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ABSTRACT. Arbitrary Lagrangian Eulerian (ALE) formulations deal with PDEs on deformable do-
mains upon extending the domain velocity from the boundary into the bulk with the purpose of
keeping mesh regularity. This arbitrary extension has no effect on the stability of the PDE but may
influence that of a discrete scheme. We propose time-discrete discontinuous Galerkin (dG) numerical
schemes of any order for a time-dependent advection-diffusion model problem in moving domains,
and study their stability properties. The analysis hinges on the validity of the Reynolds’ identity
for dG. Exploiting the variational structure and assuming exact integration, we prove that our con-
servative and non-conservative dG schemes are equivalent and unconditionally stable. The same
results remain true for piecewise polynomial ALE maps of any degree and suitable quadrature that
guarantees the validity of the Reynolds’ identity. This approach generalizes the so-called geometric
conservation law (GCL) to higher order methods. We also prove that simpler Runge-Kutta-Radau
(RKR) methods of any order are conditionally stable, that is subject to a mild ALE constraint on
the time steps. Numerical experiments corroborate and complement our theoretical results.

1. INTRODUCTION

Problems governed by partial differential equations (PDEs) on deformable domains Q; C R?,
which change in time 0 < ¢t < T < oo, are of fundamental importance in science and engineering,
especially for space dimensions d > 2. The boundary 0€2; of ); may move according to a law given
a priori (moving boundary) or a law we need to solve for (free boundary). The latter are of course
more common and much more challenging to study theoretically and solve numerically. This is, for
instance, the case of fluid-structure interactions.

Two main classes of algorithms are available, which differ on their treatment of 0. In the first
class, a discrete version of 9f2; moves across a fixed mesh in space (Fulerian approach). This requires
an additional quantity to track the interface such as a level-set function, a phase-field indicator, an
immersed structure (immersed boundary), or a Lagrange multiplier (fictitious domains). In the
second class, both the interface and mesh in space move together keeping conformity (Lagrangian
approach). The latter is advantageous whenever the flow involves higher order geometric quantities,
such as curvature or Willmore forces [3, [7, [§], or to design higher order accurate schemes, provided
no topological changes are expected. However, pure Lagrangian schemes deform the mesh according
to the fluid velocity, which is proned to excessive mesh distorsions and thus require mesh smooting
and frequent (and expensive) mesh regeneration. But having direct access to the geometry of
02, and the design of higher order schemes make them quite competitive and of great interest to
practitioners.

The Arbitrary Lagrangian Eulerian (ALE) approach was introduced in [12, 21} 22] to prevent
excessive mesh distortion within the Lagrangian approach. The mesh boundary is deformed ac-
cording to the prescribed boundary velocity w, but an arbitrary, yet adequate, extension is used to
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perform the bulk deformation. This extension of w from 0€2; to £; can be performed using various
techniques such as solving for a suitable boundary value problem with Dirichlet boundary condition
w; see [15] 26| [18], 24], and the references therein. This extension induces a map A; : Qo — €, the
so-called ALE map, with the key property that

wix, 1) = %At(y), x = A(y).

The ALE velocity w is unrelated to the fluid velocity b and dictated mostly by the geometric
principle of preserving mesh regularity. The pure Lagrangian approach corresponds to the choice
w = b, whereas in the ALE approach w # b generically. In the extreme case that the domain does
not deform, then w = 0 in Q; = Qg irrespective of the value of b. We refer to [10] for an analysis
of the pure Lagrangian approach with emphasis on the convection-dominated diffusion regime.

For the study of the ALE approach we consider, as in [I} [4, 17, 16] 18, 23], a model problem
consisting of a prescribed domain deformation €2; given by an ALE map A; and the scalar advection-
diffusion equation on £2; with vanishing Dirichlet boundary condition:

Ou+ Vx - (bu) — pAxu = f x €, t€10,T)]
(1.1) u(x,t) =0 X €08, t€[0,T]
u(x,0) = up(x) x € (.

