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Abstract

We give a singular control approach to the problem of minimizing an energy functional for
measures with given total mass on a compact real interval, when energy is defined in terms of a
completely monotone kernel. This problem occurs both in potential theory and when looking for
optimal financial order execution strategies under transient price impact. In our setup, measures
or order execution strategies are interpreted as singular controls, and the capacitary measure is
the unique optimal control. The minimal energy, or equivalently the capacity of the underlying
interval, is characterized by means of a nonstandard infinite-dimensional Riccati differential
equation, which is analyzed in some detail. We then show that the capacitary measure has
two Dirac components at the endpoints of the interval and a continuous Lebesgue density in
between. This density can be obtained as the solution of a certain Volterra integral equation of
the second kind.
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1 Introduction and statement of results

1.1 Background

Let G: Ry — Ry be a function. The problem of minimizing the energy functional
1
En) =5 G (|t — s]) p(ds) p(dt)
over probability measures y supported by a given compact set K C R plays an important role

in potential theory. A minimizing measure p*, when it exists, is called a capacitary measure,
and the value Cap (K) := 1/E(u*) is called the capacity of the set K; see, e.g., Choquet (1954),
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Fuglede (1960), and Landkof (1972). See also Aikawa & Essén (1996) or Helms (2009) for more
recent books on potential theory.

In this paper, we develop a control approach to determining the capacitary distribution pu*
when K is a compact interval and G is a completely monotone function. In this approach,
measures 4 on K will be regarded as singular controls and £(u) is the objective function. Our
goal is to obtain qualitative structure theorems for the optimal control u* and characterize u*
by means of certain differential and integral equations.

The intuition for this control approach, and in fact our original motivation, come from the
problem of optimal order execution in mathematical finance. In this problem, one considers
an economic agent who wishes to liquidate a certain asset position of x shares within the time
interval [0,7]. This asset position can either be a long position (z > 0) or a short position
(z < 0). The order execution strategy chosen by the investor is described by the asset position
X; held at time ¢ € [0,7]. In particular, one must have Xy = z. Requiring the condition
X74+ = 0 assures that the initial position has been unwound by time 7. The left-continuous
path X = (X¢);e[o,7) will be nonincreasing for a pure sell strategy and nondecreasing for a pure
buy strategy. A general strategy can consist of both buy and sell trades and hence can be
described as the sum of a nonincreasing and a nondecreasing strategy. That is, X is a path of
finite variation.

The problem the economic agent is facing is that his or her trades impact the price of
the underlying asset. To model price impact, one starts by informally defining ¢ dX; as the
immediate price impact generated by the (possibly infinitesimal) trade dX; executed at time
t. Next, it is an empirically well-established fact that price impact is transient and decays
over time; see, e.g., Moro, Vicente, Moyano, Gerig, Farmer, Vaglica, Lillo & Mantegna (2009).
This decay of price impact can be described informally by requiring that G(t — s) dX; is the
remaining impact at time ¢ of the impact generated by the trade dXs. Here, G : Ry — R, is
a nonincreasing function with G/(0) = ¢, the decay kernel. Thus, [ _, G(t — s) dX is the price
impact of the strategy X, cumulated until time ¢. This price impact creates liquidation costs
for the economic agent, and one can derive that, under the common martingale assumption for
unaffected asset prices, these costs are given by

1
C(X) = —/ G(|t — s|) dX, dX, 1)
011 J[0.7]

2

plus a stochastic error term with expectation independent of the specific strategy X; see
Gatheral, Schied & Slynko (2012). Indeed, let us assume that asset prices are given by
SX = 89 + fg G(t — s)dX, where S is a continuous martingale and fg G(t — s)dXs mod-
els the price impact of the trading strategy at time ¢t. Then, we assume that the order dX;
is made at the average price 3(SX + 5;¥) and costs £(S;X + S7¥)dX;, which corresponds to
a block shape limit order book, see Alfonsi, Fruth & Schied (2010). Accumulating these costs
over [0, 7], integrating by parts twice, and taking expectations yields

E [/ %(s{ +S,;X)dXt] = —S0Xo +E[C(X)],
[0,7]

where we have used the fact that E [ f[o T

on SY. Further details can be found in Gatheral et al. (2012).

Thus, minimizing the expected costs amounts to minimizing the functional C(X) over all
left-continuous strategies X that are of bounded variation and satisfy Xg =  and X7, = 0.
This problem was formulated and solved in the special case of exponential decay, G(t) = e™#,
by Obizhaeva & Wang (2013). The general case was analyzed by Alfonsi, Schied & Slynko

| S?dXt} = —S5) Xy, due to the martingale assumption



(2012) in discrete time and by Gatheral et al. (2012) in the continuous-time setup we have used
above. We refer to Alfonsi et al. (2010), Alfonsi & Schied (2010), Gatheral, Schied & Slynko
(2011), Predoiu, Shaikhet & Shreve (2011), Schied & Slynko (2011), and Gatheral & Schied
(2012) for further discussions and additional references in the context of mathematical finance.

Clearly, the cost functional C(X) coincides with the energy functional £(vX) of the mea-
sure v¥(dt) := dX;. So finding an optimal order execution strategy is basically equivalent
to determining a capacitary measure for [0,7]. There is one important difference, however:
capacitary measures are determined as minimizers of £(u) with respect to all nonnegative mea-
sures p on [0,T] with total mass 1, while X may be a signed measure with given total mass
vX([0,T]) = —=. This difference can become significant if G(|-|) is only required to be positive
definite in the sense of Bochner (which is essentially equivalent to C(X) > 0 for all X), because
then minimizers of the unconstrained problem need not exist. It was first shown by Alfonsi et al.
(2012), and later extended to continuous time by Gatheral et al. (2012), that a unique optimal
order execution strategy X* exists and that X* is a monotone function of ¢ when G is convex
and nonincreasing. This result has the important consequence that the constrained problem
of finding a capacitary measure is equivalent to the unconstrained problem of determining an
optimal order execution strategy.

In this paper, we aim at describing the structure of capacitary measures/optimal order
execution strategies. To this end, it is instructive to first look at two specific examples in which
the optimizer is known in explicit form. Obizhaeva & Wang (2013) find that for exponential
decay, G(t) = e™*!, the capacitary measure p* has two singular components at t =0 and t = T
and a constant Lebesgue density on (0,7):

1 P 1

3 00 + g () 2)

p*(dt) =

Numerical experiments show that it is a common pattern that capacitary measures for non-
increasing convex kernels have two singular components at t = 0 and 7" = 0 and a Lebesgue
density on (0,7"). However, the capacitary measure for G(t) = max{0,1 — pt} is the purely
discrete measure

. - i
H :H—N;(l_NJrl)(é%JréT—%)’

where N := |pT'| (Gatheral et al. 2012, Proposition 2.14).

So it is an interesting question for which nonincreasing, convex kernels G the capacitary
measure * has singular components only at ¢ =0 and t = T" and is (absolutely) continuous on
(0,7). Tt turns out that a sufficient condition is the complete monotonicity of G, i.e., G belongs
to C((0,00)) and (—1)"G™ is nonnegative in (0,00) for n € N. More precisely, we have the
following result, which is in fact an immediate corollary of the main results in this paper.

Corollary 1. Suppose that G is completely monotone with G”(0+) := lim;|o G”(t) < co. Then
the capacitary measure p* has two Dirac components att =0 andt =T and is has a continuous
Lebesgue density on (0,T).

