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ACCELERATED SPATIAL APPROXIMATIONS FOR
TIME DISCRETIZED STOCHASTIC PARTIAL
DIFFERENTIAL EQUATIONS

ERIC JOSEPH HALL

ABSTRACT. The present article investigates the convergence of a
class of space-time discretization schemes for the Cauchy prob-
lem for linear parabolic stochastic partial differential equations
(SPDEs) defined on the whole space. Sufficient conditions are
given for accelerating the convergence of the scheme with respect
to the spatial approximation to higher order accuracy by an appli-
cation of Richardson’s method. This work extends the results of
Gyongy and Krylov [STAM J. Math. Anal., 42 (2010), pp. 2275—
2296] to schemes that discretize in time as well as space.

1. INTRODUCTION

For a fixed 7 € (0,1), we consider the equation
(1.1) vp = v+ (thh +fi) T+ Z (Mh’qv? 1t gip—1> &

fori € {1,...,n} and (w,z) € Q x G, Wlth a given initial condition,
where G}, is the space grid

G = {)\1h+"'+)\ph;)\17---7)\p€AU(_A)}

with mesh size h € R\ {0} for a finite subset A C R¢, for integer d > 1,
containing the origin. For a fixed T € (0, 00) we define the time grid

T, :={t;=1ir;i € {0,1,...,n},Tn =T},

partitioning [0,7] with mesh size 7, and note that v" = v"(w,t, )
depends on the parameter 7 as well as h, since we have used the
convention of writing v? in place of v"(t;) for t; € T.. In particu-
lar, let & = Awf(t;—1) := w’(t;) — w”(t;—1) be the ith increment of
w? with respect to T, where, for integer d; > 1, (w );h:l is a given
sequence of independent Wiener processes carried by the stochastic
basis (2, F, F(t), P) that is complete with respect the filtration F ()
for t € [0,T]. For each i € {0,...,n}, the L and M™"* are differ-
ence operators given by LI'¢ := a6, 10_p ,¢ and M ¢ = 076, 1,
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for p € {1,...,d;}, where repeated indices indicate summation over
A i€ A. We assume that a* = a(z) and b) = (bl’-\p(ac));h:1 are real-
valued P x B-measurable functions on Q x T, x R? for all A\, u € A and
further that ag\” = aff A Here P denotes the o-algebra of predictable
subsets of Q x [0,00) generated by F(t) and B = B(R?) denotes the
o-algebra of Borel subsets of R?. The spatial differences above are

defined by

x+h\) — oz
sl = I =0l
for A € R?\ {0} and by the identity for A = 0. We note that from this
definition one can obtain both the so called “forward” and “backward”
differences as h can be positive or negative.

Together with (ILI]) we consider

dy
(12) Vi = Vi1 + (LZUZ + fz) T+ Z (Mf_lvi,l + gf_l) §f

p=1

for i € {1,...,n} and (w,z) € Q x R? with a given initial con-
dition. Here £; = L(t;) and M? = MP~(t;) are second order and
first order differential operators given by L(t) := a*?(t)D,Ds and
MP(t) == b**(t)D,, respectively, where the summation is over «, 5 €
{0,1,...,d} and where D, = 9/0z%, for a € {1,...,d}, while Dy is
the identity. For each o and 3 we assume that a®’(t) = a®%(t, z) and
b (t) = (b (¢, x))zlzl are real-valued P x B-measurable functions on
Q x [0,T] x R?, and further that a®®(t) = a?(t) for all t € [0, 7).

Equations (L)) and (LZ) represent discrete schemes for approximat-
ing the solution to the Cauchy problem for

(1.3) du(t,z) = (Lu(t, x)+f(t,x))dt+zl(/\/lpu(t, x)+g°(t,x))dw(t)

p=1

for (w,t,r) € Q x [0,T] x R? with a given initial condition ug(z) =
u(0,z). Under certain compatibility assumptions, equation (ILII) rep-
resents an implicit space-time scheme for approximating the solution
to the Cauchy problem for (IL3]) by replacing the differential operators
with finite differences and by carrying out an implicit Euler method in
time. In a similar fashion, (L2) represents an implicit Euler method
for approximating the solution to the Cauchy problem for (IL3]) in time.
Second order linear parabolic SPDE such as (I.3)) arise in the nonlinear
filtering of partially observable diffusion processes as the Zakai equa-
tion ([I3] 16, 22} 1]). Since analytic solutions to (L3)) are difficult to
obtain, there is a keen interest in providing accurate numerical schemes
for its solution.

Our aim is to show that the strong convergence of the spatial dis-
cretization for the space-time scheme ([LT)) to the solution of the Cauchy
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problem for (IL3]) can be accelerated to any order of accuracy with re-
spect to the computational effort. In general, the error of finite differ-
ence approximations in the space variable for such equations is propor-
tional to the mesh size h, for example, see [20, 21]. We show the strong
convergence of the solution of the space-time scheme to the solution of
the time scheme (2] can be accelerated to higher order accuracy by
taking suitable mixtures of approximations using different mesh sizes.

This technique for obtaining higher order convergence, often referred
to as Richardson’s method after L.F. Richardson who used the idea to
accelerate the convergence of finite difference schemes to determinis-
tic partial differential equations (PDE) (see [17, [18]), falls under a
broadly applicable category of extrapolation techniques, for instance
see the survey articles [2, [9]. In particular, in [19, 14} [10] Richardson’s
method is implemented to accelerate the weak convergence of Euler
approximations for stochastic differential equations. Recently, in [4]
Gyongy and Krylov considered a semi-discrete scheme for solving ((IL3))
which discretized via finite differences in the space variable, while al-
lowing the scheme to vary continuously in time, and showed that the
strong convergence of the spatial approximation can be accelerated by
Richardson’s method. The current paper extends these results to the
implicit space-time scheme (L.T]).

We must mention that for the present scheme one cannot also ac-
celerate in time unless certain commutators of the differential operator
M? in equation (L3)) vanish, see [3]. For deterministic PDE we plan to
address the simultaneous acceleration of the convergence of approxima-
tions with respect to space and time in a future paper. Results concern-
ing acceleration for monotone finite difference schemes for degenerate
parabolic and elliptic PDE are given in [5], however our scheme is not
necessarily monotone.

