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EVALUATING MATRIX FUNCTIONS BY RESUMMATIONS ON

GRAPHS: THE METHOD OF PATH-SUMS

P-L GISCARD† , S J THWAITE† , AND D JAKSCH†‡

Abstract. We introduce the method of path-sums which is a tool for analytically evaluating
a function of a square discrete matrix, based on the closed-form resummation of infinite families
of terms in the corresponding Taylor series. If the matrix is finite, our approach yields the exact
result in a finite number of steps. We achieve this by combining a mapping between matrix powers
and walks on a weighted directed graph with a universal graph-theoretic result on the structure of
such walks. We present path-sum expressions for a matrix raised to a complex power, the matrix
exponential, matrix inverse, and matrix logarithm. We present examples of the application of the
path-sum method.

Key words. matrix function, graph theory, walk, path, matrix raised to a complex power,
matrix inverse, matrix exponential, matrix logarithm

AMS subject classifications. 15A16, 05C50, 15A09, 05C38

1. Introduction. Many problems in applied mathematics, physics, computer
science, and engineering are formulated most naturally in terms of matrices, and can
be solved by computing functions of these matrices. Two well-known examples are
the use of the matrix inverse in the solution of systems of linear equations, and the
application of the matrix exponential to the solution of systems of linear ordinary
differential equations with constant coefficients. These applications, among many
others, have led to the rise of an active area of research in applied mathematics and
numerical analysis focusing on the development of stable and efficient methods for the
computation of functions of matrices over R or C (see e.g. [7]).

As part of this ongoing effort, we introduce in this article a novel symbolic method
for evaluating matrix functions f analytically and in closed form. The method –
which we term the method of path-sums – is valid for square discrete matrices, and
exploits connections between matrix multiplication and graph theory. It is based on
the following three central concepts: (i) we describe a method of partitioning a matrix
M into submatrices and associate these with a weighted directed graph G; (ii) we show
that the problem of evaluating any submatrix of f

(
M
)
is equivalent to summing the

weights of all the walks that join a particular pair of vertices in this directed graph;
(iii) we use a universal result about the structure of walks on graphs to exactly resum
the weights of families of walks to infinite order. This reduces the sum over weighted
walks to a sum over weighted paths, a path being forbidden to visit any vertex more
than once. For any finite size matrix, the graph G is finite and so is the number of
path. We apply the method of path-sums to four common matrix functions: a matrix
raised to an arbitrary complex power, the matrix inverse, the matrix exponential,
and the matrix logarithm. In each case, we obtain an exact closed-form expression
that allows the corresponding function f

(
M
)
to be analytically evaluated in a finite

number of operations, provided M has a finite size.
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This paper is organized as follows. In §2 we present the foundational material
required by the method of path-sums: in §2.1 we describe the partition of a matrix
into submatrices ; in §2.3 we construct the graph corresponding to this partition, and
describe the mapping between matrix multiplication and walks on the corresponding
graph; in §2.4 we present the closed-form expression for the sum of all the walks
on a graph that underpins the method of path-sums. In §3, we present path-sum
expressions for a matrix raised to a complex power, the matrix inverse, the matrix
exponential, and the matrix logarithm. These results are proved in Appendix A. In
§4, we provide examples of the application of our results.

2. Required Concepts. In this section we present the three main concepts
that underpin the method of path-sums. We begin by outlining the partition of an
arbitrary matrix M into a collection of sub-arrays, and show how this partition leads
naturally to the definition of a weighted directed graph G that encodes the structure
of M. We then show that computing any power of M is equivalent to evaluating the
weights of a family of walks on G. We conclude by presenting a universal result on
the structure of walks on graphs that forms the basis for a closed-form summation of
classes of walks on G.

2.1. Matrix partitions. A partition of a matrix M is a regrouping of the ele-
ments of M into smaller arrays which interpolate between the usual matrix elements
of M and M itself. In this section we show how these arrays can be used to compute
any function that can be expressed as a power series in M.

Definition 2.1 (General matrix partitions). Let M be a D×D matrix over the
complex field C. Let V be aD-dimensional vector space over C with orthonormal basis
{vi} (1 ≤ i ≤ D), where we have adopted Dirac notation. Consider an ensemble of
vector spaces V1, . . . , Vn such that V1⊕V2⊕· · ·⊕Vn = V . Let Vj have dimension dj and
basis {vij,k}, with 1 ≤ k ≤ dj and 1 ≤ ij,k ≤ D, and let εj be the orthogonal projector

onto Vj , i.e. εj =
∑dj

k=1 vij,k v
†
ij,k

where † designates the conjugate transposition.

These projectors satisfy εiεj = δi,j εi, and the closure relation
∑n

j=1 εj = I with I is

the identity operator on V . Consider the restriction-operator Rµ ∈ C
dµ×D, such that

RT
µRµ = εµ where T designates the transposition. A general partition of the matrix

M is then defined to be the ensemble of matrices {Mµν} (1 ≤ (µ, ν) ≤ n), where

Mµν = RµMR
T
ν (2.1)

is a dµ × dν matrix that defines a linear map ϕµν : Vν → Vµ. For µ 6= ν, we call
Mµν a flip, while for µ = ν, we call Mνν = Mν a static. The projectors εµ are called
projector-lattices. In general there is no relationship between Mµν and Mνµ. However
if M is Hermitian then Mνµ = M†

µν and Mν = M†
ν . Similar relations can be derived

for the case where M is symmetric or antisymmetric.

Remark 2.1 (Block matrix representation). For any general partition {Mµν} of
M, there exists a permutation matrix P such that all Mµν are contiguous blocks in
PMP

T.

Example 2.1 (General partition of a matrix). To illustrate a general partition,
consider the 4 × 4 matrix M with elements (M)ij = mij , which can be interpreted

as a linear map on the vector space V = span
(
v1, v2, v3, v4

)
with v1 = (1, 0, 0, 0)

T
,

v2 = (0, 1, 0, 0)
T
, etc. Choosing vector spaces V1 = span

(
v1, v3, v4

)
and V2 = span

(
v2
)
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Fig. 2.1: The B4 = 15 possible partitions of a 4 × 4 matrix by diagonal projector-
lattices. Solid and bicolor squares represent the matrix elements of statics and flips,
respectively. The three tensor product partitions are framed. The trivial partition is
in the upper-left corner, while the partition into the usual matrix elements is in the
lower-right corner.

such that V1 ⊕ V2 = V , yields the following partition of M

M11=





m11 m13 m14

m31 m33 m34

m41 m43 m44



, M12=





m12

m32

m42



, M21=
(
m21 m23 m24

)
, M22=

(
m22

)
.(2.2)

Remark 2.2 (Number of general partitions). The partition of a matrix M into
flips and statics is not unique – any ensemble of vector spaces such that

⊕n
j=1 Vj =

V produces a valid partition of M. Consequently a D × D matrix admits S(D,n)
partitions on n such vector spaces, where S(D,n) is the Stirling number of the second
kind. It follows that the total number of general partitions ofM is theDth Bell number
BD =

∑

n S(D,n). Included in this number are the partition of M into the usual
matrix elements (i.e. Mµν = (mµν)) obtained by choosing {Vµ} to be D subspaces
of dimension one, and the partition of M into a single static M1 = M, obtained by
choosing V1 = V . In between these extremes, the subarrays Mµν interpolate between
the normal matrix elements of M and the matrix M itself. Figure 2.1 illustrates the
whole collection of possible repartitions of a 4× 4 matrix into submatrices.

Definition 2.2 (Tensor product partitions). An important subclass of matrix
partitions are those that correspond to projector-lattices of tensor product form. This
subclass of partitions will be referred to as tensor product partitions, and arises when
the vector space V is decomposed as the tensor product (instead of the direct sum) of a
collection of subspaces. Let V be a D-dimensional vector space over the complex field
C, and consider an ensemble of vector spaces V1, . . . ,VN such that V1⊗· · ·⊗VN = V .
Let Vi have dimension di (2 ≤ di ≤ D) and orthonormal basis {µi} (1 ≤ µ ≤ di), and

let P
(i)
µi = µiµ

†
i be the orthogonal projector onto the subspace of Vi spanned by µi.