Hereafter, u > 0 is a constant diffusion parameter, b is a convective velocity, f is a forcing term, and
ug is an initial condition. Of course this is a prototype PDE for the more interesting, practically
relevant, and technically demanding, Navier-Stokes equation for incompressible fluids typical of
fluid-structure interactions; notice that in this context it does make sense to consider divergence
free velocities: V- b = 0. We are not interested in the convection-dominated diffusion regime, in
which b dominates p, but rather on the design of higher order methods and the effect of the ALE
map A; on their stability. Multiplying the PDE in by u and integrating by parts yields the
usual energy estimate, provided Vx - b = 0,

L2) [l + i / IV xu() 22y s < lulr) 20, / L)%,

for 0 < 7 <t < T. This estimate is insensitive of the geometry of the deformation built into
the ALE map A; and exhibits monotone behavior of the norm |[u(t)||z2(g,) provided f = 0. We
say that a numerical method is ALFE-free stable with respect to the energy norm if it reproduces
; otherwise, if is valid with a stability constant depending on A; we say that the method
is ALFE stable. ALE-free stable schemes are desirable because they are qualitatively correct. The
only provable ALE-free stable scheme based on finite element discretizations in space and without
time-step constraints (unconditional stability) is the backward Euler-method [4, 17, [16} 18, 23]. This
raises a couple of fundamental questions discussed later in this paper in the context of discontinuous

Galerkin (dG) methods for (L.1)):

o Can higher order methods be ALE-free stable?
e Can higher order methods be unconditionally stable? If not, then how does the time-step restriction
relate to the domain velocity w and the diffusion 11?

The ALE framework is based on replacing the (Eulerian) partial time derivative dyu in (1.1]) by the
ALE-time derivative (or material derivative), which is the partial derivative along the trajectories
induced by the ALE map while keeping the ALE-coordinate y € §)¢ fixed:

(1.3) Dyu(x,t) := %u(At(y),t) = Qpu(x,t) + w(x,t) - Vxu(x,t).

Inserting (1.3]) into the PDE in (1.1) we end up with the non-conservative formulation
(1.4) Dy —w - Vxu+ Vx - (bu) — pAxu = f,
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or its equivalent conservative counterpart
(1.5) Dyu+ (Vx - w)u+ Vx - [(b — w)u] — pAxu = f.

It is worth noticing that is equivalent to either or , the latter two being more
convenient numerically because the geometry of the domain deformation is built in explicitly. In
this vein, it is also clear that « = 1 is a solution provided f = Vx-b = 0 and the Dirichlet condition
in changed to u = 1. A numerical scheme is said to satisfy the geometric conservation law
(GCL) if it admits 1 as a discrete solution. The GCL was originally introduced for finite volume
schemes as a minimum criterion for unconditional stability [19, 14], and it turns out to be closely
related to quadrature for approximating integrals in time [I7} [16, 23]. However, its role for ALE-free
and unconditional stability, as well as its impact in accuracy, are not well understood.

There are two type of algorithms with supporting stability theory depending on their order of
accuracy. The first class of first-order schemes hinges on the backward Euler method. Formaggia
and Nobile [16] study a conservative finite element scheme for with Vx - b = 0, which satisfies
the GCL, and prove that it is ALE-free stable. Gastaldi [18], Boffi and Gastaldi [4], and Nobile [23]
give an a priori error analysis. Moreover, Formaggia and Nobile [I6], Boffi and Gastaldi [4], and
Badia and Codina [I], propose ALE stable schemes which fail to satisfy the GCL.

The second class of second order schemes hinges on the Crank-Nicolson and backward differen-
tiation formula (BDF) schemes; see Formaggia and Nobile [I7], Boffi and Gastaldi [4], and Badia
and Codina [I]. Even when the GCL condition is valid, the ensuing schemes are shown to be ALE
stable and conditionally stable only. In fact, simulations show that the monotonicity of [|u(t)|z2(q,)
does not hold at the discrete level.

