investigate what the equation
of motion of the fronts looks like and evaluate the noise effect. In addition, we study
extensively the case N = 1, where the motion of the second interface is determined
by the first. Here the motion is given by the Wiener process Ẇε projected onto M̃.
Finally, the case of space-time white noise is discussed. In the last section, we present
the proofs of the estimates used in our analysis concerning all the higher order terms
that appear in the stochastic setting. These are technical results that are independent
of the other sections.

We first explain briefly how the equations of motions along M̃ are derived in
section 3. For details we refer to subsection 3.2. If ũ is the solution of (ISC-H), then
applying the Itô formula in differentiating with respect to t, we get for i = 1, . . . , N
the following system in dξ1, . . . , dξN for the stochastic Cahn–Hilliard equation:∑

j

[
〈ũξ

j , E
ξ
i 〉 − 〈ṽ, Eξ

ij〉
]
dξj = 〈−ε2(ũξ

xxxx + ṽxxxx) + (f(ũξ
x + ṽx))x, E

ξ
i 〉dt

+
∑
l,k

[
1
2 〈ṽ, Eξ

ilk〉 − 1
2 〈ũξ

kl, E
ξ
i 〉 − 〈ũξ

k, E
ξ
il〉
]
dξldξk

+
∑
j

〈dWε, E
ξ
ij〉dξj + 〈Eξ

i , dWε〉 .

(2.1)
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3250 D. C. ANTONOPOULOU, D. BLÖMKER, AND G. D. KARALI

We note that the last three additive terms above at the right-hand side are not present
in [8, 9], where the deterministic Cahn–Hilliard equation was studied.

Remark 2.1. In view of (2.1), we observe that the analysis of the stochastic
dynamics is a much more complicated and difficult problem compared to the deter-
ministic one.

1. Deterministic case: The system is linear in dξj , therefore by estimating the

inverse matrix on the left-hand-side (possibly close to M̃) and the right-hand-
side terms, the motion of interfaces is obtained; see [9].

2. Stochastic case: Obviously, for a general noise definition the system is non-
linear due to the appearance of dξldξk, which as we shall prove will dominate
the exponentially small deterministic dynamics. In what follows, in order
to get rid of the corelations dξldξk, we make the ansatz that ξ performs a
diffusion process, which is justified later. Further, we need estimates for
the additional higher order terms Eξ

ij , E
ξ
ilk, and ũξ

kl. Therefore, we need to
improve the estimates of [8].

The sufficiently regular noise Ẇε is the formal derivative of a Wiener process Wε

defined as follows.
Definition 2.2 (the Wiener process Wε, [27]). Let Wε be a Qε-Wiener process

in the underlying Hilbert space H = L2(0, 1), Qε a symmetric operator, and (ek)k∈N

an orthonormal basis with corresponding eigenvalues α2
ε,k such that

Qεek = α2
ε,kek and Wε(t) =

∞∑
k=1

αε,kβk(t)ek

for a sequence of independent real-valued standard Brownian motions {βk(t)}t≥0.
We always rely on the following assumption, which implies mass conservation and

regularity.
Assumption 2.3. Suppose that the ek are the eigenfunctions of the Dirichlet–

Laplacian. Moreover, assume for some δε > 0

(1) ‖Qε‖ < Cδ2ε , (2)

∞∑
k=1

α2
ε,kBε(ek) < Cδ2ε , (3) ‖∂xQε‖ < Cδ2ε ,

where we assume additionally that δε < ε9/(2−κ) for some small κ > 0. Bε is defined
as

Bε(e) = ε2‖exx‖2 + ‖ex‖2 ,

while for g =
∑∞

k=1 γkek ∈ L2(0, 1) the linear operator ∂xQε is defined as

(∂xQε)g :=

∞∑
k=1

γk∂x(Qεek) =

∞∑
k=1

γka
2
ε,k∂xek .

The first assumption on the norm of Qε as an operator in H implies that the
strength of the noise is bounded by O(δε), while the second and third are additional
assumptions on the noise regularity. Note that Bε(·)1/2 is equivalent to the standard
H2-norm (see (3.15)).

For the calculation of the motion of the interfaces, we will assume that ξ(t) a
diffusion process in R

N (see section 1.5) is defined for any k = 1, . . . , N by

dξk = bk(ξ)dt + 〈σk(ξ), dWε〉,

D
ow

nl
oa

de
d 

02
/2

5/
19

 to
 1

37
.2

50
.1

00
.4

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FRONT MOTION STOCHASTIC CAHN–HILLIARD EQUATION 3251

Γ
ũ

M̃

Fig. 2.1. The stability of the slow manifold M̃ for two interfaces (N = 1). A small tubular
neighborhood Γ, the slow channel, is attracting over long time scales. Solutions tend to exit at the
end of Γ by a breakdown of an interface.

for some vector field b : RN → R
N and some variance σ : RN → HN . Later in

Theorem 3.2 we justify this ansatz.
Following [9] we define the matrix

Aij(ξ) = 〈ũξ
j , E

ξ
i 〉 − 〈ṽ, Eξ

ij〉,

which is invertible close to the slow manifold. The assumptions on the noise combined
with (2.1) gives the following SDE system for the motion of interfaces:∑

j

Aij(ξ)dξj = 〈−ε2(ũξ
xxxx + ṽxxxx) + (f(ũξ

x + ṽx))x, E
ξ
i 〉dt

+
∑
l,k

[
1
2 〈ṽ, Eξ

ilk〉 − 1
2 〈ũξ

kl, E
ξ
i 〉 − 〈ũξ

k, E
ξ
il〉
]
〈Qεσk(ξ), σl(ξ)〉dt

+
∑
j

〈QεE
ξ
ij , σj(ξ)〉dt+ 〈Eξ

i , dWε〉

(2.2)

(cf. also the equivalent presentation (3.11)). From this we can easily read off b and σ.
Moreover, the flow along M̃ is described by the interface positions. It is now easy to
check, by construction, that the difference ṽ = ũ−ũξ is actually the ṽ of the coordinate
system (see section 1.4). In addition, a solution of (2.2) together with a corresponding
equation for ṽ (see (3.14)) describes a solution ũ of (ISC-H); see Theorem 3.2.

Further, in section 3, the variance σ of the multidimensional diffusion process ξ of
the interfaces is computed first explicitly and then is estimated in terms of ε. A main
result is the stochastic analysis of the stability of the approximate manifold, which
is presented in Theorem 3.6 (see also Figure 2.1). Over a long time scale of order
O(ε−q) for any large q > 0, we show that, with high probability, the solution of the
stochastic Cahn–Hilliard equation stays in a small neighborhood Γ of the integrated
manifold M̃, unless an interface breaks down.

In section 4, we first present Theorem 4.1, in which we approximate the terms in
(2.2) and derive the equations of motion of interfaces. Further, we consider several
examples where Theorem 4.1 is simplified. If the noise is exponentially small, then we
recover the slow motion results of [8, 9]. There is a slow channel given by a neighbor-
hood of M̃, in which with high probability the motion of the interfaces is described
by the deterministic regime. There is also an interesting intermediate regime of still
exponentially small noise, which for simplicity of presentation we do not consider in
this article. Here, due to the presence of noise, additional deterministic and stochastic
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terms appear in the deterministic equation of Bates and Xun [9]. An interesting case
from the point of applications is the case where the noise strength is a power of ε.
As the general case is quite involved in presentation, we consider only two interfaces
(i.e., N = 1). Here, obviously the motion of the second interface is determined by the
first one, which is approximated by the following SDE (cf. (4.11)):

(2.3) dξ1 =
1

32�22

∂

∂ξ1
‖Q1/2

ε Eξ
1‖2dt+

1

4�2
〈Eξ

1 , dWε〉 ,

where �2 is the distance between the two interfaces. We comment later that here ξ1
is approximately the projection of the Wiener process Wε onto M̃.

Finally in this section, we also discuss the case of nonsmooth in space space-time
white noise (Qε = δεId), which is unfortunately not covered by our assumptions.
Here ξ1 would be close to a Brownian motion with variance δ2ε/(4�2).

Section 5 provides estimates for the second order derivatives ∂2hN+1

∂hi∂hj
, for the higher

order derivatives of Eξ
j and ũξ, and a bound for the quantity 〈Lcṽ, ũξ

kl〉 (needed in the
proof of the stability theorem). Here the operator Lc acting on a general smooth in
space function φ is given by

Lc(φ) := −ε2φxxxx + (f ′(uh)φx)x.

The results of this section are quite technical since their proof involves extensive
calculations related to properties of solutions of the stationary problem (1.3). The new
terms to estimate appear only in the stochastic setting due to the frequent application
of the Itô formula and were therefore not treated in the work of Bates and Xun [8, 9]
or Carr and Pego [22, 23].

3. Front motion. In this section, we derive the equations of motions of the
fronts and show that the approximate manifold is locally attracting.

3.1. Preliminaries and definitions. Let us first recall some notation. If u is
the solution of (SC-H), then ũ(t, x) :=

∫ x

0 u(t, y)dy is the solution of the integrated
one, i.e., of (ISC-H). Let a, ε, ρ, N be given; for some � such that ε/� < ρ, we
consider the unique solution φ of (1.3) which satisfies the properties (a) and (b). Let
also (h1, . . . , hN+1) ∈ Ωρ be the admissible interface positions and take h0 := −h1,
hN+2 := 2− hN+1.

Let �j = hj − hj−1 be the distance between interfaces and � := min{�1, . . . , �N}
the lower bound on them. Note that by the construction of Ωρ the functions φ are
always well defined. Let

r := ε/�, β±(r) := 1∓ φ(0, �,±) and α±(r) := F (φ(0, �,±)) .

In view of (1.5), we also define

φj(x) := φ
(
x−mj , �j, (−1)j

)
,

and uh
j := ∂uh

∂hj
for j = 1, . . . , N + 1. Considering rj := ε/�j, let

βj(r) :=

{
β+(rj) for j even,

β−(rj) for j odd,
and β(r) := max

j
βj(r) .
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We recall that in [9], as an application of the implicit function theorem,

(3.1)
∂hN+1

∂hj
= (−1)N−j +O(ε−1β(r)).

In addition, let

αj(r) :=

{
α+(rj) for j even,

α−(rj) for j odd,
and α(r) := max

j
αj(r) .

We see later that both α and β are exponentially small in ε if we consider rj ≤ ρ ≤ εκ

for some small positive κ.

3.2. The SDE for the front motion. Let ũ be a solution of (ISC-H). We
assume that the N front positions, i.e., the coordinates of ξ(t) = (ξ1(t), . . . , ξN (t)),
define a multidimensional diffusion process which is given by

(3.2) dξk = bk(ξ)dt+ 〈σk(ξ), dWε〉, k = 1, . . . , N,

for some vector field b : RN → R
N and some variance σ : RN → HN . The main aim

of this paragraph is to identify b and σ, which might also depend on ṽ, i.e., on the
distance from the manifold.

