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Augmented ℓ1 and Nuclear-Norm Models with a Globally Linearly

Convergent Algorithm

Ming-Jun Lai∗ Wotao Yin†

Abstract

This paper studies the long-existing idea of adding a nice smooth function to “smooth” a non-

differentiable objective function in the context of sparse optimization, in particular, the minimization of

‖x‖1+
1
2α

‖x‖22, where x is a vector, as well as the minimization of ‖X‖∗ +
1
2α

‖X‖2F , where X is a matrix

and ‖X‖∗ and ‖X‖F are the nuclear and Frobenius norms of X, respectively. We show that they let

sparse vectors and low-rank matrices be efficiently recovered. In particular, they enjoy exact and stable

recovery guarantees similar to those known for the minimization of ‖x‖1 and ‖X‖∗ under the conditions

on the sensing operator such as its null-space property, restricted isometry property, spherical section

property, or “RIPless” property. To recover a (nearly) sparse vector x0, minimizing ‖x‖1+
1
2α

‖x‖22 returns

(nearly) the same solution as minimizing ‖x‖1 whenever α ≥ 10‖x0‖∞. The same relation also holds

between minimizing ‖X‖∗+
1
2α

‖X‖2F and minimizing ‖X‖∗ for recovering a (nearly) low-rank matrix X
0

if α ≥ 10‖X0‖2. Furthermore, we show that the linearized Bregman algorithm, as well as its two fast

variants, for minimizing ‖x‖1 + 1
2α

‖x‖22 subject to Ax = b enjoys global linear convergence as long as

a nonzero solution exists, and we give an explicit rate of convergence. The convergence property does

not require a sparse solution or any properties on A. To our knowledge, this is the best known global

convergence result for first-order sparse optimization algorithms.

1 Introduction

Sparse vector recovery and low-rank matrix recovery problems have drawn lots of attention from researchers

in different fields in the past several years. They have wide applications in compressive sensing, signal/image

processing, machine learning, etc. The fundamental problem of sparse vector recovery is to find the vector

with (nearly) fewest nonzero entries from an underdetermined linear system Ax = b, and that of low-rank

matrix recovery is to find a matrix of (nearly) lowest rank from an underdetermined A(X) = b, where A is

a linear operator.

To recover a sparse vector x0, a well-known model is the basis pursuit problem [11]:

min
x
{‖x‖1 : Ax = b}. (1)

For vector b with noise or generated by an approximately sparse vector, a variant of (1) is

min
x
{‖x‖1 : ‖Ax− b‖2 ≤ σ}. (2)
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To recover a low-rank matrix X0 ∈ Rn1×n2 from linear measurements b = A(X0), which stand for bi =

trace(A⊤
i X

0) for a given matrix Ai ∈ Rn1×n2 , i = 1, 2, . . . ,m, a popular approach is the convex model (cf.

[14, 9, 36])

min
X
{‖X‖∗ : A(X) = b} , (3)

where ‖X‖∗ equals the summation of the singular values of X. Similar to (2), a useful variant of (3) is

min
X
{‖X‖∗ : ‖A(X)− b‖2 ≤ σ} , (4)

The nonsmooth objective functions in problems (1)–(4) pose numerical challenges. We augment or

“smooth” them by adding 1
2α‖x‖22 or 1

2α‖X‖2F , where α is a positive scalar. We argue that minimizing

the augmented objective ‖x‖1 + 1
2α‖x‖22, as well as ‖X‖∗ + 1

2α‖X‖2F , leads to fast numerical algorithms

because not only accurate solutions can be obtained by using a sufficiently large, yet not excessive large,

value of α, but the Lagrange dual problems are also continuously differentiable and subject to gradient-based

acceleration techniques such as line search.

Next, we briefly review the related works and summarize the contributions of this paper. The augmented

model for (1) is

min
x

{

‖x‖1 +
1

2α
‖x‖22 : Ax = b

}

, (5)

which can be solved by the linearized Bregman algorithm (LBreg) [41], which is analyzed in [4, 40]. (Note

that LBreg is different from the Bregman algorithm [32, 41], which solves problem (1) instead of (5).)

The exact regularization property of (5) is proved in [40]: the solution to (5) is also a solution to (1) as

long as α is sufficiently large. The property can also be obtained from [17]. However, neither paper tells

how to select α, whereas the size of α affects the numerical performance. It has been observed by several

groups of researchers that a larger α tends to cause slower convergence. Hence, one would like to choose a

moderate α that is just large enough for (5) to return a solution to (1). For recovering a sparse vector x0

and a low-rank matrix X0, this paper gives the simple formulae

α ≥ 10‖x0‖∞ and α ≥ 10‖X0‖2,

respectively, where the operator norm ‖X0‖2 equals the maximum singular value ofX0. Although x0 and X0

are not known when α must be set, ‖x0‖∞ and ‖X0‖2 are often easy to estimate. For example, in compressive

sensing, ‖x0‖∞ is the maximum intensity of the underlying signal or the maximum sensor reading. When

the total energy ‖x0‖2 is roughly known, one can apply the more conservative formula: α ≥ 10‖x0‖2 since

‖x0‖2 ≥ ‖x0‖∞. Similarly, a more conservative formula is α ≥ 10‖X0‖F for the matrix case.

This paper also shows that the Lagrange dual problem of (5) is unconstrained and differentiable, and its

objective is uniformly strongly convex when restricted to certain pairs of points. Consequently, algorithm

LBreg, as well as two faster variants, enjoys global linear convergence; specifically, both the objective error

and solution error are bounded by O(µk), where k is the iteration number and µ is a constant strictly less

than 1. The value of µ depends on α, the dynamic range of the solution’s nonzero entries, as well as some

properties of A. Although several first-order algorithms for (1) have been shown to have asymptotic linear

convergence, this is the first global linear convergence result that comes with an explicit rate.

We shall discuss strong convexity. Many of the algorithms for recovering sparse solutions from under-

determined systems of equations are observed to have a linearly converging behavior, at least on problems

that are not severely “ill-conditioned”; however, their underlying objective functions do not have strong

convexity – a property commonly used to ensure global linear convergence – when the linear operator A

has fewer rows than columns. Specifically, the loss function in the form of g(Ax − b), even for strongly
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convex function g, is “flat” along many directions. Flatness or near flatness along a direction means a small

directional gradient, which can generally cause slow decrease in the objective value. However, in problems

with certain types of matrix A, moving along these directions will significantly change the regularization

function. In the recent paper [1], the definition of strong convexity is extended to include a relaxation term

involving the regularizer function. The paper argues that, with high probability for problems with A that

is random or satisfies restricted eigenvalue or other suitable properties, their “restricted strong convexity”

definition is satisfied by the sum of the regularization and loss functions, and as a result, the prox-linear

or gradient projection iteration applied to minimizing the sum has a (nearly-)linear convergence behavior,

specifically,

‖x(k+1) − x∗‖2 ≤ ck‖x(0) − x∗‖2 + o(‖x∗ − x0‖2),

where c < 1, x∗ and x0 are the minimizer and underlying true signal, respectively, and x(k) stands for the

kth iterate. This paper presents a different approach. Due to smoothing, unmodified linear convergence

to the exact solution is achievable without a probabilistic argument. The Lagrange dual of (5) is strongly

convex, not in the global sense, but restricted between the current point and its projection to the solution

set. This property turns out to be sufficient for global linear convergence without a modification.

Numerically, LBreg without acceleration is not very efficient because it is equivalent to the dual gra-

dient ascent with a fixed step size, as shown in [40]. Nonetheless, the step size can be relaxed. Since the

augmentation term 1
2α‖x‖22 makes the dual problem unconstrained and differentiable, the dual is subject to

advanced gradient-descent techniques such as Barzilai-Borwein (BB) step sizes [2], non-monotone line search,

Nesterov’s technique [30], as well as semi-smooth Newton methods. Indeed, LBreg has been improved in

several recent works: [33] applies a kicking trick; [40] considers applying BB step sizes and non-monotone

line search, as well as the limited memory BFGS method [26]; [39] applies the alternating direction method

to the Lagrange dual of (5); [23] applies Nesterov’s technique [30] and obtains the convergence rate O(1/k2).

Based on the restricted strong convexity of the dual objective and some existing proofs, we theoretically

show and numerically demonstrate that LBreg with BB step sizes with non-monotone line search also enjoys

global linear convergence.

LBreg has also been extended to recovering simply structured matrices. The algorithms SVT [3] for

matrix completion and IT [38] for robust principal components are of the LBreg type, namely, they are

gradient iterations that solve

min
X
{‖X‖∗ +

1

2α
‖X‖2F : Xij = Mij , ∀ (i, j) ∈ Ω}, (6)

min
L,S
{‖L‖∗ + λ‖S‖1 +

1

2α

(
‖L‖2F + ‖S‖2F

)
: L+ S = D}, (7)

respectively, where Ω is the set of the observed matrix entries and ‖S‖1 =
∑

i,j |Si,j |. [42] shows that the

exact regularization property for the vector case also holds for (6) and (7). Although this paper does not

analyze (6) and (7) specifically, it gives recovery guarantees for models

min
x

{

‖X‖∗ +
1

2α
‖X‖2F : A(X) = b

}

(8)

and

min
x

{

‖X‖∗ +
1

2α
‖X‖2F : ‖A(X)− b‖2 ≤ σ

}

(9)

assuming α ≥ 10‖X0‖2.
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1.1 Organization

The rest of this paper is organized as follows. Section 2 presents several models with augmented ℓ1 or

augmented nuclear-norm objectives and derives their Lagrange dual problems. The exact and stable recovery

conditions for these models are given in Section 3. Section 4 proves a restricted strongly convex property

and establishes global linear convergence for LBreg and its two faster variants. The materials of Sections 3

and 4 are technically independent of each other, yet they are two important sides of model (5).

The matlab codes and demos of LBreg, including the original, line search, and Nesterov acceleration

versions, can be found from the second author’s homepage.

2 Augmented ℓ1 and nuclear-norm models

This section presents the primal and dual problems of a few augmented ℓ1 and augmented nuclear-norm

models.

Equality constrained augmented ℓ1 model: Since ‖x‖1 = max{x⊤z : z ∈ Rn, ‖z‖∞ ≤ 1}, the dual

problem of (5) can be obtained as follows

min
x
{‖x‖1 +

1

2α
‖x‖22 : Ax = b} =min

x
max
y
‖x‖1 +

1

2α
‖x‖22 − y⊤(Ax − b)

=min
x

max
y,z
{x⊤z+

1

2α
‖x‖22 − y⊤Ax+ y⊤b : ‖z‖∞ ≤ 1}

=max
y,z
{min

x
x⊤z+

1

2α
‖x‖22 − y⊤Ax+ b⊤y : ‖z‖∞ ≤ 1}

=−min
y,z
{−b⊤y +

α

2
‖A⊤y − z‖22 : ‖z‖∞ ≤ 1}, since x∗ = α(A⊤y − z).