Then a projector-lattice of tensor product form is

ε(S)
µ =

S−1⊗

i=1

P (i)
µi

⊗ I(S) ⊗
N⊗

i=S+1

P (i)
µi

, (2.3)

where I(S) is the identity operator on VS and µ = (µ1, . . . , µS−1, µS+1, . . . , µN ) is an
(N − 1)-dimensional multi-index denoting which orthogonal projectors are present in
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ε
(S)
µ . The projector-lattice ε

(S)
µ acts as a projector on each Vi (i 6= S) while applying

the identity operator to VS . For fixed S there are D/dS distinct projector-lattices,
corresponding to the different choices of the projector indices µi. For any D × D

matrix M and pair of projector-lattices ε
(S)
µ , ε

(S)
ν there exists a dS × dS matrix M

(S)
µν

such that

ε(S)
µ M ε(S)

ν =

S−1⊗

i=1

T (i)
µiνi ⊗M

(S)
µν ⊗

N⊗

i=S+1

T (i)
µiνi , (2.4)

where T
(i)
µiνi = µiν

†
i is a transition operator from νi to µi in Vi. The matrixM

(S)
µν defines

a linear map on VS . The ensemble of (D/dS)
2 matrices

{
M

(S)
µν

}
will be referred to as

a tensor product partition of M on Vs. The three possible tensor product partitions
of M are illustrated by the framed images in Figure 2.1.

2.2. The partition of matrix powers and functions. Since the matrix ele-
ments of Mk (k ∈ N

∗ = N\{0}) are generated from those of M through the rules of
matrix multiplication, the partition of a matrix power can be expressed in terms of
the partition of the original matrix. Here we present this relationship for the case of
a general partition of M; the case of a tensor product partition is identical. The proof
of these results is deferred to Appendix A. The partition of Mk is given in terms of the
partition of M by

(
Mk
)

ωα
=
∑

ηk,...,η2
Mωηk

· · ·Mη3η2
Mη2α, where α ≡ η1, ω ≡ ηk+1,

and each of the sums runs over the n values that index the vector spaces of the general
partition. It follows that the partition of a matrix function f(M) with power series
expansion f

(
M
)
=
∑∞

k=0 fk M
k is

f
(
M
)

ωα
=

∞∑

k=0

fk
∑

ηk,...,η2

Mωηk
· · ·Mη3η2

Mη2α. (2.5)

This equation provides a method of computing individual submatrices of f
(
M
)
with-

out evaluating the full result. In the next section, we map the infinite sum of Eq. (2.5)
into a sum over the contributions of walks on a weighted graph, thus allowing exact
resummations of families of terms of Eq. (2.5) by applying results from graph theory.

2.3. The graph of a matrix partition. Given an arbitrary partition of a
matrix M, we construct a weighted directed graph G that encodes the structure of
this partition. Terms that contribute to the matrix power Mk are then in one-to-one
correspondence with walks of length k on G. The infinite sum over walks on G involved
in the evaluation of f(M) is then reduced into a sum over paths on G.

Definition 2.3 (Graph of a matrix partition). Let {Mµν} be the partition of
M formed by a particular set of n projector-lattices {εµ}. Then the graph of this
matrix partition is defined to be the weighted directed graph G = (V , E ,w), where
V = {vµ} is a set of m ≤ n vertices with the same labels as the projector-lattices,
E = {(νµ) : Mµν 6= 0} is a set of directed edges among these vertices, and w is an
edge-weight function that assigns the submatrix Mµ to the loop (µµ) and Mµν to the
link (νµ). From now on, G\{α, β, . . .} denotes the graph obtained by deleting vertices
α, β, . . . from G; and G0 represents the graph obtained by deleting all self-loops from
G.

Remark 2.3 (Graph minors). The various graphs that correspond to the different
ways of partitioning a matrix M into an ensemble of submatrices are minors of the
graph obtained by partitioning M into its usual matrix elements. Note, this implies
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(a) (b)

Fig. 2.2: (a) The graph of the general partition of the 4× 4 matrix in Eq. (2.6) onto
the vector spaces V1, V2, V3 defined in the text. Each edge in the graph is labelled by
its weight. (b) Two walks of length 4 from vertex 2 to vertex 1 in thick red (left) and

blue (right) lines. Their contributions cred = M13M31M12M2 and cblue = M1M12 (M2)
2

form two of the eight terms that sum up to (M4)12.

that the number of minors obtained by merging vertices1 on a graph with D vertices
is at most BD, with this bound being reached by the complete graph.

Example 2.2 (Graph of a matrix partition). Consider decomposing the 4 × 4
matrix

M =







m11 m12 m13 m14

m21 m22 m23 m24

0 0 m33 m34

m41 m42 0 0







, (2.6)

onto vector spaces V1 = span
(
v1, v2), V2 = span

(
v3), V3 = span

(
v4) with v1 =

(1, 0, 0, 0)T, v2 = (0, 1, 0, 0)T, etc. The corresponding partition of M is

M1 =

(
m11 m12

m21 m22

)

, M12 =

(
m13

m23

)

, M13 =

(
m14

m24

)

(2.7a)

M2 =
(
m33

)
, M23 =

(
m34

)
, M31 =

(
m41 m42

)
, (2.7b)

and M21 = M32 = M3 = 0. Figure 2.2 illustrates G, together with two walks of length
4 from vertex 2 to vertex 1 that contribute to

(
M4
)

12
.

Definition 2.4 (Walks, paths and bare cycles). Consider the graph G of a ma-
trix partition. Then:
Walk.A walk is a vertex-edge sequence, written left-to-right; e.g. (α) (αη2) (η2) · · · (ηℓω) (ω).
A walk that starts and finishes on the same vertex will be termed a closed walk. The
set of all walks from α to ω on G will be denoted by WG;αω, and is generally infinite.
Path. A path is a walk whose vertices are all distinct. The set of all paths from α to
ω on G will be denoted by PG;αω . If the graph G is finite then PG;αω is finite.
Bare cycle. A bare cycle is a closed walk that does not revisit any internal vertices,
i.e. essentially a closed path. The set of all bare cycles off a vertex α on G, denoted
by CG;α is finite when G is finite.

The graph G provides a useful representation of a matrix partition: each vertex
represents a vector space in the partition, while each edge represents a linear mapping
between vector spaces. The graph G is thus a quiver and the ensemble of vector

1We allow vertex merging regardless of whether vertices share an edge or not.
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spaces {Vµ} together with the ensemble of linear maps {ϕµν} is a representation of
this quiver. Further, the pattern of edges in G encodes the structure of M: each
loop (µµ) represents a non-zero static, while each link (νµ) represents a non-zero
flip. The matrix M can therefore be said to be a G-structured matrix. Every walk
on G, e.g. w = (η1)(η1η2) · · · (ηk−1ηk)(ηk), is now in one-to-one correspondence with
a product c(w) = Mηk+1ηk

· · ·Mη3η2
Mη2η1

of submatrices. This matrix product is
termed the contribution of the walk w and, being a product of matrices, is written
right-to-left. This correspondence allows a matrix power to be expressed as a sum
over contributions of walks on G. Equation (2.5) becomes

f
(
M
)

ωα
=

∞∑

k=0

fk
∑

WG;αω;k

c(w), (2.8)

where WG;αω;k is the set of all walks of length k from α to ω on G.
2.4. The path-sum. We now state a universal graph theoretic result on the

structure of the walks on any graph, which we obtain in [13]. This result reduces a
sum of walk contributions, such as the one of Eq. (2.8), into a sum of weighted paths
and bare cycles.

Theorem 2.1 (Path-sum). The sum of the contributions of all the walks from

α to ω on a graph G is given by the path-sum

∑

w∈WG;αω

c(w) =
∑

PG;αω

c(ω)′G\{α,...,νℓ} cωνℓ · · · c(ν2)′G\{α} cν2α c(α)′G , (2.9a)

where cµν is the weight associated to the edge (νµ) and c(α)′G is given by the sum over

the bare cycles

c(α)′G =

[

I−
∑

CG;α

cαµm
c(µm)′G\{α,...,µm−1} · · · cµ3µ2

c(µ2)
′
G\{α} cµ2α

]−1

, (2.9b)

with I the identity. The quantity c(α)′G can be seen as an effective vertex weight
resulting from the dressing of vertex α by all the closed walks off α in G. Remark
that if G is a finite graph, there is only a finite number of paths and bare cycles
and Equations (2.9a) and (2.9b) present finitely many terms. Note that by analytic
continuation, Theorem 2.1 holds regardless of the norm of the walk contributions [13].

3. Path-Sum Expressions for CommonMatrix Functions. In §2 we showed
that projector-lattices can be used to evaluate the partition of a matrix function f

(
M
)
,

and further, that the resulting expression can be interpreted as a sum over walks on
a directed graph G (Eq. (2.8)). This mapping enables results from graph theory to
be applied to the evaluation of matrix power series. In this section we exploit this
connection by using Theorem 2.1 to resum, in closed form, certain families of terms
in the power series for the partition of some common matrix functions. For each
function we resum all terms in the power series that correspond to closed walks on G,
and thereby obtain a closed-form expression for the submatrices f(M)ωα. Since this
expression takes the form of a finite sum over paths on G, we refer to it as a path-sum
result. We present path-sum results for a matrix raised to a general complex power,
the matrix inverse, matrix exponential, and matrix logarithm. The results are proved
in Appendix A, and examples illustrating their use are provided in §4.