1.2 Statement of main results

Our main results do not only give the preceding qualitative statement on the form of u* but
they also provide quantitative descriptions of the Dirac components of p* and of its Lebesgue
density on (0,7"). To prepare for the statement of these results, let us first assume that G(0) = 1,
which we can do without loss of generality. Then we recall that by the celebrated Hausdorff—
Bernstein—Widder theorem (Widder 1941, Theorem 1V.12a), G is completely monotone if and

3



only if it is the Laplace transform of a Borel probability measure A on R, :
G(t) = /e_pt)\(dp), t>0.
In particular, every exponential polynomial,
d
G(t) =) Nie ", (3)
i=0

with A;, p; > 0 and >, \; = 1 is completely monotone. Another example is power-law decay,

1
(L+1t)

G(t) = for some v > 0,

which is a popular choice for the decay of price impact in the econophysics literature; see
Gatheral (2010) and the references therein. We assume henceforth that G”(04) < oo, which is
equivalent to

pi= /p)\(dp) < 00 and  p?:= /p2 A(dp) < 0. (4)

A crucial role will be played by the following infinite-dimensional Riccati equation for func-
tions ¢ : [0,00) x RZ — R,

@' (t, p1, p2) + (p1 + p2)e(t, p1, p2) = %(m + /w(t,m,w) A(dw)> <p2 + /w(t,w,pz) A(d:t?))
(5)

where ¢’ denotes the time derivative of ¢, and the function ¢ satisfies the initial condition

90(0,91,92) =1 for all P15 P2 > 0. (6)

Remark 1. When writing (5) in the form ¢’ = F(¢) one sees that the functional F' is not
a continuous map from some reasonable function space into itself, unless A is concentrated on
a compact interval. For instance, it involves the typically unbounded linear operator ¢
(p1 + p2)p. Therefore, existence and uniqueness of solutions to (5), (6) does not follow by
an immediate application of standard results such as the Cauchy—Lipschitz/Picard—Lindelof
theorem in Banach spaces (Hille & Phillips 1957, Theorem 3.4.1) or more recent ones such as
those in Teixeira (2005) and the references therein. In fact, even in the simplest case in which
A reduces to a Dirac measure, the existence of global solution hinges on the initial condition; it
is easy to see that solutions blow up when ¢(0) is not chosen in a suitable manner.

We now state a result on the global existence and uniqueness of (5), (6). It states that the
solution takes values in the locally convex space C' (Ri) endowed with topology of locally uniform
convergence. For integers k > 0, the space C*([0,00); C(R2)) will consist of all continuous
functions ¢ : [0, 00) — C(R?) which, when considered as functions ¢ : [0, 00) — C(K) for some
compact subset K of R2, belong to C*([0, 0); C(K)).

Theorem 1. When G"(0+) < oo the initial value problem (5), (6) admits a unique solution ¢
in the class of functions ¢ in C*([0,00); C(R2)) that satisfy an inequality of the form

0 <@t p1,p2) < c(1+ p1)(1+ p2), (7)

where ¢ is a constant that may depend on ¢ and locally uniformly on t. Moreover, ¢ has the
following properties.



(a) @ is strictly positive.

(b) @ is symmetric: ¢(t, p1, p2) = @(t, p2, p1) for all (p1, p2) € RE.

(c) 1= [t p,x)Ndx) = [@(t,z,p) AN(dx) for all p > 0.

(d) ¢ € C*([0,00); C(R?)).

(e) For everyt, the kernel ¢(t,-,-) is nonnegative definite on L*()\), i.e.,

/ / F@) F @)t 2,9) Mdz) M(dy) >0 for f € L2(N). (8)

(f) The functions (t, p1,p2) and @ (t, p1, p2) satisfy local Lipschitz conditions in (p1, p2), lo-
cally uniformly in t.

In Section 1.3 we will discuss computational aspects of the initial value problem (5), (6). In
particular, we will discuss its solution when G is an exponential polynomial of the form (3) and
we will provide closed-form solutions in the cases d = 1 and d = 2.

We can now explain how to use singular control in approaching the minimization of £(u)
or C(X). To this end, using order execution strategies X = (X;) will be more convenient than
using the formalism of the associated measures pu(dt) = dX; because of the natural dynamic
interpretation of X. Henceforth, a [0, 7]-admissible strategy will be a left-continuous function
(X}¢) of bounded variation such that X7, = 0. Our goal is to minimize the cost functional C(X)
defined in (1) over all [0, T]-admissible strategies with fixed initial value Xy = x. Clearly, this
problem is not yet suitable for the application of control techniques since C(X) depends on the
entire path of X. We therefore introduce the auxiliary functions

EX(p) := /[0 ) e =9 gx,, for p > 0. 9)

These functions will play the role of state variables that are controlled by the strategy X.

Lemma 1. For any [0, T]-admissible strategy X, the function EX(p) is uniformly bounded in
p and t. Moreover,

_ X 1 2
e(x) = /m) [ E& o) M) dx+ 5 > (10)

where AX; := X4+ — X; denotes the jump of X at t.

Proof. Clearly, |EX (p)| < || X||var, where || X||var denotes the total variation of X over [0, T].
To obtain (10), we integrate by parts to get

Clx) = / ot — s dx,dax, + 9 S ax,2,
0,7) J[0,t) 2 =
Now we write G(t — s) as [ e ?(!=5) \(dp) and apply Fubini’s theorem. .

The form (10) of our cost functional is now suitable for the application of control techniques.
To state our main result, we let ¢ be the solution of our infinite-dimensional Riccati equation
as provided by Theorem 1 and we define

polt) = p(t.0,0)  and  (t,p) = / ro(t, 2, p) Mdz) (1)



Theorem 2. Let X* be the unique optimal strategy in the class of [0,T]-admissible strategies

with initial value Xo = x. Then

LE2

- 2p0(T)’
Moreover, X* has jumps at t =0 and t =T of size

C(X™) (12)

W(T,0)

2ppo(T)
and is continuously differentiable on (0,1"). The derivative £(t) = %Xt* is the unique continuous
solution of the Volterra integral equation

AXE = AXG =

0 = 10+ [ Ks)els) i (13)
where, for
Ot p) i %(é)p) / 220(t, 2, 0) A(dz) — / 220(t 7, p) Mdz) + 52, (14)
the function f and the kernel K(-,-) are given by
10 =58 [erow—tpadn).  Kits) =5 [ I0@ - tprdp).  (15)

Let us recall that we know in addition from Theorem 2.20 in Gatheral et al. (2012) that
t € [0,7] — X/ is monotone. The identity (12) immediately yields the following formula for
the capacity of a compact interval.

Corollary 2. If G"(0+) < oo, the capacity of a compact interval [a,b] is given by
Cap ([a, b]) = 2¢0(b — a).