In the next section, we present our assumptions as well as some
preliminaries. Then in Section [3] we record the main results, namely
Theorems Bl B.2] and B.3] the last of which says that the convergence
of the spatial approximation can be accelerated to any order of accu-
racy. In Section 4 we provide results which will be needed for the proofs
of Theorems 3.1l and In particular, we recall the solvability of the
space-time scheme ([[.T]), for the convenience of the reader, and present
a new contribution—an estimate for the supremum of the solution to
the scheme in appropriate spaces that is independent of A, the spatial
mesh size. In Section [fl we give the proof of a more general result and
show that it implies Theorem and hence Theorem B.11

We end with some notation that will be used throughout this work.
Let £2(G},) be the set of real-valued functions ¢ on G}, such that

6l = 1R lé(@)]? < oo

zeGy,
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and note that this notation will also be used for functions in ¢*(R%).

For a nonnegative integer m, let Wi» = Wi"(R?) be the usual
Hilbert-Sobolev space of functions on R¢ with norm || - ||,,,. We note
that for L? = L?(R%) = W2 the norm will be denoted by || - [|o. We use
the notation D'¢ for the collection of all Ith order spatial derivatives
of ¢. Let

WINT) = L*(Q x [0,T], P, W™

denote the space of Wj"-valued square integrable predictable processes
on  x [0,7]. These are the natural spaces in which to seek solutions

to (L3).
2. PRELIMINARIES AND ASSUMPTIONS

We begin by setting some assumptions on our operators and recalling
well known results concerning the solvability and rates of convergence
for our schemes. In particular, we will discuss an ¢*(G}) notion of
solution and an L? notion of solution and recall an important lemma
relating these function spaces.

An L?-valued continuous process u = (u(t))ep,r] is called a general-
ized solution to (L3)) if u € W, for almost every (w,t) € Q x [0, T,

T
/ lu(t) 2 dt < oo
0

almost surely, and

(u(t), ¢) :/0 ((a” = Daa®”)Dgu(s) + f(x), ¢) = (a*"Dgu, Dogp) ds

)+ / (MPu(s) + g°(s), &) duw(s)

holds for all ¢ € [0, 7] and ¢ € Cg°(RY).

Assumption 2.1. For each (w,t) € Q x[0,T] the functions a®® are m
times and the functions b are m + 1 times continuously differentiable
in x. Moreover there exist constants Ky, ..., K11 such that forl < m
|D'a*f| < K,
and for | < m+1
D6, < K
for all values of o, 8 € {0,...,d} and (w,t,x) € Q x [0,T] x R4,

Assumption 2.2. There exists a positive constant k such that

d
Z (207 — b*PHPP) 2% 2P > k|2|?
a,f=1

for all (w,t,z) € A x[0,T] x RY, 2 € RY, and p € {1,...,d,}.
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Assumption 2.3. The initial condition ug € L*(Q, Fo, Wa'™), the
space of Wi —valued square integrable Fy-measurable functions on €.
The f and g°, for p € {1,...,d1}, are predictable processes on Q2 x [0, T]
taking values in W3 and W3+t respectively. Moreover

T
E/O UL O + Ng@7 ) dt + Elluoll, 41 < oo,

where [[g()7 = 3L, lg(t) 7.

Under Assumptions 2.1} 2.2, and 2.3], the existence of a unique solu-
tion u € WH2(T) to (I3) is a classical result (see for example [15, [12]
or Theorem 5.1 from [11]).

Remark 2.4. We note that by Sobolev’s embedding of W3* C C,, the
space of bounded continuous functions, for m > d/2 we can find a
continuous function of x which is equal to uy almost everywhere for
almost all w € Q. Likewise, for each (w,t) € Q x [0,T] there exists
continuous functions of = which coincide with f(¢) and ¢”(¢) for almost
every z € RY. Thus, if Assumption holds with m > d/2 we assume
that ug, f(t), and g?(t) are continuous in z for all ¢ € [0, T.

For a nonnegative integer m, let m :=mV 1 and Ag := A\ {0}. We
place the following additional requirements on our space-time scheme.

Assumption 2.5. For all w € Q, fori € {0,...,n}, for \,u € Ay,
and for v € A: the a™ are m times continuously differentiable in x;
the a® and a*° are m times continuously differentiable in x; and the
b are m times continuously differentiable in x. Moreover there exist
constants Ag, ..., A such that for A\, u € Ay and 7 < m we have

|DIaM| < A
and for A € A and 7 < m we have

D7 < Aj,  |D7a®| < Aj, and |D7bY < A
for all (w,x) € A x R fori € {0,...,n}.
Assumption 2.6. There exists a positive constant k such that
Z (20 — b’\pb“p)z,\zu > K Z 22
A u€Ao A€Ao
for all (w,z) € QxR i €{0,...,n}, p € {l,...,di}, and numbers
Z); A € Ao.
For (1)) to be consistent with (L3]) we also require the following,.

Assumption 2.7. Fori € {0,...,n}

00 __ 00
o=a,; ,

T
0
E aiOXJ‘+ E ai“ﬂo‘:af‘o—i—a?a,

A€Ao nEAo

a
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Z ag\“)\a,uﬁ - a?ﬁ,

Ap€ho
Op _ 1 0p
bi - bz )
and
> bYA= b
AEAQ

forall a,p € {1,...,d} and p € {1,...,d;}.

Remark 2.8. If A, is a basis for R? and Assumption 2.7 holds then
Assumption 2.1] implies and implies with m = m.

A solution v" = (v, to (L) with an £2(G},)-valued Fy-measurable
initial condition v is understood as a sequence of ¢*(G},)-valued ran-
dom variables satisfying (LI)) on the grid Gj. The following result is

well known and we provide it for the sake of completeness.

Theorem 2.9. Let f and g° be F;-adapted (*(Gy)-valued processes and
let v be an Fo-measurable (*(G})-valued initial condition. If Assump-
tion holds then (1) admits a unique (*(Gyp)-valued solution for
sufficiently small T.