Eliminating z from the last equation gives the following dual problem.

min
y
−b⊤y +

α

2
‖A⊤y − Proj[−1,1]n(A

⊤y)‖22. (10)

For any real vector z, we have z−Proj[−µ,µ]n(z) = shrinkµ(z), where shrinkµ is the well-known shrinkage or

soft-thresholding operator with parameter µ > 0. We omit µ when µ = 1. Hence, the second term in (10)

equals (α/2)‖ shrink(A⊤y)‖22.
It is interesting to compare (10) with the Lagrange dual of (1):

min
y
{−b⊤y : ‖A⊤y‖∞ ≤ 1}. (11)

Instead of confining each component of A⊤y to [−1, 1], (10) applies quadratic penalty to the violation. This

leads to its advantage of being unconstrained and differentiable (despite the presence of projection).

The gradient of the last term in (10) is αA shrink(A⊤y). Furthermore, given a solution y∗ to (10), one

can recover the solution x∗ = α shrink(A⊤y∗) to (5) (since (10) has a vanishing gradient Ax∗ − b = 0, and

x∗ and y∗ lead to 0-gap primal and dual objectives, respectively). Therefore, solving (10) solves (5), and

it is easier than solving (1). In particular, (10) enjoys a rich set of classical techniques such as line search,

Barzilai-Borwein steps [2], semi-smooth Newton methods, Nesterov’s acceleration [30], which do not directly

apply to problems (1) or (11).

Norm-constrained augmented ℓ1: For model (2), the primal and dual augmented models are

min
x

{

‖x‖1 +
1

2α
‖x‖22 : ‖Ax− b‖2 ≤ σ

}

, (12)

min
y

{

−b⊤y + σ‖y‖2 +
α

2
‖A⊤y − Proj[−1,1]n(A

⊤y)‖22
}

. (13)
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The objective of (13) is differentiable except at y = 0. However, this is not an issue since y = 0 is a solution

to (13) only if x = 0 is the solution to (12). In other words, (13) is practically differentiable and thus also

amenable to classical gradient-based acceleration techniques.

Equality-constrained augmented ‖ · ‖∗: The primal and dual of the augmented model of (3) are (8)

and

min
y

{

−b⊤y +
α

2
‖A∗y − Proj{X:‖X‖2≤1}(A∗y)‖2F

}

, (14)

respectively, where A∗y :=
∑m

i=1 yiAi and {X : ‖X‖2 ≤ 1} is the set of n1-by-n2 matrices with spectral

norms no more than 1. In (14), inside the Frobenius norm is the singular value soft-thresholding [3] of A∗y.

The primal and dual of the augmented model (4) are (9) and

min
y

{

−b⊤y + σ‖y‖2 +
α

2
‖A∗y − Proj{X:‖X‖2≤1}(A∗y)‖2F

}

, (15)

respectively. Like the augmented models for vectors, problems (14) and (15) are practically differentiable

and thus also amenable to advanced optimization techniques for unconstrained differentiable problems.

As one can see, it is a routine task to augment an ℓ1-like minimization problem and obtain a problem with

a strongly convex objective, as well as its Lagrange dual with a differentiable objective and no constraints.

One can augment models with a transform-ℓ1 objective, total variation, ℓ1,2 or ℓ1,∞ norms (for joint or group

sparse signal recovery), robust-PCA objective, etc. Since the dual problems are convex and differentiable,

they enjoy a rich set of gradient-based optimization techniques.

3 Recovery Guarantees

This section establishes recovery guarantees for augmented ℓ1 models (5) and (12) and extend these results

to matrix recovery models (8) and (9). The results for (5) and (12) are given based on a variety of properties

of A including the null-space property (NSP) in Theorem 1, the restricted isometry property (RIP) [10] in

Theorems 2 and 3, the spherical section property (SSP) [45] in Theorems 4 and 5, and an “RIPless” condition

[7] in Theorem 6 below. We choose to study all these different properties since they give different types of

recovery guarantees and apply to different type of matrices. Other than that NSP is used in our proofs for

RIP and SSP, the other three properties — RIP, SSP, and RIPless — do not dominate one another in terms

of usefulness. They together assert that a large number of matrices such as those sampled from subgaussian

distributions, Fourier and Wash-Hadamard ensembles, and random Toeplitz and circulant ensembles are

suitable for sparse vector recovery by models (5) and (12).

First, we present some numerical simulations to motivate the subsequent analysis.

3.1 Motivating examples

We are interested in comparing model (5) to model (1), whose the performance on recovering sparse solutions

have been widely studied. To this end, we conducted three sets of simulations. Without loss of generality,

we fixed ‖x0‖∞ = 1 and solved (1) and then (5) with α = 1, 10, and 25 to reconstruct signals of n = 400

dimensions. We set the signal sparsity k = 1, 2, . . . , 80 and the number of measurements m = 40, 41, . . . , 200.

The entries of A were sampled from the standard Gaussian distribution.

It turns out that the recovery performance of (5) depends on the decay speed of the nonzero entries of

the signal x0. So, we tested three decay speeds: (i) flat magnitude — no decay, (ii) independent Gaussian

— moderate decay, and (iii) power law — fast decay. In the power-law decay, the ith largest entry had

magnitude i−2 and a random sign.
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For each (m, k), 100 independent tests were run, and the average of

recovery relative error ‖x∗ − x0‖2/‖x0‖2 (16)

was recorded, where x∗ stands for a solution of either (1) or (5). The slightly smoothed cut-off curves at

two different levels of relative errors are depicted in Figure 1. Above each curve is the region where a model

fails to recover the signals to the specified average relative error. Hence, a higher curve means fewer fails

and thus better recovery performance.
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Figure 1: Curves of specified recovery relative errors of model (1) (BP) and model (5) with α =

1, 10, 25. Above each curve is the region where a model fails to achieve the specified average relative error.

A higher curve means better recovery performance.

We can make following observations.

• In all tests, the best curve is from BP or model (1). Closely following it are those of α = 25 and α = 10

of model (5). As long as α ≥ 10, model (5) is as good as model (1) up to a negligible difference.

• The curve of α = 1 is noticeably lower than others when the signal is flat or decays slowly. For this

reason, we do not recommend using α = ‖x0‖∞ for model (5) unless when the underlying signals decay

very fast.

• The differences of the fours curves are very similar across the two levels 10−3 and 10−5 of relative errors.

We tested other levels and found the same. Therefore, the performance differences are independent of

the error level chosen to plot the curves.

Some expert readers may know that in theory, given matrix A, whether or not model (1) can exactly

recover x0 solely depends on sign(x0), independent of its decay speed. So, one may wonder why the BP
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curves are not the same across different plots. That is because, when (1) fails to recover x0, the relative error

depends on the decay speed; a faster decaying signal, when not exactly recovered, tends to have a smaller

error. This is why at the error level 10−3, the BP curve is obviously higher (better) on the faster-decaying

signals.

3.2 Null space property

Matrix A satisfies the NSP if

‖hS‖1 < ‖hSc‖1, (17)

holds for all h ∈ Null(A) and coordinate sets S ⊂ {1, 2, · · · , n} of cardinality |S| ≤ k. If so, problem (1)

recovers all k-sparse vectors x0 from measurements b = Ax0. The NSP is also necessary for exact recovery

of all k-sparse vectors uniformly. The wide use of NSP can be found in, e.g., [12, 19, 44]. Note that it holds

regardless the value of ‖x0‖∞. We now give a necessary and sufficient condition for problem (5).

Theorem 1 (NSP condition). Assume ‖x0‖∞ is fixed. Problem (5) uniquely recovers all k-sparse vectors

x0 with the fixed ‖x0‖∞ from measurements b = Ax0 if and only if

(

1 +
‖x0‖∞

α

)

‖hS‖1 ≤‖hSc‖1, (18)

holds for all vectors h ∈ Null(A) and coordinate sets S of cardinality |S| ≤ k.

Proof. Sufficiency: Pick any k-sparse vector x0. Let S := supp(x0) and Z = Sc. For any nonzero

h ∈ Null(A), we have A(x0 + h) = Ax0 = b and

‖x0 + h‖1 +
1

2α
‖x0 + h‖22 = ‖x0

S + hS‖1 +
1

2α
‖x0

S + hS‖22 + ‖hZ‖1 +
1

2α
‖hZ‖22

≥ ‖x0
S‖1 − ‖hS‖1 +

1

2α
‖x0

S‖22 +
1

α
〈x0

S ,hS〉+
1

2α
‖hS‖22 + ‖hZ‖1 +

1

2α
‖hZ‖22

≥
[

‖x0
S‖1 +

1

2α
‖x0

S‖22
]

+

[

‖hZ‖1 − ‖hS‖1 −
‖x0

S‖∞
α
‖hS‖1

]

+
1

2α
‖h‖22

=

[

‖x0‖1 +
1

2α
‖x0‖22

]

+

[

‖hZ‖1 −
(

1 +
‖x0‖∞

α

)

‖hS‖1
]

+
1

2α
‖h‖22, (19)

where the first inequality follows from the triangle inequality, and the second follows from ‖hS‖22 + ‖hZ‖22 =
‖h‖22 and 〈x0

S ,hS〉 ≥ −‖x0
S‖∞‖hS‖1 = −‖x0‖∞‖hS‖1.

Since ‖h‖22 > 0, ‖x0+h‖1+ 1
2α‖x0+h‖2 is strictly larger than ‖x0‖1+ 1

2α‖x0‖2 provided that the second

block of (19) is nonnegative. Hence, condition (18) is sufficient for x0 to be the unique minimizer of (5) .

Necessity: It is sufficient to show that for any given nonzero h ∈ Null(A) and S satisfying |S| ≤ k,

we can to identify a k-sparse x0 such that (18) is necessary for its exact recovery. To this end, we define

x0 as x0
i = −sign(hi)‖h‖∞ for i ∈ S and x0

j = 0 for j ∈ Sc, and scale x0 to have the specified ‖x0‖∞.