The Method of Path-Sums 7

3.1. A matrix raised to a complex power.

Theorem 3.1 (Path-sum result for a matrix raised to a complex power).
Let M ∈ CD×D be a non-nilpotent matrix, {Mµν} be an arbitrary partition of M and

q ∈ C. Then the partition of Mq is given by

(Mq)ωα = −Z−1







∑

PG0;αω

FG\{α,...,νℓ}[ω]Mωνℓ · · · FG\{α}[ν2]Mν2α FG [α]






[n]

∣
∣
∣
∣
∣
n=−q−1

, (3.1a)

where G is the graph of {(M− I)µν}, ℓ is the length of the path, and

FG [α] =



Iz−1 −Mα −
∑

CG0;α

Mαµm
FG\{α,...,µm−1}[µm] · · ·FG\{α}[µ2]Mµ2α





−1

, (3.1b)

with m the length of the bare cycle.

Here Z−1 {g(z)} [n] denotes the inverse unilateral Z-transform of g(z). The quantity
FG [α] is a matrix continued fraction which terminates at a finite depth if G is finite.
It is an effective weight associated to vertex α resulting from the dressing of α by all
the closed walks off α on G. If α has no neighbours in G then FG [α] = [Iz−1 −Mα]

−1

counts the contributions of all loops on α.

3.2. The matrix inverse.

Theorem 3.2 (Path-sum result for the matrix inverse). Let M ∈ CD×D be

an invertible matrix, and {Mµν} be an arbitrary partition of M. Then as long as all

of the required inverses exist, the partition of M−1 is given by the path-sum

(
M

−1
)

ωα
=
∑

PG0;αω

(−1)ℓ FG\{α,...,νℓ}[ω]Mωνℓ · · ·FG\{α}[ν2]Mν2α FG [α], (3.2a)

where G is the graph of {(M− I)µν}, ℓ is the length of the path, and

FG [α] =



Mα −
∑

CG0;α

(−1)mMαµm
FG\{α,...,µm−1}[µm] · · ·FG\{α}[µ2]Mµ2α





−1

, (3.2b)

with m the length of the bare cycle.

The quantity FG [α] is a matrix continued fraction which terminates at a finite depth if
G is finite. It is an effective weight associated to vertex α resulting from the dressing
of α by all the closed walks off α on G. If α has no neighbours in G then FG [α] = M−1

α

counts the contributions of all loops on α.
Remark 3.1 (Known inversion formulae). Two known matrix inversion results can

be straightforwardly recovered as special cases of Theorem 3.2. Firstly, by considering
the complete directed graph on two vertices, we obtain the well-known block inversion
formula

(
A B

C D

)−1

=

( (
A− BD−1C

)−1 −A−1B
(
D− CA−1B

)−1

−D−1C
(
A− BD−1C

)−1 (
D− CA−1B

)−1

)

. (3.3)

Secondly, by applying Theorem 3.2 to the linear graph on N ≤ D vertices (denoted
here LN ), we obtain known continued fraction formulae for the inverse of a D × D
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block tridiagonal matrix [11, 10, 9]. This follows from the observation that a LN -
structured matrix is, up to a permutation of its rows and columns, a block tridiagonal
matrix. We provide a general formula for the exponential and inverse of arbitrary
LN -structured matrices in §4.2.

Remark 3.2 (Path-sum results via the Cauchy integral formula). A path-sum
expression can be derived for any matrix function upon using Theorem 3.2 together
with the Cauchy integral formula

f(M) =
1

2πi

∮

Γ

f(z) (zI−M)−1 dz, (3.4)

where i2 = −1, f is an holomorphic function on an open subset U of C and Γ is a
closed contour completely contained in U that encloses the eigenvalues ofM. However,
for certain matrix functions (including all four we consider in this section) a path-
sum expression can be derived independently of the Cauchy integral formula by using
Theorem 2.1 directly on the power series for the function. This method is the one
we use to prove the results of this section (see Appendix A) and can be extended to
matrices over division rings, as will be exposed elsewhere.

3.3. The matrix exponential.

Theorem 3.3 (Path-sum result for the matrix exponential). Let M ∈
CD×D and {Mµν} be an arbitrary partition of M, with G the corresponding graph.

Then for τ ∈ C the partition of exp(τM) is given by the path-sum

exp(τM)ωα = L
−1







∑

PG0;αω

FG\{α,...,νℓ}[ω]Mωνℓ · · ·FG\{α}[ν2]Mν2α FG [α]






(t)

∣
∣
∣
∣
∣
t=τ

, (3.5a)

where ℓ is the length of the path and

FG [α] =



sI−Mα −
∑

CG0;α

Mαµm
FG\{α,...,µm−1}[µm] · · ·FG\{α}[µ2]Mµ2α





−1

, (3.5b)

with m the length of the bare cycle.

Here s is the Laplace variable conjugate to t, and L
−1{g(s)}(t) denotes the inverse

Laplace transform of g(s). The quantity FG [α] is a matrix continued fraction which
terminates at a finite depth if G is finite. It is an effective weight associated to vertex
α resulting from the dressing of α by all the closed walks off α on G. If α has no
neighbours in G then FG [α] = [sI−Mα]

−1 counts the contributions of all loops off α.

Lemma 3.4 (Walk-sum result for the matrix exponential). Let M ∈ CD×D and

{Mµν} be an arbitrary partition of M, with G the corresponding graph. Then for τ ∈ C

the partition of exp(τM) is given by the walk-sum

exp(τM)ωα =
∑

WG0;αω

∫ τ

0

dtm · · ·
∫ t2

0

dt1 exp
[
(t− tm)Mω

]
Mωµm

· · ·

· · · exp
[
(t2 − t1)Mµ2

]
Mµ2α exp

[
t1Mα

]
. (3.6)

This result corresponds to dressing the vertices only by loops, instead of by all closed
walks. An infinite sum over all walks from α to ω on the loopless graph G0 therefore
remains to be carried out.
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3.4. The matrix logarithm.

Theorem 3.5 (Path-sum result for the principal logarithm). Let M ∈
CD×D be a matrix with no eigenvalues on the negative real axis, and {Mµν} be a

partition of M. Then as long as all of the required inverses exist, the partition of the

principal matrix logarithm of M is given by the path-sum

(
logM

)

ωα
= (3.7a)







∫ 1

0

dx x−1 (I− FG [α]) , ω = α,

∑

PG0;αω

∫ 1

0

dx (−x)ℓ−1
FG\{α,...,νℓ}[ω]Mωνℓ · · ·FG\{α}[ν2]Mν2α FG [α], ω 6= α,

where G is the graph of {(I−M)µν}, ℓ the length of the path and

FG [α] = (3.7b)


I− x(I −Mα)−
∑

CG0;α

(−x)m Mαµm
FG\{α,...,µm−1}[µm] · · · Mµ3µ2

FG\{α}[µ2]Mµ2α





−1

,

with m the length of the bare cycle.

The quantity FG [α] is a matrix continued fraction which terminates at a finite depth if
G is finite. It is an effective weight associated to vertex α resulting from the dressing
of α by all the closed walks off α on G. If α has no neighbours in G then FG [α] =
[I− x(I−Mα)]

−1 counts the contributions of all loops off α.
Remark 3.3 (Richter relation). The path-sum expression of Theorem 3.5 is es-

sentially the well-known integral relation for the matrix logarithm [12, 14, 7]

logM =

∫ 1

0

(M− I)
[
x(M − I) + I

]−1
dx, (3.8)

with a path-sum expression of the integrand. However, the proof of Theorem 3.5 that
we present in A.5 does not make explicit use of Eq. (3.8).

4. Examples. In this section we present some examples of the application of
the path-sum method. In the first section we provide simple numerical examples for
a matrix raised to a complex power, the matrix inverse, exponential, and logarithm.
In the second part, we provide exact results for the matrix exponential and matrix
inverse of block tridiagonal matrices and evaluate the computational cost of path-sum
on arbitrary tree-structured matrices.