1.3 Computational aspects

In general, the Riccati equation (5), (6) cannot be solved explicitly. A closed-form solution
exists, however, when G is an exponential polynomial as in (3), i.e., when A has a discrete
support. Let us assume that A(dz) = Z?:o Nibp; (dx), with pg =0 < py <--- < pg, A\; > 0, and
Z?:o Ai = 1. All the input that is needed in Theorem 2 are the values ¢;;(t) := ¢(t, pi, p;), for
0 <1i,7 <d. By Theorem 1, ¢(t) is a symmetric matrix that solves the following matrix Riccati
equation:

¢ =—pM®p — oMW + MWDy 4 M3, (16)

with MS’) = —2—15/\ipi/\jpj, Mi(f) = —)‘Z%g% + 0ijpis MO = —(M®")T and Mi(jz) = p;—gj. Accord-
ing to Levin (1959), the solution of this equation is given by
p(t) = (R ()1 + R () (R ()1 + RY(1) ™,
where 1;; = 1 and
RW(t) RA(1) MY @
7= [z moge) = (¢ o 3] )

In the special cases d = 1 and d = 2, the solution of the Riccati equation (5), (6) becomes even
easier and, to some extend, becomes explicit. We demonstrate this first for d = 1 and then for
d=2:



Example 1. In the case d = 1, G is of the form G(t) = A + (1 — X)e™** for some \ € [0,1)
and some p > 0. Clearly, we can set A\ := 0 without changing the optimization problem. Then
p = p1 = p, and (5) becomes

p

Poo = 3 (1+¢11)%

NI

p
o1, Por + ppor = 3 (1+e11)eo1, @11 +2pp11 =

For the initial condition ¢g;(0) = 1, the preceding equation has the unique solution p1; = g1 =
1 and pgo(t) = 1+ pt/2. The condition (59) thus reduces to 0 = X; + E{X(t)(1 + p(T — t)),
which easily yields (2) as unique solution.

Example 2. In the case d = 2, we can assume that G is of the form G(t) = \je Pt 4+ \ge P2t
where A; + Ao = 1. Consider a solution ¢;; (i, = 0,...,2) of the matrix Riccati equation (16)
with Ag = 0. We can simplify (16) by using the relation

A1pi1 + A2piz = 1, i=0,...,2. (17)
Indeed, the equation for ¢1; then becomes
/ 1 1 9
Pt 200 = 2% o= (1 + Mpron + )‘292‘P12) =% —(p1+ p2 4+ M(p1 — p2)enr)”

This is an autonomous ODE that, for the initial condition ¢11(0) = 1, is solved by

1 _EA%(PI—P2)2) p(Z\/psz > M(p1 — p2)* }_1, (18)

t) =c1 + ( - 4+ =
pnlt) =a [ L—c 4 pip2pp 4 \/p1p2pp
where —
p:=A1p2 + Ag9p1 and ¢; = ( pLp p2p ) .
)\1(/)1 p2)
_ _\ 2
We can notice that ¢11(4+00) = ¢1 and ¢11(—00) = (%) .

Similarly,
1 2
(70/22 + 2p2(1022 = ﬁ(pl + P2 + )\2(02 - p1)9022) ’

which for the initial condition ¢922(0) = 1 is solved by

1 1 A3(p1 — p2)? 2v/p1p2pp 1 XA3(p1 — p2)?
1—co 4 /pip2pp 4 Voipaop
where
_ <VP2 — VPP >
Cy = .
A2(p1 — p2)
From (17) we can now easily compute ;2.
Next, using once again (17), we find that ¢g; solves
, 1
o1 t+ p1po1 = % —(p2+ Mi(p1 — p2)or) (p1 + p2 + Ai(p1 — p2)pr1).
That is,
/ p1p + p2p /\1 2 P2
Ul L e L A . 20
®o1 + o 2ﬁ(/71 p2)7p11| po1 = 2% [p1 + p2 + Ai(p1 — p2)p11] (20)



1 M (p1—p2)? 1 VP1p2PP 1
We set Bl = Zﬁ’ Al = T — Bl, and k = %, so that QOll(t) =1 + AR 1B,

Then, we can check that W is a solution of the fundamental system. By using a
variation of parameters, we get that the solution of (20) satisfying ¢p1(0) = 1 is given by

£ A1po1 (+00)ek + Bypgy (—o0)e™ + Cy
vor(t) = ALeFt + Bie R ’

with

£\ p1p2Pp — p2p
A1p(p1 — p2)

(7001(:|:OO) = and Cpy; = Al(l — (,001(—|—OO)) + Bl(l — (7001(—00)).

Then, @p2 can be easily deduced from (17).
It remains to compute g, which solves

1 2
Poo = % [p2 + A1(p1 — p2)wor]”
We set Cpp = A1(p1 — p2)Co1 and get after some calculations:

1 [AkZeM — BikZeHt 1 Cpy |

/
t) = —
(’000( ) 2p Alekt + Ble_kt
_ P12 @ Arkelt — Bike ™kt C2p— 4A1 Bip1pap 1
25 p (AjeFt + Biekt)2 20p (Ajekt + Bie—kt)2”

Thus, we finally get:

P1p2 Cor 1 1
t) = 1 t— —— — 21
#oo(t) Y P <A1ekt T Bre Rt A+ Bl> (21)
C2,p —4A1B1p1pap et _ 1
4Blk‘ﬁﬁ Ale’“ + Ble—kt A+ B '

This completes this example.

Given the solution ¢ of the Riccati equation, we can approximate the continuous time
strategy by a discrete one as follows (z; will denote the trading size at time iT/N).

o We first set zg = 21;;7;’(% and Fy(pg) =z, 0 < € < d.

e Suppose that 1 < i < N and that x;_; and F;_1(p¢) have been computed. Then, we set
thanks to (59):

i—1
ri=1-) wj— /Ei—l(P)e_pT/NQ(T —iT/N,p)Mdp), Ei(pe) = Ei—1(pe)e """V + ;.
=0

e Set zy =1— Zé-_:loznj.
Alternatively, we could have approximated the minimization of the cost (1) by the following

discrete problem. Let M, ; = G (|z - j|%), 0 <14,7 <N, and consider

N
1
minimize §a:TMx over x € RV st Za:, =1. (22)
=0



The solution of this problem is obviously given by ﬁM 11, where 1, =1 for 0 < i < N.
From a financial point of view, the minimization problem (22) gives the optimal strategy when
it is only possible to trade at the times i7'/N, while the original problem (1) allows to trade
continuously. In potential theory, it corresponds to computing the capacitary distribution of the
set {iT/N|i=0,...,N}. It was shown in the proof of Theorem 2.20 in Gatheral et al. (2012)
that for N 1 oo these cap2acitary distributions converge in the weak topology of probability
measures to the capacitary distribution dX* constructed in Theorem 2. Explicit solutions of
(22) for the choices G(t) = e ** and G(t) = (1—pt) " were given in Alfonsi, Fruth & Schied (2008)
and Alfonsi et al. (2012) (note, however, that G(t) = (1 — pt)™" is not completely monotone).

We have computed and plotted the solutions given by both methods in Figure 1 for T' =1,
N = 50, and A(dp) = 0.1 (dp) + 0.261(dp) + 0.203(dp) + 0.255(dp) + 0.267(dp) + 0.1510(dp).
They are already rather close together for N = 50, and they merge when N — +4o00. Let us
discuss briefly the time complexity of the two methods. The one given by (22) gets very slow
when N gets large since it involves the inversion of a N x N matrix. Instead, when A\ has a
discrete support, the matrix Riccati equation can be solved quickly and the algorithm above
has a O(NN) time complexity, which is much faster. However, this is no longer true when \ does
not have discrete support. In that case, we have to approximate A by a discrete measure, which
means that we have to increase d. Doing so, will slow down the algorithm based on the Riccati
equation. A rigorous treatment of the convergence rate and time complexity of both algorithms
is beyond the scope of this paper and is left for future research.