Under this construction, we have the following properties: ‖x0‖0 ≤ k, ‖x0
S + τhS‖1 = ‖x0

S‖1 − ‖τhS‖1, and
〈x0

S , τhS〉 = −‖x0
S‖∞‖τhS‖1, for any 0 < τ ≤ 1. Now, we let τh replace h in the equation array (19) and

observe that both of the two inequalities of (19) now hold with equality. Therefore, since the exact recovery

of x0 requires ‖x0 + τh‖1 + 1
2α‖x0 + τh‖22 > ‖x0‖1 + 1

2α‖x0‖22, it also requires

[

‖τhZ‖1 −
(

1 +
‖x0‖∞

α

)

‖τhS‖1
]

+
1

2α
‖τh‖22 > 0 (20)

for all 0 < τ ≤ 1, which in turn requires (18) to hold.
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Remark 1. For any finite α > 0, (18) is stronger than (17) due to the extra term
‖x0

S‖∞

α . Since various

uniform recovery results establish conditions that guarantee (17), one can tighten these conditions so that

they guarantee (18) and thus the uniform recovery by problem (5). How much tighter these conditions have

to be depends on the value
‖x0

S‖∞

α .

3.3 Restricted isometry property

In this subsection, we first review the RIP-based sparse recovery guarantees and then show that given certain

RIP conditions, any α ≥ 10‖x0‖2 guarantees exact and stable recovery by (5) and (12), respectively.

Definition 1. [10] The RIP constant δk of matrix A is the smallest value such that

(1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22 (21)

holds for all k-sparse vectors x ∈ Rn.

For (1) to recover any k-sparse vector uniformly, [6] shows the sufficiency of δ2k < 0.4142, which is later

improved to δ2k < 0.4531 [16], δ2k < 0.4652 [15], δ2k < 0.4721 [5], as well as δ2k < 0.4931 [28]. The bound

is still being improved. Adapting results in [28], we give the uniform recovery conditions for (5) below.

Theorem 2 (RIP condition for exact recovery). Assume that x0 ∈ Rn is k-sparse. If A satisfies RIP with

δ2k ≤ 0.4404 and α ≥ 10‖x0‖∞, then x0 is the unique minimizer of (5) given measurements b := Ax0.

Proof. Let S := supp(x0) and Z := Sc. Theorem 3.1 in [28] shows that any h ∈ Null(A) satisfies

‖hS‖1 ≤ θ2k‖hZ‖1,

where

θ2k :=

√

4(1 + 5δ2k − 4δ22k)

(1− δ2k)(32− 25δ2k)
(22)

Hence, (18) holds provided that
(

1 +
‖x0‖∞

α

)−1

≥ θ2k

or, in light of θ2k < 1,

α ≥
(
θ−1
2k − 1

)−1 ‖x0‖∞ =
‖x0‖∞ ·

√

4(1 + 5δ2k − 4δ22k)
√

(1− δ2k)(32− 25δ2k)−
√

4(1 + 5δ2k − 4δ22k)
. (23)

For δ2k = 0.4404, we obtain
(
θ−1
2k − 1

)−1 ‖x0‖∞ ≈ 9.9849‖x0‖∞ ≤ α, which proves the theorem.

Remark 2. Different values of δ2k are associated with different conditions on α. Following (23), if δ2k ≤
0.4715, α ≥ 25‖x0‖∞ guarantees exact recovery. If δ2k ≤ 0.1273, α ≥ ‖x0‖∞ guarantees exact recovery. In

general, a smaller δ2k allows a smaller α.

Next we study the case where b is noisy or x0 is not exactly sparse, or both. For comparison, we present

two inequalities next to each other for problems (2) and (5) each, where the first one is easy to obtain; see

[6] for example.
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Lemma 1. Let x0 ∈ Rn be an arbitrary vector, S be the coordinate set of its k largest components in

magnitude, and Z := {1, · · · , n} \ S. Let x̄∗ and x∗ be the solutions of (2) and (12), respectively. The error

vectors h̄ = x̄∗ − x0 and h = x∗ − x0 satisfy

‖h̄Z‖1 ≤ ‖h̄S‖1 + 2‖x0
Z‖1, (24)

‖hZ‖1 ≤ C3‖hS‖1 + C4‖x0
Z‖1, (25)

where ‖x0
Z‖1 is the best k-term approximation error of x0 and

C3 :=
α+ ‖x0

S‖∞
α− ‖x0

Z‖∞
and C4 :=

2α

α− ‖x0
Z‖∞

. (26)

Proof. We only show (25). Since x∗ = x0 + h is the minimizer of (12), we have

‖x0 + h‖1 +
1

2α
‖x0 + h‖22 ≤ ‖x0‖1 +

1

2α
‖x0‖22. (27)

Also,

‖x0 + h‖1 +
1

2α
‖x0 + h‖22 = ‖x0

S + hS‖1 +
1

2α
‖x0

S + hS‖22 + ‖x0
Z + hZ‖1 +

1

2α
‖x0

Z + hZ‖22

≥ ‖x0
S‖1 − ‖hS‖1 +

1

2α
‖x0

S‖22 −
1

α
|〈x0

S ,hS〉|+
1

2α
‖hS‖22

+‖hZ‖1 − ‖x0
Z‖1 +

1

2α
‖x0

Z‖22 −
1

α
|〈x0

Z ,hZ〉|+
1

2α
‖hZ‖22

= (‖x0‖1 +
1

2α
‖x0‖22)− 2‖x0

Z‖1 − (‖hS‖1 +
1

α
|〈x0

S ,hS〉|)

+(‖hZ‖1 −
1

α
|〈x0

Z ,hZ〉|) +
1

2α
‖h‖22

≥ (‖x0‖1 +
1

2α
‖x0‖22)− 2‖x0

Z‖1 −
(

1 +
‖x0

S‖∞
α

)

‖hS‖1

+

(

1− ‖x
0
Z‖∞
α

)

‖hZ‖1 +
1

2α
‖h‖22, (28)

where the first inequality follows from the triangle inequality, and the second from 〈a,b〉 ≤ ‖a‖∞‖b‖1.
Combining (27) and (28), we obtain

(

1− ‖x
0
Z‖∞
α

)

‖hZ‖1 +
1

2α
‖h‖22 ≤

(

1 +
‖x0

S‖∞
α

)

‖hS‖1 + 2‖x0
Z‖1

and thus (25) after dropping the nonnegative term 1
2α‖h‖2.

We now present the stable recovery guarantee.

Theorem 3 (RIP condition for stable recovery). Assume the setting of Lemma 1. Let b := Ax0 +n, where

n is an arbitrary noisy vector with ‖n‖2 ≤ σ. If A satisfies RIP with δ2k ≤ 0.3814, then the solution x∗ of

(12) with any α ≥ 10‖x0‖∞ satisfies

‖x∗ − x0‖1 ≤C1 ·
√
k‖n‖2 + C2 · ‖x0

Z‖1, (29)

‖x∗ − x0‖2 ≤C̄1 · ‖n‖2 + C̄2 · ‖x0
Z‖1/

√
k, (30)

where C1, C2, C̄1, and C̄2 are given in (33a)–(34b) as functions of only δ2k, C3, and C4 in (26).
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Proof. We follow an argument similar to that in [28]. According to Lemma 4.3 of [28], from ‖Ah‖2 =

‖Ax∗ −Ax0‖2 = ‖Ax∗ − b+ n‖2 ≤ ‖Ax∗ − b‖2 + ‖n‖2 ≤ 2‖n‖2 and δ2k < 2/3, we obtain

‖hS‖1 ≤
2
√
2√

1− δ2k

√
k‖n‖2 + θ2k‖hZ‖1, (31)

where θ2k is defined in (22) as a function of δ2k. It is easy to verify that with the choice of δ2k ≤ 0.3814 and

α in the theorem, C3θ2k < 1 holds for all nonzero x0. Hence, combining (25) of Lemma 1 and (31) yield the

bound of ‖hZ‖1:

‖hZ‖1 ≤ (1− C3θ2k)
−1

(

C3
2
√
2√

1− δ2k

√
k‖n‖2 + C4‖x0

Z‖1
)

. (32)

Applying (31) and (32) gives us (29) or

‖x∗ − x0‖1 = ‖h‖1 = ‖hS‖1 + ‖hZ‖1

≤ 2
√
2√

1− δ2k

√
k‖n‖2 + (1 + θ2k)‖hZ‖1

≤ C1

√
k‖n‖2 + C2‖x0 − σk(x

0)‖1,

where

C1 =
2
√
2(1 + C3)√

1− δ2k(1− C3θ2k)
, (33a)

C2 =
(1 + θ2k)C4

1− C3θ2k
. (33b)

To prove (30), we apply (32) to the inequality (Page 7 of [28])

‖h‖2 ≤
2√

1− δ2k
‖n‖2 +

√

8(2− δ2k)

(1− δ2k)(32− 25δ2k)
· ‖hZ‖1√

k
,

and obtain (30) or

‖x∗ − x0‖2 = ‖h‖2 ≤ C̄1‖n‖2 + C̄2‖x0 − x0
[k]‖1/

√
k,

where

C̄1 :=
2√

1− δ2k

(

4C3

1− C3θ2k

√

2− δ2k
(1− δ2k)(32− 25δ2k)

+ 1

)

, (34a)

C̄2 :=
2C4

1− C3θ2k

√

2(2− δ2k)

(1− δ2k)(32− 25δ2k)
. (34b)

Remark 3. A key inequality in the proof above is C3θ2k < 1, where C3 (cf. (26)) depends on α, ‖x0
S‖∞,

and ‖x0
Z‖∞, and θ2k (cf. (22)) depends on δ2k. If the nonzeros of x0 decay faster in magnitude, C3 becomes

smaller and thus the condition C3θ2k < 1 is easier to hold. Therefore, a faster decaying x0 is easier to

recover. This is consistent with the numerical simulation in subsection 3.1. In Theorem 3, the condition on

δ2k and bound on α are given for the worst case corresponding to no decay, namely, ‖x0
S‖∞ = ‖x0

Z‖∞. If

‖x0
S‖∞ > ‖x0

Z‖∞, one can allow a larger δ2k for each fixed α or, equivalently, a smaller α for each fixed δ2k.

For example, if ‖x0
S‖∞ ≥ 10‖x0

Z‖∞, one only needs δ2k ≤ 0.4348 instead of the theorem-assumed condition

δ2k ≤ 0.3814.

There is also a trade-off between δ2k and α. Under the worst case ‖x0
S‖∞ = ‖x0

Z‖∞, imposing to

α ≥ 25‖x0‖∞ leads to the relaxed condition δ2k ≤ 0.4489.
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3.4 Spherical section property

Next, we derive exact and stable recovery conditions based on the spherical section property (SSP) [45, 37]

of A, which has the advantage of invariance to left-multiplying nonsingular matrices to the sensing matrix

A, as pointed out in [45]. On the other hand, more matrices are known to satisfy the RIP than the SSP.