Proof. By Assumption 25| for each i € {1,...,n}, equation (1)) is a
recursion with bounded linear operators on ¢*(G}). In particular, for
each h the operator norm of 7L" is smaller than a constant less than
1 for sufficiently small 7, independently of w € Q. Hence (I — 7L")
is invertible in ¢*(G)},) for sufficiently small 7, by the invertibility of
operators in a neighborhood of the (invertible) identity operator 1.
Therefore, for ¢ € {1,...,n} we are guaranteed an (*(G})-valued ¢
satisfying (I — L) ¢ = 1 for all ¢ € ¢*(G},) and moreover this solution
is easily seen to be unique. Thus we can construct a unique solution
to the scheme iteratively. O

The rate of convergence of the solution v of (ILI)) (and v of (L2))
to the solution u of (L3 with initial condition wug is known. In [6] [7)
8], Gyongy and Millet obtained the rate of convergence for a class of
equations in the nonlinear setting of which our schemes are a special
case. Namely, in the situation of Remark 2.8 if Assumptions 2.1} 2.2]
and hold with a®®, b, f, and g¢” all Holder continuous in time with
exponent 1/2 then

£ max Z Z |0n.2 (0] () — () *h?

i<n
IA[<m+1 zeGy,

HETY Y a0 (z) — wi(x))Ph? < N(B? + 1)

i=1 |\|[<m+2 2€G,

for sufficiently small 7, h € (0,1), and for a constant N that is indepen-
dent of h and 7. The principal interest of this paper is to investigate
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higher order convergence with respect to the spatial discretization, that
is, to obtain an estimate, similar to the above, with a higher power of
h by applying Richardson’s method.

While it is natural to seek solutions to (L)) on the grid, carrying
out our analysis on the whole space will have certain advantages when
it comes to providing estimates for solutions to our schemes. Indeed,
we observe that (L)) is well defined not only on G, but for all z € R¥.
Therefore, we introduce an alternate notion of solution. A solution to
() on Q x T, x R¢ with an L2-valued Fy-measurable initial condition
vl is a sequence v" = (v!)™; of L?-valued random variables satisfying
(LI). In a similar spirit, solutions to (L2)) with the appropriate initial
condition are understood as sequences of 1, -valued random variables
satisfying (L2) in W5 '. The next result follows immediately from the
considerations in the proof of Theorem 2.9

Theorem 2.10. Let f and g° be Fi-adapted L?-valued processes and
let vl be an Fo-measurable L?-valued initial condition. If Assumption
3 holds then (1) admits a unique L?-valued solution for sufficiently
small T.

By Sobolev’s embedding theorem, for [ > d/2 there exists a linear
operator I : W} — Cy, such that ¢(z) = I¢(x) for almost every x € R4
and sup,cga [I9(z)| < N|o|; for all ¢ € W} where N is a constant.
We recall the following useful embedding of W} C ¢2(G},) from [4].

Lemma 2.11. Let | > d/2 and |h| € (0,1). For all ¢ € WL the
embedding
(2.1) > Ho@)Pn" < N6}

zeGy,
holds for a constant N that depends only on d and .
Proof. For z € R? let B,(z) := {x € R% |z — z| < r}. By the embed-
ding of W/ into Cy, for ¢ € C) we have

6(2)P < sup ¢*(z + ha)

z€B1(0)
<N / (D%} (z + ha)|* dx
|| <1 B1(0)
<N [ / (D) () de
o<l ()
< N~ |(D%¢)(z)|? da

la|<I Bh
for a constant N depending only on d and [ and thus

ol = PRI N S [ (D)@ de

2€G), <l z€Gy, ¥ Br(2)
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which yields the desired embedding. O

We will show that the restriction of a continuous modification of
an L%-valued solution to (L)) to the grid G, is also a solution in the
(*(G}) sense. Thus we will carry out our analysis in the whole space
and obtain estimates independent of A in appropriate Sobolev spaces
for the L?-valued solutions of (L)) and (L2).

We provide the aforementioned Sobolev space estimates in Section
[l We then use these estimates in Section [ to prove the main results,
which are the focus of the next section.

3. MAIN RESULTS

To accelerate the convergence of the spatial approximation by Richard-
son’s method we must have an expansion for the solution v" to (IL.I])
with initial data v = ug in powers of the mesh size h. This relies on
the possibility of proving the existence of sequences of random fields
v (2), vW(2), ..., v®(z), for z € R? and integer k > 0, satisfying
certain properties. Namely, @ ... v®) are independent of h; v is
the solution of (L2]) with initial value wg; and an expansion

k

(.1) @) = 3 Sl @) + B o)

holds almost surely for i € {1,...,n} and z € G}, where R™" is an
l5(Gh)-valued adapted process such that

(3.2) Emax sup |RI"(x)> < NR2FUEC,,

i<n zeGy,

for
Ko = Elluols + Er S IR+ 01]200) < o0
i=0

and a constant N independent of 7 and h.
Our first result concerns the existence of such an expansion.

Theorem 3.1. If Assumptions 2], [2.2, [2.3, 2.3, 2.8, and [2.7 hold

with p

m=m>k+1+ 5
for an integer k > 0 then expansion (B1]) and estimate (3.2) hold for
a constant N depending only on d, di, A, m, Ko, ..., K1, Ao, - -,
A, Kk, and T.

In the proof of Theorem B.1} as v" is defined not only on G}, but for
all x € R?, we will see that one can replace G, in (3.2) with R%. We
also note that in the situation of Remark 2.8 if Assumptions 2.1l and
hold with m > k + 1+ d/2 then the conditions of Theorem B.] are
satisfied.
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Taking differences of expansion (B.1]) clearly yields

k .
h , .
5h,AU?($) = Z ﬁé‘m)\vf])(l‘) + 5h7>\Ri ’h(x)

J=0

for any A = (A\1,...,\,) € AP, for integer p > 0, where A° := {0}
and d0p» = Oy, X -+ X Opn,- The bound on 5h,>\RT’h is not obvious,
nevertheless we have the following generalization of the above theorem.

Theorem 3.2. If the assumptions of Theorem [31 hold with

d
m:m>k+p+1+§

for a nonnegative integer p then for A € AP expansion [B1]) and

Emax sup [0, 87" (2)+ Ewax [|" [0 B]" (2) < NR2ETDK,

i<n z€Gp €Gy,
hold for a constant N depending only on d, dy, A, m, Ky, ..., Kni1,
Ao, ..., A, K, and T.

The proof of Theorems B.1] and appear in Section [Al following the
considerations in the next section. Currently we shall discuss how to
implement Richardson’s method to obtain higher order convergence in
the spatial approximation, extending the result from [4] to the space-
time scheme.

Fix an integer £ > 0 and let

k
(3.3) o= Bt
=0
where v2 ' solves, with 277k in place of h, the space-time scheme

(LI) with initial condition ug. Here § is given by (B, b1, ..., Bk) =
(1,0,...,0)V=! where V™! is the inverse of the Vandermonde matrix
with entries V¥ := 270-D0=D for 4, j € {1,...,k+1}. Recall that v(©
is the solution to (L2)) with initial condition ug.