We use the Itô formula, in order to differentiate ũξ with respect to t, and get

(3.3) dũ =

N∑
j=1

ũξ
jdξj +

1
2

∑
1≤k,l≤N

ũξ
kldξkdξl + dṽ with ũξ

kl =
∂2ũξ

∂ξk∂ξl
.

We take as in [9, p. 175] the inner product in the space of equation (ISC-H) with Eξ
i

to get for any i = 1, . . . , N

(3.4) 〈Eξ
i , dũ〉 = 〈Lc(ũ), Eξ

i 〉dt+ 〈Eξ
i , dWε〉 ,

where we defined the nonlinear ICH operator as

Lc(u) := −ε2uxxxx + (f(ux))x

for short-hand notation.
On the other hand, if we take the inner product of (3.3) with Eξ

i , we derive

(3.5) 〈Eξ
i , dũ〉 =

N∑
j=1

〈ũξ
j , E

ξ
i 〉dξj + 1

2

∑
1≤k,l≤N

〈ũξ
kl, E

ξ
i 〉dξkdξl + 〈Eξ

i , dṽ〉 .

Throughout the rest of this paper, any summation is on 1, 2, . . . , N for any index.
In order to eliminate dṽ, we apply the Itô formula to the orthogonality condition

〈ṽ, Eξ
i 〉 = 0 and arrive at

〈Eξ
i , dṽ〉 = −〈ṽ, dEξ

i 〉 − 〈dṽ, dEξ
i 〉

= −
∑
j

〈ṽ, Eξ
ij〉dξj − 1

2

∑
j,k

〈ṽ, Eξ
ijk〉dξjdξk −

∑
j

〈Eξ
ij , dṽ〉dξj .
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Now, we use that dṽ = dũ− dũξ and the fact that dtdt = 0 and dWεdt = 0. In detail,

−
∑
j

〈Eξ
ij , dṽ〉dξj = −

∑
j

〈Eξ
ij , dũ〉dξj +

∑
j

〈Eξ
ij , dũ

ξ〉dξj

= −
∑
j

〈Eξ
ij ,Lc(ũ)〉dtdξj −

∑
j

〈Eξ
ij , dWε〉dξj +

∑
j,k

〈Eξ
ij , ũ

ξ
k〉dξkdξj

= −
∑
j

〈Eξ
ij , dWε〉dξj +

∑
j,k

〈Eξ
ij , ũ

ξ
k〉dξkdξj ,

(3.6)

where we took the inner product in space of equation (ISC-H) with Eξ
ij , and used

that

dξjdt = bj(ξ)dtdt+ 〈σj(ξ), dWε〉dt = 0.

Therefore, by (3.6) it follows that

〈Eξ
i , dṽ〉 = −

∑
j

〈ṽ, Eξ
ij〉dξj − 1

2

∑
j,k

〈ṽ, Eξ
ijk〉dξjdξk

−
∑
j

〈dWε, E
ξ
ij〉dξj +

∑
j,k

〈ũξ
k, E

ξ
ij〉dξjdξk .

(3.7)

Combining (3.4) with (3.5) and (3.7) we arrive at

∑
j

[〈ũξ
j , E

ξ
i 〉 − 〈ṽ, Eξ

ij〉
]
dξj = 〈Lc(ũ), Eξ

i 〉dt

+
∑
l,k

[
1
2 〈ṽ, Eξ

ilk〉 − 1
2 〈ũξ

kl, E
ξ
i 〉 − 〈ũξ

k, E
ξ
il〉
]
dξldξk

+
∑
j

〈dWε, E
ξ
ij〉dξj + 〈Eξ

i , dWε〉 .

(3.8)

Lemma 3.1. For all 1 ≤ k, l ≤ N it holds that

〈σk(ξ), dWε〉〈σl(ξ), dWε〉 = 〈Qεσk(ξ), σl(ξ)〉dt.
Proof. Since dβjdβi = δijdt and Wε(t) =

∑∞
k=1 αε,kβk(t)ek we obtain, using

Parceval’s identity,

〈σk(ξ), dWε〉〈σl(ξ), dWε〉 =
∑
i,j

αε,iαε,j〈σk(ξ), ei〉〈σl(ξ), ej〉dβjdβi

=
∑
j

α2
ε,j〈σk(ξ), ej〉〈σl(ξ), ej〉dt

=
∑
j

〈Qεσk(ξ), ej〉〈σl(ξ), ej〉dt = 〈Qεσk(ξ), σl(ξ)〉dt .

Analogously to this lemma we easily obtain (using dtdWε = 0)

〈Eξ
ij , dWε〉dξj = 〈Eξ

ij , dWε〉〈σj(ξ), dWε〉 = 〈QεE
ξ
ij , σj(ξ)〉dt.
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Moreover, for short-hand notation, as in [8], we define the matrix A(ξ) = (Aij(ξ)) ∈
R

N×N by

(3.9) Aij(ξ) = 〈ũξ
j , E

ξ
i 〉 − 〈ṽ, Eξ

ij〉 ,
which is invertible, provided that we are near the slow manifold (cf. Lemma 3.4). Let
us denote the inverse matrix of A by A−1(ξ) = (A−1

ij (ξ)) ∈ R
N×N .

Therefore, for all i ∈ {1, . . . , N} we arrive at∑
j

Aij(ξ)dξj = 〈Lc(ũξ + ṽ), Eξ
i 〉dt

+
∑
l,k

[
1
2 〈ṽ, Eξ

ilk〉 − 1
2 〈ũξ

kl, E
ξ
i 〉 − 〈ũξ

k, E
ξ
il〉
]
〈Qεσk(ξ), σl(ξ)〉dt

+
∑
j

〈QεE
ξ
ij , σj(ξ)〉dt + 〈Eξ

i , dWε〉 .

(3.10)

To obtain the equation for dξ we use that dξ = A(ξ)−1A(ξ)dξ .
Thus, the final equation for ξ (as long as ũ is near the manifold) is given for any

r = 1, . . . , N by

dξr =
∑
i

A−1
ri (ξ)〈Lc(ũξ + ṽ), Eξ

i 〉dt

+
∑
i,l,k

A−1
ri (ξ)

[
1
2 〈ṽ, Eξ

ilk〉 − 1
2 〈ũξ

kl, E
ξ
i 〉 − 〈ũξ

k, E
ξ
il〉
]
〈Qεσk(ξ), σl(ξ)〉dt

+
∑
i

A−1
ri (ξ)

∑
j

〈QεE
ξ
ij , σj(ξ)〉dt +

∑
i

A−1
ri (ξ)〈Eξ

i , dWε〉 .

(3.11)

We can now recover σ and b from (3.11). The only term that does involve noise is the
last one. Thus, in view of (3.2) we derive

(3.12) σr(ξ) =
∑
i

A−1
ri (ξ)E

ξ
i .

After we obtained σ we can proceed in order to determine b(ξ) from the remaining
terms (cf. (3.2)). So, we get for r = 1, . . . , N that

br(ξ) =
∑
i

A−1
ri (ξ)〈Lc(ũξ + ṽ), Eξ

i 〉(3.13)

+
∑
i,l,k

A−1
ri (ξ)

[
1
2 〈ṽ, Eξ

ilk〉 − 1
2 〈ũξ

kl, E
ξ
i 〉 − 〈ũξ

k, E
ξ
il〉
]
〈Qεσk(ξ), σl(ξ)〉

+
∑
i

A−1
ri (ξ)

∑
j

〈QεE
ξ
ij , σj(ξ)〉.

3.3. Justification of the ansatz. Let us first give an equation for ṽ = ũ− ũξ

describing the flow “orthogonal” to M̃. Following [8, p. 449], we consider equation
(3.3)

dṽ = dũ−
N∑
j=1

ũξ
jdξj −

1

2

∑
kl

ũξ
kldξkdξl,
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and thus the key equation for the distance from the manifold M̃ is described by
(3.14)

dṽ = Lc(ũ)dt−
∑
j

ũξ
jbj(ξ)dt−

∑
j

ũξ
j〈σj(ξ), dWε〉− 1

2

∑
kl

ũξ
kl〈Qεσk(ξ), σl(ξ)〉dt+dWε .

The following theorem is straightforwardly verified.
Theorem 3.2. Consider the pair of functions (ξ, ṽ) as local solutions of the

system given by (3.14) and the ansatz (3.2), where σ and b are given by (3.12) and
(3.13).

As long as ‖ṽ‖ = O(ε3/2) and ξ(t) ∈ Ωρ, the function ũ = ũξ + ṽ is well defined

and solves (ISC-H) with 〈ṽ, Eξ
j 〉 = 0.

The orthogonality condition follows directly from (3.14) as the differential d〈v, Eξ
j 〉

= 0. The fact that ũ is a solution follows from a lengthy calculation. Basically, one
reverses the calculation of the previous section leading to (3.2).

3.4. Stability and attractivity of the manifold. In this section, we prove
the stability and discuss the attractivity of M̃. Considering the stability, we show
that with high probability (over a long time scale) the solution stays close to M̃,
unless an interface breaks down. See Figure 2.1.

In [8, Theorem B], Bates and Xun show that in the deterministic setting the
slow manifold is exponentially attracting in an O(ε7/2)-neighborhood in H2, until
the solution reaches an exponentially small neighborhood, where the motion of the
solution along the manifold is exponentially slow. Using large deviation estimates,
it is straightforward to verify for small noise that the stochastic solution follows the
deterministic one up to error terms of the order of the noise strength. Hence, the
exponential attraction of M̃ still holds for (ISC-H), until the solution reaches a neigh-
borhood of the manifold that is determined by the strength of the noise.

Here, for simplicity of presentation we will focus only on the stability of M̃. The
proof can be modified, in order to show attraction, too. Once we are in the slow
channel around M̃, we cannot exit with high probability for a long time scale Tε,
unless one of the interfaces breaks down.

We define Aε and Bε as

(3.15) Aε(ṽ) =

∫ 1

0

[ε2ṽ2xx + f ′(uξ)ṽ2x]dx and Bε(ṽ) =

∫ 1

0

[ε2ṽ2xx + ṽ2x]dx.

Obviously, it holds that

‖∂xṽ‖2L2 =

∫ 1

0

ṽ2xdx ≤
∫ 1

0

[ε2ṽ2xx + ṽ2x]dx = Bε(ṽ) .

Observe also that even if the function f ′(uξ) appearing in the definition of Aε changes

sign, then provided ρ is small for ṽ ∈ C2 satisfying ṽ = 0 at x = 0, 1 and 〈ṽ, Eξ
j 〉 = 0

for any j = 1, . . . , N , there exists C independent of ε, ṽ such that

CAε(ṽ) ≥ ε2Bε(ṽ).