Definition 2 (∆-SSP [37]). Let m and n be two integers such that m > 0, n > 0, and m < n. An (n−m)

dimensional subspace V ⊂ Rn has the ∆ spherical section property if

‖h‖1
‖h‖2

≥
√

m

∆
(35)

holds for all nonzero h ∈ V.

To see the significance of (35), we note that (i) ‖h‖1

‖h‖2
≥ 2
√
k for all h ∈ Null(A) is a sufficient condition for

the NSP inequality (17) and (ii) due to [24, 18], a uniformly random (n−m)-dimensional subspace V ⊂ Rn

has the SSP for

∆ = C0(log(n/m) + 1)

with probability at least 1 − exp(C1(n −m)), where C0 and C1 are universal constants. Hence, m > 4k∆

guarantees (17) to hold, and furthermore, if Null(A) is uniformly random, m = O(k log(n/m)) is sufficient

for (17) to hold with overwhelming probability [45, 37]. These results can be extended to the augmented

model (5).

Theorem 4 (SSP condition for exact recovery). Suppose Null(A) satisfies the ∆-SSP. Let us fix ‖x0‖∞ and

α > 0. If

m ≥
(

2 +
‖x0‖∞

α

)2

k∆, (36)

then the null-space condition (18) holds for all h ∈ Null(A) and coordinate sets S of cardinality |S| ≤ k. By

Theorem 1, (36) guarantees that problem (5) recovers any k-sparse x0 from measurements b = Ax0.

Proof. Let S be a coordinate set with |S| ≤ k. Condition (18) is equivalent to

(

2 +
‖x0

S‖∞
α

)

‖hS‖1 ≤ ‖h‖1, (37)

Since ‖hS‖1 ≤
√
k‖hS‖2 ≤

√
k‖h‖2, (37) holds provided that

(

2 +
‖x0‖∞

α

)√
k ≤ ‖h‖1‖h‖2

, (38)

which itself holds, in light of (35), provided that (36) holds.

Now we consider the case Ax0 = b where x0 is an approximately sparse vector.

Theorem 5 (SSP condition for stable recovery). Suppose Null(A) satisfies the ∆-SSP. Let x0 ∈ Rn be an

arbitrary vector, S be the coordinate set of its k largest components in magnitude, and Z := {1, · · · , n} \ S.
Let α > 0 in problem (5). Let C3 and C4 be defined in (26), which depend on α. If

m ≥ 4 (1 + C3)
2
k∆, (39)

then the solution x∗ of (5) satisfies

‖x∗ − x0‖1 ≤ 4C4‖x0
Z‖1, (40)

where ‖x0
Z‖1 is the best k-term approximation error of x0.
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Proof. Let h = x∗ − x0 ∈ Null(A). Let

C̄ =
‖h‖1
‖x0

Z‖1
. (41)

Then (40) is equivalent to

C̄ ≤ 4C4. (42)

Adding ‖hS‖1 to (25) and plugging in (41) gives us

‖h‖1 ≤ (1 + C3)‖hS‖1 + 2C4C̄
−1‖h‖1, (43)

or (1− 2C4C̄
−1)‖h‖1 ≤ (1 +C3)‖hS‖1. If C̄ ≤ 2C4, (42) naturally holds. Otherwise, we have C̄ > 2C4 and

‖h‖1 ≤
1 + C3

1− 2C4C̄−1
‖hS‖1 ≤

(1 + C3)
√
k

1− 2C4C̄−1
‖h‖2. (44)

Now, combining ∆-SSP and (39), we obtain

‖h‖1
‖h‖2

≥
√

m

∆
≥ 2 (1 + C3)

√
k, (45)

which together with (44) gives (42).

3.5 “RIPless” analysis

The “RIPless” analysis [7] gives non-uniform recovery guarantees for a wide class of compressive sensing

matrices such as those with iid subgaussian entries, orthogonal transform ensembles satisfying an incoherence

condition, random Toeplitz/circulant ensembles, as well as certain tight and continuous frame ensembles,

at O(k log(n)) measurements. This analysis is especially useful in situations where the RIP, as well as NSP

and SSP, is difficult to check or does not hold. In this subsection, we describe how to adapt the “RIPless”

analysis to model (5).

Theorem 6 (RIPless for exact recovery). Let x0 ∈ Rn be a fixed k-sparse vector. With probability at least

1− 5/n− e−β, x0 is the unique solution to problem (5) with b = Ax0 and α ≥ 8‖x0‖2 as long as the number

of measurements

m ≥ C0(1 + β)µ(A) · k logn,

where C0 is a universal constant and µ(A) is the incoherence parameter of A (see [7] for its definition and

values for various kinds of compressive sensing matrices).

Proof. The proof is mostly the same as that of Theorem 1.1 of [7] except we shall adapt Lemma 3.2 of [7] to

Lemma 2 below for our model (5). We describe the proof of the theorem very briefly here. For any matrix

A satisfying property (46) in Lemma 2, the golfing scheme [20] can be used to construct a dual vector y

such that A∗y satisfies property (47) in Lemma 2. The properties (46) and (47) and the construction are

exactly the same as in [7]. Then Lemma 2 below lets this A∗y guarantee the optimality of x0 to (12).

Lemma 2 (Dual certificate). Let x0 be given in Theorem 6 and S := supp(x0). If A = [a1 a2 · · · an]
satisfies

‖(A∗
SAS)

−1‖2 ≤ 2 and max
i∈Sc
‖A∗

Sai‖2 ≤ 1 (46)

and there exists y such that v = A∗y satisfies

‖vS − sign(x0
S)‖2 ≤ 1/4 and ‖vSc‖∞ ≤ 1/4, (47)

then x0 is the unique solution to (5) with b = Ax0 and α ≥ 8‖x0‖2.
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Proof. Let Z := Sc. For any nonzero h ∈ Null(A), we have Ah = 0 and

‖x0 + h‖1 +
1

2α
‖x0 + h‖22 = ‖x0

S + hS‖1 +
1

2α
‖x0

S + hS‖22 + ‖hZ‖1 +
1

2α
‖hZ‖22

≥ ‖x0
S‖1 + 〈sign(xS),hS〉+

1

2α
‖x0

S‖22 +
1

α
〈x0

S ,hS〉+
1

2α
‖hS‖22 + ‖hZ‖1 +

1

2α
‖hZ‖22

≥
[

‖x0
S‖1 +

1

2α
‖x0

S‖22
]

+

[

〈sign(xS),hS〉+
1

α
〈x0

S ,hS〉+ ‖hZ‖1
]

+
1

2α
‖h‖22

=

[

‖x0‖1 +
1

2α
‖x0‖22

]

+

[

〈sign(xS),hS〉+
1

α
〈x0

S ,hS〉+ ‖hZ‖1
]

+
1

2α
‖h‖22 (48)

Since the last term of (48) is strictly positive, x0 is the unique solution to (5) provided that

〈sign(xS),hS〉+
1

α
〈x0

S ,hS〉+ ‖hZ‖1 ≥ 0. (49)

Following the proof of Lemma 3.2 in [7] and from (46) and (47) we obtain

〈sign(xS),hS〉 ≥ −
1

4
(‖hS‖2 + ‖hZ‖1) and ‖hZ‖1 ≥

1

2
‖hS‖2,

which together with α ≥ 8‖x0‖2 give

〈sign(xS),hS〉+
1

α
〈x0

S ,hS〉+ ‖hZ‖1 ≥ −
1

4
(‖hS‖2 + ‖hZ‖1)−

‖x0
S‖2
α
‖hS‖2 + ‖hZ‖1

≥ −1

4
‖hS‖2 +

3

4
‖hZ‖1 −

1

8
‖hS‖2

≥ 3

8
‖hS‖2 −

3

8
‖hS‖2

= 0.

Hence, x0 + h gives a strictly worse objective (5) than x0, so x0 is the unique solution to (5).

3.6 Matrix Recovery Guarantees

It is fairly easy to extend the results above, except the “RIPless” analysis, to the recovery of low-rank

matrices. Throughout this subsection, we let σi(X), i = 1, · · · ,m denote the ith largest singular value of

matrix X of rank m or less, and let ‖X‖∗ :=
∑m

i=1 σi(X), ‖X‖F :=
(∑m

i=1 σ
2
i (X)

)1/2
, and ‖X‖2 = σ1(X)

denote the nuclear, Frobenius, and spectral norms of X, respectively.

The extension is based on the following property of unitarily invariant matrix norms.

Lemma 3 ([22] Theorem 7.4.51). Let X and Y be two matrices of the same size. Any unitarily invariant

norm ‖ · ‖φ satisfies

‖Σ(X)− Σ(Y)‖φ ≤ ‖X−Y‖φ, (50)

where Σ(X) = diag(σ1(X), · · · , σm(X)) and Σ(Y) = diag(σ1(Y), · · · , σm(Y)) are two diagonal matrices.

In particular, matrices X and Y obey

m∑

i=1

|σi(X)− σi(Y)| ≤ ‖X−Y‖∗ (51)

and
m∑

i=1

(σi(X) − σi(Y))2 ≤ ‖X−Y‖2F . (52)
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By applying (51), [35] shows that any sufficient conditions based on RIP and SSP of A for recovering

sparse vectors by model (1) can be translated to sufficient conditions based on similar properties of A for

recovering low-rank matrices by model (3). We can establish similar translations from model (12) to model

(9) using both inequalities (51) and (52). Hence, we present the low-rank matrix recovery results only with

the parts that are different from their vector counterparts.

Paper [34] presents the NSP condition for problem (3): all matrices X0 of rank r or less can be exactly

recovered by problem (3) from measurements b = A(X0) if and only if all H ∈ Null(A)\{0} satisfy
r∑

i=1

σi(H) <

m∑

i=r+1

σi(H). (53)

We can extend this result to problem (8) by applying inequalities (51) and (52).

Theorem 7 (Matrix NSP condition). Assume that ‖X0‖2 is fixed. Problem (8) uniquely recovers all matrices

X0 (with the specified ‖X0‖2) of rank r or less from measurements b = A(X0) if and only if
(

1 +
‖X0‖2

α

) r∑

i=1

σi(H) ≤
m∑

i=r+1

σi(H) (54)

holds for all matrices H ∈ Null(A).