The analysis of both first and second order schemes indicates that the ALE velocity w plays the
role of an extra advection for the method, despite the fact that is insensitive to w. This leads
to Gronwall-type arguments, time-step constraints and stability constants depending on the ALE
map. The critical issue is to devise a time-discrete form of the so-called Reynolds’ identity

d
vdx = o + Vx - (vw) dx = Dyv+ vV - wdx

1.6 —
(1.6) dt Jo, 2 fon

that allows for the cancellation that happens at the continuous level. This basic property is not
even clear for first-order schemes, which explains the lack of equivalence between conservative and
non-conservative schemes as well as their stability properties [Il, 4, 17, 16 I8, 23]. Moreover, it
turns out that the GCL is equivalent to satisfying a discrete version of for v =1 [16].

We propose a family of discontinuous Galerkin (dG) methods of arbitrary order ¢ > 0 and study
their stability properties, for time discretization of . We believe that such a discretization is
the key obstruction for the design of ALE-free stable schemes, and so refer to [1I [4], 17, 16, 18] 23]
where CC-finite elements are used for space discretization. The variational structure of dG allows
for a direct implementation of with exact integration and a separate analysis of the effect of
quadrature. Our main contributions, valid for all ¢ > 0, are as follows:

e dG with exact integration: ALE-free stability at the nodes t = ¢,, (nodal stability) and ALE stabil-
ity for all t € [0,T] (global stability) both without any time constraints (unconditional stability);

e dG with Reynolds quadrature: ALE-free nodal stability and ALE global stability both without
any time constraints but assuming that the ALE map is piecewise polynomial in time;

e dG with Radau quadrature: ALE-free nodal stability and ALFE global stability both with an ALE
time constraint (conditional stability) but for any ALE map W2 (WL) piecewise in time.

We corroborate these findings with numerical experiments for several orders 0 < ¢ < 3, which show
that our theory is sharp. The dG methods with quadrature are practical, with Radau quadrature
being the minimal one that preserves the accuracy of dG and leads to the so-called Runge-Kutta-
Radau methods (RKR) of order ¢ for fixed domains. It turns out that all our unconditionally stable
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methods satisfy the classical GCL but this is not the mechanism that ensures stability; it is rather
their ability to exactly reproduce the Reynolds’ identity. This paper is the first in a series devoted
to the analysis of dG for ALE formulations. We perform an a priori error analysis in [6] and an a
posteriori error analysis in [5], both based on the stability notions developed here.

This paper extends the analysis of dG methods of any order for non-moving domains [28, Chapter
12] to time-dependent domains within the ALE framework. We also refer to [20] for the implemen-
tation of first-order dG methods in the context of fluid-structure interactions. It is worth comparing
our results for dG methods with the pure Lagrangian framework for the advection-dominated dif-
fusion equation on time-independent domains proposed by Chrysafinos and Walkington [10]. Both
analyses have some conceptual similarities but the overall purposes are distinct. We are concerned
with the design of arbitrary order dG methods for domains undergoing time-dependent Lipschitz
deformations, the influence of the ALE map in their stability properties for moderate fluid velocities
b, and the analysis of the effect of quadrature in time. We emphasize that the latter plays a sig-
nificant role in the design of implementable dG schemes and is an important aspect of our present
contribution. In our approach, the ALE velocity w does not play the role of an advective velocity.
In fact, dG schemes able to reproduce are unconditionally stable schemes irrespective of the
ALE map. In contrast, Chrysafinos and Walkington [10] consider a fixed domain but tackle the
notoriously difficult hyperbolic regime p < ||b||z~. In their framework, the ALE velocity w is de-
signed to compensate for large b and is thus chosen to satisfy w ~ b. They assume exact integration
in space-time and advocate discontinuous maps in time to account for frequent remeshing.

We organize the paper as follows. In Section [2] we introduce some notation, and provide regularity
assumptions on the ALE map so that the chain rule and Reynolds’ identity are valid
weakly. This allows us to prove existence and uniqueness of a function u solving the boundary value
problem weakly, and also being continuous with values in L?(£;) so that the initial condition
in makes sense. In Sections we study the stability of our time-discrete dG schemes of any
order ¢ > 0 for divergence free advections Vyx - b = 0. In particular, we devote Section [3] to dG
methods with exact integration, Section 4] to Reynolds’ quadrature and discussions of the GCL, and
Section [f] to RKR methods. We conclude in Section [6] with extensions of the previous results to
problems with Vy -b # 0. It is only then that we get exponentials of ||(Vx-b) ||z~ but never
of geometric quantities. This is a distinctive feature of our analysis.