This estimate, which depends heavily on the properties of ṽ, is established in [8]
after an extensive analysis of the spectrum of the linearized integrated Cahn–Hilliard
operator (see [8, pp. 434–446, Lemmas 4.2, 3.2, 3.4]). More specifically, Bates and
Xun proved that for ρ small the spectrum consists of exactly N exponentially small
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eigenvalues, while all the other eigenvalues are negative and bounded away from 0
uniformly in ε. Under weaker assumptions, such as ṽ ∈ H2, the same estimate
follows; cf. Theorem A.1 of [9, pp. 209–211]. Further, since f ′(uξ) is bounded we get
Aε(ṽ) ≤ cBε(ṽ), while by definition and for ε < 1 it follows that Bε(ṽ) ≤ ‖ṽ‖2H2 .
Hence, the next relation holds true:

‖∂xṽ‖2L2 ≤ Bε(ṽ) ≤ Cε−2Aε(ṽ) ≤ cε−2Bε(ṽ) ≤ cε−2‖ṽ‖2H2 .

In addition, by Lemma 4.1 of [8] at p. 445, we have

(3.16) ‖ṽ‖2∞ ≤ Bε(ṽ) , ‖ṽx‖2∞ ≤ 1 + ε

ε
Bε(ṽ) .

Definition 3.3 (cf. [8, p. 452]). Define a neighborhood Γ′ of M̃ by

Γ′ = {ũξ + ṽ : ξ ∈ Ωρ, Bε(ṽ) < ε3},
and we define the slow tube Γ by

Γ := {ũξ + ṽ : ξ ∈ Ωρ, Aε(ṽ) < δ2−κ
ε } ,

where 0 < κ � 1 presented in the definition of the noise (cf. Assumption 2.3) and δε
estimates the noise strength.

The small tube Γ′ is a neighborhood of the slow manifold, where the coordinate
system (cf. (1.7)) is well defined, while the slow tube Γ is a neighborhood in which with
high-probability solutions do not exit for long times unless one of the interfaces breaks
down. Recall that Γ ⊂ Γ′ by definition of δε. We even have Bε(ṽ) < Cδ2−κ

ε ε−2 ≤ Cε7,
which we need in the proof of stability.

As indicated in the introduction, the first term at the right-hand side of the flow
given by (3.11) is identical to the right-hand side of the deterministic flow and has
been estimated in [8]. In our stochastic case, in order to approximate the flow, we
need to bound also the additional higher order terms and estimate the contribution
of the noise. In section 4, we will identify the dominant terms in (3.11).

Using (4.27) of [9] and the fact that ‖Eξ
ij‖ = O(ε−1/2) [9, p. 187], we obtain in Γ′

considering the matrix A the following invertibility result.
Lemma 3.4. Suppose that h ∈ Ωρ and ‖ṽ‖ = O(ε3/2); then

Aij(ξ) = O(ε) +

{
(−1)i+j4�j+1 if i ≥ j,
0 if i < j,

and the matrix is invertible with

A−1
ij (ξ) = O(ε) +

{ 1
4�j+1

if i = j, j − 1,

0 otherwise,

where 1 > �i > ε/ρ denotes the length of the ith interface.
As the equation is deterministically stable, we can show that ṽ stays small for a

long time (depending on the noise strength). To be more precise, we show a bound
on Aε(ṽ) for solutions near M̃. Compare also (86) of [8].

Fix some large time Tε and define τ∗ > 0 as the first exit time (below the threshold
Tε) of ũ from Γ′. This is the stopping time

τ∗ = Tε ∧ inf{t > 0 : ξ(t) �∈ Ωρ or Aε(ṽ(t)) ≥ δ2−κ
ε } .

Note that for t ≤ τ∗ also Bε(ṽ(t)) ≤ Cε7, as discussed above.
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Definition 3.5. We say that a term is O(eε) if it is asymptotically smaller than
any polynomial in ε uniformly for times t ≤ τ∗.

Note that α, β are O(eε) if ρ = εκ.
Theorem 3.6. Suppose ρ = εκ for some small κ > 0, δε ≥ Cεq for any q > 0, and

suppose that for all p > 0 there exists a constant cp > 0 such that EAε(ṽ(0))
p ≤ cpδ

2p
ε .

Then for all p > 0 there exists a constant Cp > 0 such that

EAε(ṽ(τ
∗))p ≤ Cp(Tε + 1)δ2pε .

Therefore, we can show that the probability that the solution exits from the slow
tube before Tε (i.e., τ∗ = Tε) or an interface is breaking down (i.e., ξ(τ∗) �∈ Ωρ) is
bounded above by

P
(
Aε(ṽ(τ

∗)) ≥ δ2−κ
ε

) ≤ EAε(ṽ(τ
∗))pδ−p(2−κ)

ε ≤ Cp(Tε + 1)δκpε

for any p > 0. Thus the probability that the solution exits from the slow tube before
Tε is of the order of O(eε) provided Tε � δ−q

ε for some large q > 0. The typical case
for applications would be to consider a noise strength polynomial in ε, where we can
take Tε = ε−q for any q > 0.

Remark 3.7 (exponentially small noise strength δε). If we want to have exponen-
tially long times Tε, then we need to take exponentially small noise strength δε and
look closer at the various error terms in the proof of Theorem 3.6. This is straight-
forward, but for simplicity of presentation, we refrain from stating details here.

On the other hand, assuming that δε is exponentially small, the probability of the
solution leaving the slow tube Γ before time Tε, without an interface breaking down,
is exponentially small, even for some exponentially large time Tε.

3.5. Bounds on the SDE. The following lemmas replace the bound on ξ̇, used
in the deterministic setting (cf. Lemma 4.3. in [8]).

Lemma 3.8. Let ũξ+ṽ ∈ Γ′ and r = 1, . . . , N ; then (with Eξ
N+1 = 0 for shorthand

notation)

σr(ξ) =
1

4�r+1
(Eξ

r + Eξ
r+1) +O(ε) and ‖σr(ξ)‖ ≤ C/� < Cρ/ε .

Proof. Note that ‖ṽ‖ ≤ Bε(ṽ)
1/2. Thus from the definition of σ (cf. (3.12)),

Lemma 3.4, and the bound on Eξ
i one obtains

‖σr(ξ)‖ ≤
∑
i

|A−1
ri (ξ)|‖Eξ

i ‖ ≤ C/� .

Moreover,

σr(ξ) = A−1
r,rE

ξ
r +A−1

r,r+1E
ξ
r+1 +O(ε),

and the claim follows from Lemma 3.4.
The next lemma estimates the vector field b of the diffusion process ξ.
Lemma 3.9. Let ũξ + ṽ ∈ Γ′ and assume that ρ = εκ for some small κ > 0; then

there is a constant c > 0 such that

|br(ξ)| ≤ c‖Qε‖
{
ε3κ−7/2 + ε2κ−5/2

}
+O(eε)(3.17)

for any r = 1, . . . , N .
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Proof. We recall first br,

br(ξ) =
∑
i

A−1
ri (ξ)〈Lc(ũξ + ṽ), Eξ

i 〉(3.18)

+
∑
i,l,k

A−1
ri (ξ)

[
1
2 〈ṽ, Eξ

ilk〉 − 1
2 〈ũξ

kl, E
ξ
i 〉 − 〈ũξ

k, E
ξ
il〉
]
〈Qεσk(ξ), σl(ξ)〉

+
∑
i

A−1
ri (ξ)

∑
j

〈QεE
ξ
ij , σj(ξ)〉.

Then we use Lemma 3.4 and the bound on σ. Moreover, in section 5, after tedious
computations the next estimates are derived (cf. (5.44), (5.45), (5.46), (5.41), and
(5.42), respectively):

|〈ũξ
kl, E

ξ
i 〉| ≤ O(ε−1/2)

[
4�i+1 +O(ε−3β)

]
,

|〈ũξ
k, E

ξ
il〉| ≤ O(ε−1/2 + ε−4r−1β),

|〈ṽ, Eξ
ilk〉| ≤ O(ε−3/2 + ε−5r−1β)‖ṽ‖ ≤ c+O(ε−7/2r−1β) ,

since in the slow channel ‖ṽ‖ ≤ ‖ṽ‖∞ ≤ cBε(ṽ)
1/2 ≤ cε3/2. Moreover,

‖Eξ
i ‖ ≤ 4�i+1 +O(ε−3β), ‖Eξ

ij‖ ≤ O(ε−1/2) +O(ε−4r−1β) .

In addition, we observe that (cf. [9])∣∣∣∣∣
∑
i

A−1
ri (ξ)〈Lc(ũξ + ṽ), Eξ

i 〉
∣∣∣∣∣ = O(α/�) +O(εα) = O(eε) .

In this way, since σ = O(ρε−1) and A−1
ij = O(ρε−1), we obtain

|br(ξ)| ≤ c‖Qε‖ρ3ε−3−1/2 + c‖Qε‖ρ2ε−5/2 +O(eε)

≤ c‖Qε‖
{
ε3κ−7/2 + ε2κ−5/2

}
+O(eε) .

3.6. Proof of stability. Now let us turn to the proof of Theorem 3.6. Con-
sidering the linearized Cahn–Hilliard operator and using the Itô formula we arrive
at

(3.19) dAε(ṽ) = d〈−Lcṽ, ṽ〉 = 2〈−Lcṽ, dṽ〉+ 〈−Lcdṽ, dṽ〉+ dR

with

dR =

∫ 1

0

ṽ2xf
′′(uξ)duξ dx+

∫ 1

0

ṽxf
′′(uξ) dṽx · duξ dx+

∫ 1

0

ṽ2xf
′′′(uξ)(duξ)2 dx .

All terms in R appear, because Aε itself depends on ξ through f ′(uξ). Using the Itô
formula and (3.2) and (3.14) for ξ and ṽ, we expand all terms

dR =
∑
j

∫ 1

0

ṽ2xf
′′(uξ)uξ

j dx bj dt+
∑
i,j

∫ 1

0

ṽ2xf
′′(uξ)uξ

ij dx〈Qεσj , σi〉dt

+
∑
j

∫ 1

0

ṽ2xf
′′(uξ)uξ

j dx〈σj , dWε〉+ 1
2

∑
i,j

∫ 1

0

ṽ2xf
′′′(uξ)uξ

ju
ξ
i dx〈Qεσj , σi〉dt

+
∑
i,j

∫ 1

0

ṽxf
′′(uξ)uξ

ju
ξ
i dx〈Qεσj , σi〉dt+

∑
j

∫ 1

0

ṽxf
′′(uξ)uξ

j∂x(Qεσj) dx dt .
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Now we use Theorem 5.8 in ξ variables to obtain that ‖uξ
j‖∞ = O(ε−1), ‖uξ

ij‖∞ =

O(ε−2) and ‖uξ
j‖ = O(ε−1/2). Moreover, by definition it holds that ‖ṽx‖2 ≤ Bε(ṽ),

so using Lemmas 3.9 and 3.8 we have bj = O(δ2εε
−7/2) and σj = O(ε−1). Finally, as

uξ is uniformly bounded, we can bound the nonlinearity f by a constant and get

dR = O(Bε(ṽ)ε
−9/2δ2ε)dt+O(Bε(ṽ)

1/2ε−7/2δ2ε)dt+ 〈IR, dWε〉
with

IR =
∑
j

∫ 1

0

ṽ2xf
′′(uξ)uξ

j dx σj = O(Bε(ṽ)ε
−2).