2 Proofs

2.1 Proof of Theorem 1
Let us write (5) in the form ¢'(t) = F)\(¢(t)), where

1
FA(p1.02) = ~(p+o2) o p) 5 (o1 [ (o1, 2) M) (ot [ (e, o)) (2
Lemma 2. Suppose that X is supported by the compact interval [0, pmax].- Then (5), (6) admits
a unique solution ¢ € C'([0,00); C(R2)). Moreover, ¢ has the properties (a), (b), and (c) in
the statement of Theorem 1.

Proof. Let J C Ry be any compact interval containing [0, pmax]. Then F)\ defined in (23)
maps C(J x J) into itself. Moreover, F) is Lipschitz continuous with respect to the sup-norm
on every bounded subset of C(J x J). Hence, the Cauchy—Lipschitz/Picard-Lindel6f theorem
in Banach spaces implies the existence of a unique local solution ¢; € C*([0,t;); C(J x J)) for
some maximal time ¢; > 0 (Hille & Phillips 1957, Theorem 3.4.1). We will show below that
ty = oo. Then, if J D J is another compact interval, the restriction of ¢ j(t) to J must coincide
with ¢ s(t) due to the uniqueness of solutions. This consistency then implies the existence and
uniqueness of solutions ¢ € C1([0, 00); C(R%))). Moreover, the uniqueness of solutions and the
fact that both (5) and (6) are symmetric in p; and py implies that (¢, p1, p2) = @(t, p2, p1) for
all (p1, p2), which is property (b) in Theorem 1.
We now fix an interval J D [0, pmax|. Before proving that ¢; = oo, we will show that

/@J(t,p,x) Adx) =1 for pe Jand t < ty. (24)

This then will establishes property (c) in the statement of Theorem 1 for ¢t € [0,¢;). Then we
will use (24) to derive some estimates on ¢ that will yield ¢; > 0 and t; = co.
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Figure 1: Comparison of the approximated optimal strategies (z;,0 < i < N) obtained with (22)
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To prove (24), we let I(t,p) := [@(t,p,z) XN(dz) and ¢;(t,p) := [xps(t, p,x) A(dz). We
have

I'(t,p) + pI(t, p) + ¢ (t, p) = %(P + 1 (t,0) (5 + /wf(t 7) A(dz)). (25)

This is a (non-homogeneous) affine ODE of the form I'(¢) = b(t) + A(t)I(t), where the operator

(AW )(p) = —pf (o) + ip(p st p) / £/ (2) (dz)

is a continuous map from [0, ] into the space of bounded linear operators on C(J) for each
§ < t;. Hence this ODE admits a unique solution in C*([0,6]; C(J)) with initial condition
I1(0,p) = 1. But (25) is solved by I(t, p) = 1, which which establishes (24).

For the next step, we let

to := inf {t € [O,tJ)| pH;lH w(t,p1,p2) < 0}
1, IS

Since @ is a continuous map from [0,¢;) into C(J x J) and ¢;(0) = 1, we must have to > 0.
Due to (24) we have on [0, %) that

102 1+ 2 1+ Pmax
p2g < @t pr, p2) + (p1+ p2)e(t, p1, p2) < G pmax;;p Prms) (26)
When defining
@J(t7p17p2) = et(p1+p2)90J(taP17/72)7 (27)
the preceding inequality can be rewritten as
PILL o tm) < (1, py, po) < LA Prwd(P2 + Pmas) it )
2p 2p
Integrating these inequalities yields that for 0 <t < tg
_ prpa(1 — e~ HPrte2))
0t p1,p2) > e Hortr2) 4 — >0 (28)
2p(p1 + p2)
with the convention % =t for py = p2 = 0. Hence
@(t, p1,p2) < e Hortr2) 4 (P1+ Prnas) (P2 + pra) (1 — e~Hortr)), (29)

2p(p1 + p2)

Inequality (28) ensures that ¢y > t;. Both inequalities (28) and (29) ensure the solution ¢ ;(t)
does not explode in finite time, which by standard arguments yields that ¢ ; = 4+00. This proves
the global existence of solutions as well as property (a) in the statement of Theorem 1. O

The preceding lemma works only for measures A that are concentrated on a finite interval. To
obtain solutions for more general measures \, we need to find upper bounds that are independent
of pmax. To this end, we first derive such bounds for the function (¢, p) defined in (11).
By Lemma 2, this function is well-defined whenever A has compact support, and it follows
from dominated convergence together with (28) and (29) that v € C1([0,00); C(R4)) and that

Y(t,p) = [/ (t, p,x) A(dw).
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Lemma 3. Under the assumptions of Lemma 2, we have

0<(t,p) < for all p > 0. (30)

™R

Proof. The lower bound in (30) is clear from ¢ > 0. To prove the upper bound, we suppose by
way of contradiction that there exist ¢, p, and € > 0 such that (¢, p) > & + p?/p. Then there
must be a compact interval J D [0, pax| such that

)

Te 1= inf{t > O‘ max ¢ (t,p) > pf —l-E}
ped P

is finite. Since 9(0,p) = p and p* < F, the time 7. must also be strictly positive. Moreover,
there exists p. € J such that

g
max (7e, p) = (e, pe) = = + €.

peJ P

Then 7. is the first time at which the function ¢ — (¢, p.) reaches a new maximum, and so

1/}/(7—57/75) > 0.
Integrating (5) with respect to p; A(dp1) and evaluating at ps = p. gives

Ve pe) 9ot p) 4 [ Pt p ) M) = 5 (04 00, p)) (4 [ () M) (31)

Since [ (7, p,pe) A(dp) = 1, the Cauchy—Schwarz inequality (or, alternatively, Jensen’s in-
equality) implies that [ p%o(7e, p, p:) M(dp) > ¥ (7, pc)?. Moreover, the definition of p. and the
fact that A is supported on J yield that [ pi(7e, p) AM(dp) < pp(7=,pe). Plugging these two
inequalities into (31) leads to

T;Z)/(TE, pe) < i (Pe + (7, pe)) (F + Py (e, pe)) — pe(Te, pe) — P(7e, /06)2

2p
o Pe? ? Pe 1 =:
— 2p + <% - E>¢(T€,p€) o §¢(T€,p5)2 = p(w(Te’pe))’

where p(-) is a polynomial function of degree two. It has the two roots —p. <0 and p2/p > 0.
Therefore p(z) < 0 for > p?/p and in turn 0 > p(Y(72, pz)) = ¢’ (7, pe), which contradicts the
fact that ¢/ (7, pc) > 0. O

Lemma 4. Under the assumptions of Lemma 2, we have

plp2(1 — e_t(p1+p2))
2p(p1 + p2)

e~Hprte) 4 < p(t, p1, p2)

(1 + Z)(p2+ 2) 2
T or ) (1 —exp(—(p1 + p2)t)),

< exp(—(p1 + p2)t) +

02 o
(,01+ ﬁ)(p2+ 5)
%

il il
(p1+ ﬁ)(p2+ p)
2p )

—(p1 + p2) — < ¢(t, p1,p2) < (33)
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Proof. The ODE (5) can be rewritten as

@' (t, p1, p2) + (p1 + p2)e(t, p1, p2) = %(m +(t,p1)) (p2 + P(t, p2)). (34)

Defining ¢ as in (27) and using the upper bound in (30) thus yields that

2 2
pip2. etlp1+p2) (pr + o Jp2 + p ) . etlpr1+p2).