2. PRELIMINARIES

2.1. Notation and Regularity Assumptions. For any Lipschitz domain D of R™, m = d or
m =d+1, welet L"(D), 1 < r < oo, be the usual Lebesgue space and W,} (D) be the corresponding
Sobolev space with differentiability 1. We let H*(D) = W3 (D) and Hg(D) be the closure in
H1(D) of smooth functions with compact support. We equip the space H{(D) with the norm

IVxvll2py = (fp |Vxv]2dx) /2 and denote by H~'(D) its dual space. Spaces of vector-valued
functions are written in boldface.

Let 29 C R? be the reference domain with Lipschitz boundary df2y and {2; C R? be a deformable
domain at time ¢ € [0, 7], with T < oo fixed. For every t € [0,T], we associate points y € 2y and
X € {2 via a family of mappings {A;}c(o,7) with Ag := Ig, the identity mapping, as follows:

A 20 CRY = 2, CRY, x(y,t) = A(y).

We frequently regard A; as a space-time function A(y,t) := A:(y), and we refer to y € (2 as the
ALE coordinate and x = x(y, t) as the spatial or Eulerian coordinate. Using {A;}¢cpo,7], We set

Qr :={(x,t) eRIxR:t € [0,T], x = A(y), y € %}

Definition 2.1 (ALE maps). We say that {A:i}ieo,m) s a family of ALE maps if the following
conditions are satisfied:
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e Regularity: A(-,-) € WL ((0,T); WL (£));
e One to one: there exists a constant v > 0 such that for all t € [0,T],
A1) — Ay2)llee =Yy = y2llew, ¥y, ¥2 € Qo.

The one-to-one requirement implies that A; : Qg — € is invertible with Lipschitz inverse, i.e.,
Ay is bi-Lipschitz and so a homeomorphism. This implies that v = 5o A, ! € HJ(§2,) if and only if
U € H}(£2); cf. [I7, Proposition 1]. Moreover, since ) is Lipschitz so is € and 2; C Q for some
bounded domain €, for all ¢ € [0, 7]. Hence, the Poincaré inequality in €2 implies the existence of
an absolute constant C'y;, independent of ¢, so that

1
(2.1) lollpaon < Call Vxvllzay, Yo € HY().
In addition, since the Jacobian matrix of A;, J 4, := g—;, is Lipschitz in time we deduce that

(2.2) %det Ja,(y,t) =V - w(A(y), t)det I 4,(y,t) = detJq,(y,t) = ef(;5 Vi w(As(¥),s) ds

As a consequence, detJ 4, is positive and bounded away from 0 and oo uniformly for ¢ € [0,T].
Only in Section [5| we will need additional regularity assumptions on A; beyond Definition [2.1

Sometimes later it will be more convenient to use 2., 7 € (0,7 as reference domain rather than
{29. In such a case, the letter y € {2, will still indicate points in the reference domain and the letter
x € {2 indicate points in any other domain (2, ¢ € [0, 7]\ {7}. Moreover, for 7, s € [0,T], we denote
by A,_s: 2. — 25 the map

Ar s = Ag 0 -’4;17

whence As; = Ag_,s. Taking 2, 7 € [0,T] as the reference domain, to every function g : Qp — R
we associate the function g : £2; x [0,7] — R defined by

/g\(yv t) = g(-A‘rHt(Y)’ t) :

We use the notation (-,-)p for both the duality pairing and the L?—inner product in D, depending
on the context. For Y = L" or W', 1 <r <oo, Y = H& or Y = H™!, we define the spaces

T
LAY Q) = {v: Qr - R : /0 Jo(t)12 g dt < o0}
We similarly define the space C(Y; Qr) of continuous functions with values in Y, as well as

L>®(div; Q) := {c: Qr — R? : ess SUDye (0,7 ([le@®)l Lo () + 1V - €)oo (g20)) < 00}
To simplify the notation, we omit writing the dependency in Q7 when there is no confusion.