As we are in the slow channel, we obtain

(3.20) dR = O(δ2ε)dt+ 〈IR, dWε〉.
This is the crucial and only point where we we needBε(ṽ) = O(ε7) in order to estimate
the fifth term of R.

Now we turn to the other terms in (3.19). Lemma 3.1 gives

dAε(ṽ)− dR = 2〈−Lcṽ,Lc(ũ)〉dt(3.21)

−
∑
j

2〈−Lcṽ, ũξ
j〉bj(ξ)dt(3.22)

−
∑
j

2〈−Lcṽ, ũξ
j〉〈σj(ξ), dWε〉

−
∑
kl

〈−Lcṽ, ũξ
kl〉〈Qεσk(ξ), σl(ξ)〉dt(3.23)

+
∑
ij

〈−Lcũξ
i , ũ

ξ
j〉〈Qεσi(ξ), σj(ξ)〉dt(3.24)

+
∑
i

〈−Lcũξ
i ,Qεσi(ξ)〉dt(3.25)

− 2〈Lcṽ, dWε〉
+ trace(Q1/2

ε LcQ1/2
ε )dt.(3.26)

For the term in (3.21) we follow [8, pp. 449, 450], where

Lc(ũ) = Lc(ũξ + ṽ) = Lcṽ + Lc(ũξ) + ∂x(f2∂xṽ)

with

‖∂x(f2∂xṽ)‖ ≤ Cε−2Bε(ṽ).

Moreover, note that by Lemma 5.1 in [8] we have

‖Lc(ũξ)‖∞ = ‖∂xLb(uξ)‖∞ ≤ Cε−1α(r) ,

and thus

〈−Lcṽ,Lc(ũ)〉 ≤ −‖Lcṽ‖2 + C(ε−2Bε(ṽ) + ε−1α(r))‖Lcṽ‖
≤ − 2

3‖Lcṽ‖2 + Cε−2Bε(ṽ)‖Lcṽ‖+ Cε−2α(r)2(3.27)

≤ − 1
2‖Lcṽ‖2 + Cε−2α(r)2,
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where we used that for some constant a > 0 independent of ε and r (cf. [8, Lemma 3.2,
p. 434 and Lemma 4.2, p. 446])

(3.28) Bε(ṽ) < Cε−2Aε(ṽ) <
C

2a
ε−2‖Lcṽ‖2 .

Using Bε(ṽ) = O(ε6+κ) in the slow channel, we obtain

2〈−Lcṽ,Lc(ũ)〉 ≤ − 1
2‖Lcṽ‖2 − aAε(ṽ) + Cε−2α(r)2.

Now consider the remaining four deterministic integrals. For the term in (3.22), notice
that

〈Lcṽ, ũξ
j〉 = 〈ṽ, Lcũξ

j〉 = 〈ṽ, ∂x∂jLb(uξ)〉 .

Thus integration by parts and Lemma 5.2 of [8] yields

(3.29) |〈Lcṽ, ũξ
j〉| ≤ C‖∂xṽ‖ε−2β(r) = O(eε).

We use now (3.29) to arrive at

(3.30)

∣∣∣∣∣
∑
j

〈−Lcṽ, ũξ
j〉bj(ξ)

∣∣∣∣∣ ≤ Cε−5/2β(r)Bε(ṽ)
1/2 sup

j
{|bj(ξ)|} = O(eε),

which is exponentially small in ε by Lemma 3.9. By Definition 3.5, a term is O(eε) if
it is asymptotically smaller than any polynomial in ε uniformly for times t ≤ τ∗.

Now let us turn to (3.24). Similarly, we get

|〈−Lcũξ
i , ũ

ξ
j〉| = |〈ũξ

i , ∂x∂jLb(uξ)〉| ≤ ‖ũξ
i‖L1‖∂x∂jLb(uξ)‖∞ ≤ Cε−4β(r) ,

where we used Lemma 5.1 of [8] and the bound ‖ũξ
i‖L1 = O(1) (cf. (5.38) for β

bounded). Thus we obtain for the term in (3.24)

(3.31)

∣∣∣∣∣
∑
ij

〈−Lcũξ
i , ũ

ξ
j〉〈Qεσi(ξ), σj(ξ)〉

∣∣∣∣ ≤ Cε−4β(r)‖Qε‖�−2 = O(eε) .

For the term in (3.23) we use the bounds on 〈−Lcṽ, ũξ
kl〉 provided by Theo-

rem 5.47. Thus, we get

|〈Lcṽ, ũξ
kl〉〈Qεσk(ξ), σl(ξ)〉| ≤ C‖Qε‖ε−2Cε−2β(r)‖ṽ‖ = O(eε) .

Using similar estimates and Lemma 3.8 the term in (3.25) is also O(eε).
For the term in (3.26), we use the eigenfunctions ek of Qε and the uniform bound

on f ′(uξ), in order to obtain

trace(Q1/2
ε LcQ1/2

ε ) =

∞∑
k=1

α2
ε,k〈Lcek, ek〉 ≤ C

∞∑
k=1

α2
ε,kBε(ek) ≤ Cδ2ε .

This is the largest deterministic term, as the other ones are all O(eε). This term
comes directly from the Itô correction of the additive noise.
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Consider now (3.21)–(3.26) with all deterministic integrals already estimated and
include the bound on R from (3.20). For t ≤ τ∗

(3.32) dAε(ṽ(t)) ≤ Cδ2εdt− (12‖Lcṽ‖2 + aAε(ṽ))dt+ 〈I, dWε〉 ,

where

I =
∑
j

2〈−Lcṽ, ũξ
j〉σj(ξ)− 2Lcṽ + IR

with IR = O(Bε(ṽ)ε
−3/2).

In order to bound I, we use (3.29) and the asymptotic formula for σj(ξ) of

Lemma 3.8 combined with (54)–(55) of [8] to obtain that 〈Lcṽ, ũξ
j〉σj(ξ) = O(eε)

and thus

|〈I,QεI〉| ≤ O(eε) + C‖Qε‖(‖Lcṽ‖2 +Bε(ṽ)
2ε−4) .

Now from (3.28) as in the slow channel at least Bε(ṽ) = O(ε6) we obtain Bε(ṽ)
2ε−3 ≤

C‖Lcṽ‖2Bε(ṽ)ε
−6 ≤ C‖Lcṽ‖2 and thus

|〈I,QεI〉| ≤ O(eε) + C‖Qε‖‖Lcṽ‖2 .

Now we can bound powers of Aε for t ≤ τ∗

1

p
dAε(ṽ)

p = Aε(ṽ)
p−1dAε(ṽ) +

p− 1

2
Aε(ṽ)

p−2(dAε(ṽ))
2

≤ Cε2δsAε(ṽ)
p−1dt− (12‖Lcṽ‖2 + aAε(ṽ))Aε(ṽ)

p−1dt(3.33)

+Aε(ṽ)
p−1〈I, dWε〉+ p− 1

2
Aε(ṽ)

p−2〈I,QεI〉dt .

Taking integrals up to τ∗ and expectation, we easily obtain from (3.32) and (3.33)
(using that the expectation of a stochastic integral is 0)

EAε(ṽ(τ
∗)) + 1

2E

∫ τ∗

0

‖Lcṽ‖2dt+ aE

∫ τ∗

0

Aε(ṽ)dt ≤ Aε(ṽ(0)) + CTεδ
2
ε ,

and for p ≥ 2

1
pEAε(ṽ(τ

∗))p + 1
2E

∫ τ∗

0

‖Lcṽ‖2Aε(ṽ)
p−1dt+ aE

∫ τ∗

0

Aε(ṽ)
pdt

≤ 1
pEAε(ṽ(0))

p + Cδ2εE

∫ τ∗

0

Aε(ṽ)
p−1dt

+O(eε) · E
∫ τ∗

0

Aε(ṽ)
p−2dt+ C‖Qε‖ · E

∫ τ∗

0

Aε(ṽ)
p−2‖Lcṽ‖2dt .

Now (using δε ≥ Cεq) it is easy to verify by induction on p that

1
pEAε(ṽ(τ

∗))p + 1
2E

∫ τ∗

0

‖Lcṽ‖2Aε(ṽ)
p−1dt+ aE

∫ τ∗

0

Aε(ṽ)
pdt ≤ C(Tε + 1)δ2pε .

This implies the claim.
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4. Motion of the interfaces. In this section, we investigate some important
special cases in detail to see what the SDE (2.2) for ξ actually implies for the motion of
the interfaces. We assume first that the noise is exponentially small. Then considering
the two interfaces problem (i.e., when N = 1) we discuss the case of noise strength
being polynomial in ε. Although not covered by our theorems, we present some
comments on what the equation would look like for nonsmooth space-time white
noise, which means that Qε is proportional to the identity. Finally, we present the
approximate SDE system for the front motion considering the general precise system
(2.1).

Let us first state the result we achieved so far. The motion of the interfaces for
the stochastic model is given by the following theorem.

Theorem 4.1. Let ũξ + ṽ ∈ Γ and assume that ρ is small. Then the equations
dominating the flow of the stochastic Cahn–Hilliard equation within the slow channel
are given by

dξ1 =
1

4�2
(α3 − α1)dt+O(εα)dt + dA(1)

s ,

dξ2 =
1

4�2
(α3 − α1)dt+

1

4�3
(α4 − α2)dt+O(εα)dt + dA(2)

s ,

dξ3 =
1

4�3
(α4 − α2)dt+

1

4�4
(α5 − α3)dt+O(εα)dt + dA(3)

s ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dξN =
1

4�N
(αN+1 − αN−1)dt+

1

4�N+1
(αN+2 − αN )dt+O(εα)dt + dA(N)

s ,

(4.1)

where

αj =
1

2
K2

±A
2
± exp(−A±�j/ε)

[
1 +O

( �j
ε
exp

(−A±�j
2ε

))]
, j = 1, 2, . . . , N + 2,

(4.2)

for

A± := f ′(±1) and K± := 2 exp
[ ∫ 1

0

[ A±
2F (±t)1/2

− 1

1− t

]
dt
]
.(4.3)

Here, the stochastic processes A(r)
s , r = 1, . . . , N , are related to the noise; they depend

on the symmetric operator Qε and the variance σ and are given by the formula

dA(r)
s :=

∑
i,l,k

A−1
ri (ξ)

[
1
2 〈ṽ, Eξ

ilk〉 − 1
2 〈ũξ

kl, E
ξ
i 〉 − 〈ũξ

k, E
ξ
il〉
]
〈Qεσk(ξ), σl(ξ)〉dt

+
∑
i

A−1
ri (ξ)

∑
j

〈QεE
ξ
ij , σj(ξ)〉dt +

∑
i

A−1
ri (ξ)〈Eξ

i , dWε〉 .
(4.4)

The quantities K± are constants introduced by Carr and Pego in [22].
Proof. Recall that as long as ũ is near the manifold, then by (3.11) we obtained

for any r = 1, . . . , N

dξr =
∑
i

A−1
ri (ξ)〈Lc(ũξ + ṽ), Eξ

i 〉dt+ dA(r)
s .