Theorem 3.3. Under the assumptions of Theorem [31],

(3.4) E max sup |6;L($) _ UZ(O) (2)]2 < N|h|2(k+1)lCm
i=n z€G,
for a constant N depending only on d, di, A, m, Ko, ..., Kni1, Ao,
c Am; KJ, a/nd T

Proof. By Theorem B.1I] we have the expansion

k .
. h? ) .
2-ih _ _ (0) () | a2 9hpk+1
v =V + El i!QiJU + 7 h



10 E.J. HALL
for each j € {0,1,...,k} where 727" := p=+DRT27h  Then

i k ok i k |
= (Z ﬁj) U(O) + Z Z 5]%0(1) + Z 6jf7’,2_ﬂhhk+1
— ! pars

j=0 i=1

k 6 k
~ 'A7'2 Jh
gt 2

Jj=0

I
<
S
_I_
'Mw
i|:;_

> |
—

AT 27T
— ’U(O) + 6jTT,2 hthrl
J=0

since Ef:o B; =1 and Ef:o B;279 = 0 for each i € {1,2,...,k} by the
definition of (o, ..., ). Now using the bound on R™ from Theorem
B together with this last calculation yields the desired result. O

One can also construct rapidly converging approximations of deriva-
tives of v(®. That is, if the conditions of Theorem [3.1] hold instead
with

d

m=m>k+p+1+ 5

for nonnegative integers k and p then Theorem holds with 4, 0"
and 9,0 in place of o" and v(®) respectively, for A € AP. Therefore,
using suitable linear combinations of finite differences of ¥" one can
construct rapidly converging approximations for the derivatives of v(®).

In the next section, we present material that will be used to prove
the main results in this section. In particular, we provide estimates
for the L?-valued solutions of (LI)) and (L2) in appropriate Sobolev
spaces.

4. AUXILIARY RESULTS

We include the following bound, which is given for the continuous
time case in [4], for the convenience of the reader.

Lemma 4.1. If Assumptions and 2.8 hold then for all ¢ € L?
(0= | 20(0) +Z\Mhﬂ¢ ) da

< Mol - 53 1802

AEAQ
for alli € {1,...,n} and for a constant N depending only on k, Ay,
Ay, and the cardinality of A.

Proof. First observe that for u € Ay the conjugate operator in Ly to
d_p,u is —0p,,. Notice also that

5h,u(¢¢) = ¢5h7uw + (Th,u@b)‘shvugb
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where Tj, ,¢(z) = ¢(z + hp). Thus by simple calculations Q = QW +
Q(Q) —+ Q(S) -+ Q(4) Where

QM () = _/d Z (202" — 6;7617) (5p20) 0,0 (7) do,

R >‘7;U'€A0

QP (0= =2 [ 3 () (01r0)na) o)

R )‘7/»1'6/\0

Q7(9) =2 / (a7°0%(2) + o) D (70010 + a0 110)(2)) d,
R4 AEAQ
and

—

Q0) = [ (606%(a) 42 Y B8 0(e) dr
Rd AEA
By Assumption 2.6]

QP (0) <~k > l1dnrdll?
A€Ag

and by Assumption 2.5 Young’s inequality, and the shift invariance of
Lebesgue measure,

; K
Q7(9) < 5 D Bnadlis + Nl
AEAQ
for each j € {2,3,4} with a constant N depending only on the cardi-
nality of A, k, Ag and, for j = 2, also on A;. O

We also recall the following discrete Gronwall lemma. Note that we
use the convention that summation over an empty set is zero.

Lemma 4.2. For constants K € (0,1) and C, if (a;)j_, is a nonnega-
tive sequence such thata; < C+K Y 1_ a; holds for each j € {0,...,n}
then a; < C(1— K)™7 for j €{0,...,n}.

Proof. Let b; = C' + K 3>, b; and note that (1 — K)b; = b;_;. Then
a; < b; for j < n by induction, since ag < C' = by and

j—1 j—1
i=1 i=1
assuming a;_; < b;_1. Therefore a; < b; = C(1 — K)™ for each j <n

and for K € (0,1). O

The following provides a Sobolev space estimate for solutions to the
space-time scheme that is independent of h. For an integer m > 0,
denote by W1'(7) the space of Wj"-valued predictable processes ¢ on
Q) x T such that

[ = BT ) llgill7, < o0
i=1
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and note that we write

n di

[9]m = B7Y > " llgfln,

i=1 p=1
for functions g = (gp);h:l.

Theorem 4.3. For yp € A and p € {1,...,di}, let f*, g € WEH(7T).
If Assumption [2.3 holds then for each nonzero h there exists a unique
solution v € WE(T) of

dy
(4.1) vi=vioi+ > (Livi+ f7 + > (Mviy + g0 )€
=1

HEA p=

for any Wit -valued Fy-measurable initial condition vy. Further, if
Assumption (2.4 is also satisfied then

n
Emax vl + E7 > D ldnawilly < NEr|wolih

(4.2) i=1 A€A .
+NETY (I fills + llg:l7)
i=0
holds for a constant N that depends only on d, di, m, A, Ay, ..., As,
k, and T.

Proof. By Theorem 210, the existence of a unique sequence of L*-
valued random variables solving (LI) is known. For f#, g¢” € W(7)
and an Wi -valued initial condition 14, there exists a unique sequence
of Wi-valued random variables satisfying (4.1]). The estimate (4.2]) can
be achieved easily with a constant N depending on h, so in particular
the solution is in W§(7).

Next we prove the estimate (£2) for a constant independent of h.
For convenience we denote &7 := 7> "' (||fillZ + ||g:||%). Considering
equalities of the from a? + b* = 2a(a — b) — |a — b|? we note that (1)
implies

||Vz‘||3 - ||Vi—1||§ =2(vi,vi —vi1) — v — Vi—1||3
= 2(us, Ljvi + )7 + 2(viy, M vioy + g0 1)&!
+2(vi — vimy, Moy + g2 )0 — llvi — vicallg
= 2(us, Ljvi + )7+ 2(vi, M™viy + g0 ,)E!
(M v + gl DENG — 1L v+ f13

where here and in what follows we suppress the sums over 1 € Ay and
p€{l,...,d;}. Summing up over i, we have

(4.3) 311 < llollg + H; +Z; + T,
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where A
H = z]: 2(vy, LMy + f1)7,
i=1
J
I, = 22(%_1,Mh vio1+ g0 1)&l
and a

ZH v+ 9 )E -

By an application of Ito s formula, it is easy to see that for m,p €
{1,...,d1}
§inéin = (Aw™ () (Aw’(t:) = Vi = Y™ 4 70,
for all i € {1,...,n} where