4.1. Short examples. Example 4.1 (Singular defective matrix raised to an
arbitrary complex power). To illustrate the result of Theorem 3.1, we consider raising
the matrix

M =









−4 0 −1 0 −1
−2 −2 6 −2 4
6 2 1 −2 3
0 0 −1 −4 −1
−6 −2 −5 2 −7









, (4.1)
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to an arbitrary complex power q. Note that M is both singular and defective; i.e. non-
diagonalizable. We partition M onto vector space V1 = span

(
v1, v2

)
and V2 =

span
(
v3, v4, v5

)
with v1 = (1, 0, 0, 0)T etc., such that V1⊕V2 = V . The corresponding

graph G is the complete linear graph on two vertices, denoted K2. Following Theorem
3.1, the elements of Mq are given by,

(Mq)ii = −Z−1
{
FK2

[i]
}
[n]

∣
∣
∣
∣
∣
n=−q−1

and (Mq)ij = −Z−1
{
FK2\j [i]M12FK2

[j]
}
[n]

∣
∣
∣
∣
∣
n=−q−1

, (4.2)

where (i, j) = 1, 2, i 6= j, FK2
[i] =

[
Iz−1 −Mi −MijFK2\i[j]Mji

]−1
and FK2\i[j] =

[
Iz−1 −Mj

]−1
. We thus find in the Z-domain

M̃(z) = z(4z + 1)−2× (4.3)









4z + 1 0 −z 0 −z

2z(4z − 1) 8z2 + 6z + 1 88z3+50z2+6z
4z+1 −2z(4z + 1) 56z3+34z2+4z

4z+1

2z(4z + 3) 2z(4z + 1) 88z3+54z2+13z+1
4z+1 −2z(4z + 1) 56z3+22z2+3z

4z+1

0 0 −z 4z + 1 −z

−2z(4z + 3) −2z(4z + 1) − 88z3+38z2+5z
4z+1 2z(4z + 1) −56z3−6z2+5z+1

4z+1










.

and finally Mq = −Z−1{M̃(z)}[n]|n=−q−1, which is

M
q = i (i/2)3−2q









8 0 2q 0 2q
8q − 4 4 q(q − 2)− 11 4 q(q − 2)− 7
−8q − 4 −4 −q(q − 2)− 3 4 −q(q − 2)− 7

0 0 2q 8 2q
8q + 4 4 q(q − 2) + 11 −4 q(q − 2) + 15









. (4.4)

This expression is valid for any q ∈ C and fulfills Mq+q′ = MqMq′ , ∀(q, q′) ∈ C2.
Setting q = 1/2, we obtain

M
1/2 = − i

16









32 0 4 0 4
0 16 −47 16 −31

−32 −16 −9 16 −25
0 0 4 32 4
32 16 41 −16 57









, (4.5)

with i2 = −1, for which it is easily verified that (M1/2)2 = M. Any pth root of M,
with p ∈ N∗, can also be calculated and verified. Further, we note that although M

is not invertible, setting q = −1 in Eq. (4.4) yields the Drazin inverse MD of M [4],
while setting q = 0 yields a left and right identity M

♭ on M

M
D =

1

16









−4 0 1 0 1
6 −2 4 −2 2
−2 2 3 −2 5
0 0 1 −4 1
2 −2 −7 2 −9









, M
♭ =

1

8









8 0 0 0 0
−4 4 −11 4 −7
−4 −4 −3 4 −7
0 0 0 8 0
4 4 11 −4 15









.

(4.6)
The above Drazin inverse satisfies indeed MMDM = M, MDMMD = MD and MDMq =
MqMD = Mq−1. We also have M: M♭Mq = MqM♭ = Mq for any q ∈ C and finally
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MDM = MMD = M♭ as expected of the Drazin inverse. These properties imply that
M♭ is the projector onto im(M), the image of M.

In addition to the examples with q = −1, 0, and 1/p with p ∈ N∗ presented
here, the formula of Eq. (4.4) also holds for any complex value of q and is well be-
haved. For example, we verify analytically using Theorem 3.1 to calculate (M±i)q

that (M±i)∓i = M. Finally, it is noteworthy that numerical methods implemented by
standard softwares such as MATLAB and Mathematica suffer from serious stability
problems for the matrix considered here and return incorrect results, as can be seen
for the case of q = 1/2.

Example 4.2 (Matrix with a non-solvable characteristic polynomial raised to an
arbitrary complex power). Consider raising the matrix

M =









−1 0 0 0 −1/2
0 2 5/2 2 −1
−4 0 0 0 −1
0 −1 0 −2 7/4
0 1 2 0 1









, (4.7)

to an arbitrary complex power. The characteristic polynomial ofM is χ(x) = x5−x−1,
whose Galois group is the symmetric group S5 and is thus non-solvable. Proceeding
similarly to the example 4.1 we obtain in the Z-domain

M̃(z) =
z

z5 + z4 − 1









−z(z + 1)(z(z + 2)− 1)− 1 z3 + z2

2
2z2

(
−4z2 + z + 5

)
(z − 1)(2z + 1)

(
2z2 + z + 1

)

2z(z((z − 2)z − 2) + 2) −2z4 + z3 + z2
1
2z

3(15z + 8) − 1
4z(z(z(8z + 3) + 7)− 4)

2z2(z(2z + 5) + 4) −z(z + 1)(2z + 1)

· · ·

(4.8)

· · ·

1
4z

2(z(2z + 5) + 4) z3 1
2

(
z − 2z3

)

1
2z(z + 1)2(4z − 5) 2(z − 1)z

(
2z2 + z + 1

)
−5z4 + z3 + 2z2 + z

1
2

(
z2
(
−z2 + z + 4

)
− 2
)

−2(z − 1)z3 (z − 1)z
(
2z2 − 1

)

− 1
8z

2(z + 1)(15z + 8) 1
2

(
z
(
z
(
−3z2 + z − 4

)
+ 4
)
− 2
)

1
4z
(
10z3 + 3z − 7

)

− 1
2z(z + 1)(z(2z + 5) + 4) −2z2(z + 1) (z + 1)

(
2z2 − 1

)









,

and Mq = −Z−1{M̃(z)}[n]|n=−q−1. Performing the inverse-Z transform is straight-

forward and yields Mq =
∑5

k=1 Rk(q), with Rk(q) a matrix given by

Rk(q) =
rqk

P (rk)









r4k − r3k + r2k + 3rk + 1 − 1
2rk(rk + 2)

−2(rk + 1)(5rk − 4) (rk − 1)(rk + 2)
(
r2k + rk + 2

)

−2
(
2r3k − 2r2k − 2rk + 1

)
(1− rk)(rk + 2)

1
2 (−8rk − 15) 1

4

(
−4r3k + 7r2k + 3rk + 8

)

−2
(
4r2k + 5rk + 2

)
rk(rk + 1)(rk + 2)

· · · (4.9)

· · ·

1
4

(
−4r2k − 5rk − 2

)
−rk − 1

2rk
(
r2k − 2

)

1
2 (rk + 1)2(5rk − 4) −2rk

(
r2k + 1

) (
2r2k − 3

)
−r3k − 2r2k − rk + 5

1
2 (rk + 1)

(
2r3k − 2r2k − 2rk + 1

)
−2(rk − 1) (1− rk)

(
r2k − 2

)

1
8 (rk + 1)(8rk + 15) 1

2

(
2r4k − 4r3k + 4r2k − rk + 3

)
1
4

(
7r3k − 3r2k − 10

)

1
2 (rk + 1)

(
4r2k + 5rk + 2

)
2rk(rk + 1) rk(rk + 1)

(
r2k − 2

)









,

where rk is the kth root of χ(x) and P (rk) =
∏5

i=1,i6=k(rk − ri). Using the analytical
properties of the roots of χ(x), we verify that the above formula yields the correct
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integer-powers, inverse and pth-roots (p ∈ N∗) of M.
Example 4.3 (Matrix inverse). To illustrate the application of Theorem 3.2 we

compute the inverse of the matrix of Eq.(4.7). We partition M onto vector spaces
V1 = span

(
v1
)
, V2 = span

(
v3, v5

)
and V3 = span

(
v2, v4

)
, giving

M1 =
(
−1
)
, M2 =

(
0 −1
2 1

)

, M3 =

(
2 2
−1 −2

)

, (4.10)

M12 =
(
0 −1/2

)
, M21 =

(
−4
0

)

, M23 =

(
0 0
1 0

)

, M32 =

(
5/2 −1
0 7/4

)

, (4.11)

and M13 = M31 = 0. The corresponding graph is thus the linear graph on three
vertices, denoted by L3. By Theorem 3.2, the diagonal elements of M−1 are given by

(
M

−1
)

11
= FL3

[1],
(
M

−1
)

22
= FL3

[2],
(
M

−1
)

33
= FL3

[3], (4.12a)

while the off-diagonal elements are

(
M

−1
)

21
= −FL3\{1}[2]M21 FL3

[1],
(
M

−1
)

12
= −FL3\{2}[1]M12 FL3

[2], (4.12b)
(
M

−1
)

32
= −FL3\{2}[3]M32 FL3

[2],
(
M

−1
)

23
= −FL3\{3}[2]M23 FL3

[3], (4.12c)
(
M

−1
)