Lemma 3.4 gives that the matrix A−1 and therefore the terms
∑

i A
−1
ri (ξ)〈Lc(ũξ +

ṽ), Eξ
i 〉 are identical to those presented in [8, 9] for the deterministic case (i.e., when

dA(r)
s = 0 for any r). Hence, using (4.32) of [9] we obtain the result.
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Remark 4.2. Note that using the relation �j = hj − hj−1 and the asymptotic

formula for ∂hN+1

∂hj
we can derive an analogous system in hj or in �j (cf. [9]).

Remark 4.3. In view of the assumptions of Theorem 4.1, and as mentioned
throughout our analysis, it is sufficient that ρ = εκ for some small κ > 0. In this case
αj are exponentially small. So, by stability, for a sufficiently bounded noise strength,
the distance ‖ṽ‖ will remain small and thus the matrix A−1 will remain well defined.

We observe

dA(r)
s := A(r)

Q dt+
∑
i

A−1
ri (ξ)〈Eξ

i , dWε〉(4.5)

for

A(r)
Q :=

∑
i,l,k

A−1
ri (ξ)

[
1
2 〈ṽ, Eξ

ilk〉 − 1
2 〈ũξ

kl, E
ξ
i 〉 − 〈ũξ

k, E
ξ
il〉
]
〈Qεσk(ξ), σl(ξ)〉

+
∑
i

A−1
ri (ξ)

∑
j

〈QεE
ξ
ij , σj(ξ)〉 .

(4.6)

Following Lemma 3.9 we obtain in the slow channel

(4.7) |A(r)
Q | ≤ c‖Qε‖ρ2(ρε−3−1/2 + ε−5/2) for all r = 1, . . . , N .

Thus, in the case of ‖Qε‖ = O(ε4+1/2α), since ρ is at least bounded, we can show

that A(r)
Q = O(εα). It is not hard to show that we can also neglect the stochastic

term from (4.1) in order to recover the result of Bates and Xun on metastable slow
motion, at least with high probability.

An interesting case arises when the additional terms in A(r)
s are of the order

of O(α). Then we obtain additional terms in (4.1). Nevertheless, for simplicity of
presentation, we refrain from stating details here. Obviously, for a polynomial noise

strength the extra drift A(r)
Q dt coming from stochastic dynamics would dominate the

exponentially small terms involving αj and α.

4.1. Polynomial noise strength. For the remainder of this section we fix N =
1, which is the case of two interfaces, and a noise strength δε = εδ for some δ > 9/2.
To be more precise suppose Qε = Q0ε

δ with Q0 = O(1).
Using (4.1), we notice that the equation of motion for the first interface is given

by

dξ1 = O(α)dt + dA(1)
s ,

and the motion of the second interface is fixed due to mass conservation.
Recall that �2 is the distance between the two interfaces, and fix ρ = εκ, which

means that the lower bound on �2 is ε1−κ. Let us now first look at (3.12):

σ1(ξ) = A−1
11 E

ξ
1 .

Since ũξ
1 = ũh

2
∂h2

∂h1
+ ũh

1 while ∂h2

∂h1
= 1 + O(eε) and Eξ

1 = ũh
1 + ũh

2 +O(eε), it follows
that

Eξ
1 = ũξ

1 +O(eε) ,

and again the error term remains of the same order under differentiation with repsect
to ξ1. Second, from (4.24) in [9] there is a constant c� such that ‖ũξ

1‖2 = 4�2 + c�ε+
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O(eε), and the error term remains O(eε) under differentiation. (In our case N = 1

we have that w̃1 used in [9] is up to errors of order O(eε) equal to ũξ
1.). Moreover, by

definition

(4.8) A11 = 〈ũξ
1, E

ξ
1〉 − 〈ṽ, Eξ

11〉 = ‖ũξ
1‖2 + ‖ṽ‖∞O(ε−1/2) +O(eε) ,

where we used (5.42) (cf. also [9], where the same estimate is used, though never

presented analytically) for Eξ
11 = O(ε−1/2). Recall that in the slow channel Γ

(4.9) ‖v‖∞ ≤ (Bε(v))
1/2 ≤ Cε−1(Aε(v))

1/2 ≤ Cε−1(δ2−κ
ε )1/2 ≤ Cε−1+δ(1−κ/2) .

Thus we proved

A11 = 4�2 + c�ε+O(εδ(1−κ/2)− 3
2 ) and

σ1(ξ) =
1

4�2 + c�ε+O(εδ(1−κ/2)− 3
2 )

Eξ
1 +O(eε) .

(4.10)

Now we can consider the deterministic drift

A(1)
Q = A−1

11 (ξ)
[
1
2 〈ṽ, Eξ

111〉 − 1
2 〈ũξ

11, E
ξ
1〉 − 〈ũξ

1, E
ξ
11〉

]
〈Qεσ1(ξ), σ1(ξ)〉

+ A−1
11 (ξ)〈QεE

ξ
11, σj(ξ)〉

= A−3
11

[
O(ε−3/2)‖ṽ‖ − 3

4

∂

∂ξ1
‖Eξ

1‖2
]
‖Q1/2

ε Eξ
1‖2 +A−2

11

1

2

∂

∂ξ1
‖Q1/2

ε Eξ
1‖2 +O(eε).

Thus, in the slow channel Γ (cf. (4.9)) the equation of motion for the interface is
reduced to

dξ1 =A−3
11 O(εδ(1−κ/2)−5/2)‖Q1/2

ε Eξ
1‖2dt−

3

4
A−3

11

(
∂

∂ξ1
‖Eξ

1‖2
)
‖Q1/2

ε Eξ
1‖2dt

+A−2
11

1

2
∂

∂ξ1
‖Q1/2

ε Eξ
1‖2dt+A−1

11 〈Eξ
1 , dWε〉+O(eε)dt .

By (45) of [8] we know that

ũξ
1 = 1− uξ +O(eε) and uξ

1 = −uξ
x +O(eε)

(as [0, 1] = I1 ∪ I2 and uξ(m1) = uξ(0) = −1 +O(eε)). Furthermore, the error terms
remain O(eε), under differentiation with respect to ξ. Thus, we obtain

‖ũξ
1‖2 = ‖1− uξ‖2 +O(eε) = 1− 2M + ‖uξ‖2 +O(eε).

Differentiation yields

∂

∂ξ1
‖ũξ

1‖2 = 2〈uξ
1, u

ξ〉+O(eε) = −2〈uξ
x, u

ξ〉+O(eε) = uξ(0)2−uξ(1)2+O(eε) = O(eε) .

Thus we verified that

∂

∂ξ1
‖Eξ

1‖2 = O(eε).

Therefore, the equation of motion for ξ simplifies to

(4.11) dξ1 = O(εδ(3−κ/2)−11/2)dt+A−2
11

1

2

∂

∂ξ1
‖Q1/2

ε Eξ
1‖2dt+A−1

11 〈Eξ
1 , dWε〉 .

D
ow

nl
oa

de
d 

02
/2

5/
19

 to
 1

37
.2

50
.1

00
.4

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3266 D. C. ANTONOPOULOU, D. BLÖMKER, AND G. D. KARALI

Remark 4.4. Let us comment in more detail what this formula implies for the
motion of the interface. First, A11 is approximately the constant 4�2 with very small
derivatives. Moreover, from (4.8) we see that A−1

11 E
ξ
1 is a normalized tangent vector

at M̃. So the deterministic drift in (4.11) is an Itô–Stratonovic correction and the
motion of ξ is approximately the Wiener process Wε projected onto M̃.

Although this is not covered by our assumptions, as a final example we consider
a space-time white noise with Qε = εδId. In this case

dξ = O(ε3δ−7/2)dt+ εδA−1
11 〈Eξ

1 , dŴε〉,

which is a rescaled equation valid on the time scale O(ε−δ). Up to the small deter-
ministic error terms, ξ is a stochastic process with mean zero and linear quadratic
variation. More specifically,

∫ t

0

ε2δA−2
11 〈Eξ

1 , E
ξ
1〉dt = ε2δ

∫ t

0

A−2
11 ‖ũξ

1‖2dt+O(eε)t

= ε2δ
∫ t

0

A−1
11 dt+O(εδ−3/2+κ)

t

�22

=
ε2δ

4�2
t+O(ε2δ+1)t+O(ε3δ−7/2+κ)t .

Recalling Levy’s characterization of Brownian motion, in first approximation for
times not too large the interface behaves similar to a Brownian motion with vari-
ance ε2δ/(4�2).

4.2. Conclusions. Let us summarize the results of our analysis:
1. There exists a slow tube Γ (around the slow manifold Γ′) where the coor-

dinate system (cf. (1.7)) is well defined and from which solutions with high
probability do not exit for long times Tε unless one of the interfaces breaks
down (stochastic stability).
More specifically, according to Theorem 3.6 this probability is bounded below
by

1− Cp(Tε + 1)δκpε

for any p > 0, where δε measures the noise strength (less than ε9/2). So if the
noise is exponentially small, then this probability is large for an exponentially
long time, while when the noise being polynomially small the probability is
large for any polynomially long time.

2. In Γ the approximate SDE of front motion for the stochastic Cahn–Hilliard
is given by (4.1). Further, the extra stochastic terms from corelations of the
interface motions are important since the deterministic dynamics are expo-
nentially small.

5. Higher order estimates.

5.1. Preliminaries. This section deals with the estimation of all the follow-
ing higher order terms that appear due to stochastic integration when deriving the
equations of motion in the slow channel:

〈ṽ, Eξ
ilk〉 , 〈ũξ

kl, E
ξ
i 〉, and 〈ũξ

k, E
ξ
il〉.
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In addition, we bound the quantity 〈Lcṽ, ũξ
kl〉, where for a general smooth in space

function φ the operator Lc is defined by

Lcφ := −ε2φxxxx + (f ′(uh)φx)x.

In order to achieve rigorous estimates for all these terms, we investigate the properties
of the stationary problem (1.3). Our analysis admits extensive calculations and is
based on the ideas and techniques presented in [8, 9, 22, 23] for the deterministic case
where analogous terms of lower order have been estimated already.