2.2. Material Derivative and Reynolds’ Identities. We denote by 0; the usual partial time
derivative holding the space variable constant. Given g : Qr — R, we indicate with D;g the material
(or ALE) derivative, namely the partial time derivative keeping the ALE coordinate y fixed

(Dig)(x, 1) = (9)(y.1).
The domain velocity W : £2p x [0,T] — R? on the ALE frame is defined as
w(y,t) := 0x(y,t),
whereas w : Qp — R? indicates the corresponding function on the Eulerian frame, i.e.,
(2.3) w(x, t) = Ww(A4 ! (x),1).
The following lemma justifies the chain rule for weak material derivatives.

Lemma 2.1 (Leibnitz formula in W} (Qr)). Let g € W (Qr) and {A;}iep,r) be a family of ALE
maps. Then, Dig € L*(Qr) and

(2.4) Dig = 01g +w - Vxg.
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Proof. The Lipschitz regularity of the ALE map x(y,t) implies that the standard Leibniz formula
is valid for weak derivatives of the composite map g(y,t) = g(x(y,t),t) [29]. This yields (2.4). O

The Reynolds’ identities reported below are weak versions of the Reynolds’ Transport Theorem.

Lemma 2.2 (Reynolds’ identities). Let {A¢}icpor) be a family of ALE maps. For any v € W(9r)
there holds

(2.5) 4 / vdx = / (Dyv + vV - W) dx.
dt Qt Qt

In particular, for w, v € H'(Qr) we have
da
dt Jo,

Proof. The Reynolds’ Transport Theorem gives ([2.5) for smooth functions v and ALE maps Ay;
see for instance [I7]. We invoke a density argument to extend (2.5) to v € Wl(Qr) and A; €
WL ((0,T); WL (€0)). Expression (2.6) follows from (2.5) and Sobolev embeddings. O

(2.6) vwdx = / w(Dy + vVy - W) dx + / vDyw dx.
Qt Qt

2.3. The Continuous Problem in the ALE Framework. We assume that vy € H (), f €
L?*(Qr) and b € L*(div; Q7). In view of the chain rule (2.4), the PDE in (I.1)) can be rewritten as

(2.7) Diu+ (b—w) - Vxu+ (Vx-b)u — pAxu = f in Q.

A variational formulation of problem (2.7) reads as follows: seek u € L?*(H}; Qr) N H(L?; Or)
satisfying u(-,0) = up and such that for all v € L?(H}) and 7,t € [0,7] with 7 < ¢,

/t<DtU7U>QS ds + /t((b —w) - Vxu,v)q, ds
(2.8) T T

t t t
—i—/ ((Vx - b)u,v) o, + u/ (Vxu, Vxv) o, ds = / (f,v) 0, ds.

Equation is a mon-conservative weak ALE formulation for problem . With formula
at hand, we can reformulate problem as a time-dependent advection-diffusion system with
variable coefficients on the reference domain €. The regularity of the ALE maps guarantees the
parabolic nature of the ensuing equation and the existence of a unique solution u satisfying

u e H'(Qr) C C(L* Qr),

via energy techniques [I1], 13| 27]. This thereby justifies the meaning of u(-,0) = ug, as well as the
further regularity Axu, Dyu € L?(Qr).
Using the Reynolds’ identity ([2.6)), the variational formulation (2.8)) can be rewritten as follows:

t t
(ult) o®)a + [ (T (b= Wi v)a,ds+ g [ (V1 Vxv)a, ds
(2.9) T r

t t
—/ (u, D)o, ds = (u(1),v(7)) 0. dr +/ (f,v)p.ds, Yve€ H&(QT).

Equation ([2.9)) is the conservative weak ALE formulation for problem ([1.1). We emphasize that
non-conservative and conservative formulations (2.8)) and (2.9)) are equivalent.

Remark 2.1 (test functions). In contrast to the existing literature [Il, [4] 16| 17, 18, 20, 23], in both
and the test-functions v do not have vanishing material derivative. This mimics the usual
approach for time-independent domains and is consistent with the definition of discrete spaces and
the dG methods in time in the ALE frame in Section |3| This approach is crucial for stability.