31
= FL3\{1,2}[3]M32 FL3\{1}[2]M21 FL3

[1], (4.12d)
(
M

−1
)

13
= FL3\{3,2}[1]M12 FL3\{3}[2]M23 FL3

[3]. (4.12e)

The matrices FG [α] are evaluated according to the recursive definition in Eq. (3.2b);
for example

FL3
[1] =

[
M1 −M12FL3\{1}[2]M21

]−1
=
[
M1 −M12[M2 −M23FL3\{1,2}[3]M32]

−1
M21

]−1
,

=
[
M1−M12[M2−M23M

−1
3 M32]

−1
M21

]−1
. (4.13)

Evaluating the flips and statics and reassembling them into matrix form gives

M
−1 =

1

8









8 0 −4 0 0
64 −32 −16 −32 40
−16 16 4 16 −16
−60 16 15 12 −20
−32 0 8 0 0









, (4.14)

which is readily verified to be the inverse of M and is identical to the evaluation of
M

−1 as found in example 4.2 using Theorem 3.1.
Example 4.4 (Matrix exponential). As an example of the application of Theorem

3.3 and Lemma 3.4 we consider the matrix exponential of

M =







1− i 0 −i 0
0 2− i −1/3 0
i 0 −i 0
3 −7/2 1 −1







. (4.15)

We use a tensor product partition

M1 =

(
1− i 0
0 2− i

)

, M2 =

(
−i 0
1 −1

)

, M12 =

(
−i 0

−1/3 0

)

, M21 =

(
i 0
3 −7/2

)

.
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Since every element of this matrix partition is non-zero, the corresponding graph is
K2. Let us focus on the element exp(M)11, which forms the top-left corner of the full
matrix exp(M). By Theorem 3.3 the exact result for exp(tM)11 is given by

L
[(
etM
)

11

]
= FK2

[1] =
[
sI−M1 −M12[sI−M2]

−1
M21

]−1
, (4.16a)

=







s+ i

s2 − (1 − 2i)s− (2 + i)
0

−i

3s3 − (9 − 9i)s2 − (6 + 18i)s+ 15

1

s− (2− i)







. (4.16b)

The inverse Laplace transform can be carried out analytically; setting t = 1 in the
result gives

(
eM
)

11
=

e(1−2i)/2

15




3
(

5 cosh
√
5
2 +

√
5 sinh

√
5
2

)

0

−i

(

5e3/2 − 5 cosh
√
5
2 − 3

√
5 sinh

√
5
2

)

15 e3/2



 , (4.17a)

≈
(

2.05220− 3.19611 i 0
−0.442190− 0.283927 i 3.99232− 6.21768 i

)

. (4.17b)

Alternatively, we can evaluate this element by using a walk-sum, as presented in
Lemma 3.4:

(
eM
)

11
= eM1 +

∫ 1

0

∫ t2

0

e(1−t2)M1 M12 e
(t2−t1)M2 M21 e

t1M1 dt1 dt2 (4.18)

+

∫ 1

0

· · ·
∫ t2

0

e(1−t4)M1M12 e
(t4−t3)M2 M21 e

(t3−t2)M1 M12 e
(t2−t1)M2 M21 e

t1M1 dt1 · · ·dt4 + · · ·

Evaluating these terms yields

(
eM
)

11
≃
(

2.05083− 3.19398 i 0
−0.441354− 0.283390 i 3.99232− 6.21768 i

)

. (4.19)

Although this result has been obtained by evaluating only the first three terms of
an infinite series, it is already an excellent approximation to the exact answer: the
maximum absolute elementwise error is ∼ 2.5× 10−3. This rapid convergence results
from the exact resummation of the terms in the original Taylor series that correspond
to walks on the graph K2 that contain loops.

Example 4.5 (Matrix logarithm of a defective matrix). We compute the principal
logarithm of the matrix

M =









4 1 1 2 −1
−2 7 1 0 −1
0 −1 5 2 1
−2 0 0 8 0
−2 −4 −4 6 6









. (4.20)

This matrix has only one eigenvector associated to the fifth-fold degenerate eigenvalue
6. Note also that ‖M‖op ≃ 12, with ‖.‖op the operator norm. We choose to partition
M onto vector spaces V1 = span

(
v1, v3, v4

)
and V2 = span

(
v2, v5

)
. The corresponding

graph G is the complete directed graph on two vertices K2. Following Theorem 3.5
we have

FK2
[i] =

[
I−x(I−Mii)−x2

MijFK2\i[j]Mji

]−1
, and FK2\i[j] =

[
I−x(I−Mjj)

]−1
, (4.21)
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where (i, j) = 1, 2, i 6= j and I is the identity matrix of appropriate dimension. Then
the matrix elements of the principal logarithm of M are given by

(
logM

)

ii
=

∫ 1

0

x−1(I− FK2
[i]) dx,

(
logM

)

ji
= −

∫ 1

0

FK2\i[j]MjiFK2
[i] dx. (4.22)

Reassembling them in a matrix, we obtain

logM = I log 6 +
1

324









−108 41 41 130 −63
−126 42 42 41 −65
18 −37 −37 71 56

−108 5 5 112 −9
−108 −211 −211 328 −9









. (4.23)

Example 4.6 (Matrix exponential of a quaternionic matrix). The graph-theoretic
nature of Theorem 2.1 allows the method to be extended to matrices over non-
commutative division rings D. In particular, we will show that Theorems 3.1-3.5
hold for quaternionic matrices M ∈ HD×D as well. For example, consider calculating
exp(πM) with M the quaternionic matrix

M =

(
i j
k 1

)

, (4.24)

where i, j, and k are the quaternions, which satisfy i2 = j2 = k2 = i j k = −1. Following
Theorem 3.3, we find for example the matrix element M11 to be in the Laplace domain

L
[
exp(tM)11

]
= (s− i− j(s− 1)−1k)−1. (4.25)

Calculating the other matrix elements, inverting the Laplace transforms and setting
t = π, we obtain

exp(πM) = −1 + eπ

2

(
i + tanh

(
π
2

)
j− k

k− j i + tanh
(
π
2

)

)

. (4.26)

4.2. Exact matrix exponential of block tridiagonal matrices. Let {Mk′,k}
be a partition of a matrix M such that Mk′ 6=k±1,k = 0. If this partition consists of
N2 pieces, the corresponding graph is the finite linear graph LN , and M can therefore
be said to be an LN -structured matrix. As mentioned in remarks 2.1 and 3.1, such a
matrix is essentially a block tridiagonal matrix since there exists a permutation matrix
P such that PMP

T is block tridiagonal. For these matrices, the path-sum expression
for the matrix exponential and inverse can be written in a particularly compact form.
For k = 1, . . . , N , we set M̃k = sI−Mk, and define the finite continued fractions

X̃k =
[

M̃k −Mk,k+1X̃k+1Mk+1,k

]−1

, Ỹk =
[

M̃k −Mk,k−1Ỹk−1Mk−1,k

]−1

, (4.27)

with X̃N ≡ M̃
−1
N and Ỹ1 ≡ M̃

−1
1 . Note that the inversion height of X̃k (Ỹk) is N+1−k

(k). Let Ũ = L[exp(tM)] be the Laplace transform of the matrix exponential of M;
then the partition of Ũ is given by

Ũkk =
[

X̃
−1
k + Ỹ

−1
k − M̃k

]−1

, (4.28a)

Ũk,k′<k =

k∏

j=k′+1

(
X̃jMj,j−1

)
Ũk′k′ , Ũk,k′>k =

k∏

j=k′−1

(
ỸjMj,j+1

)
Ũk′k′ , (4.28b)
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where
∏n

j=1 aj = anan−1 · · · a2a1 is a left product. Provided the required inverse
Laplace-transforms are analytically available, Eq.(4.27-4.28b) yields the exact matrix
exponential ofM. Similar formulae for the inverse of arbitrary LN -structured matrices
are obtained upon replacing sI by I in each of the M̃k.

4.3. Computational cost of path-sum on arbitrary tree-structured ma-

trices. The number of paths in any finite graph is finite. Thus, as soon as a matrix M

has a finite size, the path-sum expressions of Theorems 3.1-3.5 evaluate any function
f(M) exactly in a finite number ρ of operations. In this final example we calculate ρ
in the case of matrices M whose partition is an arbitrary tree, denoted by TN .