Note first that for the construction of the approximate manifold of solutions
for the stochastic Cahn–Hilliard equation we use a local coordinate system when
presenting the admissible interface positions. The hN+1 variable depends on hi = ξi,
i = 1, . . . , N ; therefore, when differentiating two times in ξ variables and applying

the chain rule the second order term ∂2hN+1

∂hi∂hj
appears. More specifically, for a general

function f smooth in space and any i, j = 1, . . . , N , we obtain

∂f

∂ξi
=

∂f

∂hi
+

∂f

∂hN+1

∂hN+1

∂hi
, and

∂2f

∂ξi∂ξj
=

∂2f

∂hi∂hj
+
( ∂2f

∂hN+1∂hj
+

∂2f

∂h2
N+1

∂hN+1

∂hj

)∂hN+1

∂hi

+
∂f

∂hN+1

(∂2hN+1

∂hi∂hj
+

∂2hN+1

∂hi∂hN+1

∂hN+1

∂hj

)
.

(5.1)

By the next lemma considering ρ = εκ for some small κ > 0 and thus α, β are

exponentially small, we estimate |∂2hN+1

∂hi∂hj
|. As in [8], where the analogous first order

estimate has been derived, we use an implicit function theorem argument combined
with the mass conservation constraint. If uh is in the second approximate manifold
M, then, by definition, mass conservation holds, i.e.,

M = M(h) =

∫ 1

0

uh(x)dx.

Differentiating twice with respect to h variables, we get

d2

dhidhj
M(h) =

∫ 1

0

uh
ijdx,

where uh
ij :=

∂2uh

∂hi∂hj
=

∂uh
i

∂hj
.

Lemma 5.1. For any i, j = 1, . . . , N the next inequality follows:

∣∣∣∂2hN+1

∂hi∂hj

∣∣∣ ≤ O(eε).

Proof. Let � be a generic positive variable. According to the analysis presented
in [22], when comparing the x and � derivatives of the solution φ of the stationary
problem (1.3), we obtain a residual function w given by the following relation:

(5.2) 2φ�(x, �,±1) = −(sgnx)φx(x, �,±1) + 2w(x, �,±1).
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Let us define Ij := [mj ,mj+1], χj(x) := χ(
x−hj

ε ). If wj(x) := w(x − mj , hj −
hj−1, (−1)j), then the interval [hj−1 − ε, hj+1 + ε] contains the support of uh

j and
(5.3)

uh
j (x) =

⎧⎪⎨
⎪⎩
χj−1wj for x ∈ Ij−1,

(1− χj)(−φj
x + wj) + χj(−φj+1

x − wj+1) + χj
x(φ

j − φj+1) for x ∈ Ij ,

−(1− χj+1)wj+1 for x ∈ Ij+1,

where χj
x = ∂x(χ(

x−hj

ε )) and φj
x = φx(x−mj , lj − lj−1, (−1)j) (cf. [22, p. 561]). We

note that in Ij (cf. [8, p. 430])

uh
j = −uh

x + (1 − χj)wj − χjwj+1

and thus

uh
ji =− ∂uh

x

∂hi
+ (−δj,iχ

j
x)w

j + (1 − χj)(Aj,iw
j
x +Bj,iw

j
� )

− δj,iχ
j
xw

j+1 − χj(Aj+1,iw
j+1
x +Bj+1,iw

j+1
� ) in Ij ,

(5.4)

where wj
x = wx(x −mj , lj − lj−1, (−1)j) and wj

� = wl(x −mj , lj − lj−1, (−1)j) with
δj,i being the Kronecker delta. Moreover,

Aj,i :=
∂(x−mj)

∂hi
=

{
0 for i �= j, j − 1,

−1/2 for i = j, j − 1,

and

Bj,i :=
∂(hj − hj−1)

∂hi
=

⎧⎪⎨
⎪⎩
0 fori �= j, j − 1,

1 for i = j,

−1 for i = j − 1.

In a similar way we obtain

(5.5) uh
ji = δj−1,iχ

j−1
x wj + χj−1(Aj,iw

j
x +Bj,iw

j
�) in Ij−1,

and

(5.6) uh
ji = δj+1,iχ

j+1
x wj+1 − (1 − χj+1)(Aj+1,iw

j+1
x +Bj+1,iw

j+1
� ) in Ij+1.

Using now the bounds on wj , wj
x, and wj

� (cf. [22], or [8, p. 172]), we obtain for r > 0
sufficiently small∣∣∣∣∣

∫
Ij−1∪Ij+1

uh
ji(x)dx

∣∣∣∣∣ ≤ Cε−2(r−1 + 1)β(r)Kj,i +O(eε)(δj−1,i + δj+1,i)

with Kj,i = |Aj,i|+ |Aj+1,i|+ |Bj,i|+ |Bj+1,i| and∣∣∣∣
∫
Ij

[
(−δj,iχ

j
x)w

j + (1− χj)(Aj,iw
j
x +Bj,iw

j
� )− δj,iχ

j
xw

j+1

− χj(Aj+1,iw
j+1
x +Bj+1,iw

j+1
� )

]
dx

∣∣∣∣
≤ Cε−2(r−1 + 1)β(r)Kj,i +O(eε)δj,i.
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Therefore, using the estimates for wi it follows that

d2

dhjdhi
M(h) =

∫ 1

0

uh
jidx

=

∫
Ij

− ∂2uh

∂x∂hi
dx+O(ε−2(r−1 + 1)β(r))Kj,i

+O(eε)(δj−1,i + δj,i + δj+1,i)

=

∫
Ij

(
−∂uh

i

∂x

)
dx+O(ε−2(r−1 + 1)β(r))Kj,i

+O(eε)(δj−1,i + δj,i + δj+1,i)

= −(uh
i (mj+1)− uh

i (mj)) +O(ε−2(r−1 + 1)β(r))Kj,i

+O(eε)(δj−1,i + δj,i + δj+1,i).

Since the support of uh
i is Ii−1 ∪ Ii ∪ Ii+1 � mi−1,mi,mi+1,mi+2 we get that

d2

dhidhj
M = 0 if j �= i − 1, i, i + 1, i + 2, while, for example, uh

i (mi) = χi−1wi|mi =

χi−1|miw(0, li,±1) and uh
i (mi+1) = −(1−χi+1)wi+1|mi+1 = −(1−χi+1)|mi+1w(0, li+1,

±1). But w(0) = O(ε−1)α′
±(r) [22, p. 558], since φxx(0)

−1 = ε2/f(φ(0)) and ε/l is
uniformly bounded, while χ is C∞.

Let us now for simplicity consider N = 1. Then M(h1, y) = constant, when
y = h2, where h2 is a function of h1, so

∂M

∂h1
+

∂M

∂y

∂y

h1
= 0

and thus

∂2M

∂h1∂h1
+

∂2M

∂y2

( ∂y

∂h1

)2

+
∂M

∂h1

∂2y

∂h2
1

= 0 .

We set y = h2 to get, using the estimate ∂hN+1

∂hj
= O(1),

O(eε) +O(eε)O(1) +O(1)
∂2h2

∂h2
1

= 0

and thus

∂2h2

∂h2
1

= O(eε) .

The case N > 1 follows in a similar way.

5.2. The estimates. We define Is := [−�/2 − ε, �/2 + ε]. Then for any x ∈ Is
it holds that [9, 22, 23]

|w| ≤ cε−1β±(r),

|wx| ≤ cε−2r−1β±(r),

|w�| ≤ cε−2β±(r),

|wx�| ≤ cε−3r−1β±(r),

|wxx| ≤ cε−3β±(r).

(5.7)
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For the purposes of our proof we will need estimates for the terms

|w��|, |wxxx|, |wxx�|, |wx��|, |wxxxxx|, |wxxx�|, and |wxx��| .

It is sufficient to estimate these terms in I := [0, �/2 + ε] or in (0, �/2 + ε]. We write
I = [0, �/2− εH ] ∪ [�/2− εH, �/2 + ε] for a positive H to be defined in what follows.
We set

IH := [0, �/2− εH ], and J := [�/2− εH, �/2 + ε]

and prove the following lemma bounding the second derivative of w in � on Is.
Lemma 5.2. For any x ∈ Is it holds that

(5.8) |w��(x)| ≤ cε−3β±(r).

Proof. Motivated by the proof of [23] for the estimate of |w�|, we use that

ε2wxx = f ′(φ(x))w in (0, �/2 + ε) ⊃ I◦H

and differentiate twice with respect to � to obtain

ε2(w��)xx − f ′(φ)w�� = F

for F := f ′′′(φ)φ2
�w+ f ′′(φ)φ��w+2f ′′(φ)φ�w�. By the maximum principle it follows

that

(5.9) |w��(x)| ≤ max

{
|w��(0)|, |w��(�/2− εH)|, sup

x∈IH

∣∣∣F/f ′(φ)
∣∣∣} for any x ∈ IH .

Following Carr and Pego (cf. [22, p. 560]), we choose H such that f ′(φ(x)) ≥ c0 > 0
for 0 < x < �/2− εH . Since ε2φ2

x = 2(F (φ)− α), there exists a constant C > 0 such
that 1

|φx| ≤ ε
C for any x ∈ J = [�/2− εH, �/2 + ε] (cf. [22, pp. 560, 557]).

First we estimate |w��(x, �,−1)| in J . It holds that (cf. [22, p. 558])

(5.10) w(x, �,−1) = ε−1�−2α′
−(r)φx(|x|, �,−1)

∫ |x|

�/2

ds

φx(s, �,−1)2
.

Let us define A :=
∫ |x|
�/2

ds
φx(s,�,−1)2 . With a slight abuse of notation and for simplicity

of notation, we neglect the index “−” in α− by using α. Differentiation of (5.10)
yields

w�� = ε−1
{
(�−2α′(r))��φxA+ 2(�−2α′(r))�φx�A+ 2(�−2α′(r))�φxA�

+ (�−2α′(r))φx��A+ 2(�−2α′(r))φx�A� + (�−2α′(r))φxA��

}
.

(5.11)

According to [22, 23] it follows that

|α′(r)| ≤ cr−2α and |α′′(r)| ≤ cr−4α .

Analogously we obtain

|α′′′(r)| ≤ cr−6α .
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Observing that r = ε/� is bounded, i.e., �−1 ≤ cε−1, we derive
(5.12)
|�−2α′(r)| ≤ cε−2α(r), |(�−2α′(r))�| ≤ cε−3α(r), and |(�−2α′(r))��| ≤ cε−4α(r) .

Obviously since x ∈ J one has |A| ≤ cε2+1. It holds that (cf. [22, p. 552])

(5.13) ε2φ2
x = 2(F (φ) − α) ,

while

(5.14) ε2φxx = f(φ).

