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Abstract
The similarity of two polygonal curves can be measured using the Fréchet distance.

We introduce the notion of a more robust Fréchet distance, where one is allowed to
shortcut between vertices of one of the curves. This is a natural approach for handling
noise, in particular batched outliers. We compute a (3 + ε)-approximation to the
minimum Fréchet distance over all possible such shortcuts, in near linear time, if the
curve is c-packed and the number of shortcuts is either small or unbounded.

To facilitate the new algorithm we develop several new tools:
(A) A data structure for preprocessing a curve (not necessarily c-packed) that

supports (1 + ε)-approximate Fréchet distance queries between a subcurve
(of the original curve) and a line segment.

(B) A near linear time algorithm that computes a permutation of the vertices
of a curve, such that any prefix of 2k − 1 vertices of this permutation, form
an optimal approximation (up to a constant factor) to the original curve
compared to any polygonal curve with k vertices, for any k > 0.

(C) A data structure for preprocessing a curve that supports approximate Fréchet
distance queries between a subcurve and query polygonal curve. The query
time depends quadratically on the complexity of the query curve, and only
(roughly) logarithmically on the complexity of the original curve.

To our knowledge, these are the first data structures to support these kind of queries
efficiently.

1. Introduction
Comparing the shapes of polygonal curves – or sequenced data in general – is a challeng-
ing task that arises in many different contexts. The Fréchet distance and its variants (e.g.,
∗A preliminary version of this paper appeared in Proc. 23rd ACM-SIAM Sympos. Discrete Algorithms,

pages 318–337, 2012. The latest full version of this paper is available online [DH11].
†Department of Information and Computing Sciences; Utrecht University; The Netherlands; anne

@cs.uu.nl. This work has been supported by the Netherlands Organisation for Scientific Research (NWO)
under RIMGA (Realistic Input Models for Geographic Applications).
‡Department of Computer Science; University of Illinois; 201 N. Goodwin Avenue; Urbana, IL, 61801,

USA; sariel@uiuc.edu; http://www.uiuc.edu/˜sariel/. Work on this paper was partially supported by
NSF AF award CCF-0915984.

1

ar
X

iv
:1

10
7.

17
20

v4
  [

cs
.C

G
] 

 1
8 

Ju
n 

20
13



dynamic time-warping [KP99]) have been used as similarity measures in various applica-
tions such as matching of time series in databases [KKS05], comparing melodies in mu-
sic information retrieval [SGHS08], matching coastlines over time [MDBH06], as well as
in map-matching of vehicle tracking data [BPSW05, WSP06], and moving objects analysis
[BBG08a, BBG+08b]. Informally, the Fréchet distance between two curves is defined as the
maximum distance a point on the first curve has to travel as this curve is being continuously
deformed into the second curve. Another common description uses the following “leash”
metaphor: Imagine traversing the two curves simultaneously and at each point in time the
two positions are connected by a leash of a fixed length. During the traversal you can vary
the speeds on both curves independently, but not walk backwards. The Fréchet distance
corresponds to the minimum length of a leash that permits such a traversal.

The Fréchet distance captures similarity under small non-
affine distortions and for some of its variants also spatio-
temporal similarity [MSSZZ11]. However, it is very sensi-
tive to local noise, which is frequent in real data. Unlike
similarity measures such as the root-mean-square deviation
(RMSD), which averages over a set of similarity values, and
dynamic time warping, which minimizes the sum of dis-
tances along the curves, the Fréchet distance is a so-called bottleneck measure and can
therefore be affected to an extent which is generally unrelated to the relative amount of
noise across the curves. In practice, curves might be generated by physical tracking devices,
such as GPS, which is known to be inaccurate when the connection to the satellites is tem-
porarily disturbed due to atmospheric conditions or reflections of the positioning signal on
high buildings. Such inaccurate data points are commonly referred to as “outliers”. Note
that outliers come in batches if they are due to such a temporary external condition. Simi-
larly, in computer vision applications, the silhouette of an object could be partially occluded,
and in sound recordings, outliers may be introduced due to background sounds or breathing.
Detecting outliers in time series has been studied extensively in the literature [MMY06].
One may also be interested in outliers as a deviation from a certain expected behavior or
because they carry some meaning. It could be, for instance, that trajectories of two hikers
deviate locally, because one hiker chose to take a detour to a panoramic view point, see
the example in the figure above. Outlier detection is inherently non-trivial if not much is
known about the underlying probability distributions and the data is sparse [AY05]. We
circumvent this problem in the computation of the Fréchet distance by minimizing over all
possibilities for outlier-removal. In a sense, our approach is similar to computing a certain
notion of partial similarity. Unlike other partial distance measures, the distance measure we
propose is parameter-free. For comparison, in the partial Fréchet distance, as it was studied
by Buchin et al. [BBW09], one is interested in maximizing the portions of the curves which
can be matched within a certain Fréchet distance (the parameter). In this case, the dissim-
ilar portions of the curves are ignored. In our case, they are replaced by shortcuts, which
have to be matched under the Fréchet distance.