First, we consider the computational cost of evaluating a static f(M)αα. Since a
tree contains no bare cycles of length greater than 2, the vertex α requires dressing only
by loops and edge cycles on TN . Consequently, the sequence of operations involved
in dressing α fall into two categories: nesting (adding an edge cycle which dresses the
internal vertex of a previous edge cycle) or branching (including an extra edge cycle at
constant dressing depth). These two operations have the same computational cost, as
each requires one inversion, two multiplications and one subtraction of d×d matrices.
Due to this symmetry between branching and nesting, the computational costs of
dressing a vertex on the linear graph on N vertices LN (which involves nesting only)
and the star graph on N vertices SN (which involves branching only) are identical:
each requires N inversions, 2(N−1) multiplications and N−1 additions to fully dress
any vertex. Since any tree can be decomposed as an ensemble of linear graphs (the
branches) and star graphs (the nodes), the computational cost of evaluating f(M)αα
when M is tree-structured depends only on the number of vertices of the tree: the cost
is independent of the detailed structure of TN . The number of floating point operations
required to evaluate the diagonal element f(M)αα, denoted by ρTN ;α, scales as 3Nd3,
while the computational density (the number of operations per usual matrix-element
evaluated) is ∼ 3Nd.

We now consider the cost of calculating an off-diagonal element f(M)ωα. Let
(αν2 · · · νℓω) be the unique path leading from α to ω on TN , and ρTN ;α be the cost of
fully dressing the vertex α on TN . Then the total cost of evaluating f(M)ωα is

2ℓd3 +

ℓ+1∑

i=1

ρTN\{α,...,νi−1};νi , (4.29)

where the first term accounts for the cost of evaluating the matrix multiplications
along the path. Note that this cost depends on the structure of TN , since the number
of vertices in each tree in the sequence TN\{α, . . . , νi−1} depends on whether any of
the previously-visited vertices are nodes of TN . Nevertheless, we can place an upper
bound on the cost by considering the case where the tree TN is the linear graph LN .
Then LN\{α, . . . , νi−1} contains N + 1 − i vertices, and the total cost of evaluating
the contribution of a path of length ℓ is ∼ ℓd3(3N + 2). Finally, we note that in the
course of evaluating the contribution of a certain path p, we simultaneously evaluate
the contributions of all subpaths of p. The operations counted by Eq. (4.29) therefore
generate (ℓ+1)d2 elements of the partition of f

(
M
)
. This improves the computational

density of the path-sum method for tree-structured matrices to ∼ 3Nd. Therefore,
we conclude that evaluating any element of a partition of a matrix function of a tree-
structured matrix using path-sums is efficient: i.e. the cost is linear in the number of
vertices in the tree.

Example 4.7 (Vertex dressing on a tree). To illustrate the above discussion,
consider the cost of calculating the inverse of a matrix M ∈ C5d×5d, d ∈ N∗ whose
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5

4

3
2

1

Fig. 4.1: A tree on N = 5 vertices. All edges are bidirectional.

tensor-product partition into d×d blocks yields the tree on N = 5 vertices represented
on Fig. 4.1. Let Mµν be the submatrix associated to the edge (νµ) on the graph.
Now consider calculating (M−1)3. According to Theorem 3.2, it is

(M−1)3 =
[

M3 −
branching

︷ ︸︸ ︷

M32[M2 −M21M
−1
1 M12

︸ ︷︷ ︸

nesting

]−1
M23 −

branching
︷ ︸︸ ︷

M34M
−1
4 M43 −

branching
︷ ︸︸ ︷

M35M
−1
5 M53

]−1

.

This comprises three branching operations corresponding to the three branches at-
tached to vertex (3) and one nesting corresponding to the dressing of vertex (2) by
cycles through (1). In total (M−1)3 thus requires 5 inversions, 8 multiplications and
3 additions of d× d matrices, that is (5 + 8)d3 +3d2 operations which scales as 3d3N
as expected. Now consider calculating (M−1)1. Following Theorem 3.2 we find

(M−1)1 =
[

M1 −M12

[
M2 −M23[M3 −M34M

−1
4 M43 −M35M

−1
5 M53]

−1
M32

]−1
M21

]−1

.

This comprises two successive nesting operations corresponding to the dressing of
vertex (1) by cycles through (2) and (2) by cycles through (3) and two branching
operations corresponding to remaining branches off (3). In total (M−1)1 thus requires
5 inversions, 8 multiplications and 3 additions of d×d matrices exactly like (M−1)3, as
expected. The computational cost of calculating any element of Mq, exp(M) or log(M)
is identical, except for the additional costs associated to the inverse Z-transform,
Laplace-transform and Richter integral, respectively.

5. Conclusion and Outlook. The method of path-sums is based on three main
concepts: firstly, the partitioning of a discrete matrix M into an ensemble of subma-
trices whose dimensionalities can be freely chosen; secondly, the mapping between
multiplication of M and walks on a graph G whose edge pattern encodes the structure
of M; and thirdly, the exact closed-form resummation of certain classes of walks on G
through the dressing of vertices by cycles. By combining these concepts, any partition
of a function of a finite matrix f

(
M
)
can be exactly evaluated in a finite number of

steps, provided the required inverse transforms are analytically available. The graph-
theoretic nature of Theorem 2.1 permits the extension of the method of path-sums to
functions of continuous operators as well as matrices with entries in non-commutative
division rings; as we will show elsewhere.

Using a directed graph to encode the structure of a matrix allows any structure
and symmetries that the matrix possesses to be easily recognized and exploited. We
thus expect the method of path-sums to have widespread applications in, for example,
the study of Markov chains and quantum many-body physics, where the relevant
matrix – the many-body Hamiltonian – is both sparse and highly structured. We
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have already successfully implemented the method to study the dynamics of Rydberg-
excited Mott insulators [6]. We also note that a generalization of the walk-sum result
for the matrix exponential to continuous matrices is already known, and leads to
Feynman path integrals, while the cycle dressing of a vertex yields the Dyson equation;
these results will be presented elsewhere. We expect that this approach to path
integrals will help understand their divergences.

Finally, the development and study of numerical implementations of the path-sum
method is a topic of key importance for future work. Indeed for most applications
requiring the computation of a function of a matrix, an inexact but accurate result
is sufficient, in particular if the matrix M itself is known only with a finite precision.
Additionally on highly connected graphs the number of paths and bare cycles can be
very large, so that an exact evaluation of the flips and statics of f

(
M
)
may have a

prohibitive computational cost. In these cases, it is desirable to truncate the exact
expressions given in Theorems 3.1-3.5, e.g. by dressing vertices to a depth smaller
than their maximum dressing depth or by neglecting certain paths. This may also be
motivated by considerations external to the method: in quantum mechanics, paths
and cycles on the graph of the Hamiltonian represent physical processes (similarly to
Feynman diagrams) some of which might be negligible. The accuracy of truncated
numerical approximations to the path-sum will thus be of paramount importance in
many applications. Recent research [1, 2, 3, 5, 8] has shown that the entries f

(
M
)

ij

of certain matrix functions decay exponentially with the length of the shortest path
between the vertices that correspond to entries Mii and Mjj . If these results can be
extended to the norm of the statics and flips of a general partition of f

(
M
)
, they could

be used to estimate the contribution of each path in a path-sum expression, thereby
giving some indication of how the truncation of a path-sum expression would affect
the accuracy of the result.

Acknowledgments. We thank M. Benzi for fruitful discussions.

Appendix. Proofs of Path-Sum Expressions for Common Matrix Func-

tions. In this appendix we prove the path-sum results presented earlier without proof.
We begin by proving the results of §2.2 relating the partitions of Mk and f(M) to the
partition of M. We then prove Theorems 3.1-3.5; i.e. the path-sum results for a matrix
raised to a complex power (§A.2), the matrix inverse (§A.3), the matrix exponential
(§A.4), and the matrix logarithm (§A.5).

A.1. Partitions of matrix powers and functions. Consider an element RωM
kRT

α

of a general partition of Mk. On inserting the identity in the form of the closure re-
lation over projector-lattices between each appearance of M in the product and using
εµ = RT

µRµ, we obtain

(
M

k
)

ωα
=
∑

ηk,...,η2

RωMR
T
ηk
Rηk

· · ·MR
T
η2
Rη2

MR
T
α =

∑

ηk,...,η2

Mωηk
· · ·Mη3η2

Mη2α, (A.1)

with α ≡ η1 and ω ≡ ηk+1. This expression describes matrix multiplication in terms of
the partition of M and provides an explicit description of which pieces of M contribute
to a given piece of Mk. It follows that the partition of a matrix function f(M) with
power series f

(
M
)
=
∑∞

k=0 fk M
k is given by

f
(
M
)

ωα
=

∞∑

k=0

fk
∑

ηk,...,η2

Mωηk
· · ·Mη3η2

Mη2α. (A.2)

This equation relates the partition of f
(
M
)
to that of M.
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A.2. A matrix raised to a complex power. Proof. We consider a matrix
M ∈ CD×D. To prove Theorem 3.1 we start from the power series

M
q =

∞∑

k=0

(
q

k

)

(M− I)k, (A.3)

where q ∈ C and
(
q
k

)
= qk/k! is a binomial coefficient, with qk the falling factorial.