< @t < 35
2ﬁ _90(,91702)_ Zﬁ ( )

Arguing as in the final step of the proof Lemma 2 now yields (32). By plugging (32) back
into (34) and using once again (30), we obtain (33). O

Lemma 5. For all R, T' > 0 there exist constants Ly, Ly > 0 depending only on R, T, p, and
p? such that for all t € [0,T] and p1,p1 p2 € [0, R],

|90(t,91,f’2) - ‘P(t,ﬁl,f’2)| < L1|p1 - ﬁl| (36)

and
|(10/(t7p17p2) - @l(t7517p2)| < L2|p1 - ﬁl| (37)

Proof. We consider p1, p1, p2 > 0 and define

Apl = ﬁl - P1, A(p(t) = Sp(taﬁl7p2) - Sp(tapl7p2) and Al/’(t) - w(tugl) - w(tuol)

By subtracting the equation (34) satisfied by ¢(t, p1,p2) from the corresponding one satisfied
by (p(t)ﬁlvp2)7 we get

~ 1
AG(H) +olt, 71 p2) A1 + (o2 + p)AG() = o= (92 + 01 p2)) (A1 + A0(0). (39)
This equation is a linear non-homogeneous ODE for A¢(t) and, since Ap(0) = 0, solved by
Ap(t) =

t
/0 [(21_ (p2 + (s, p2)) — 90(3751,/72))A/71 + %(Pz + ¢(37P2))A1/1(3)} e~ (P1rP2)(1=5) g,

Since |1(s, p2)| < p2/p, we get with (32) and SUP,>o =4 =t that

=N (51+Z—2)(p2+z) :
2600 < o (04 2) [ (aml 18w st (14 P2 2220 o s, @0

Now, we have that

Ag(t)] = \/ (t.71.2) — (. p1.2) M) /rwpl,> o(t, prs )| Ade)

< —/ (30 + 1306 s+ (7+ (1 + £) ) [ 1l as

For the last inequality, we have used Fubini’s theorem and (39). Now, Gronwall’s Lemma gives:
r AV r

[A(t)] < \Ap1!t< +p+ (pl +f>tT> exp (ﬂ). (40)
P p’p g

13



Plugging this back into (39), we get the existence of a constant L, which depends only on R,
T, p, and p?, such that

[Ap(t)] < LifApy]. (41)
Finally, using (40) and (41) in (38) and recalling the locally uniform bounds (32) and (30) on
¢ and 1 gives (37). O

Now drop the assumption that X\ is supported on a compact interval and aim at proving

existence and uniqueness of solutions in this general case. To this end, we take a sequence
R, T oo for which A([0, R1]) > 0 and define

1

fn= ml[o,}m

and dN\p, = frndA, (42)

so that each )\, satisfies the assumptions of Lemma 2. By ¢, we denote the corresponding
solution of (5), (6) provided by that lemma. For each n > 1, we have

Ry 2
_ _ — P 5
pnzz/pAndp z/ pA(dp) =y and pnzz/p%ndp <2 7 @3
( ) 0 ( ) 0 ( ) )\([O,Rl]) 0 ( )
Hence, Lemma 4 yields that for each n,

3 5
(p1+E2)(p2 + 51) 1 — e—(ortpo)t
2pg p1+ p2

p1pa(l — e~ tlprte2))

—t(p1+p2)
€ + —
2p0(p1 + p2)

< onlt,p1,p2) <1+ (44)

and ol ol ol o
(pr+ 32)(p2 + 3) (p1+5)(p2 + 52)
2Py 2po
Similarly, Lemma 5 yields that for all R, T" > 0 there is a constant L > 0 such that for all n

< @ (t p1,p2) < (45)

—(p1 + p2) —

‘(pn(taplva) - Qon(tﬂglapQ)‘ < L‘pl - ﬁl‘ for all t € [07T]7 /717/717/)2 € [OaRL (46)

The inequalities (45), (46) and the Arzela—Ascoli theorem imply that the sequence (¢, )nen
is relatively compact in the class of continuous functions on [0, 7] x [0, R]?> whenever T, R > 0,
and hence admits a convergent subsequence in that class. By passing to a subsequence arising
from a diagonalization argument if necessary, we may assume that there exists a continuous
function ¢ : [0, 00) x ]R%r — Ry such that ¢, — ¢ locally uniformly.

The uniform bounds (44) and dominated convergence imply that

Unltip) = / pnt, pr ) An(dr) = / £ pnt, pr ) fulz) Mdz) (47)
— [p(t.p.0)Mdo) = vt (48)

locally uniformly in (¢, p). Hence, Fy, (on(t))(p1,p2) — Ex(¢(t))(p1,p2), locally uniformly in
(t, p1,p2), where F), is defined through (23). Since ¢!, = F), (¢n), we conclude that ¢, — F)\(¢)
locally uniformly in [0, 00) x R?. Moreover, we have for each n that

t
on(t,p1,p2) — 1= / ol (s, p1,p2) ds.
0

The left-hand side of this equation converges to ¢(t, p1, p2) — 1, whereas the right-hand side con-
verges to fg F\(¢(s))(p1, p2) ds. This proves that ¢ solves (5) and that ¢ € C1([0, 00); C(R?)).
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Remark 2. By sending R; to infinity in (44) we get that the solution ¢ constructed above
satisfies the bounds

2 2
prpa(l — e~tlorte)) (01 + 5 )(p2 + &) 1 — e~ (r+pa)t

- <t pr.p2) <1+ — . (49)
2p(p1 + p2)

—t(p1+p2) +
2p p1+ p2

From (30), (47), and the lower bound in (49) we get moreover that

0 <9(t,p) < (50)

SR

Now we turn to prove the uniqueness of solutions in the class of functions ¢ € C'([0,00); C(R2))
satisfying a bound of the form (7) To this end, let 1 and 9 be two solutions in that class and
set

5(t 91,92) = (102(t7p17p2) - Spl(typlapQ)-

We will show that [|d(¢) = 0 for all ¢, whenever A is a positive finite Borel measure of

N HL2 A®N)
the form A = X\ + p, where p is a positive finite Borel measure with compact support. Taking,
for instance, u as the Lebesgue measure on [0, R] will then imply that 6(¢, p1,p2) = 0 for
p1, p2 € [0, R]. So this will give the uniqueness of solutions.

Let us define I*~} as

BNl = 3 (o + [afron@) (m+ [of@pdran). 61

Lemma 6. We have F)(p;(t)) € L2(A® ) and

1B 1(0) ~ Ex(@20)Ia 505 < CUSOI, s, T 15O 503, (52)

where C is a positive constant that depends only on 7 and p?.

Proof. For simplicity, we will drop the argument ¢ throughout the proof. We may write

Fy(¢2) — Fa(g1)
- %[ / eb(p1,) Mde) (2 + / 21 (. p2) ()
+ / wé(z, pg))\(dx)<p1+ / xgol(pl,a;))\(dx)> + / 28(p1, z) A(da) / wé(z, pg))\(dx)].
Thus,
(Fa(p2) = Fa(p1))”

L1 ([ stz (o + | m(ac,pzwdw)))z

([ bt 20 (o1 + [ m(pl,xn(dx)))z + ([ st [ xau,pz)A(d:c)ﬂ.