TIME-DISCRETE HIGHER ORDER ALE FORMULATIONS: STABILITY 7

Remark 2.2 (H!-functional setting). One might wonder about the formulation of in the
weaker setting ug € L*(Qo), f € L>(H™1; Qr) whence u € L?(H}; Or) with Axu, Dyu € L*(H™1; Or),
typical of parabolic problems. However, the energy argument on the reference domain g would re-
quire the additional space regularity A;, A;' € W2, to ensure that a functional in L2 ((0,7); H1())
defines a functional in L?(H~!; Q7) via the ALE map (and vice versa). This would imply that
A, AL L'¢ C! in space, which is too strong as an assumption on the ALE maps because they are
usually made of continuous finite element approximations.

3. DISCONTINUOUS GALERKIN METHOD IN TIME: EXACT INTEGRATION

In this section, we employ both ([2.8)) and to construct the discontinuous Galerkin (dG)
method within the ALE framework for moving domains. We assume exact integration with the
purpose of emphasizing the essential arguments, but we discuss numerical integration in Sections
and [f] We also assume that Vx - b = 0 to simplify the arguments and postpone to Section [f] the
extensions to the general case Vx - b # 0.

3.1. The dG Methods and Nodal Stability. Let 0 =: tp < t; < --- < ty := T be a partition
of [0,T], and for n =0,1,..., N — 1, let I,, := (tn, tn+1], kn := tnt1 — t,, be the variable time steps,
and
Qn ={(x,t) € Qpr: t € I,,}.

In the forthcoming analysis there will be constants depending explicitly on DA, the space differen-
tial of the ALE map Ay, and its first time derivative. They may change at each appearance and be
multiplied by other constants depending on the polynomial degree in time (later denoted by ¢) and
the space dimension d. To simplify the notation, and make it clear that the constants are explicit
we now introduce two characteristic constants:

— —1)¢
(3.1) An = [[D A, st oo (1,5100 (00, ) (DAt —) ™ Lo (1,100 (00, )

By, := || DA, tllwi (1L (0,))»

where the powers r, ¢ > 0 with r + ¢ > 1 will not be specified, but they can be equal to 0,1, d, d + 2
depending on the context . We do not specify the norm used in (3.1]) for the finite dimensional space
R?*? due to the equivalence of norms. It is important to realize that A; _,; = A; o Ay ! implies

(32) tligl ||DAt”*>t||Loo(‘Qtn) = ||Id”Loo(_Qtn) - 1’

because || DAy, ¢l (g,,) is Lipschitz, whence A, B, = O(1) are local constants in I,, which do
not involve exponentials of either geometric quantities or 7. In contrast, from ([2.2]) we deduce that
T
I det I, || oo (0,710 00y < €0 IVxBllzeeandt,

similar estimates are valid for DA, DA; ' and %DAt = Dw. We avoid constants depending on
these global geometric quantities, which are typical of the pure Lagrangian approach w = b [10].

To indicate absolute constants depending only on the polynomial degree ¢, the space dimension
d and the constant C in (2.1]) we frequently use the notation < in the subsequent analysis.

For ¢ > 0, the discrete space V, associated with the dG method in time of order ¢g+1, for problems
defined on moving domains, is defined as follows:

q
Vo ={V:9r—>R: V|, = Zgojtj where ¢; € L*(H}) with Dyp; =0, j =0,...,q}.
j=0

Therefore, the dG space V, consists of functions which are piecewise polynomials in time of degree
at most ¢ along the trajectories defined by the ALE map, and with coefficients in H(; this space
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was considered in [20] for ¢ = 0. Such a V, extends the corresponding discrete space associated with
the dG method in time for problems defined on non-moving domains [28]. Moreover,

VoIp) ={V:9, > R: V=W|g,, WeV,}, n=0,1,...,N—1,

is the space of restrictions to Q,, of functions in V.

In this paper, we consider semidiscrete schemes with discretization only in time. Thus, for
n=20,1,...,N — 1, V4(I,) is not a finite-dimensional space. This follows a similar approach to
semidiscrete dG for time-independent domains [28, Chapter 12].