Vo) = [ () =) du(s) + [ (wrle) =t du(s),

7(s) is the piecewise defined function taking value y(s) = i for s €
liT, (i +1)7), and 6, = 1 when 7 = p and 0 otherwise. Thus can write

J; = \7]-(1) + ‘7]»(2) where

J
1)
j( ZZHMh’le 1+gz 1||07'

=1 p=1

and

/ Z 9 F 9 My i) + 9h)) AY ™ (s).

mp=1

Then we note that since Lemma[Tlholds for all ¢ € [0, 7], in particular

_
H+ T <7 [onavoll? +TZ( )+ (vi, fI) + gHgHHS)

AEA

< Crllwolli + NTZ lvills — —TZZ 1672 15 + N5

i=1 AeA

where here ||1g]|2 < Cljwo||? and N is a positive constant depending
only on k, Ag, Ai, and the cardinality of A. Thus we can replace

equation (4.3) by

215 +TZZ 198,324 [15 < N7[lwoll} +NTZ (Al
(44) i=1 AeA

2)
TN+ I+ TP
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for a constant N that depends only on k, Ag, A;, C, and the cardinality
of A.

Next we observe that
J
El; = 22/ L <E (Vifl(Mih—’q’/z‘—l +971)& | fH)) dx =0
i—1 YR

since &7, is independent of F; and v;, M]"’v;, and g are all F;-

measurable for i € {0,... ,n}. Similarly, we see that Ejj(Q) = 0 since
the expectation of the stochastic integral is zero. Therefore, taking the
expectation of (4.4 we have that

Elvll§+EmY Y lonanills < NET||wll} + NESG
i=1 AEA

(4.5) )
+NEr > |luillg

i=1

for each j € {1,...,n}. Excluding for the time being the difference
term on the left hand side of (4.3 and applying Lemma [£.2] we obtain

Elly;llc < N(E7|wllf + ESG)(1 — N7)~
and, since (1 — N7)7 = (1= NL)77 < (1 - NL)™ < C’'eNT| we have

(4.6) max E||yi[[g < NE7 ||} + NESg

for a constant N here that depends only on the parameters k, Ag, Aj,
T, and the cardinality of A. Using equation (4.6) we can eliminate the
last term on the right hand side of (AH)). In particular, we have

Er SN 6nanill2 < NET||w||? + NESG.

=1 AeA
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Using the Davis inequality we can bound max |7®| and max|Z]|.
Namely,

Emax\j( \
i<n
N . 1/2
<3 BN | MG + a5 ISIME S + G 15 Y ™) (s)
~(s)v(s) g’y(s (s)"(s) Gy(s)llo
m,p=1
i . 1/2
<C) E {/ I3 <s>+9y<sHB‘\W(S)—“}?(s)‘QdS}
p:
dy
<0 3 & (AL

1 1/2
{ / |ME8 g + ||%|w”<s>—w;f(s>|2ds} )

where C'is a constant independent of 7 and h that is allowed to change
from one instance to the next. Therefore,

dy
Emax\j )| < all()'ZTEmaLXHZMh’pl/Z + 7|2

(4.7) !
VS [ s B0 w5

m,p=1

by Young’s inequality. The first term on the right hand side of (£7) is
bounded from above by the sum over all i € {1,...,n}, hence

dq
ZTEmamHMh’pyZ +gflls < ETZ M v + |13
p=1 1=0

< CET Z(Z 16naville + Nlgill3),
i—0 XeA

and the second term on the right hand side of (47) yields

—Z /||M P onts) + 0 21w (5) — wl P ds

m,p=1

dy
1 ™ s
= p Z B (E (/ ”M (s)V(s) +9y(5 51w (s) — wﬂ/(s)|2ds‘f’y(s)))

m,p=1

< Er Z(Z 10naillg + [lg:l15)

1=0 XeA
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by the tower property for conditional expectations. Combining these
estimates we see that Fmax|7?| is estimated by terms already ap-
pearing on the right hand side of (4.4]) for a constant N that depends
also on d;.

Similarly, we note that

j
Z Vie1, Mi" v + g0 ) Aw?

tj
= 2/0 ( ’Y(S)’ M'y(s)V’Y(S) + g'[y)(s)) dwp<8)'

Applying the Davis inequality

dy 1/2
4 hop
Fra it <03 B { [ I BN im0 + o 05

p=1

dy 1/2
<6§ZE<mwMMb{/|mﬂpw<+a !b%} )

p=1

and then Young’s inequality

(4.8) Emax|Z] < EmaXIIVz||o+CETZ > l1navills + llg:5)

=0 AEA

we see that F max |Z| is also estimated by terms already appearing on
the right and side of (4.4)).

Returning to (4] and taking the maximum followed by the expec-
tation we have

E max |vil|2 4+ Er Z > Nonavilly < NET|wo|l + NES,

i=1 A€A

using (&6) and the estimates on Emax|J®| and Fmax|Z|. Thus
(4.2) holds when m = 0.
If m > 1 we differentiate (41 with respect to 2! and introduce the

notation ¢ for the derivative of a function ¢ in the direction z' for

l€{1,...,d}. Then (LI) becomes

D=0 + Z (a?ﬂ5h,)\5—h,uﬁi + 7

A pEA
(4.9) d
+ZZ(52\515h7x\’7i—1 + 971)&!
p=1 €A
where f# := f# for nonzero p, f0 := fO+ aMdy \0_p,v and §f =

9 + 6’\”5th1/. Recalling that 0, = p'D; for u € Ao, we proceed as
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before but now using the inequality
ETY (i, 0np0-nui) < 73 El|#illol|0n a0l
i=1 i=1

n N &
< €ETZ 1Dy il + ?ETZ [k
=1

=1 =

which holds for arbitrary ¢ > 0 and N depending only on |u|. This
leads to the following

J
B2+ Er 3" N 0navill2 < NET|wl? + NESY

(4.10) i=1 )\jA j
1 -
4B 303 DGl + NET Y 4
i=1 AeA =1
for each 2!, 1 € {1,...,d}. Summing up over each direction z', the term

with factor 1/2d can be seen to be estimated by other terms already
appearing on the right hand side of (ZI0). Then by the same procedure
as before we obtain

(4.11) Emax IDvil[s + ET > ) | Donavills < NET||wo|? + NESY
- i=1 AeA

which proves the theorem when m = 1.