4p?
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Now we integrate this inequality with respect to X(d,oll X(d,og). The two first terms can be
analyzed in the same way. First, we observe that [(p2+ %2)2 X(dpg) is finite. Then we note that

( [ astor,2) A(dm>)2 <7 [ 8o Ado) < 7 [ S(p1,2)? Xda), (53)
Hence,

/(/ $5(p1,w)A(d:v)>2 X(dpn) < 21012, o5,

Thus, the two first terms can be bounded by Cyl|4||? where Cj is a constant that only

L2(@N)’
depends on p and p2. Using once again (53), we get that the third term can be bounded from
above by C4||6||* 12k’ , where the constant C depends only on 7 and p?. O

Now we differentiate §2 and integrate over [0, ]:
t
8t pr,p2)* = —2/ (p1+ p2)d(s, p1, p2)* ds
0
¢ _ -
+2 [ 6o 1. o) [Fr(ea(6) 01 p2) = Bia(s)) 1. o) s

< 2 [ s, [Pl o1.0) = Fr(o1 () 1) .

We now integrate w.r.t. X(d,ol) X(dpg) and get by using the Cauchy—Schwarz inequality,

t ~ ~
18, ) < 2 /0 1805, M2 Gomy | Fr (22(5)) — Fa(o1(5))l] o iy -

By continuity of t — (¢, )], Gaxy We know that for each 7' > 0 there is a constant K such
that [|d(¢, ')HL2(X®X) < K when t € [0,T]. Thus, we get from Lemma 6 that

1606V o5, < VOO + K2) / 1605, 3 e, s

which in turn gives that ||d(¢, = 0 on [0,7] by Gronwall’s Lemma. This concludes the

)”L2 )\ )\
proof of uniqueness.

Now we turn to proving the properties (a) through (f) in Theorem 1. Property (a) (strict
positivity) can be proved just as in the case of a compactly supported measure A in Lemma
2. Property (b) (symmetry) is already clear. Property (c) ([ ¢(t, p,z) A(dz) = 1) follows from
the corresponding property of the approximating functlons ©n, the uniform bounds (44), and
dominated convergence.

Property (d) states that ¢ € C%([0,00); C(R?)). By dominated convergence and the bound
(45), which also holds for ¢’ in place of ¢/, we get that 1(t, p) belongs to C*([0,00); C(RL)).
Thus, our ODE gives ¢’ € C''([0,00); C(R%)), which proves property (d).

We now prove property (e). It is clearly enough to prove it when f: R, — R is a bounded
measurable function with compact support. To this end, let @(t, p1, p2) := et(plﬂ’?)cp(t, P1,02)-
Then ¢ belongs to C*([0,00); C(R2)) and

@' (t, p1,p2) = 21,0 etPrte2) (o) 1t p1)) (pa + D(t, o).
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That is, @'(t, p1, p2) = g(t, p1)g(t, p2) for a function g. Thus,

//f x1) f(22)@ (t, 21, w2) AM(dx1) M(dz2) = /f dm)>2 > 0.

Since ¢(t) = 1+ fg ¢/(s)ds, we find that $(¢) is nonnegative definite. Finally, with f(z) =
e—tmf(x)7

//f xl LEQ t a;l,xg) )\(dazl dxg //f 331 t xl,xg) )\(da:l))\(dxg) Z 0.

This establishes property (e) in Theorem 1.
Finally, property (f) (the local Lipschitz property for ¢ and ¢’) follows just as in Lemma 5.
This concludes the proof of Theorem 1. O

2.2 Proof of Theorem 2

The strategy in the proof of Theorem 2 is to use a verification argument and based on guessing
the optimal costs V (T, E(-), z) for liquidating « shares over [0, 7] with additional and arbitrary
initial data E(-). The result of our guess is formula (54) below. We explain its heuristic
derivation in Appendix A.

Let ¢ be a solution of the infinite-dimensional Riccati equation (5), (6). This solution gives
rise to a family of linear operators ®; : L%(\) — L2(\) N C(R,) defined by

B,/ (p /f otz ) Ndr), e L2(N).

By (7), t — ®;f is a continuous map into both L%(\) and C(R,) for each f € L?()\). By the
inequality (45), which also hold for ¢ in place of ¢,, t — ®,f is a continuously differentiable
map into both L2()\) and C(R,) for each f € L>(\).
For t > 0, E(-) € L?>()\), and z € R, we define
1 1
Vit E(),x) ==
B =k

where (-,-) denotes the usual inner product in L?(\). For ¢t € [0,T] and a [0, T]-admissible
strategy X we define

7= (0.E)(0))" — (B, 2.5)|. (54)

cX = / /EX d\dX, + %Z(AXs)z + V(T —t, BX, Xy).
0,t

[0,t) s<t

By Lemma 1, the first two terms on the right correspond to the cost accumulated by the strategy
up to time t. Moreover,

1 1
V(0, B, X71) = 5(XT)2 - /Ej’f d\ - Xp = 5(AXT)2 +/E§5 d\ - AXr,

due to the requirement X7, = 0. This gives Cx = C(X). Our goal is thus to show the following
verification lemma: dC7* > 0 with equality if and only if X = X* for a certain strategy X*. This
will identify X™* as the optimal strategy and V (7T, E(-),z) as the optimal cost for liquidating =
shares over [0, 7] with additional initial data E(-) at time ¢ = 0. In the formalism of potential
theory, V(T',0,—1) will then be the minimal energy of a probability measure on [0, 7.
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Lemma 7. For every [0,T]-admissible strategy X, C;X is absolutely continuous in t and

X - 2
% - % %(Xt — (PrE)(0)) + /EtX(p) (p+ (T —t.p)) A(dp) (55)

for a.e. t €[0,T].

Proof. Recall the following integration by parts formula for left-continuous functions oy, 8; of
locally bounded variation:

at/Bt - asﬂs = / Qe d/BT’ + Br dar + Z AaT’ABT'
[s,t) [s,t)

re(s,t)

It follows that ¢ — E;X(p) is of bounded variation and

t
EX ()~ EX(p) =X~ X, —p [ EX(par (56)
as well as
Ef (p1)E;* (p2) — EX (p1)EZ (p2)

:/[t) (E}X(Pl)+E}X(P2))dX,,_/t(P1+p2)E;f<(p1)E§(p2)d7«+ 3 (AX,)?.

re(s,t)

(57)

Therefore,

(T —t, p1, p2) EX (01)EX (p2) — (T — s, p1, p2) EX (p1) EX (p2)

t t
. / (T — 1, pr, p2) EX (01) EX (p) dr — / ST — 1. p1. p2) EX (01)EX (02) (01 + pa) dr

+/[ )sD(T—r,m,m)(Ef(m)+E;»X(pz)) dX, + > o(T —r,p1, p2) (AX,)%.
s,t

re(s,t)

We have already observed in the proof of Lemma 1 that |E:X(p)| is uniformly bounded in
r € [0,7] and p > 0 by the total variation of X. Hence we may integrate both sides of the
preceding identity with respect to A(dp1) A(dp2) to obtain, with the symmetry of ¢ and the
notation EX := pEX (p), that

<E£X7(I>T—tE£X> - <ESX7(I)T—SE:QX>

t t
- _/ <E§,<I>§F_T,Ef<>dr—2/ <E§,<1>T_TE§>dr+2/ (LEX)dX, + ) (AX,)*.
s s [s,t)

re(s,t)

By a similar reasoning we obtain

t t
dr_ EX(0) — dp_ EX(0) = — / b EX(0)dr — / dr_ EX(0)dr + X; — X,

and

(Xi—Dr_ BX(0))* = (X =0 EX(0))% = 2 / t (X, = @7, EX(0)) (P4, EX(0)+ D7, EX(0)) dr.
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Using these formulas, we can now compute

t ./
cX-cX = ;/ ZZOL;(X — o EX(0)" dr
s 0
tX, —<1> +EX(0 ~
O (0, BX(0) + 00 BX0) dr
t
+3 / <EX ¥ ) dr+ [(BY @ EX)dr

Therefore, C;X is absolutely continuous on [0,7] and has the derivative

dCi*  1gp(T —t)
dt — 204(T —t)
X; — &r_EX(0)

wo(T — 1)

(X, — 7 EX(0))

~ 1 ~
(@7 B (0) + Py 7 (0)) + S (B, @ ) + (B}, @7 E]Y)

for a.e. t.
To further analyze the preceding formula, we take an extra point A. We let X := A+ and
extend F;X and ¢ to functions on {A} U [0, 00) by putting

1
wo(T — 1)
t>0,0(t,A,p) =p(t,p,A) == ¢(t,0,p),

Pt A, A) = ¢(t,0,0) = @o(t).