Proof. Sufficiency: Pick any matrix X0 of rank r or less and let b = A(X0). For any nonzero H ∈ Null(A),
we have A(X0 +H) = AX0 = b. By using (51) and (52), we have

‖X0 +H‖∗ +
1

2α
‖X0 +H‖2F ≥ ‖s(X0)− s(H)‖1 +

1

2α
‖s(X0)− s(H)‖22

≥
[

‖X0‖∗ +
1

2α
‖X0‖2F

]

+

[
m∑

i=r+1

σi(H)−
(

1 +
‖X0‖2

α

) r∑

i=1

σi(H)

]

+
1

2α
‖H‖2F (55)

where the second inequality follows from (19) by letting h = −s(H) and S = {1, . . . , r} and noticing

hS =
∑r

i=1 σi(H) and hZ =
∑m

i=r+1 σi(H).

For any nonzero H ∈ Null(A), ‖H‖F > 0. Hence, from (55) and (54), it follows that X0 +H leads to a

strictly worse objective than X0. That is, X0 is the unique solution to problem (8).

Necessity: For any nonzero H ∈ Null(A) obeying (54), let H = UΣV⊤ be the SVD of H. Construct

X0 = −UΣrV
⊤, where Σr keeps only the largest r diagonal entries of Σ and sets the rest to 0. Scale X0 so

that it has the specified ‖X0‖2. We have

‖X0+tH‖∗+
1

2α
‖X0+tH‖2F = ‖X0‖∗+

1

2α
‖X0‖2F +

[
m∑

i=r+1

σi(tH)−
(

1 +
‖X0‖2

α

) r∑

i=1

σi(tH)

]

+
1

2α
‖tH‖2F

for any t > 0. For X0 to be the unique solution to (8) given b = A(X0), we must have
[

m∑

i=r+1

σi(tH)−
(

1 +
‖X0‖2

α

) r∑

i=1

σi(tH)

]

+
1

2α
‖tH‖2F > 0

for all t > 0. Hence, (54) is necessary.

Paper [36] introduces the following RIP for matrix recovery.

Definition 3 (Matrix RIP). Let Mr := {X ∈ Rn1×n2 : rank(X) ≤ r}. The RIP constant δr of linear

operator A is the smallest value such that

(1− δr)‖X‖2F ≤ ‖A(X)‖22 ≤ (1 + δr)‖X‖2F (56)

holds for all X ∈Mr.
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To uniformly recover all matrices of rank r or less by solving (3), it is sufficient for A to satisfy δ5r < 0.1

[36], which has been improved to the RIP with δ4r <
√
2 − 1 in [8] and to δ2r < 0.307, as well as ones

involving δ3r, δ4r, and δ5r, in [29]. The algorithm SVP [27] provably achieves exact recovery if δ2r < 1/3.

Next, we present a stronger RIP-based condition for the unsmoothed problem (3), and then extend it to

the smoothed problem (8) without a proof.

Theorem 8 (RIP condition for exact recovery by (3)). Let X0 be a matrix with rank r or less. Problem (3)

exactly recovers X0 from measurements b = A(X0) if A satisfies the RIP with δ2r < 0.4931.

The proof is a straightforward extension to the arguments in [28] using arguments in [35]; the interested

reader can find it in Appendix. Next we present the result for the augmented model (8).

Theorem 9 (RIP condition for exact recovery). Let X0 be a matrix with rank r or less. The augmented

model (8) exactly recovers X0 from measurements b = A(X0) if A satisfies the RIP with δ2r < 0.4404 and

in (8) α ≥ 10‖X0‖2.

Proof. The proof of Theorem 8 in Appendix establishes that anyH ∈ Null(A) satisfies ‖H0‖∗ ≤ θ2r‖
∑

i≥1 Hi‖∗.

Hence, (54) holds if
(

1 + ‖X0‖2

α

)−1

≥ θ2r. The rest of the proof is similar to that of Theorem 2.

Skipping a proof similar to that of Theorem 3, we present the stable recovery result as follows.

Theorem 10 (RIP condition for stable recovery). Let X0 ∈ Rn1×n2 be an arbitrary matrix and σi(X
0) be

its i-th largest singular value. Let b := A(X0) + n, where A is a linear operator and n is an arbitrary noise

vector. If A satisfies the RIP with δ2r ≤ 0.3814, then the solution X∗ of (9) with any α ≥ 10 ·‖X0‖2 satisfies

the error bounds:

‖X∗ −X0‖∗ ≤C1 ·
√
k‖n‖2 + C2 · σ̂(X0), (57)

‖X∗ −X0‖F ≤C̄1 · ‖n‖2 + (C̄2/
√
r) · σ̂(X0), (58)

where σ̂(X0) :=
∑min{n1,n2}

i=r+1 σi(X
0) is the best rank-r approximation error of X0, C1, C2, C̄1, and C̄2 are

given by formulas (33a)–(34b) in which θ2k shall be replaced by θ2r (given in (99)), and

C3 :=
α+ σ1(X

0)

α− σr+1(X0)
and C4 :=

2α

α− σr+1(X0)
, (59)

respectively.

Although there are few discussions on SSP for low-rank matrix recovery in the literature (cf. [13]), we

present two SSP-based results without proofs.

Theorem 11 (Matrix SSP condition for exact recovery). Let A : Rn1×n2 → Rm be a linear operator.

Suppose there exists ∆ > 0 such that all nonzero H ∈ Null(A) satisfy

‖H‖∗
‖H‖F

≥
√

m

∆
.

Assume that ‖X0‖2 and α > 0 are fixed. If

m ≥
(

2 +
‖X0‖2

α

)2

r∆, (60)

then the null-space condition (54) holds for all H ∈ Null(A). Hence, (60) is sufficient for problem (8) to

recover any matrices X0 of rank r or less from measurements b = A(X0).
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Theorem 12 (Matrix SSP condition for stable recovery). Assume that linear operator A : Rn1×n2 → Rm

has the same property as it is in Theorem 11. Let X0 ∈ Rn1×n2 be an arbitrary matrix. Let α > 0 in problem

(8). Define C3 and C4 in (59), which depend on α. If

m ≥ 4 (1 + C3)
2
r∆, (61)

then the solution X∗ of (8) satisfies

‖X∗ −X0‖∗ ≤ 4C4 · σ̂(X0), (62)

where σ̂(X0) :=
∑min{n1,n2}

i=r+1 σi(X
0) is the best rank-r approximation error of X0.

4 Global Linear Convergence

Now we turn to study the numerical properties of the linearized Bregman algorithm (LBreg) for the aug-

mented model (5). In this section, we show that LBreg, as well as its two fast variants, achieves global linear

convergence with no assumptions on the solution sparsity or aforementioned properties of matrix A. First,

we review its four equivalent forms of LBreg that have appeared in different papers. We start off with the

dual gradient descent iteration [40]: give a step size h > 0, y(0) = 0, and k starting from 0,

y(k+1) ← y(k) − h
(

−b+ αA shrink(A⊤y(k))
)

. (63a)

The last term of (63a) is the gradient of the objective function of problem (10). By letting x(k) :=

α shrink(A⊤y(k)), one obtains the “primal-dual” form

x(k+1) ← α shrink(A⊤y(k)), (63b)

y(k+1) ← y(k) + h(b−Ax(k+1)). (63c)

The same iteration is given in [41, 33, 4] as

x(k+1) ← α shrink(v(k)), (63d)

v(k+1) ← v(k) + hA⊤(b−Ax(k+1)), (63e)

where v(k) = A⊤y(k). Finally, the name “linearized Bregman” comes from the iteration [41]

x(k+1) ← argmin
x

Dp(k)

ℓ1
(x,x(k)) + h〈A⊤(Ax(k) − b),x〉+ 1

2α
‖x− x(k)‖22, (63f)

p(k+1) ← p(k) + hA⊤(b−Ax(k))− 1

α
(x(k+1) − x(k)), (63g)

where x(0) = p(0) = 0 and the Bregman “distance” Dp
f (·, ·) is defined as

Dp
f (x,y) = f(x)− f(y)− 〈p,x− y〉, where p ∈ ∂f(y).

The last two terms of (63f) replace the term h
2 ‖Ax− b‖22 in the original Bregman iteration. Following [41],

one can obtain (63d)-(63e) from (63f)-(63g) by setting v(k) = p(k) + hA⊤(b−Ax(k)) + x(k)

α .

It is most convenient to work with (63a) due to its simplicity and gradient-descent interpretation. In the

rest of this section, we let f(y) be the objective function of (10) and have ∇f(y) = −b+ αA shrink(A⊤y).
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4.1 Preliminary

In this subsection, we prove a few key results that will be used to prove the restricted strongly convex

property in the next subsection.

Definition 4. Let λ++
min(S) denote the minimum strictly positive eigenvalue of a nonzero symmetric matrix

S, assuming its existence. Namely,

λ++
min(S) := min{λi(S) : λi(S) > 0},

where {λi(S)} is the set of eigenvalues of S.

Lemma 4. Let A be a nonzero m-by-n matrix. Let D ≻ 0 be an n-by-n diagonal matrix with strictly positive

diagonal entries. We have

λ++
min(ADA⊤) = min

‖Aα‖2=1
(Aα)⊤(ADA⊤)(Aα). (64)

Proof. Let r = rank(A) ≥ 1. Since rank(ADA⊤) = r and ADA⊤ � 0, ADA⊤ has r strictly positive

eigenvalues. Let λ > 0 be a positive eigenvalue and x be its corresponding eigenvector. Since ADA⊤x =

λx, we see x ∈ Range(A) and can thus write x = Aαλ. From this and rank(A) = r, the eigenvectors

corresponding to the r strictly positive eigenvalues span Range(A). Hence, (64) attains its minimum at the

eigenvector Aα corresponding to the eigenvalue λ++
min(ADA⊤).

Next, we show that a constrained eigenvalue problem, which will appear in our proof of restricted strong

convexity, has a strictly positive minimum objective.

Lemma 5. Let A be a nonzero m-by-n matrix, B be an m-by-ℓ matrix, and D ≻ 0 be a diagonal matrix of

size n by n. Let r := rank([A B])− rank(A), which satisfies 0 ≤ r ≤ ℓ. Let c and d be free vectors of sizes

n and ℓ, respectively. The constrained eigenvalue problem

v := min
{
(Ac +Bd)⊤(ADA⊤)(Ac +Bd) : ‖Ac+Bd‖2 = 1,B⊤(Ac+Bd) ≤ 0,d ≥ 0

}
(65)

satisfies v ≥ vmin > 0, where

vmin := min
C

{
λ++
min(ADA⊤ +CC⊤) : C is an m-by-p submatrix of B, r ≤ p ≤ ℓ

}
. (66)

(If p = 0, C vanishes.)