Assuming that m > 2 and that (42) holds for each integer p <
m in place of m, then we can differentiate (£I) (p + 1) times and,
repurposing the notation g?) for the (p+ 1)th order derivatives of ¢ with
respect to x, we obtain (4.9) with different f° and ¢”. Namely, the
fo will be the sum of fo and linear combinations of certain ith order
derivatives of a* together with certain (p + 1 — i)th order derivatives
of 8y \0_p v, for integer i < (p+ 1). As before, the L*-norms of the
(p+ 1 — i)th derivatives of 6; \0_, v are dominated by the L*-norms
of the (p+ 2 — ¢)th derivatives of § v which are in turn less than the
wy *_norm of Opav. After similar changes are made in §g” we obtain
the counterpart of (4.I1) which then yields (4.2)) with (p + 1) in place
of m. U

We also have the following Sobolev space estimate for solutions to
the implicit time scheme. Let m be a nonnegative integer.

Theorem 4.4. Let f € WI(7) and g* € W (7). If Assumptions
21 and 22 hold then (L2) has a unique solution v € W52(1) for a
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given Wg”“—valued Fo-measurable initial condition vy. Moreover

n
Bmax o]0 + B Y [0z < NElJeolpy
- i=1

+NES (12 + gl )
i=0
holds for a constant N depending only on d, di, m, Ky, ..., K1, K,
and T

Proof. Proving the solvability of (L2 reduces to solving the elliptic
problem

dy
(I =71Li)vi =vi1 +7fi + Z & (M_jvi1 + 94)
p=1

for each i € {1,...,n} where [ is the identity. That is, we claim that
A= (I —7L) is a W"-valued operator on W3"*? such that A; is

(1) bounded, i.e. || A;¢|2, < K||¢||2, ., for a constant K,

(ii) and coercive, i.e. (A;p, ) > A||¢||2,4- for a constant A > 0,
for every i € {1,...,n} and for all ¢ € W32 where (-,-) denotes the
duality pairing between W3""? and WJ" based on the inner product
in Wy"*. Then by the separability of W32, there exists a countable
dense subset {e;}32; such that for fixed p > 1, ¢, = >°F_, ¢cje; for
constants ¢; where ¢, € W32 is not identically zero. We fix i and for
every ¢ € W3 consider A acting on ¢, that is (A¢,,e;) = (¢, e;) for
all 7 € {1,...,p}. Taking linear combinations we obtain (A¢,, ¢,) =
(¢, ¢p) from which we derive

)‘||¢p||ib+2 S <A¢P7¢p> = <wa¢p> S ||77Z)||m||¢p||m+2

by the coercivity of A and an application of the Cauchy-Schwarz in-
equality. Thus |[¢pllmsz < $||¢]lm and hence (by the reflexivity of
W32), there exists a subsequence pj, such that ¢p, converges weakly
to ¢ and in particular (A4;¢,,,e;) — (A, e;) for every j. Therefore for
every ¢ € Wi" there exists a ¢ € W32 satisfying A;¢ = ¢ for every
i € {1,...,n}. Moreover, this solution is easily seen to be unique.

Using the existence and uniqueness to the elliptic problem in each
interval, we note that

di
vo+Tfi+ Y (Mguo+ g5)ét € Wy
p=1

by Assumption and therefore there exists a v; € W™ satisfying
d1

(I —7Ly)vy =vo+T7f1 + Z(MSUO + 90)&7-

p=0
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Further, assuming that there exists a v; € Wy"t? satisfying (L2) we

have that
dy

i T Y (MPv + gL, € W
p=0

by the induction hypothesis and Assumption 2.3 and therefore there

exists a v € W32 satisfying (L2). Hence we obtain v = (v;)l,

such that each v; € Wy satisfies (L2).

It only remains to prove the claim concerning ellipticity of 4. By
Assumption 1] clearly A; is a bounded linear operator for each i. We
see that

(Ag,0) = (Id,¢) — T(LD, 9)
= 16l — 7(L, 0)
where, by Assumptions 2.1 and 2.2]
(£6,0) = ((a” = Daa™) Do, ¢) = (4™’ Dy, Dag)
< Ol = 116120

in the W™+ inner product for a, 8 € {1,...,d} and for a constant C
depending on Ky and K;. Therefore

K K
(A8, 8) 2 S7lldllnse + (1= TE)IS]5i1 2 STl 0l50s0
for sufficiently small 7 and hence (ii) is satisfied.

To prove the estimate, we use a method similar to that in the proof
of Theorem to arrive at (3] with v in place of v, £ in place of L",
M? in place of M"?_ all in the W,;""'-norm instead of the L2mnorm.
Again, we decompose J into J™M) and J® using the processes Y™ (t)
that arise by applying the Ito6 formula to the product of increments of
the independent Wiener processes. However this time, instead of using
Lemma .1}, we observe that

J J J
1 K
Hit T3 < NTY il =57 D loillnsat N7 Y (il l9il)
1=1 1=1 =0
since
dy
/R 20(2)Lo(z) + Y M) de < (e = KC)[[v]742 + Cllo]5n
p=1

for ¢ > 0 by the considerations above. Therefore we have that

J

2

o2 + 7D il e < Nllwoll%yy + NZ + NI
=1

J
+N7 Y (1ill7 + llgillz)
i=0
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and the estimate follows by considering the maximum and then tak-
ing the expectation. Moreover, with the estimate, it is clear that the
solution v € W52(7). O

We will use the theorem above to obtain estimates in appropriate
Sobolev spaces for a system of time discretized equations. For i €
{0,...,n} and an integer p > 1, let

V=" a*0a0,,

A pEA
MO S 6o,
AEA

and let

P

e =pt Yo @ty AT (o )7 Y a0
A pu€No 7=0 AEAp
+(p+1)~ Z aoﬂaerl’
nEAo
MO = (1) S o,
AEAQ
hp) ~ G
p) . ho_ s
o/ =1 =) Tk
§=0
and
p hj
R?(p)p - Mlh,p TMEJ)p
i=0 J°
where A, ; is defined by
(-1

(4.12)

i = D))

For p > 1, the values of LP)$ and MP)?¢ are obtain by formally taking
the pth derivatives in h of L"¢ and M"*¢ at h = 0.