Note that although the sum only converges when ‖M − I‖ < 1, with ‖.‖ a sub-
multiplicative norm, the result of Theorem 3.1 is valid for matrices of arbitrary norm
by analytic continuation. By applying the result of Eq. (2.5) to Eq. (A.3) we find that
an element of a partition of Mq is given by

(
M

q
)

ωα
=

∞∑

k=0

(
q

k

)
∑

WG;αω;k

M̄ωηk
· · · M̄η3η2

M̄η2α, (A.4)

where we have introduced the auxiliary matrix M̄ = M − I and G is the graph of the
partition of M̄. We shall now recast this expression so as to make the loops of the
walk (α)(αη2) · · · (ηkω)(ω) appear explicitly. To this end, we remark that when a loop
off a vertex µ occurs p ∈ N consecutive times in a walk, the contribution of the walk
is comprises a factor of (M̄µ)

p. Thus

(
M

q
)

ωα
=

∞∑

k=0

(
q

k

) k∑

m=0

∑

WG0;αω;m

∑

{pi}/k−m

(M̄ω)
pm+1Mωµm

· · · (M̄µ2
)p2Mµ2α(M̄α)

p1 . (A.5)

In this expression any two consecutive vertices µℓ and µℓ+1 are now distinct and the
sum

∑

WG0;αω;m
runs thus over the walks of the loopless graph G0. Each integer pi ∈ N,

called a loop number, represents the number of consecutive times a loop is undergone
off a certain vertex. The notation {pi}/k − m on the final sum therefore indicates
that the final sum runs over all possible configurations of the pi numbers, that is all
configurations of k−m loops on m+1 vertices, subject to the restriction that the loop
number pi on any loopless vertex is fixed to zero. This implies that

∑m+1
i=1 pi = k−m

and the pi are thus said to form a weak composition of k −m. We now remark that
for any such weak composition and q ∈ C, the following relation holds:

(
q

k

)

=
∑

km

km∑

km−1=0

· · ·
k2∑

k1=0

(−1)m
∏m+1

r=1 pr!
(−1)pm+1

(
(−q − 1)− km + pm+1

)pm+1 · · ·

· · · (−1)p2(k2 − k1 + p2)
p2 (−1)p1(k1 + p1)

p1 , (A.6)

where the first sum is an indefinite sum to be evaluated at km = −q − 1. From now
on we will denote this by

∑−q−1
km=0. Equation (A.6), which is independent of the value

of each individual pi, is proved by induction on m. Upon substituting this relation
into Eq. (A.3) and rearranging the order of the summations we obtain

(
M

q
)

ωα
=

∞∑

m=0

(−1)m
∑

WG0;αω;m

∞∑

{pi}=0

−q−1
∑

km=0

km∑

km−1=0

· · ·
k2∑

k1=0

(−M̄ω)
pm+1

(
(−q−1)−km+pm+1

)pm+1
Mωµm

· · ·

· · · (−M̄µ2
)p2(k2 − k1 + p2)

p2Mµ2α(M̄α)
p1(k1 + p1)

p1 , (A.7)

where the sum
∑∞

{pi}=0 =
∑∞

p1=0 · · ·
∑∞

pm+1=0 runs over all the loop numbers, subject
to the restriction that the loop number pi on any loopless vertex is fixed to zero. We
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now evaluate the contributions from the infinite loop sums in closed form by noting
that

∞∑

pi=0

(−M̄µ)
pi
(ki − ki−1 + pi)

pi

pi!
= (Mµ)

−(ki−ki−1)−1, (A.8)

where we have used the fact that ‖M̄µ‖ = ‖Mµ − I‖ ≤ ‖M − I‖ < 1. Introducing
Eq. (A.8) into Eq. (A.7) and setting k0 = 0 by definition yields the expression

(
M

q
)

ωα
=

∞∑

m=0

(−1)m
∑

WG0;αω;m

−q−1
∑

km=0

km∑

km−1=0

· · ·
k2∑

k1=0

(Mω)
−((−q−1)−km)−1

Mωµm
· · ·

· · · (Mµ2
)−(k2−k1)−1

Mµ2α(Mα)
−k1−1. (A.9)

This expression is an m-fold nested discrete convolution. In order to convert the
discrete convolution to a product, we take the unilateral Z-transform of the above
expression with respect to n ≡ −q − 1. We obtain

(
M

q
)

ωα
= −Z−1







∞∑

m=0

∑

WG0;αω;m

[
Iz−1 −Mω

]−1
Mωµm

· · ·

· · ·
[
Iz−1 −Mµ2

]−1
Mµ2α

[
Iz−1 −Mα

]−1

}

[n]
∣
∣
∣
n=−q−1

, (A.10)

where z ∈ C is the Z-domain variable. Now the content of the inverse Z-transform is
a sum of walk contributions. Indeed we can see ceffα =

[
Iz−1 −Mα

]−1
as an effective

weight associated to vertex α. This effective weight results from the dressing of α by
all the loops off α which is performed by Eq. (A.8). Then upon remarking that e.g.
Mµ2α = cµ2α is the weight associated to edge (αµ2) from α to µ2, Eq. (A.10) is

(
M

q
)

ωα
= −Z−1

{ ∑

WG0;αω

ceffω cωµm
· · · ceffµ2

cµ2α ceffα

}

[n]
∣
∣
∣
n=−q−1

. (A.11)

This is now in a form suitable to the use of Theorem 2.1. We obtain

(Mq)ωα = −Z−1







∑

PG0;αω

FG\{α,...,νℓ}[ω]Mωνℓ · · · FG\{α}[ν2]Mν2α FG [α]






[n]

∣
∣
∣
∣
∣
n=−q−1

,(A.12)

where G is the graph of {(M− I)µν}, ℓ is the length of the path, and

FG [α] =
[

I−
∑

CG;α

Mαµm
FG\{α,...,µm−1}[µm] · · ·FG\{α}[µ2]Mµ2α

]−1

, (A.13)

with m the length of the bare cycle. The quantity FG [α] can itself be seen as an
effective weight associated to vertex α resulting from the dressing of α by all the
closed walks off α in G. Since a loop is a bare cycle, the dressing of the vertices
by their loops is included in FG [α] as well. This is obvious if one considers a graph
G that is reduced to a unique vertex α presenting a loop. In that case Eq. (A.13)
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yields Fα[α] = [Iz−1 −Mα]
−1 ≡ ceffα . For convenience we can make the loop dressing

completely explicit in Eq. (A.13) by separating the loops from the other bare cycles

FG [α] =
[

Iz−1 −Mα −
∑

CG0;α

Mαµm
FG\{α,...,µm−1}[µm] · · ·FG\{α}[µ2]Mµ2α

]−1

, (A.14)

and note that now the sum runs over the bare cycles of the loopless graph G0. Together
with Eq. (A.12) the above Eq. (A.14) proves Theorem 3.1.

A.3. The matrix inverse. Proof. We consider an invertible matrixM ∈ CD×D.
To prove Theorem 3.2 we write the matrix inverse as M−1 =

∑∞
n=0 (I−M)

n
. Note

that the sum only converges for ‖I − M‖ < 1; nevertheless, the end result can be
extended to matrices of arbitrary norm by analytic continuation, and Theorem 3.2 is
therefore valid for all matrices, regardless of norm. Introducing an auxiliary matrix
M̄ ≡ I−M, we apply the result of Eq. (2.5) to the power series to obtain

(
M

−1
)

ωα
=

∞∑

n=0

∑

WG;αω;n

M̄ωηn
· · · M̄η3η2

M̄η2α. (A.15)

where G is the graph of the partition of M̄. We follow the same procedure as in §A.2
above and we omit the details; the result is

(
M

−1
)

ωα
=

∞∑

n=0

∑

WG0;αω;n

[
I− M̄ω

]−1
M̄ωνn · · ·

[
I− M̄ν2

]−1
M̄ν2α

[
I− M̄α

]−1
, (A.16a)

=

∞∑

n=0

∑

WG0;αω;n

(−1)nM−1
ω Mωνn · · ·M−1

ν2 Mν2α M
−1
α , (A.16b)

where we have used M̄µ = I − Mµ and M̄µν = −Mµν. Eq. (A.16b) is a sum of walk
contributions with effective vertex weights ceffµ = M−1

µ resulting from the loop dressing
of µ which occurs when Mµ 6= 0. We now use Theorem 2.1 and obtain

(
M

−1
)

ωα
=

∑

PG0;αω

(−1)ℓ FG\{α,...,νℓ}[ω]Mωνℓ · · ·FG\{α}[ν2]Mν2α FG [α], (A.17a)

where G is the graph of {(M− I)µν}, ℓ is the length of the path, and

FG [α] =
[

Mα −
∑

CG0;α

(−1)m Mαµm
FG\{α,...,µm−1}[µm] · · ·FG\{α}[µ2]Mµ2α

]−1

, (A.17b)

with m the length of the bare cycle. Similarly to §A.2, we have separated the con-
tribution of the loops from that of the other bare cycles. This proves Theorem 3.2.