EX(A) = (X: — (21— E)(0)),

(58)

We furthermore define the function

) ifx € [0,00),
f(x)_{() if x = A,

and we extend the deﬁnltlon of EX via EX(z) = f(2)EX () for # € {A} U[0,00). Finally, we
set for g € L2(N), ®19(z) = [ o(t, 2, y)g9(y)A(dy) and one easily checks that ® : L2(X\) — L?(\).
With this notation, we get

—_

dC¥ — .
dtt = §<E2X 1 B ) oy + (B OB gy
1 — ~
- [(Eixvq)T tEiX>L2(X) (Et , D tE > L2(X )+ <(I)T—tEiXaEiX>L2(X)}
- 5 | [ E@E ( ) + (@) + Fu)e(T ~ t.2.9)) Xdz) X(dy)
(W) (f (=

- . / / EX (2)EX (y —t0) (Fy) + OAT — t,9)) Ndz) X(dy)

_ </Et (T~ t,2) X(dx>>2,

where we have used the Riccati equation (5) and the notation (11) in the fourth step. This
proves the assertion. O

It follows from the above that a [0, T]-admissible strategy X* with X = z satisfies

C(X*) = V(T,0,2) < C(X)
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for all other [0, T]-admissible strategies X with Xo = 2 if dC{X" /dt vanishes for a.e. t € [0, 7).
Using (55), we write this latter condition as

0=X;+ /EtX*(p)H(T —t,p) A(dp) for a.e. t, (59)
e (7)o + V1. )
_ PolT){p T, P B
0(r,p) = 0 0) (7, p,0).
Then ()25
po(T)2p
/9 7,p) M(dp) = o(r.0) 1. (60)
Plugging this and (56) into (59) yields that for a.e. ¢
C el (T =1,0) T —1,0) - -
xp = x;(1 wo(T—t)2ﬁ> e 2p/ / Jop t,p)Mdp)ds.  (61)

Thus, the left-continuous function X} coincides with an absolutely continuous function for
a.e. t € [0,T]. Tt follows that these two functions coincide for every ¢ € (0,7]. Thus, EX  is
continuous on (0, 7] by (56), which in turn implies via (61) that X* is continuously differentiable
throughout (0,7).

When taking the limit ¢ | 0 in (61), we get

* (.0
Xi = (1= Zs)

which gives
. 9(T,0)
AX) = —— x. 62
° 2pp0(T) (62
That AX; = AX/] follows from Remark 2.10 in Gatheral et al. (2012).
Since 1(t, p) is continuously differentiable in ¢, 6(¢, p) is also continuously differentiable in ¢.

Differentiating (59) with respect to t € (0,T") yields

.
0 = C(litXt /dET()H( —t,p) ANdp) — /Et T —t,p) A(dp)
21270(—15 0) tht /Et K T —t,p) + pd(T — t,p)) A(dp),

where we have used (56) and (60) in the second step. This gives

% - % /Et @) (0T — t,2) + 2b(T — t,2)) A(de). (63)
We now want to simplify (63). To this end, we use the notation 1 (t) := [ a1(t,x) A(dz).
and the formulas
A0 = =pelt.p0) + o+ U(EAUEO) ) = (607
Wt p) = —/:vzso(t’:txp)k(da?) — pi(t, p) + 2%(p+¢(t PP +0(t)  (64)
W(0) = = [aPplta,0) Ade) + U0 +T(0).
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Then a tedious computation shows that

t
0(t,0) + ol 0) = 22 ot ),
where O(t, p) is as in (14). Therefore, (63) becomes
tht = 2_/Et T —t,x) Ndx). (65)

Now we have B = AX{ + fot e_p(t_s) d 7 X{ ds. Plugging this formula back into (65) and using
Fubini’s theorem yields that £(t) = tht solves the Volterra integral equation (13). This is
a Volterra integral equation of the second kind with continuous kernel K (t,s) and continuous
function f(¢). It hence admits a unique continuous solution z(-) (Linz 1985, Theorem 3.1).
Conversely, given such a solution x(-), we can define a [0, T]-admissible strategy X* via (62)
and z(t) = £ X;. Then X* satisfies (61) for t = 0+ as well as (63) for ¢ > 0. Integrating (63)
and reversing the steps made above in deriving (63) from (61) shows that X* satisfies (61) for

€ (0,7], and so X* is optimal. This concludes the proof of Theorem 2. O

A Heuristic derivation of the value function

We want to explain here how it is possible to guess the value function V (¢, E(-), z) introduced
n (54). We start our discussion by deriving a formula for the costs C(X) of a strategy (Xs, s €
[0,77]) that is arbitrary on [0,¢) and optimal on [t,T]. We set

G(X) = C(X) -+ / G([s — r|) dX, dX,
2 Jio,0 Jjo,e
- 1/ G([s—r\)dX,,dXs—k/ G(ls — r|) dX, dX,.
2 e Jir 0,6) J[t,7]

The rightmost integral can be written as
/ Glls —r))dX, dXs = [ A(s)dX.,
t,T] J[0,t)

where

_ / EX ()" DN(dp), t<s<T.

The first-order condition of optimality thus reads
/ G(ls —r|)dX, + A(s) =v fort <s<T, (66)
[t,T]
where v is a suitable Lagrange multiplier (compare Theorem 2.11 in Gatheral et al. (2012)).
Lemma 8. Suppose that R and R are functions with finite variation such that Ry = Rr and

G(ls — r|) dR, :/ Glls —r))dBs  forallr € [t T).
[t,T] [t,T]

Then Ry = R, for all s € [t,T).
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Proof. We have G(|s —r|)d(Rs — Rs) = 0 and hence that
[t.T]

/ Glls — r)d(Rs — R d(Ry — R,) =0,
1 i1

which implies the assertion in view of the fact that G is strictly positive definite. O

Now suppose that we have auxiliary functions with finite variation By(p) such that Br(p) =0
and

G(|s — 7)) dB,(p) = e P71 fort <s<T.