Let us first explain this lemma. If A and B are orthogonal to each other (i.e., A⊤B = 0), then

B⊤(Ac + Bd) = B⊤Bd ≤ 0 and d ≥ 0 will force Bd = 0 and thus reduce (65) to (64). Therefore, the

lemma is more about the general case where A and B are not orthogonal. The result (66) reveals that

(65) can go lower than (64) yet must remain strictly positive. From another perspective, if we ignore the

constraints B⊤(Ac+Bd) ≤ 0 in (65), then we can choose c and d ≥ 0 such that A⊤(Ac+Bd) = 0 and thus

have v = 0. (For example, if r > 0, we can choose any d ≥ 0 so that Bd 6∈ Range(A) and then choose c so

that −Ac equals Bd’s projection on Range(A); if r = 0, the case is trivial.) Therefore, the three constraints

in (65) prevent A⊤(Ac +Bd) from being 0. Those constraints will arise during the study of certain KKT

systems.

Proof of Lemma 5. Let B = [b1 b2 · · ·bℓ]. If r = 0, then rank([A B]) = rank(A) and thus Ac + Bd ∈
Range(A). Since dropping the constraints B⊤(Ac + Bd) ≤ 0 and d ≥ 0 from (65) does not increase its

optimal objective, we have v ≥ λ++
min(ADA⊤) ≥ vmin > 0 from Lemma 4.
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Now we consider the nontrivial case r > 0, i.e., Range([A B]) ) Range(A). Ignoring the constraints

B⊤(Ac + Bd) ≤ 0, we can choose c and d ≥ 0 such that A⊤(Ac + Bd) = 0 and thus v = 0. (See

the discussions before the proof for example.) Therefore, the rest of the proof focuses on the role of these

constraints.

The proof is based on induction. We will show later that as long as Range([A B]) ) Range(A), any

minimizer (c∗,d∗) of (65) makes at least one of the constraintsB⊤(Ac+Bd) ≤ 0 active. (Minimizer (c∗,d∗)

exists for the following reason. Let s = (Ac) and t = (Bd) be the optimization variables instead of c and

d; then constraints d ≥ 0 translate to t ∈ {Bd : d ≥ 0}, which is a closed set. Since problem (65) has a

compact, nonempty feasible set and a continuous objective function in terms of s and t, there exist minimizer

(s∗, t∗) and thus (c∗,d∗).) Without loss of generality, suppose this active constraint is b⊤
1 (Ac∗ +Bd∗) = 0.

From this, we obtain

v = (Ac∗ +Bd∗)⊤(ADA⊤)(Ac∗ +Bd∗) = (Ac∗ +Bd∗)⊤(ADA⊤ + b1b
⊤
1 )(Ac∗ +Bd∗).

We move b1 “from B to A” by introducing new matrices A1 := [A b1], B1 := [b2 b3 · · ·bℓ]. Introduce

D1 :=

[

D 0

0 1

]

so (ADA⊤ +b1b
⊤
1 ) = (A1D1A

⊤
1 ). Furthermore, drop the constraints b⊤

1 (Ac∗ +Bd∗) ≤ 0 and d1 ≥ 0, and

consider the resulting problem

v1 := min
c1,d1

{

(A1c1 +B1d1)
⊤(A1D1A

⊤
1 )(A1c1 +B1d1) :

‖A1c1 +B1d1‖2 = 1,

B⊤
1 (A1c1 +B1d1) ≤ 0,d1 ≥ 0

}

. (67)

(67) would have the same objective value as (65) if the active constraint b⊤
1 (Ac∗ +Bd∗) = 0 was present.

As (67) does not have this constraint, we conclude

v ≥ v1. (68)

We apply the same argument to (67) and then inductively to the subsequent problems: let

vj := min
cj ,dj

{

(Ajcj +Bjdj)
⊤(AjDjA

⊤
j )(Ajcj +Bjdj) :

‖Ajcj +Bjdj‖2 = 1,

B⊤
j (Ajcj +Bjdj) ≤ 0,dj ≥ 0

}

. (69)

where each Aj = [Aj−1 bj ], Bj = [bj+1 · · ·bℓ], and Dj =

[

Dj−1 0

0 1

]

, for j = 2, 3, . . . , p until either p = ℓ

(i.e., “all bi’s have been moved out of B”) or Range([Ap Bp]) = Range(Ap) (i.e., the condition for the

induction breaks down when j reaches p). The former case occurs if r = ℓ, and in this case, we obtain empty

Bℓ and dℓ and thus

vℓ = min
cℓ

{
(Aℓcℓ)

⊤(AℓDℓA
⊤
ℓ )(Aℓcℓ) : ‖Aℓcℓ‖2 = 1

}
.

and from the induction,

v ≥ v1 ≥ · · · ≥ vℓ.

From AℓDℓA
⊤
ℓ = ADA⊤ +BB⊤ and Lemma 4, it follows

vℓ = λ++
min(ADA⊤ +BB⊤).

The latter case (i.e., j = p < ℓ) occurs if 0 < r < ℓ. In this case, p ≥ r and the induction gives v ≥ v1 ≥ · · · ≥
vp. From Range([Ap Bp]) = Range(Ap) and the same argument at the beginning of this proof, we have

vp ≥ λ++
min(ApDpA

⊤
p ). By the definition of vmin, we have λ++

min(ApDpA
⊤
p ) ≥ vmin and thus v ≥ vmin > 0.
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Hence, Lemma 5 is proved for all three cases: r = 0, 0 < r < ℓ, and r = ℓ.

Finally, we establish the existence of an active constraint by showing that if Range([A B]) ) Range(A),

every solution of the problem obtained by removing the constraints B⊤(Ac+Bd) ≤ 0 from (65), namely,

min
c,d

{
(Ac+Bd)⊤(ADA⊤)(Ac+Bd) : ‖Ac+Bd‖2 = 1,d ≥ 0

}
, (70)

will violate B⊤(Ac +Bd) ≤ 0. Since Range([A B]) ) Range(A), as been argued above, one can choose c

and d ≥ 0 such that Ac+Bd ∈ Null(A) and thus (Ac+Bd)⊤(ADA⊤)(Ac+Bd) = 0. (See the discussions

before the proof for example.) Therefore, any solution (c̄, d̄) of (70) must attain the 0 objective, so

A⊤(Ac̄+Bd̄) = 0. (71)

Suppose

B⊤(Ac̄ +Bd̄) ≤ 0. (72)

i.e., no constraint is violated. Then, from d̄ ≥ 0, (72), and (71), it follows

d̄⊤B⊤(Ac̄+Bd̄) ≤ 0, (73)

c̄⊤A⊤(Ac̄+Bd̄) = 0, (74)

so

‖Ac̄+Bd̄‖22 = d̄⊤B⊤(Ac̄+Bd̄) + c̄⊤A⊤(Ac̄+Bd̄) ≤ 0,

which contradicts the constraint ‖Ac+Bd‖2 = 1. Therefore, B⊤(Ac̄ +Bd̄) ≤ 0 cannot hold, and at least

one of these constraints must be violated. Clearly, this argument applies to problem (69) for j = 1, 2, . . . , as

long as j ≤ ℓ and Range([Aj Bj ]) ) Range(Aj).

Lemma 6. Let shrink be the shrinkage operator shrink(s) = sign(s)max{|s| − 1, 0}. Then the following

inequality

(s− s∗) · (shrink(s)− shrink(s∗)) ≥ | shrink(s∗)|
| shrink(s∗)|+ 2

· (s− s∗)2 ≥ 0 (75)

holds for ∀s, s∗ ∈ R. The first equality holds when s = −sign(s∗).

Proof. The first inequality in (75) can be proved by elementary case-by-case analysis. The second one is

trivial.

4.2 Globally Linear Convergence

In this subsection, we show that the LBreg iteration (63a), as a fixed-step size gradient descent iteration for

(10), generates a globally linearly convergent sequences {yk} and {xk}.
To do this, we need the following theorem from [40] with our modifications for better clarity. Below, we

use the notion

shrink(z) := shrink1(z) = z− Proj[−1,1]n(z) = sign(z)max{|z| − 1,0},

where sign(·), | · |, and max{·, ·} are component–wise operations.

Theorem 13. Let f denote the objective function of problem (10), and x∗ denote the solution of (5), which

is unique since it has a strictly convex objective. Define coordinate sets S+,S−,S0 as the sets of positive,

negative, and zero components of x∗, respectively. Corresponding to S+,S−,S0, decompose

A = [A+,A−,A0],

x∗ = [x∗
+;x

∗
−;x

∗
0].
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Then, the set of solutions of (10) is given by

Y∗ = {y′ ∈ Rm : α shrink(A⊤y′) = x∗} (76a)

= {y′ ∈ Rm : A⊤
+y

′ − 1 = α−1x∗
+, A⊤

−y
′ + 1 = α−1x∗

−, − 1 ≤ A⊤
0 y

′ ≤ 1}, (76b)

which is a convex set. Furthermore, ∇f(y′) = 0, ∀y′ ∈ Y∗.

Proof. Any y′ ∈ Y∗ must satisfy the strong duality condition, namely, the primal objective equal to the dual

objective: −f(y′) = ‖x∗‖1 + 1
2α‖x∗‖22. From this and Ax∗ = b, it is easy to derive α shrink(A⊤y′) = x∗

using a case-by-case analysis on the sign of x∗
i . Conversely, since ∇f(y) = −b + A(α shrink(A⊤y)) and

Ax∗ = b, any y′ obeying α shrink(A⊤y′) = x∗ satisfies ∇f(y′) = 0. Then, y′ ∈ Y∗.

By the definition (76b), Y∗ is a polyhedron, so it is convex.

In general, the two sets of equality equations in (76b) do not define a unique y∗, so Y∗ can include

multiple solutions.

A typical tool for obtaining global convergence at a linear rate (or, global geometric convergence) is the

strong convexity of the objective function. A function g is strongly convex with a constant c if it satisfies

〈y − y′,∇f(y)−∇f(y′)〉 ≥ c‖y− y′‖2, ∀y,y′ ∈ dom f. (77)

Strong convexity, however, does not hold for our f(y) since ∇f(y∗) = 0, ∀y∗ ∈ Y∗, while Y∗ is not

necessarily a singleton. Nevertheless, we establish the “restricted” strong convexity (78) below.

Lemma 7 (Restricted strong convexity). Consider problem (10) with a nonzero m-by-n matrix A and

nonzero vector b. Assume that Ax = b are consistent. Let ProjY∗(y) denote the Euclidean projection of y

to the solution set Y∗. The objective function f of (10) satisfies

〈y − ProjY∗(y),∇f(y)〉 ≥ ν‖y − ProjY∗(y)‖2, ∀y, (78)

where constant

ν = λA ·
(

min
i∈supp(x∗)

α|x∗
i |

|x∗
i |+ 2α

)

> 0, (79)

and λA = min
{
λ++
min(CC⊤) : C is a nonzero submatrix of A of m rows

}
.