Remark 3.1 (finite-dimensional arguments). Any function V' € V,(I,,) is a polynomial in time of
degree at most ¢ when viewed on a reference domain €2.. Specifically, the quantity

(3.3) L >t = [[V®)3yq,)

is a polynomial in time of degree at most 2¢, where || - [|3/(q,) denotes the norm in the Hilbert space
H(€27). Therefore, finite-dimensional arguments such as inverse inequalities (]9, Chapter 4, Lemma
4.5.3]) and the equivalence of norms in finite-dimensional spaces of polynomials, can be applied to
. Quantities of the form appear often in our subsequent analysis.

The discontinuous Galerkin approximation U to u for the non-conservative ALE formulation (2.8])
with Vi - b = 0 is defined as follows: we seek a U € V, such that

(34) U(,O) = UQ in Qo,
and forn=0,1,...,N —1,

[ DU Vadt + W) = V() Vi), + [ (b= w)- 9V Vg, dt
(3.5) " "
+M/ VU, ViV o, dt:/ V), dt, YV € Vy(I).
I In

The conservative dG formulation is based on (2.9) and reads: seek U € V, satisfying (3.4) and

(Ut V(tnsn ), — UV (5D, + [ (T (b= w)U). V) de
(3.6) In
+ “/1 (VU, VoV ), dt — / (U, DV g, dt — /I VYo dt, NV € V().

We again have that both and are equivalent, a property we will exploit in our analysis.
We stress that dG produces approximations defined for all times ¢ with a consistent domain for
the approximation to lie in. The importance of the latter was first observed by Pironneau, Liou,
and Tezduyar [25], who studied a time-dependent advection-diffusion model problem defined on
moving domains and used Characteristic-Galerkin type formulations. However, they assumed that
the time-dependent domains had to be “close to each other” between two consecutive time steps in
order to derive stability and optimal order error bounds.

We also point out that for non-moving domains we have 2, = (2 for all ¢ € [0, 7], we can choose
the ALE map to be the identity, and w = 0. This implies that the material derivative becomes
the usual partial derivative in time, whence both and generalize dG in time for problems
defined on non-moving domains [28].

Remark 3.2 (continuity of ALE map). Since the ALE map is time-continuous, we have that
A = Ay, L., 2+ = (2. This fact has been used for the definition of both and and it
will also be used in the analysis below. Discontinuous maps are proposed in [10] within a Lagrangian
approach to reduce the effect of large b for a hyperbolic-type problem on time-independent domains.
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We are after stability estimates for dG insensitive to the ALE velocity w and the polynomial
degree q. The following identity, based on (2.6)), plays a significant role in this respect.

Lemma 3.1 (discrete Reynolds’ identity). For every V € Vy(I,,), n=0,1,...,N — 1, we have
_ 2 112
(3.7) /In (<DtV, Vig, —(w-VxV, V>Qt)dt = §||V(tn+1)||L2(Qtn+l) - §HV(tn)||L2(Qtn)-

Proof. Take v = w =V € V,(I,,) in (2.6) and integrate in time over I,. Integrating by parts the
term involving w, and using that V has a vanishing trace, we get

/ (V2 V- W)o,dt = —2/ (W - ViV, V)g,dt.
In In
This leads to (3.7)) and completes the proof. O

We next apply Lemma to prove that dG admits a unique solution and it is stable. The
difficulty is that dG is semidiscrete and thus we must cope with a continuous space.

Prop051t10n 3.1 (existence and uniqueness). There exists a unique solution U € V, of (3.5)) and

o) satisfying .