[t,T]
We also define
Zy = / EX(p Adp),
so that
A(s) = G(ls —r|)dZ,, fort <s<T. (67)
[t,T]
Therefore,

G(s—r|)dX,+Z,)=v=v G(|s —r|) dB,(0) fort <s<T.
[t,T] [t,T]

Lemma 8 hence implies that Xs + Zs = vB4(0) for t < s < T. Hence, we get

By(0) By(0)

Bs(0) — Zs for s € [t,T].
From these identities we get

Ci(X) = 1/ Gls —r|)dX, dX, + | A(s)dX,
1 J 17 [t,7]

_ / G(|s — r[) dB,(0) dBy (0 —V/ G(|s — r|) dB,(0) dZ,
t,T) J[t,T] [t,T] J[t,T]

/ G(|s —r|)dZ,dZs +/ G(\s—r\)erdXs
.7 J[t,7] (.7
Xt+Zt / ]
e G(ls —r|)dZ, dZ,| .
2[ =B (0 1) J18,1] ( )

since the first double integral is equal to —B(0). Now we define

o(T —t,p1,p2) = /[ ]e_pl(r_t) dB(p2), p1,p2 > 0.
4T

Then, we have
o(T —t,p1,p2) = /T - G(|r — s|)dBs(p1) dBr(p2) = (T — t, p2, p1),
t t

/so(T—t,m,pz))\(dm) = /[tT} G(r —t)dB,(p2) = 1.
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Moreover, we observe that ¢(T —t,0,p) = —By(p) since Br(p) = 0. This gives in particular
that Z, = — [ B (p)o(T —t,0, p)A(dp). Besides, we have

/ G(ls—r))dz.dZs = / A(s)dZs
6,7 J .7 (t.7]

- / EX (o) / 1) 47, \(dpy)
[t, T
- / / EX (o)) EX (p2) /[ 4B () M) ()
T

= //EtX(Pl)EtX(Pz)(P(T—t701,/)2))\(dﬂ1))\(dﬂ2)-

Thus, we obtain altogether that

2
~ (K= S EE e — 10,02 (0))
al) =3 [ (T —1,0,0)

~ [ [ B 0B Tt 1. ) M) ).

This suggests the definition

| [(X — [ E(p)o(T — 1.0, p)A(dp)

V(t,E(),X) = = 00

5 _//E(Pl)E(P2)‘P(t7pl7P2))‘(dl)l))‘(dm)]7

so that we have

/Ot /EX Adp) dX, + ; D (AX)?+ V(T —t,Ey(.), Xy). (68)

s<t

Thus, we have obtained the formula given by (54), and it remains to explain why ¢ should solve
a Riccati equation. To do so, we consider an arbitrary strategy (Xs,s € [0,7]) and consider
the cost (68), which is the cost of the strategy that is equal to X on [0,¢) and optimal on
[t,T]. To make the dependence on t explicit, we denote this cost by C;(X). To simplify things,
we will focus on the particular case (3) of a discrete measure A(dx) = Z?:o Aibp, (dx), with
po=0<p; < <pg, A; >0, and Z?:o A; = 1. With this choice, V only depends on E(p;),
0 <1 < d. We introduce the following notations:

wij(t) = olt pipj), 0<z‘j<d
d

d
V(t,Eo,...,Es, X) = ;LDOO ( ZAEMOZ ) ZZAiAjEiEjsoij(t)],

i—0 j—=0
—X
By, = § )‘Et Pi)s

1
C(x) = /[0 T X 5 X VT B () B (o), X0

s<t

Lemma 9. We have ACy(X) =0 for all t € [0,T].

Proof. Note that AX; = AE (p). Hence it is clear that AC;(X) = 0 if AX; = 0. Now suppose
that AX; # 0. Then

d
AC/(X) = Y MBS (p)AX, + <AXt>2+A5t<X>. (69)
=0
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On the other hand, we have

V(t,Eo+9,.. Ed+5X+(5)

d d
- ;[ 1()<X+5 Z)\ (E;i + 6)poi(t) ) ST NN(E: + 8)(E; + 8)pis (1)

woo(t =0
d d

i=0
52 . d
= V(t,Eo,....,Eq,X) = 0> > N\XEigi(t) — ?ZZA it
7=0 =0 7=0 =0
d 52
= V(t,Ep,....Eq,X) = 0> NE — —
Here we have used the facts that >, \; = 1 and ), \ip;; = 1. Putting everything together

yields the assertion. O

We can now focus on infinitesimal variations, and we denote V; := 9V/dt, V; := 0V/IE; and
= 0V/0X. We have, when AX; = 0,

d
dCi(X) = By dX,— Vedt+ > VidEX (pi) + Vi dX,
=0

= (B + S Vi) dX, - (Vi+ depiEtX(pi)vi) dt
1=0 1=0

By simple calculations, we get F;X + Z?:O Vi + Vx = 0, and our expression simplifies to

acy(x (Vt+2m piIVi ) dt

Let us now calculate V;:

) d , d L
Vi = —(’0—020<X - Z)\jchpoj) =Y NE; ( Z)\ E]cpog) st — 3 > NNEE;g;.

2
%00 =0 i=0 =0 0 i,j=0

To simplify computations, we define

Ao =1 and E_:= =070 (70)

as well as w_1; := g; and p_1_1 = pgg. Then
T
VZ = —5 ' Zl/\lEZ/\]E](p;]
1,)=—

With p_1 1= pg =0, we get V; = —; <)\—1E—1<P—1i +Z§l:o )‘J'Ej%'j) ==\ Z?:q AjEjpij and
therefore

d d
ZPiEiVi = - Z pi 5 i NEN Ejpij.
=0 N
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Altogether, we obtain

d
dCy(X) = %( S NEX()NES () (¢ + (01 + p3)eis) ) dt,

ij=—1
where E;X(p_1) is defined according to (70).

Thus, we arrive at the following quadratic form % Zilzo ErE g Ni(@)y + (pre+p1)er)- Since
we should have dC;(X) > 0 with dC;(X) = 0 for the optimal strategy, this quadratic form should
be nonnegative with rank one. Indeed, since the control X is of dimension one, it would not
be possible to make dC;(X) = 0 if the rank of the quadratic form were higher than two. We

are now going to write the conditions that ensures that this quadratic form is nonnegative with
rank one. To do so, We introduce the new coordinates (A, ...,Ay) such that

Ey=Ag, E1=A¢+A1, -+ Eg=A0+ Ay
In these coordinates, our quadratic form becomes

d

1

§A(2)/\(2)(9060 + 2pooo) + E Ag(Ag + Ao (e + (po + pi)eor)
=1

d d
1
D) DO (Ao + AR)(Ag + ANy + (ox + p1)owt)
k=11=1
After some calculations, we get that the coefficient for A2, AgA;, AxA; and AZQ (for 1 < k,l <d)

are respectively 7, A (Pl +30 Akﬂk¢kz>, MA@y + (pr + pr)r) and $A7 (), + 2p000).-
Thus, the matrix @Q for the quadratic form has coefficients

Qoo = P,

d
Qu=Qun = %(m +) Akpks%z>,
k=0

1 .
Qu=Qu = 5/\k/\l(90;cl + ok +po)er) iR IT>2,k#1,
1
Qu = §>\l2(ﬁﬁfl + 2p1011).

Since @ is of rank one, the determinant of the matrices

(Qoo Q0l> <Q00 Q0l>
Qo Qu )’ \ Qw Qu

must vanish for [ = 1,...,d and k < [. That gives, respectively,
1 d 2
e = (o S
b+ 2p1Pu A% + Z kPEPEL)

k=0

1 d d

Gl + (P + PP = % (Pz +> Aiﬁi%’l) (Pk +> )\jpjsﬁkj), (71)

i=0 J=0

which gives precisely the Riccati equation. Thus, equation (71) holds for 1 < k,1 < d. In fact,
the choice of Ey = Ay is arbitrary. Had we chosen E; = A; for some i > 0, we had obtained (71)
for k,l # i. Therefore (71) holds in fact for all k,1 =0,...,d.
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