Note that if we let y′ = ProjY∗(y) and from ∇f(y′) = 0, (78) becomes 〈y − y′,∇f(y) − ∇f(y′)〉 ≥
ν‖y − y′‖2. Hence, (78) is the restriction of (77) to the specially chosen y′. Yet, this will be enough for

global linear convergence.

Proof of Lemma 7. Since Ax = b are consistent, problem (5) has a unique solution x∗, so Y∗ is well-defined

and nonempty. If y ∈ Y∗, then y = ProjY∗(y) and thus (78) holds trivially. To show (78) for y 6∈ Y∗, we

shall consider

min

{ 〈y − y′,∇f(y) −∇f(y′)〉
〈y − y′,y − y′〉 : y − y′ 6= 0, y′ = ProjY∗(y).

}

(80)

The proof is divided to three parts. The first part works out y′ = ProjY∗(y) and express y− y′ in terms of

submatrices of A. The second part establishes 〈y−y′,∇f(y)−∇f(y′) ≥ (y−y′)⊤M(y−y′), where M � 0

also depends on submatrices of A. The last part invokes Lemma 5 to obtain a strictly positive lower bound

for (80). Most of the effort is to decompose A into the submatrices and understand how they contribute to

y − y′ and ∇f(y) −∇f(y′).

Part 1. By definition, y′ = ProjY∗(y) is the solution of

min
ȳ

{
1

2
‖ȳ − y‖22 : ȳ ∈ Y∗

}

. (81)
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Hence, y′ satisfies the KKT conditions of (81). Using the expression of Y∗ in (76b), these conditions are

y − y′ = A+λ+ +A−λ− +A0(u− ℓ), (82a)

y′ ∈ Y∗, (82b)

ℓ,u ≥ 0, (82c)

(1−A⊤
0 y

′)⊤u+ (1+A⊤
0 y

′)⊤ℓ = 0, (82d)

where λ+ and λ− are the Lagrange multipliers for the two equality conditions in (76b) and ℓ and u are

those for the first and second inequality conditions in (76b), respectively. Equation (82d) is the so-called

complementarity condition, which together with (82c), gives the following three cases for ∀i ∈ S0:

ℓi = 0, ui = 0; if ui > 0, then A⊤
i y

′ = 1, ℓi = 0; if ℓi > 0, then A⊤
i y

′ = −1, ui = 0. (83)

Part 2. Let A± = [A+,A−]. We first argue that A± is a nonzero submatrix of A. Since A and b are

both nonzero, the solution x∗ to problem (5) is nonzero. If some column ai of A is a zero vector, then xi is

free from the constraints Ax = b and thus x∗
i = 0. Hence, all the columns of A± are nonzero vectors.

From ∇f(y) = −b+ αA shrink(A⊤y) and 0 = ∇f(y′) = −b+ αA shrink(A⊤y′), we obtain

〈y − y′,∇f(y)〉 = 〈y − y′,∇f(y)−∇f(y′)〉 =α〈A⊤y −A⊤y′, shrink(A⊤y) − shrink(A⊤y′)〉 (84a)

=α〈A⊤
±y −A⊤

±y
′, shrink(A⊤

±y) − shrink(A⊤
±y

′)〉 (84b)

+ α〈A⊤
0 y −A⊤

0 y
′, shrink(A⊤

0 y)− shrink(A⊤
0 y

′)〉. (84c)

By definition, every component of shrink(A⊤
±y

′) = α−1x∗
± is nonzero, and all components of shrink(A⊤

0 y
′) =

α−1x∗
0 are zero. For this reason, we deal with (84b) and (84c) separately.

Applying inequality (75) to (84b), we can “remove” the “shrink” operators for it as

α〈A⊤
±y −A⊤

±y
∗, shrink(A⊤

±y)− shrink(A⊤
±y

′)〉 = α
∑

i∈S±

(a⊤i y − a⊤i y
′) · (shrink(a⊤i y)− shrink(a⊤i y

′))

≥ α
∑

i∈S±

α−1|x∗
i |

α−1|x∗
i |+ 2

· (a⊤i y − a⊤i y
′)2

= α(y − y′)⊤A±D̂A⊤
±(y − y′), (85)

where D̂ := diag
(

α−1|x∗
i |

α−1|x∗
i
|+2

)

i∈supp(x∗)
≻ 0. Equation (85) along is not enough to bound (80) from zero since

A± can have more columns than rows and A±D̂A⊤
± can be rank deficient. So, we need to include (84c) in

the analysis, and we begin with a decomposition of the involved matrix A0:

A0 = [A1 A2 A3 A4 A5]

according to the criteria

y − y′ = A±λ± +A1u1 +A2u2 −A3ℓ3 −A4ℓ4, where u1,u2, ℓ3, ℓ4 > 0, (86a)

A⊤
1 y > +1, (86b)

A⊤
2 y ≤ +1, (86c)

A⊤
3 y < −1, (86d)

A⊤
4 y ≥ −1. (86e)

Equations (86) mean the followings: (i) the projected point y′ is actively confined by the boundaries of Y∗

involving [A1 A2 A3 A4] (c.f., the last term of (76b)); (ii) A5 does not contribute to y−y′; (iii) by applying
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(83) and (86b)–(86e), we get A⊤
1 y

′ = 1, A⊤
3 y

′ = −1 and can thus simplify the components of (84c) involving

A1 and A3 as follows:

shrink(A⊤
1 y) − shrink(A⊤

1 y
′) = shrink(A⊤

1 y) = A⊤
1 y − 1 = A⊤

1 y −A⊤
1 y

′, (87a)

shrink(A⊤
3 y) − shrink(A⊤

3 y
′) = shrink(A⊤

3 y) = A⊤
3 y + 1 = A⊤

3 y −A⊤
3 y

′. (87b)

Now we “drop” the components of (84c) involving A2, A4, and A5 as follows: from (75), it follows that

〈A⊤
i y −A⊤

i y
′, shrink(A⊤

i y)− shrink(A⊤
i y

′)〉 ≥ 0 for i = 2, 4, 5. Hence,

α〈A⊤
0 y −A⊤

0 y
′, shrink(A⊤

0 y) − shrink(A⊤
0 y

′)〉 =α

5∑

i=1

〈A⊤
i y −A⊤

i y
′, shrink(A⊤

i y)− shrink(A⊤
i y

′)〉

≥α
∑

i=1,3

〈A⊤
i y −A⊤

i y
′, shrink(A⊤

i y) − shrink(A⊤
i y

′)〉

=α(y − y′)⊤(A1A
⊤
1 +A3A

⊤
3 )(y − y′). (88)

Now we combine (85) and (88). Define Ā = [A± A1 (−A3)], c̄ = [λ±;u1; ℓ3], B̄ = [A2 (−A4)], d̄ = [u2; ℓ4],

and D̄ =

[

D̂ 0

0 I

]

. By (86a), we have y − y′ = Āc̄ + B̄d̄ and d̄ ≥ 0. Plugging (85) and (88) into (84), we

get

〈y − y′,∇f(y)〉 ≥ α(Āc̄+ B̄d̄)⊤(ĀD̄Ā⊤)(Āc̄+ B̄d̄) (89)

However, (89) is still not enough to bound (80) from zero since ĀD̄Ā⊤ may still be rank deficient.

Part 3. To bound (80), we now include the “dropped” parts of A and apply Lemma 5. From (83), we

have A⊤
2 y

′ = 1 and A⊤
4 y

′ = −1, and further from (86c) and (86e),

1 ≥ A⊤
2 y =A⊤

2 y
′ +A⊤

2 (y − y′) = +1+A⊤
2 (Āc̄+ B̄d̄),

−1 ≤ A⊤
4 y =A⊤

4 y
′ +A⊤

4 (y − y′) = −1+A⊤
4 (Āc̄+ B̄d̄),

or written compactly,

B̄⊤(Āc̄+ B̄d̄) ≤ 0. (90)

Now for the objective of (80), we apply (89) and then Lemma 5 to obtain

〈y − y′,∇f(y)〉
〈y − y′,y − y′〉 ≥α ·min

{
(Āc̄+ B̄d̄)⊤(ĀD̄Ā⊤)(Āc̄+ B̄d̄)

(Āc̄+ B̄d̄)⊤(Āc̄+ B̄d̄)
: Āc̄+ B̄d̄ 6= 0, d̄ ≥ 0, B̄⊤(Āc̄+ B̄d̄) ≤ 0

}

≥α ·min{λ++
min(ĀD̄Ā⊤ + C̄C̄⊤) : C̄ is an m-by-p submatrix of B̄, p ≥ 0}

Note that under our convention, an m-by-0 matrix vanishes. Since matrix Ā contains the nonzero matrix

A± as a submatrix, ĀD̄Ā⊤ + C̄C̄⊤ is nonzero. Therefore, we have

〈y − y′,∇f(y)〉
〈y − y′,y − y′〉 ≥α · (min

i
(D̄)ii) ·min{λ++

min(CC⊤) : C is a nonzero submatrix of A of m rows}
︸ ︷︷ ︸

λA

≥
(

min
i∈supp(x∗)

α|x∗
i |

|x∗
i |+ 2α

)

· λA

= ν.
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Remark 4. If the entries of A are in general positions, i.e., any m distinct columns of A are linearly

independent, or in other words, A has completely full rank [25], then all m-by-m submatrices of A have

full rank and thus λA = {λmin(CC⊤) : C is an m-by-m submatrix of A}. This is often the case when those

entries are samples from i.i.d. subgaussian distributions, or the columns of A are data vector independent

of one another. In general, the submatrix C∗ achieving the minimum λA has the maximum number of

independent columns, i.e., it contains r columns from A where r = rank(A).

With the restricted strong convexity property, we next show the main convergence result with the help

of the standard notion of point–to–set distance

dist(z,Z) := min
z′
{‖z− z′‖2 : z′ ∈ Z},

where z is a vector and Z is a set of vectors. By convention, the convergence dist(zk,Z)→ 0 is called globally

Q-linear if there exists µ ∈ (0, 1) such that dist(zk+1,Z)/ dist(zk,Z) ≤ µ for all k, and the convergence sk → 0

is called globally R-linear if there exists a globally Q-linear converging sequence tk → 0 such that |sk| ≤ |tk|.
Unlike Q-linear convergence, R-linear convergence does not require |sk| to be monotonic in k.

Theorem 14. Consider problem (10) with a nonzero m-by-n matrix A and nonzero vector b. Assume that

Ax = b are consistent. Let f be the objective function of problem (10) and f∗ be the optimal objective value.