Proof. Since and are equivalent, we focus on . For t =0, U(-,0) = ug in 2 is well
defined. We assume that for 0 < n < N — 2, the terminal value U(,t,) is well defined in (2,
and proceed by induction to prove that there exists a unique solution of over I,. Changing
variables from €); to Q, and using that detJ 4, _,, is uniformly positive and bounded, we see that
V,(I,) is a Hilbert space with respect to the L?(H})—inner product

(3.9) (VW) g2y = /] (VW) di + / (V. V. VW) g, dt.

n In

Moreover, we consider the following bilinear form in V,([,,) which appears in (3.5)

bV, V) = / (DV, W, dt+ V(). W () o,

+ / (b—w)- -VxV,W)gq, dt + ,u/ (VxV,VxW)g, dt.
I, In

We observe that b is bounded in V,(I,,) because the space of polynomials of degree < ¢ is finite
dimensional and all norms are equlvalent, see Remark [3.I] In addition, b is coercive: take W =V
and notice that

1 1
(3.9) / (b-V,V,V)g,dt = 2/ (b, Vy V) o, dt = —2/ (Vi -b, V2 g,dt =0,
I, I, I,

because V has a vanishing trace and b is divergence free. Moreover, Lemma [3.1] yields
/I ({DV, V)= (w-TVo V), ) dt+ (V(ED), V(D)) e, = §uv<tn+1>u%mw+5HV(tmu%mn),
whence together with a Poincaré inequality , which holds uniformly in €, we derive

MV V) S 0 [ IV 0ot < V).

This coercivity of b, in conjunction with the continuity of F(V) := [, I, (f,V), yields the existence of
a unique U € V,(I,,) satisfying (3.5)) via the Lax-Milgram Theorem. This implies that U(-,t,41) is
well defined, and concludes the 1nducti0n argument and the proof. O
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Theorem 3.1 (stability with exact integration). The solution U € V, of (3.5) or (3.6), both
supplemented by the initial condition (3.4), satisfies for 0 <m <n < N :

n—1

tn
U B,y + X 10 = U + 1 [ 19U eyt
(3.10) j=m "
1

tn
<NV e,y + 5 [ 15O oy .

Proof. Take V = U in (3.5). The coercivity argument in Proposition gives

1 1
/I. [(DtU7 U)g, +{(b—w) - ViU, U)Qt] dt = §”U(tj+1)H%2(nth) - §||U(t;r)||%2(9tj)7

J

whereas a simple calculation reveals
2U(t]) = U(t). Ut)))a, = ||U(tj)||%2(9tj) - HU<tj)‘|%2(Qtj) +UE) - U(tj)\|%2(rztj)~

Finally, the Cauchy-Schwarz and Young inequalities yield

H 2 1 2
U)o dt < / VU (t dt + / FO|5- dt.
/1]-< )2 2 ), IVxU@)72(0, 2 /. 1 @102,

Inserting these expressions in (3.5) and adding from 7 = m to j =n — 1, we obtain (3.10)). O
Remark 3.3 (monotonicity property). If f =0 and m =n — 1, (3.10) implies the relation
(3.11) [Vt 2y < WUl V1< <N,

This important relation, valid for any time step k,,, polynomial degree ¢ > 0 and diffusion coefficient
i, is not observed in [I} [4, I7] for second order schemes. Relation (3.11)) is a discrete version of the
monotonicity property ([1.2)), which holds for the continuous problem.

3.2. Global Stability. The purpose of this section is to derive a stability result for the continuous
L>(L?)—norm, i.e., on the whole time interval, without any constraint on the time steps. The
arguments below extend techniques for non-moving domains [28, Chapter 12].

Lemma 3.2 (relation between U and D.U). If Ay, is defined in (3.1)), then there holds for allt € I,
(3.12) T2, S AnlU i) F2a,, , ) +Ankn/l IDeU ()72, dt.

Proof. We consider (2, as the reference domain. For all ¢ € I;,, we have that Ut) = Ultns1) —

ftt"“ 8857(3) ds. Consequently, upon squaring, applying the Cauchy-Schwarz inequality, and inte-
grating over (2 .., we obtain

||U(t)H%2(9th) < 2||U(tn+1)||%2(gtn+l) +2l<:n/1 ||6tU(t)H%2(9th)dt.
We easily deduce (3.12)) upon changing variables from €2, , to ; and using (3.1 O

The above lemma is instrumental to obtain the stability result on the whole interval.

Theorem 3.2 (global stability with exact integration). Let f € L*(Qr) and {A¢}ejom) be a family
of ALE maps. Then, the solution U € V, of problems (3.5)) or (3.6) both supplemented