For a positive integer k& < m, the sequences of random fields v, .. .,
v®) needed in (B.1]) will be the embeddings of random variables taking
values in certain Sobolev spaces obtained as solutions to a system of
time discretized SPDE. Namely, as the solutions to

£ V(P + Z Clﬁ(l -
(4.13)

7

(Mp 1’/@ 1+201M(lﬂ (p—1 )p

for p € {1,...,k} where C! = p(p—1)---(p—1+1)/I! is the binomial
coefficient and v(%) is the solution to (ILZ) from Theorem E4l
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Theorem 4.5. Let Assumptions[2.1, (2.2, [2.3, and[2.3 hold with m =
m >k > 1 and let VO € W52(7) be the solution to (L2) with initial
condition ug from Theorem [{.4. Then the system (ALI3) with initial
condition

yél) :1/62) :-~-:Vék) =0
has a unique set of solutions (1/(1’))};:1 such that each v € WJ'27P(7),
Moreover for each p € {1,...,k},

n
Emax 1”51 + B 17 oy
- i=1

(4.14) .
< NETY (I1fill7 + lgillae)
i=0
holds for a constant N depending only on d, di, A, m, Ky, ..., K1,

Ag, ..., A, Kk, and T.

Proof. For convenience let
p
() ._ p ), (p—5)
P =) crey,
j=1

and

p
G(P)P — Z CPM(j)Py(p*j)
7 7 7 )
j=1

where we write G®) = Zz;l GWwr,

Observe that for each p € {1,...,k} the equation for v® in ([EI3)
depends only on v for [ < p and does not involve any of the unknown
processes ) with indices [ > p. Therefore we shall prove the solvabil-
ity of the system and the desired properties on ) recursively using
Theorem (4.4]

For p =1, we have

dy
415) v =+ (Ll + )+ (MO + G
p=1

Since v € WI2(r), for m = m we have that F() € Wi !(7)
and G € WJ'(7) by Assumption Z5 Hence by Theorem 4] there
exists a unique v € W(7) satisfying (£I5) with initial condition
1/((]1) = 0. Further, v is estimated by (&I4) and thus Theorem
holds with p = 1.

Now we assume that for m > k > 2 and p € {2,...,k} we have
unique v, ... v®P= solving (@I3) for vV = ... vP~Y = 0 with the
desired properties. In particular, observe that for j € {1,...,p}

(4.16) Hﬁ(j),/(p—j)]]m_p < N[[,/(p—j)]]m”i(pij)
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and for each p € {1,...,d;}
(4.17) [[/\/l(i)p,/(p—j)]]rw+1 < N[[u(”‘j)]]m+1_(p_j)

for a constant N. Therefore it follows that F®) € W5 7?(7) and G® ¢
WP +1(7‘). Applying Theorem (4.4 yields the existence of a unique
solution 1) € W5 P2(1) that satisfies [EI3) with initial condition

v = 0. Together with (IH) and ([@IT7) the estimate from Theorem
@4 implies that (EI4) holds. Further, the uniqueness of each v()
follows from Theorem [4.4] O

For the convenience of the reader we record the following lemma and
two remarks from [4] that will be used in proving the error estimates.

Lemma 4.6. Let ¢ € VV2erl and Y € W§+2 for a nonnegative integer
p and let A\, u € Ag. Set

N =ND;¢p and Oy, = 0r0,.

Then we have

(4.18) (8ah) St () = /0 PR p(x + hON) db
and
P
OO (T)
(4.19) (Oh)r

1,1
= // (018,\ — Qgﬁu)pawg/)(x + h(@l)\ — 92#)) d91d02
0J0

for almost all x € R for each h € R. Furthermore, for integer | > 0
if o € WP and o € WP then

(4.20) Sund— 3 gl < ST gpeny
| SAP= TP RS VG TP
and
P )
(4.21) ([ Gnadnutd — Y h Y AT oI < NIRPH i,
i=0 =0 .

where A; ; is defined by ([A12) and N depends on A, p, d, and p.

Proof. Tt suffices to prove the lemma for ¢,v € C°(R?). For p = 0,
formula (4I8) is obtained by applying the Newton-Leibniz formula to
¢(x + 6h\) as a function of 6 € [0, 1]. Namely,

u=x+h\ 6=1
o(x+ h\) — o(z) = / D;¢(u) du = / N D;p(x + 6hN) do
u=x 6=0
and therefore 6, \¢(x fo Oo(x + 6hX)d. Applying the Newton-
Leibniz formula agaln yields (£19) with p = 0. After that, for p > 1
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one obtains (AI8) and (AI9) by differentiating both parts of these
equations written with p = 1.
Next by Taylor’s formula for smooth f(h) we have

=3 a0+ [ op ey as

p!

Applying this to

as a function of A we see that

Sl =3 fl)!ai“asu)

p+1

/ / (1 — 02)POY T R b (2 + hB,02)) d,dB,.

Now to prove (MII), it remains only to use that by Minkowski’s integral
inequality the Wi-norm of the last term is less than the Wi-norm of

P ¢ times
‘h‘pﬂ // p@p-i-lde d@g ‘h‘pﬂ )
(p+2)!

Similarly, by observmg that the value at h = 0 of the right hand side

of (@19) is

p
Py A R (),

=0
we see that the left hand side of (£21)) is the Wi-norm of

hp+1

/// 1 93 (916)\ ‘928 )p+18)\uw(x+h93(91)\ 92M>>d91d92d93,
which yields (Z21]). O

For integers [ > 0 and r > 1, denote by W,ZL; the Hilbert space of
functions ¢ on R such that

(4.22) 1617, n =" D Nha %+ X Gun 0l < o0

and set W,llg = W). Then for any ¢ € WL™ we have

[@llern < Nl llir,
where N depends only on [Ag|* := 37,4 [A]* and r.
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Remark 4.7. Formula (4I8) with p = 0 and Minkowski’s integral
inequality imply that

19n2¢ll0 < [[Oréllo-

By applying this inequality to finite differences of ¢ and using induction
we can conclude that W} C W,ig

Remark 4.8. Owing to Assumption 2.7 for i € {0,...,n} we have
that EEO) = L; and /\/l () = M?. Also by Lemma [£.6 and Assumptions
and 2.0 for ¢ € Wp+2+l and ¢ € Wp+3+l we have

1O" Pyl < NIAP [l 1spss

and
IR* 26|y < NIRP* 6]l ps2
for a constant NV depending only on p, d, [, Ag, ..., A;, and A.
For integers k,I > 0, let v v® . ® be the functions from
Theorem We define
¥
(4.23) r?’h = I/ih — VZ(O) — Z )

J"

for i € {1,...,n} where V" is the unique L?-valued solution to (LI
that exists by Theorem F.3 with initial condition wg, data f° = f and
fﬂ = 0, n e Ao.