The linearized Bregman iteration (63a) starting from any y(0) ∈ Rm with step size

0 < h < 2ν/(α2‖A‖4),

where the strong convexity constant ν is given in (79), generates a globally Q-linearly converging sequence

{y(k), k ≥ 1}
dist(y(k),Y∗) ≤

(
1− 2hν + h2α2‖A‖42

)k/2
dist(y(0),Y∗), (91)

where Y∗ is given in (76). The objective value sequence converges R-linearly as

f(y(k))− f∗ ≤ L

2

(
1− 2hν + h2α2‖A‖42

)k
dist2(y(0),Y∗). (92)

Furthermore, {x(k)} is a globally R-linear converging sequence since

‖x(k+1) − x∗‖2 ≤ α‖A‖2 · dist(y(k),Y∗). (93)

Proof. For each k, let y′(k) := ProjY∗(y(k)). Hence, dist(y(k),Y∗) = ‖y(k) − y′(k)‖2. Using this projection

property, we have

‖y(k+1) − y′(k+1)‖22 ≤‖y(k+1) − y′(k)‖22 (94a)

= ‖y(k) − y′(k) − h∇f(y(k))‖22 (94b)

= ‖y(k) − y′(k)‖22 − 2h〈∇f(y(k)),y(k) − y′(k)〉+ h2‖∇f(y(k))−∇f(y′(k))‖22 (94c)

≤ (1− 2hν) ‖y(k) − y′(k)‖22 + h2‖αA shrink(A⊤y(k))− αA shrink(A⊤y′(k))‖22 (94d)

≤ (1− 2hν) ‖y(k) − y′(k)‖22 + h2α2‖A‖22‖A⊤y(k) −A⊤y′(k)‖22 (94e)

≤
(
1− 2hν + h2α2‖A‖42

)
‖y(k) − y′(k)‖22 (94f)

where we have used the nonexpansive property of the shrinkage operator (cf. [21]). Hence, we obtain (91).

To get (92), we recall for any convex f with L-Lipschitz ∇f , f(y)− f(x) ≤ 〈∇f(x),y− x〉+ L
2 ‖x− y‖22

(see Theorem 2.1.5 in [31]). Let y = y(k) and x = y′(k). We have f(y′(k)) = f∗, ∇f(y′(k)) = 0 and from

(91),

f(y(k))− f∗ ≤ L

2
‖y(k) − y′(k)‖22 ≤

L

2

(
1− 2hν + h2α2‖A‖4

)k
dist2(y(0),Y∗),
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which shows (92). When 0 < h < 2ν/(α2‖A‖4), we have
(
1− 2hν + h2α2‖A‖4

)
< 1. Due to (63b), (76a),

and the non-expansiveness of shrink(·), we get

‖x(k+1) − x∗‖2 ≤ ‖α shrink(A⊤y(k))− α shrink(A⊤y′(k))‖2 (95a)

≤ α‖A⊤y(k) −A⊤y′(k)‖2 (95b)

≤ α‖A‖2 · ‖y(k) − y′(k)‖2, (95c)

which gives (93).

Remark 5. If we set h = ν/(α2‖A‖42), then the geometric decay factor
(
1− 2hν + h2α2‖A‖42

)
=
(
1− ν2/(α2‖A‖42)

)
.

Hence, we find the convergence rate affected by ν, α, and ‖A‖2. From the definition of ν in (79), we get

decay factor = 1− ν2

α2‖A‖42
= 1− ω2 · κ2, (96)

where

ω := min
i∈supp(x∗)

|x∗
i |/α

2 + |x∗
i |/α

κ := min

{
λ++
min(CC⊤)

λmax(AA⊤)
: C is a nonzero submatrix of A of m rows

}

.

The constant κ is similar to the “condition number” of A. Let r∗ = (maxi∈supp(x∗) x
∗
i )/(mini∈supp(x∗) x

∗
i )

denote the dynamic range of x∗. If we set α = C‖x∗‖∞, then

ω = (1 + 2Cr∗)−1.

For recovering a sparse vector, recall that both the simulations in Section 3.1 and the analysis in Section 3

show that if x∗ has faster decaying nonzero entries, C can be set smaller. So, when r∗ is large, one can

choose a small C to counteract.

The proved rate of convergence is quite conservative. The dependence on the solution dynamic range is

due to (85), which considers the worst case of (75), yet when this worst case happens, the inequality between

(94d) and (94e) can be improved due to properties of the shrinkage operator. In addition, our analysis on

the global rate does not exploit the possibility that the algorithm may reach the optimal active set in a finite

number of iterations and then exhibit faster linear convergence, typically at a rate depending only on the

active set of columns of A and independent of the solution’s dynamic range.

The step size h ≤ 2ν/(α2‖A‖42) is also very conservative. As one will see in the simulation results in

the next section, classical techniques for gradient descents such as line search can significantly accelerate the

convergence.

4.3 Extensions to two faster variants of LBreg

We extend the linear convergence results to two variants of LBreg (iteration (63)) that can run significantly

faster than LBreg: BB-line-search [40] and kicking [33]. The former dynamically sets the step size h in (63)

by the Barzilai-Borwein method with nonmontone line search using techniques from [43]. The latter is a

simple add-on to iteration (63) to consolidate a sequence of consecutive iterations in which xk is unchanged.

If xk = · · · = xk+j , [33] shows that yk, . . . ,yk+j stay on the same line, so it is easy to skip all the intermediate

iterations and go directly to the end of the line.

Obviously, since kicking only skips certain LBreg iterations, it remains have global linear convergence.

On the other hand, given strong convexity, Theorems 3.1 and 3.2 of [43] shows that BB-line-search also
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enjoys global linear convergence (though the results are weakened to the R-linear convergence of Ax(k) − b

in our case); it is not difficult to verify that the proof of the theorem remains to hold given only restricted

strong convexity1.

4.4 Numerical Demonstration

We present the results of simple tests to demonstrate the convergence of three algorithms: the original

LBreg iteration (63), kicking [33], and BB-line-search [43, 40]. Their numerical efficiency and properties

have been previously studied in papers [33, 39, 23] and are not the focus of this paper, so we merely use two

examples to illustrate global linear convergence. We generated two compressive sensing tests where both

tests had signals x0 with 512 entries, out of which 50 were nonzero and sampled from the standard Gaussian

distribution (for Figure 2) or the Bernoulli distribution (for Figure 3). Both tests had the same sensing

matrix A with 256 rows and entries sampled from the standard Gaussian distribution. We set α = 10‖x0‖∞
in each test and stopped all the three algorithms upon ‖∇f(y)‖2 < 10−6. The iterative errors ‖xk − x∗‖2
and ‖yk − y∗‖2 of the three algorithms are depicted in Figures 2 and 3. In both tests, the original version
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Figure 2: Convergence of primal and dual variables of three algorithms on Gaussian sparse x0

was the slowest. Besides the obvious speed differences, we observe that {x(k)} were not monotonic, there

were sets of consecutive iterations in which x(k) did not change or fluctuated. Indeed, it is impossible to

improve its R-linear convergence to Q-linear convergence. In addition, unlike the other two algorithms,

BB-line-search has non-monotonic {y(k)}, which converges R-linearly instead of Q-linearly.

The convergence appears to have different stages. The early-middle stage has much slower convergence

than the final stage.

Comparing the results of two tests, the convergence was faster on the Bernoulli sparse signal than the

Gaussian sparse signal. Since the two tests used the same sensing matrix A and the same sparsity, the main

reason should be the dynamic range of the signals. A smaller dynamic range leads to faster convergence,

which matches our theoretical result on the convergence rate.

1In [43], Theorem 3.1 relies on its inequality (3.4), which in turn require inequalities (3.3) and (3.2) to hold between a

current point and its projection to the solution set. The latter is precise our (77). Theorem 3.2 needs (3.12) and in turn (3.11).

(3.11) is obtained from (3.1) restricted to between a current point and its projection to the solution set, which can be proved

by assuming (3.2) or our (77).
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Figure 3: Convergence of primal and dual variables of three algorithms on Bernoulli sparse x0

Appendix

Proof of Theorem 8. We establish the theorem by showing that (53) holds for any H ∈ Null(A) \ {0}.
Based on the SVD H =

∑m
i=1 σi(H)uiv

⊤
i , where σi(H) is the i-th largest singular value of H, we

decompose H = H0 + H1 + H2 + · · · where H0 =
∑r

i=1 σi(H)uivi, H1 =
∑2r

i=r+1 σi(H)uivi, H2 =
∑3r

i=2r+1 σi(H)uivi, . . . . Following these definitions, condition (53) can be equivalently written as

‖H0‖∗ < ‖
∑

i≥1

Hi‖∗. (97)

From H 6= 0 and the definition of H0, we know that H0 6= 0 and thus A(H0) 6= 0 due to the RIP of

A. From A(H) = 0 and A(H0) 6= 0, it follows that A(∑i≥1 Hi) 6= 0 and thus
∑

i≥1 Hi 6= 0. Therefore,
∑

i≥1 ‖Hi‖∗ > 0, and we can define t := ‖H1‖∗/(
∑

i≥1 ‖Hi‖∗) > 0 and ρ := ‖H0‖∗/(
∑

i≥1 ‖Hi‖∗) > 0.

Next, we present two inequalities without proofs (the interested reader can verify them following the

proofs of Lemmas 2.3 and 2.4 in [28]):

1− δ2r
r

(ρ2 + t2)




∑

i≥1

‖Hi‖∗





2

≤ ‖A(H0 +H1)‖22, (98a)

t(1 − t) + δ2r(1− 3t/4)2

r




∑

i≥1

‖Hi‖∗





2

≥ ‖A(
∑

i≥2

Hi)‖22. (98b)

Since A(H0 +H1) +A
(
∑

i≥2 Hi

)

= A(H) = 0, the two right-hand sides of (98) equal each other. Hence,

1− δ2r
r

(ρ2 + t2)




∑

i≥1

‖Hi‖∗





2

≤ t(1 − t) + δ2r(1− 3t/4)2

r




∑

i≥1

‖Hi‖∗





2

and thus,

ρ2 ≤ t(1− t) + δ2r(1− 3t/4)2 − (1 − δ2r)t
2

1− δ2r
.
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or after a simple calculation of the maximum of t ∈ [0, 1],

ρ ≤
√

4(1 + 5δ2r − 4(δ2r)2)

(1− δ2r)(32− 25δ2r)
=: θ2r. (99)

If δ2r < (77−
√
1337)/82 ≈ 0.4931, then θ2r < 1 and thus ρ < 1. By definition, we get (97) and (53).
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