A.4. The matrix exponential. Proof. We consider a matrix M ∈ C
D×D.

To prove Theorem 3.3 and Lemma 3.4, we start from the power series expression
exp(tM) =

∑∞
n=0 t

nMn/n!. By applying the result of Eq. (2.5) to this series we find
that the partition of exp(tM) is given by

exp(tM)ωα =

∞∑

n=0

tn

n!

∑

WG;αω;n

Mωηn
· · ·Mη3η2

Mη2α. (A.18)
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with G the graph of the partition of M. Following the same procedure as in §A.2, we
make the loop of the walks appear explicitly

exp(tM)ωα =

∞∑

n=0

tn

n!

n∑

m=0

∑

WG0;αω;m

∑

{pi}/n−m

(Mω)
pm+1

Mωµm
· · · (Mµ2

)
p2
Mµ2α(Mα)

p1, (A.19)

where the again loop numbers satisfy
∑m+1

i=1 pi = n−m, with the restriction that the
loop numbers on any loopless vertices are fixed to zero. Such a sequence is said to
form a weak composition of n − m. We now note that for any weak composition of
n−m, the following identity holds:

1

p1! p2! · · · pm+1!

∫ t

0

dtm · · ·
∫ t2

0

dt1 (t− tm)pm+1 · · · (t2 − t1)
p2 tp1

1 =
tn

n!
. (A.20)

This result – which does not depend on the value of each individual pi – is straight-
forwardly proved by induction on m. By substituting this identity into Eq. (A.19)
and rearranging the order of summations we obtain

exp
(
tM
)

ωα
= (A.21a)

∞∑

m=0

∑

WG0;αω;m

∞∑

{pi}=0

∫ t

0

dtm · · ·
∫ t2

0

dt1

[
(t− tm)Mω

]

pm+1!

pm+1

Mωµm
· · ·
[
(t2 − t1)Mµ2

]

p2!

p2

Mµ2α

[
t1Mα

]

p1!

p1

,

=

∞∑

m=0

∑

WG0;αω;m

∫ t

0

dtm · · ·
∫ t2

0

dt1 e
(t−tm)MωMωµm

· · · e(t2−t1)Mµ2 Mµ2α et1Mα . (A.21b)

This intermediate result proves Lemma 3.4. In order to continue, we note that this
expression is an m-fold nested convolution. To convert the convolution to a product
we take the Laplace transform of both sides:

L
[
exp(tM)ωα

]
=

∞∑

m=0

∑

WG0;αω;m

L
[
fω(t)

]
Mωµm

· · · L
[
fµ2

(t)
]
Mµ2α L

[
fα(t)

]
, (A.22)

=

∞∑

m=0

∑

WG0;αω;m

[sI−Mω]
−1

Mωµm
· · · [sI−Mµ2

]
−1

Mµ2α [sI−Mα]
−1

, (A.23)

where the second line follows on noting the result L
[
exp(tMµ)

]
=
[
sI − Mµ

]−1
. As

in the previous sections, we remark that Eq. (A.23) is a sum of walk contributions

with an effective vertex weight of ceffµ = [sI−Mµ]
−1

. On using Theorem 2.1 to turn
Eq. (A.23) into a path-sum, we obtain

L
[
exp

(
tM
)

ωα

]
=

ℓmax∑

ℓ=0

∑

PG0;αω;ℓ

FG\{α,...,νℓ}[ω]Mωνℓ · · · FG\{α}[ν2]Mν2α FG [α] , (A.24a)

FG [α] =
[

sI−Mα −
∑

CG0;α

Mαµm
FG\{α,...,µm−1}[µm] · · ·FG\{α}[µ2]Mµ2α

]−1

, (A.24b)

where ℓ and m are the length of the path and of the bare cycle, respectively. In this
expression, the contribution from the loops is explicitly separated from that of the
other bare cycles.
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A.5. The matrix logarithm. Proof. In this section, we consider a matrix
M ∈ CD×D with no eigenvalue on the negative real axis. To prove Theorem 3.5 we
write the matrix logarithm as logM = −∑∞

n=1(I−M)n/n. This series only converges
if ‖I−M‖ < 1; nevertheless, the end result of this proof can be extended to matrices
of arbitrary norm by analytic continuation. Theorem 3.5 is therefore valid for all
matrices regardless of norm. We introduce the auxiliary matrix M̄ ≡ I − M and
rewrite the power series as

(
logM

)

ωα
= −

∞∑

n=1

1

n

∑

WG0;αω;n

M̄ωνn · · · M̄ν3ν2M̄ν2α, (A.25a)

= −
∞∑

n=1

1

n

n∑

m=0

∑

WG0;αω;m

∑

{pi}/n−m

(
M̄ω

)pm+1
M̄ωµm

· · ·
(
M̄µ2

)p2
M̄µ2α

(
M̄α

)p1
, (A.25b)

with G the graph of the partition of M̄. The second equality is obtained by making the
loops explicit through the same procedure as in §A.2. Just as in the previous sections,
the loop numbers form a weak composition of n−m. For any such composition, the
following identity holds:

1

n
=

∫ 1

0

xm−1 xp1xp2 · · · xpm+1 dx. (A.26)

This identity allows the contributions from the infinite loop sums in Eq. (A.25b) to
be evaluated in closed form. By restructuring the double summation we obtain

(
logM

)

ωα
= −δωα

∫ 1

0

M̄α

[
I− xM̄α

]−1
dx (A.27)

−
∞∑

m=1

∑

WG0;αω;m

∫ 1

0

xm−1
[
I− xM̄ω

]−1
M̄ωµm

· · ·
[
I− xM̄µ2

]−1
M̄µ2α

[
I− xM̄α

]−1
dx,

where we have written
[
I− xM̄µ

]−1
for
∑∞

p=0(xM̄µ)
p and δωα is a Kronecker delta.

Note that the first part of this expression – which represents contributions from walks
consisting entirely of loops – has a slightly different structure to the second part, owing
to the absence of the term with zero loops when ω = α. Just as for the previously
obtained matrix functions, the integrand of Eq. (A.27) is a sum of walk contributions

with effective vertex weights ceffµ =
[
I− xM̄µ

]−1
. On using Theorem 2.1, Eq. (A.27)

transforms to
(
logM

)

ωα
= (A.28a)







∫ 1

0

dx x−1 (I− FG [α]) , ω = α,

−
∑

PG0;αω

∫ 1

0

dx xℓ−1
FG\{α,...,νℓ}[ω]M̄ωνℓ · · ·FG\{α}[ν2] M̄ν2α FG [α], ω 6= α,

where ℓ the length of the path and

FG [α] =
[

I− xM̄α −
∑

CG0;α

xm
M̄αµm

FG\{α,...,µm−1}[µm] · · · M̄µ3µ2
FG\{α}[µ2]M̄µ2α

]−1

,

(A.28b)
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with m the length of the bare cycle. Note that we have again explicitly separated
the contribution of the loops from that of the other bare cycles. Theorem 3.5 is now
directly obtained upon replacing M̄ by I−M.
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[9] E. Kılıç, Explicit formula for the inverse of a tridiagonal matrix by backward continued frac-

tions, Appl. Math. and Comp., 197 (2008), p. 345.
[10] R. K. Mallik, The inverse of a tridiagonal matrix, Linear Algebra Appl., 315 (2001), p. 1.
[11] G. Meurant, A review on the inverse of symmetric tridiagonal and block tridiagonal matrices,

SIAM J. Matrix Anal. Appl., 13 (1992), p. 707.
[12] H. Richter, Zum logarithmus einer matrix, Archiv der Mathematik, 2(5) (1949), p. 360.
[13] S. Thwaite, P.-L. Giscard, and D. Jaksch, A basis for the ensemble of walks on digraphs with

non-commuting edge weights, arXiv:1202.5523v1 [cs.DM], (2011). Submitted to Journal of
Combinatorial Theory B.

[14] A. Wouk, Integral representation of the logarithm of matrices and operators, J. Math. Anal.
and Appl., 11 (1965), p. 131.

http://mathcs.emory.edu/~benzi/Web_
http://arxiv.org/abs/1108.1177
http://arxiv.org/abs/1202.5523