Lemma 4.9. Let Assumptions (2.1, [2.2, 2.3, and hold with m =
m = L+ k+1 for integers k,1 > 0 and let r™" be defined as in equation
@E23). Then ri™ =0, r™" € WI*(1) and

it =l (T F )+ Z M + GEEE
p=1

forie{1,...,n} where

and

Th,p Z RkJP(J

and, moreover, F™" € W(r) cmd G e WlQH(T)-

Proof. By Theorem the solution to the space-time scheme " €
W7'(7) and by Theorem E4 the solution to the time scheme (?) €
W22(7). Therefore r™" € W2'(7) when k = 0 and, by Theorem E7]
rh € W2k (1) when k > 1.
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Observe that

> S e SRS S o

k i hl

where summations over empty sets are zero. Therefore, we can rewrite
Fmh as

k .
FT,h _ Lh 0) LV(O + Z Lh Z h_ h.
=17 j=1
Similarly, observe that
k i

Z z: Z j"M(] py,(0) ZZ M(] p(i=3) —. Jrhp

l_
zrjer 7)!

and therefore
2

Th,p __ h (0) h ) T,h,
G = MNP0 AP +Z Mpl/ Zj'/\/lpl/ — JTP,

Thus, following from Remark Eﬂ and Theorem L5, F'™" € W)(7) and
Grhe ¢ WE (7). O

With the previous considerations, we are now prepared to prove the
main results.

5. PROOF OF MAIN RESULTS

We prove a slightly more general result which implies Theorem
Here we suppose that m = m.

Theorem 5.1. Let Assumptions (2.1, [2.2, 2.3, (2.3, [2.8, and [2.7 hold
with m = |+ k + 1 for integers I,k > 0. Then for r™" as defined in

E23) we have

(5.1) Emaxywh”l+ETZZ|15NT"HZ<N\h\2<k+1 s

i=1 AeA

where N depends only on d, di, A\, m, Ky, ..., K1, Ao, ..., A, K,
and T.
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Proof. Recall that by Lemma B39 we have that F™" € WL (7) and
G ¢ WL (7). Then the left-hand-side of (5.1)) is dominated by

T,h T,h,
(5.2) NET Y (IFMIE+ 16701
i=1
due to Lemma[4.9/and Theorem To estimate (5.2)) we observe that
for j < k, by Remark (4.8 we have that
Wb i) (i iy : iy :
1070 e < NI kgs = NI 107 s,

and combining this result with Theorem yields

Br Y F 2 < NIRPEDK,,
i=1
The bound on G™"* can be obtained in a similar fashion, yielding the
desired result. O

Now set R™" := Ir™" where I is the embedding operator from
Lemma Z.TTl We have the following corollary to Theorem . which
implies Theorem

Corollary 5.2. If the assumptions of Theorem[Z 1 hold with | > p+d/2
for a nonnegative integer p then for A € AP

Emax sup |6 R]"(z)> < N2V,

zeR4
and ,
E max D 0BT (@) P < NR2FHVK,,
T zeGy
hold for a constant N depending only on d, dy, A, m, Ky, ..., K1,
Ao, ..., A, K, and T.

Proof. Using Sobolev’s embedding of W2l_p into (', and Remark [4.7]
Theorem [5.1] implies

Emax sup |0, R (2)? < CEmax [r7"|2, 4
zgn $6Rd ZS?’L s

< ' Emax "2
i<n

< Np2+be
where C' and C" are constants depending only on m and d, and N is
a constant depending only on m, d, di, k, A, Ky, ..., K1, and T.

Similarly, by Lemma 2.1 above and Remark [4.7]
a3 [iuaRE @) Pl < CBma 5,777,

z€G

< ¢ Emax "2
i<n

< NhQ(kH)ICm.
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For the I : W} — Cj from Lemma ETI] Theorem follows by
considering the embeddings ©" := Iv", where v" is the unique L?-
valued solution to (LI]) with initial condition ug, and v\ := IvV) for
j €{0,...,k}, where v is the unique L?-valued solution to (L2) with
initial condition g and the processes vV, ..., v*) are the solutions to
the system of time discretized SPDE (£.13)) as given in Theorem 4.5l By
Theorem F£3] v" is F;-adapted and Wi-valued for all i € {1,...,n}. For
each j € {1,...,k} the vU) are WPT**_yalued processes by Theorem
E5l Since [ > d/2 and p+1—k > d/2 the processes 9" and v\¥) are well
defined and clearly (23] implies (B.1]) with ¢" in place of v". That
is, we have the expansion for a continuous version of the L?-valued
solution.

To see that Theorem indeed follows from Corollary we must
show that the restriction of the L2-valued solution to the grid G, a
set of Lebesgue measure zero, is indeed equal almost surely to the

unique ¢%(G})-valued solution that one would naturally obtain from
(LI). That is, we must show that

(5:3) 0 (x) = vi'(x)

)

almost surely for all i € {1,...,n} and for each = € G}, where v" is the
unique F;-adapted f5(Gj)-valued solution of (L)) from Theorem 2.9
Therefore, for a compactly supported nonnegative smooth function ¢
on R? with unit integral and for a fixed 2 € G}, we define

6e(y) =0 (y - “T)

€

for y € R? and € > 0. Recall, by Remark 24 that we can obtain
versions of ug, f, and ¢” that are continuous in z. Since ¢" is a L2-
valued solution of (II]) for each ¢, almost surely

/Rd 0 (y)be(y) dy = /Rd Bi-1(y)9(y) dy+7/ (LED! + f:)(y)e(y) dy

Rd
dy
+D [ (MM + gl ) (y)e-(y) dy
p=1 R

for each i € {1,...,n}. Letting ¢ — 0, we see that both sides converge
for all i € {1,...,n} and w € Q. Therefore almost surely

d1

0f (x) = 0y () + (LE0f (@) + fila)T + (M0 (x) + gfy (2))€F
p=1

for all © € {1,...,n}. Moreover by Lemma [ZT1] the restriction of

o", the continuous version of v", onto G, is an *(G})-valued pro-
cess. Hence (5.3) holds, due to the uniqueness of the ¢?(G})-valued
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Fi-adapted solution of (L) for any ¢*(G},)-valued Fy-measurable ini-
tial data. This finishes the proof of Theorem [3.2
We end with the following generalization of Theorem [3.3]

Theorem 5.3. If the assumptions of Theorem[32 hold with p = 0 and
" as defined in ([B.3) then

Emax sup [0] (z) — v (z)]?
i<n z€Gy
+ Emax > [ol(2) — ol (@) 0 < N|pPEL,
= z€Gy
for a constant N depending only on d, di, A, m, Ky, ..., K11, A1,
A, K, and T

This follows from Theorem [5.1] and the definition of o".
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