Since
∫ �/2

−�/2 |φx|dx ≤ 2 (cf. [22, p. 558]), and φ satisfies a Dirichlet problem, we get by

trace inequality that φ is uniformly bounded. Therefore, we obtain

|φx| ≤ cε−1, |φxx| ≤ cε−2, and |φxxx| ≤ cε−3 .

Using now the definition (5.2) of w and the fact that |w|+ |φx| ≤ cε−1, we arrive at

|φ�| ≤ cε−1,

while |φxl| ≤ c|φxx|+ c|wx|. So, using |wx| ≤ cε−2 (cf. [9]), we get

|φx�| ≤ cε−2 .

By (5.14) it follows that

|φxx�| ≤ cε−3.

Finally, we also need an estimate for the term φx��. We differentiate (5.13) twice with
respect to � in order to obtain

|ε2φxφx��| ≤ cε−2 .

Hence using the bound 1
|φx| ≤ cε valid in J , it holds that

|φx��| ≤ cε−3 in J .

In order to compute the derivatives of A in (5.11), we apply the formulas

d

d�

∫ b

s(�)

g(s, �)ds =

∫ b

s(�)

g�(s, �)ds− s′(�)g(s(�), �)

and

d2

d�2

∫ b

s(�)

g(s, �)ds =

∫ b

s(�)

g��(s, �)ds− s′(�)g�(s(�), �)

− s′′(�)g(s(�), �)− s′(�)2gx(s(�), l)− s′(�)g�(s(�), �).

After tedious calculations, using the estimates above and the fact that the length of
the interval is of order O(ε), we arrive at

|A�| ≤ cε2, |A��| ≤ cε .
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We note that ε/� is bounded, i.e., �−1 ≤ cε−1. Thus by (5.11) and (5.12) we obtain

(5.15) |w��| ≤ cε−3α in J.

So by (5.15), since �/2− εH ∈ J , it follows that

(5.16) |w��(�/2− εH)| ≤ cε−3α.

By the definition of F , the fact that f ′ ≥ c0 > 0 in IH , and the first and third estimate
of (5.7), we get (using β := β−) that

sup
IH

∣∣∣F/f ′(φ)
∣∣∣ ≤ c

[
|φ�|2|w|+ |φ��||w|+ |φ�||w�|

]
≤ cε−1β

[
|φ�|2 + |φ��|+ ε−1|φ�|

]
.

In addition, since |w�|+ |φx�| ≤ cε−2 [22, 9], it follows that

|φ��| ≤ cε−2 .

Thus as we already proved |φ�| ≤ cε−1, we derive

(5.17) sup
IH

∣∣∣F/f ′(φ)
∣∣∣ ≤ cε−3β.

Let us now turn to the missing estimate on |w��(0)|. In [23] by using w(0) = −∂β
∂� (ε/�),

it was demonstrated that |w�(0)| ≤ cε−2β. Analogously by differentiation in �, it
follows that

(5.18) |w��(0)| ≤ cε−3β.

Using now (5.9), (5.15), (5.16), (5.17), and (5.18) we obtain that |w��(x)| ≤ cε−3β
for any x in I = IH ∪ J . By symmetry we prove finally that |w��| ≤ cε−3β±(r) in
Is.

The next three lemmas present bounds for the third or higher order terms
Lemma 5.3. For any x ∈ I◦s − {0} it holds that

(5.19) |wxxx(x)| ≤ cε−4r−1β±(r)

and

(5.20) |wxx�(x)| ≤ cε−4β±(r).

Proof. We consider x ∈ (0, �/2 + ε) and ε2wxx = f ′(φ)w. By differentiation in
x, using (5.7), and the bound on |φx|, or by differentiating in �, using (5.7), and the
bound on |φ�| we get the following:

|wxxx| ≤ cε−2
[
|f ′(φ)||wx|+ |f ′′(φ)||φx||w|

]
≤ cε−2

[
cε−2r−1β + cε−1ε−1β

]
≤ cε−4r−1β

and

|wxx�| ≤ cε−2
[
|f ′(φ)||w�|+ |f ′′(φ)||φ�||w|

]
≤ cε−2

[
cε−2β + cε−1ε−1β

]
≤ cε−4β

with β = β−. Again by symmetry, we obtain the bounds for all x in I◦s − {0}.
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Lemma 5.4. For any x ∈ Is − {0} it holds that

(5.21) |wx��(x)| ≤ cε−4r−1β±(r).

Proof. Consider x ∈ (0, �/2 + ε] and write wx��(�/2)− wx��(x) =
∫ �/2

x wxx��(s)ds
in order to obtain

(5.22) |wx��(x)| ≤ |wx��(�/2)|+
∫ �/2

x

|wxx��(s)|ds.

We use the definition of w given in (5.10), set p = ε−1�2α′, and recall that A =∫ |x|
�/2

φ−2
x ds. Differentiating first with respect to x and then twice with respect to �

yields

wx�� = p��φxxA+ p�φxx�A+ 2p�φxxA� + p�φxx�A+ pφxx��A

+ 2pφxx�A� + pφxxA�� − p�φx�

φ2
x

− p
(φx��φ

2
x − 2φ2

x�φx)

φ4
x

+
p��
φx

− p�φx�

φ2
x

.

Observe that A = 0 at x = �/2, while

A�(�/2) = −1

2
φx(�/2)

−2 and A��(�/2) = φx(�/2)
−3φx�(�/2) + φx�(�/2)φx(�/2)

−3 .

We also note �/2 ∈ J ; thus by the bounds of Lemma 5.2 we obtain |φx�(�/2)| ≤
cε−2 and |φx(�/2)|−1 ≤ cε. Hence, as in Lemma 5.2 for a general x ∈ J , we get
ε−1|A�(�/2)|+ |A��(�/2)| ≤ cε.

In addition, using the third estimate from (5.12) yields |p��(�/2)| ≤ cε−5α. Fur-
thermore, as �/2 ∈ J by the proof of Lemma 5.2 we have |φxx(�/2)| ≤ cε−2 and
|φx��(�/2)| ≤ cε−3. Therefore, we obtain finally (with α = α−)

(5.23) |wx��(�/2)| ≤ cε−4α .

Recall ε2wxx = f ′(φ)w in (0, �/2+ε). By taking twice the �-derivative yields (β = β−)

(5.24) |wxx��| ≤ cε−2
[
|φ�|2|w|+ |φ�||w�|+ |w��|

]
≤ cε−5β .

Here, we used the bound |φ�| ≤ cε−1 from the proof of Lemma 5.2, the first and
third estimate of (5.7), the fact that |w| ≤ cε−1β and |w�| ≤ cε−2β, and the bound
|w��| ≤ cε−3β of Lemma 5.2.

Using r = ε/� and x ∈ (0, �/2) we get |x− �/2| ≤ c(�/2 + ε) ≤ cεr−1. Therefore,
(5.22), (5.23), and (5.24) imply

|wx��(x)| ≤ cε−4r−1β, x ∈ (0, �/2 + ε] .

By symmetry the analogous result holds for any x ∈ [−�/2− ε, 0).
Analogously the next lemma follows.
Lemma 5.5. For any x ∈ Is − {0} it holds that

|wxxxxx(x)|+ |wxxx�(x)| + |wxx��(x)| ≤ cε−5r−1β±(r).(5.25)

In order to estimate Eξ
i , E

ξ
ij , and Eξ

ijk we fist need the following lemma for the
correction terms Qj .
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Lemma 5.6. For any i, j, k it follows that

|Qj | ≤ cε−3β,

|Qij | ≤ cε−4r−1β,

|Qijk| ≤ cε−5r−1β.

(5.26)

Proof. We recall that

uh
j =

⎧⎪⎨
⎪⎩
χj−1wj on Ij−1,

(1 − χj)(−φj
x + wj) + χj(−φj+1

x − wj+1) + χj
x(φ

j − φj+1) on Ij ,

−(1− χj+1)wj+1 on Ij+1.

Consider the functions on x = 0, 1 in the first and last sets of their support. Using
the bounds on |w|, |wxx|, we arrive at

|ũh
j | ≤ cε−1β and thus |w̃j | ≤ cε−1β,

|ũh
jxx| ≤ cε−3β and thus |w̃jxx| ≤ cε−3β.

The estimates of |wx| and |w�| and of |wxxx| and |w�xx|, respectively, give
|ũh

ji| ≤ cε−2r−1β and thus |w̃ji| ≤ cε−2r−1β,

|ũh
jixx| ≤ cε−4r−1β and thus |w̃jixx| ≤ cε−4r−1β.

Finally, using the estimates of |wxx|, |wx�|, and |w��| and of |wxxxx|, |wxxx�|, and
|wxx��|, respectively, we obtain

|ũh
jik| ≤ cε−3r−1β and thus |w̃jik | ≤ cε−3r−1β,

|ũh
jikxx| ≤ cε−5r−1β and thus |w̃jikxx| ≤ cε−5r−1β.

Recall also

w̃j := ũh
j + ũh

j+1,

Qj(x) :=

(
−1

6
x3 +

1

2
x2 − 1

3
x

)
w̃jxx(0) +

1

6
(x3 − x)w̃jxx(1) + xw̃j(1), j = 1, . . . , N.

This definition of Qj combined with the previously obtained bounds on w̃j imply the
result.

Remark 5.7. By [22, pp. 557–565], the following estimates hold true. First,

(5.27)

∫ 0

−�/2

φx(x, �,−1)2 +

∫ �/2

0

φx(x, �,+1)2 ≤ ε−1S∞ + E(r),

where |E| ≤ cε−1β and S∞ =
∫ 1

−1

√
2F (u)du. Moreover,

(5.28)

∫ �/2

−�/2

|φx|dx ≤ 2

and

(5.29)

∫ �/2

−�/2

|φxx|2dx ≤ cε−3.
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In addition, there exists a constant c > 0 such that for all x ∈ [hj − ε, hj + ε], j =
0, . . . , N + 1, we have

|φj(x) − φj+1(x)| ≤ c|αj − αj+1|,(5.30)

|φj
x(x) − φj+1

x (x)| ≤ cε−1|αj − αj+1|,(5.31)

and

(5.32) |φj
xx(x)− φj+1

xx (x)| ≤ cε−2|αj − αj+1|,
provided ε/�j, ε/�j+1 < r0 for some sufficiently small r0 > 0 (cf. [8]).

Now, we are able to bound the terms ũh and uh.
Theorem 5.8. For any i, j, k it holds that

‖ũh
j ‖∞ ≤ O(1) +O(‖w‖∞),

‖ũh
ji‖ ≤ cε−1/2(1 + S1/2

∞ +max(rjα
j , rj+1α

j+1)1/2) + c‖wx‖+ c‖w�‖,
‖ũh

jik‖ ≤ cε−3/2 + c‖wx‖+ c‖w�‖+ c‖wxx‖+ c‖wx�‖+ c‖w��‖,
‖uh

j ‖∞ ≤ O(ε−1), ‖uh
ij‖∞ ≤ O(ε−2), ‖uh

j ‖ ≤ O(ε−
1
2 ).

(5.33)

Proof. We use the definition of uh
j and get by (5.28) that

|ũh
j | ≤ c

∫ x

0

|φx|dx+ c‖w‖∞ ≤ c+ c‖w‖∞ .

Also, it follows that |uh
j | = O(|φx|) = O(ε−1), and thus

‖uh
j ‖∞ ≤ O(ε−1) .

By [8, p. 38],

(5.34) uh
j = −uh

x + (1− χj)wj − χjwj+1 on Ij .

Combining this with (5.3) we obtain

uh
ji(x) =

⎧⎪⎨
⎪⎩
O(wx + w�) for x ∈ Ij−1,

−uh
xi(x) +O(wx + w�) for x ∈ Ij ,

O(wx + w�) for x ∈ Ij+1.

Therefore, we arrive at

ũh
ji(x) =

∫ x

0

uh
ji(y)dy =

⎧⎪⎨
⎪⎩
O(wx + w�) for x ∈ Ij−1,

O(uh
i + wx + w�) for x ∈ Ij ,

O(wx + w�) for x ∈ Ij+1.

By [22, p. 563, (8.6)],

(5.35) ‖uh
i ‖ ≤ ε−1/2(S1/2

∞ +max(rjα
j , rj+1α

j+1)1/2) .

Using this estimate we obtain

‖ũh
ji‖ ≤ cε−1/2(1 + S1/2

∞ +max(rjα
j , rj+1α

j+1)1/2) + c‖wx‖+ c‖w�‖ .
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For higher derivatives, observe now that

ũh
jik(x) =

∫ x

0

uh
jik(y)dy =

⎧⎪⎨
⎪⎩
O(wxx + wx� + w��) for x ∈ Ij−1,

O(uh
xi + wxx + wx� + w��) for x ∈ Ij ,

O(wxx + wx� + w��) for x ∈ Ij+1.

In addition, since uh
j = −uh

x + (1− χj)wj − χjwj+1 on Ij , we obtain

‖uh
xi‖ ≤ ‖uh

xx‖+ c‖wx‖ .

The argument of Lemma 8.3 of [22, p. 562] applied to uh on Ij using the support of
|φj

x − φj+1
x | combined with (5.31), (5.28), and

uh
x = O(|φx|) +O(|φj

x − φj+1
x |)

finally yields

(5.36) ‖uh
x‖ ≤ ‖φx‖+

√
O(ε−2ε) ≤ cε−

1
2 .

Analogously, differentiating uh twice with respect to x, using the bounds of (5.32)
and (5.29), and using the support of |φj

xx − φj+1
xx | yields

uh
xx = O(|φxx|) +O(|φj

xx − φj+1
xx |) .

Thus

‖uh
xx‖ ≤ ‖φxx‖+

√
O(ε−4ε) ≤ cε−3/2.

So, it follows that

(5.37) ‖uh
xi‖ ≤ cε−3/2 + c‖wx‖.

Combining the previous estimates yields

‖ũh
jik‖ ≤ cε−3/2 + c‖wx‖+ c‖w�‖+ c‖wxx‖+ c‖wx�‖+ c‖w��‖ .

Using again (5.34) we obtain

|uh
ij | ≤ O(uh

xj) = O(uh
xx) = O(φxx) = O(ε−2) .

Therefore

‖uh
ij‖∞ ≤ O(ε−2) .

Further, by (5.34) and (5.36) it follows that

‖uh
j ‖ ≤ O(‖uh

x‖) = O(ε−
1
2 ) .

Combining now the bound |ũh
j | ≤ O(1) + O(‖w‖) with the implicit function

theorem, for the change of variables for h to ξ, we obtain

(5.38) |ũξ
j | ≤ (O(1) +O(‖w‖))[O(1) +O(ε−1β)] .
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Moreover, for the second derivative in ξ variables

ũξ
jk ≤ |ũh

jk|[O(1) +O(ε−1β)]2 + |ũh
jk|[O(1) +O(ε−1β)] + |ũh

j |O(eε) .

So we have verified the following lemma.
Lemma 5.9. For all j, k it holds that

(5.39) ‖ũξ
j‖ ≤ (O(1) +O(‖w‖))[O(1) +O(ε−1β)]

and

‖ũξ
jk‖ ≤ [O(1) +O(ε−2β2) +O(ε−1β)][O(wx + w�) + ε−1/2 + ε−1/2A]

+O(eε)[O(1) +O(‖w‖)]
(5.40)

with defined as A = S
1/2
∞ +maxj(rjα

j , rj+1α
j+1)1/2.

The following theorem gives the bounds on Eξ
i in the L2-norm.

Theorem 5.10. For all i, j, k the following inequalities hold:

‖Eξ
i ‖ ≤ 4�i+1 +O(ε−3β),(5.41)

‖Eξ
ij‖ ≤ O(ε−1/2) +O(ε−4r−1β),(5.42)

‖Eξ
ijk‖ ≤ O(ε−3/2) +O(ε−5r−1β).(5.43)

Proof. Using the bound ‖Eξ
j ‖ ≤ ‖w̃j‖ + ‖Qj‖, the estimate of ‖w̃j‖ presented in

(4.24) on p. 186 of [9], and our Lemma 5.6, we obtain (5.41). Also, observe

Eξ
ji = w̃ji +O(Qji) +O(Qijx) = O(wx + w�) +

∫ x

0

(−uh
xi)dy +O(Qji) +O(Qijx)

≤ O(wx + w�) +O(uh
i ) +O(Qji) .

Hence, by (5.35) and Lemma 5.6, we conclude

‖Eξ
ji‖ ≤ O(ε−1/2) +O(ε−4r−1β) .

Furthermore, using (5.34) we obtain

Eξ
jik = w̃jik +O(Qjik) +O(Qjikx)

= O(wxx + w�� + wx�) +

∫ x

0

(−uh
xxk)dy +O(Qjik) +O(Qjikx)

≤ O(wxx + w�� + wx�) +O(uh
xk) +O(Qjik) .

Thus, by (5.37) and Lemma 5.6 this implies

‖Eξ
ijk‖ ≤ O(ε−3/2) +O(ε−5r−1β) .

Remark 5.11. We note that the bound on ‖Eξ
ij‖ presented in Theorem 5.10

coincides in the main order term with the estimate that was used but not presented
analytically in [9].

Using all the results of the previous analysis we are now ready to derive by
Cauchy–Schwarz inequality all the desired estimates for the higher order derivatives.
They are presented in the following main theorem of this section.
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Theorem 5.12. These inequalities hold for all i, l, k:

|〈ũξ
kl, E

ξ
i 〉| ≤ O(ε−1/2)

[
4�i+1 +O(ε−3β)

]
,(5.44)

|〈ũξ
k, E

ξ
il〉| ≤ O(ε−1/2) +O(ε−4r−1β),(5.45)

|〈ṽ, Eξ
ilk〉| ≤

[O(ε−3/2) +O(ε−5r−1β)
] · ‖ṽ‖.(5.46)

It remains to analyze 〈Lcṽ, ũξ
kl〉. Here we provide the following main result.

Theorem 5.13. For all k and l it holds that

(5.47) |〈Lcṽ, ũξ
kl〉| ≤ ε−5β(r)

(
O(1) +O(ε−2β(r)2)

)
‖ṽ‖.

Proof. Note that by symmetry and definition

〈Lcṽ, ũξ
kl〉 = −〈ṽ, ∂x∂ξk∂ξlLb(uξ)〉 .

Recall that we defined Lb(φ) = ε2φxx − f(φ). As in [8, pp. 452–453] for x ∈ [hj −
ε, hj + ε], j = 1, 2, . . . , N + 1, we write

(5.48) Lb(uh) = f1 + f2 +G,

where we defined

f1 := ε2χj
xx(φ

j+1 − φj), f2 := 2ε2χj
x(φ

j+1
x − φj

x),

G := (φj+1 − φj)2

{
(1 − χj)

∫ χj

0

sf ′′(θ)ds+ χj

∫ 1

χj

(1− s)f ′′(θ)ds

}

with θ = θ(s) := (1− s)φj(x) + sφj+1(x). For all other x, we have no contribution of
Lb(uh).

In Lemma 5.2 of [8, p. 454], after differentiating f1, f2, G with respect to hj it is
derived that ∣∣∣ ∂

∂hj
Lbuh

∣∣∣ ≤ cε−2β(r) .

Applying the analogous argument to the second differential with respect to hj and hi

yields after some calculation

(5.49)
∣∣∣ ∂2

∂hj∂hi
Lbuh

∣∣∣ ≤ cε−3β(r).

Note that in this argument the worst term is |φj
xxx(x) − φj+1

xxx(x)|. But as ε2φxxx =
f ′(φ)φx with f(φ) = φ3−φ and f ′(φ) = 3φ2− 1, using the estimates of φ, φx and the
results for the differences presented on p. 453 of [8], we get

|φj
xxx(x)− φj+1

xxx(x)| = ε−2|f ′(φj)φj
x(x) − f ′(φj+1)φj+1

x (x)|
= ε−2|f ′(φj)φj

x(x) − f ′(φj+1)φj+1
x (x)

− f ′(φj)φj+1
x (x) + f ′(φj)φj+1

x (x)|
≤ ε−2|f ′(φj)||φj

x(x)− φj+1
x (x)|+ ε−2|φj+1

x (x)||f ′(φj)− f ′(φj+1)|
≤ cε−2|φj

x(x)− φj+1
x (x)|+ cε−2ε−1|f ′(φj)− f ′(φj+1)|

≤ cε−3|αj − αj+1|+ cε−3|3φj(x)2 − 1− 3φj+1(x)2 + 1|
≤ cε−3|αj − αj+1|+ cε−3|φj(x) + φj+1||φj(x)− φj+1|
≤ cε−3|αj − αj+1|+ cε−3|αj − αj+1|
≤ cε−3|αj − αj+1|.

Again as in [8, p. 456], by using that ε2wxx = f ′(φ(x))w and differentiation in x, we
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obtain

(5.50)
∣∣∣ ∂2

∂hj∂hi

∂

∂x
Lbuh

∣∣∣ ≤ cε−5β(r).

Changing now to ξ variables, using that the second derivative appears by applying
the formula (5.1) to (5.50), and since (cf. [8, p. 454]) it holds that

(5.51)
∣∣∣ ∂

∂hj

∂

∂x
Lbuh

∣∣∣ ≤ cε−4β(r),

we finally obtain

∣∣∣ ∂2

∂ξk∂ξl

∂

∂x
Lbuh

∣∣∣ ≤ ε−5β(r)
{
(O(1) + ε−1β(r))2 + (O(1) + ε−1β(r))

}
+ ε−4β(r)O(eε)

≤ ε−5β(r)
(
O(1) + ε−2β(r)2

)
.

(5.52)

So, the result follows.
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