The task at hand. We are given two polygonal curves X and Y in IRd, which we perceive
as a sequence of linearly interpolated measurement points. We believe that Y is similar to
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X but it might contain considerable noise that is occluding this similarity. That is, it might
contain erroneous measurement points (outliers), which need to be ignored when assessing
the similarity. We would like to apply a few edit operations to Y so that it becomes as similar
to X as possible. In the process hopefully removing the noise in Y and judging how similar it
really is to X. To this end, we – conceptually – remove subsequences of measurement points,
which we suspect to be outliers, and minimize over all possibilities for such a removal. This
is formalized in the shortcut Fréchet distance.

Shortcut Fréchet distance. A shortcut replaces a subcurve between two vertices by
a straight segment that connects these vertices. The part being shortcut is not ignored,
but rather the new curve with the shortcuts has to be matched entirely to the other curve
under the Fréchet distance. As a concrete example, consider the figure below. The Fréchet
distance between X and Y is quite large, but after we shortcut the outlier “bump” in Y , the
resulting new curve Z has a considerably smaller Fréchet distance to X. We are interested
in computing the minimum such distance allowing an unbounded number of shortcuts.

Naturally, there are many other possibilities to tackle the task at hand, for example:
(i) bounding the number of shortcuts by a parameter k,

(ii) allowing shortcuts on both curves,
(iii) allowing only shortcuts between vertices that are close-by along the curve,
(iv) ignoring the part being shortcut and maximizing the length of the remaining portions,
(v) allowing shortcuts to start and end anywhere along the curve,

(vi) allowing curved shortcuts, etc.

h

X

Y

Z

If one is interested in (iii) then the problem turns into a map-
matching problem, where the start and end points are fixed and
the graph is formed by the curve and its eligible shortcuts. For
this problem, results can be found in the literature [CDG+11, AERW03].
A recent result by Har-Peled and Raichel [HR11] is applicable to
the variant where one allows such shortcuts on both curves, i.e.
(ii)+(iii). The version in (iv) has been studied under the name of
partial Fréchet distance [BBW09].

In this paper, we concentrate on the directed vertex-restricted shortcut Fréchet distance
(see Section 2.2 for the exact definition) because computing it efficiently seems like a first
step in understanding how to solve some of the more difficult variants, e.g., (v). Surprisingly,
computing this simpler version of the shortcut Fréchet distance is already quite challenging,
especially if one is interested in an efficient algorithm. A more recent result by Buchin
et al. [BDS13, Dri13] shows that computing the shortcut Fréchet distance exactly is weakly
NP-Hard for variant (v), where we allow shortcuts to start and end anywhere along the
curve. Furthermore, our algorithms can be extended to variant (i), i.e., where at most k
shortcuts are allowed, see Remark 4.11p26.

Note that allowing shortcuts on both curves does not always yield a meaningful measure,
especially if shortcuts on both curves may be matched to each other. In particular, if one of
the two curves is more accurately sampled and can act as a model curve, allowing shortcuts
on only one of the two curves seems reasonable.
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Input model. A curve Y is c-packed if the total length of Y inside any ball is bounded
by c times the radius of the ball. Intuitively, c-packed curves behave reasonably in any
resolution. The boundary of convex polygons, algebraic curves of bounded maximum degree,
the boundary of (α, β)-covered shapes [Efr05], and the boundary of γ-fat shapes [dB08] are all
c-packed (under the standard assumption that they have bounded complexity). Interestingly,
the class of c-packed curves is closed under simplification, see [DHW12]. This makes them
attractive for efficient algorithmic manipulation.

Another input model which is commonly used is called low density [dBKSV02]. We call
a set of line segments φ-dense, if for any ball the number of line segments that intersect
this ball and which are longer than the radius of the ball is bounded by φ. It is easy to see
by a simple packing argument that c-packed curves are O(c)-dense.

Informal restatement of the problem. In the parametric space of the two input curves,
we are given a terrain defined over a grid partitioning [0, 1]2, where the height at each point
is defined as the distance between the two associated points on the two curves. The grid
is induced by the vertices of the two curves. As in the regular Fréchet distance, we are
interested in finding a path between (0, 0) and (1, 1) on the terrain, such that the maximum
height on the path does not exceed some δ (the minimum such δ is the desired distance). This
might not be possible as there might be “mountain chains” blocking the way. To overcome
this, we are allowed to introduce tunnels that go through such obstacles. Each of these
tunnels connect two points that lie on the horizontal lines of the grid, as these correspond
to the vertices of one curve. Naturally, we require that the starting and ending points of
such a tunnel have height at most δ (the current distance threshold being considered), and
furthermore, the price of such a tunnel (i.e., the Fréchet distance between the corresponding
shortcut and subcurve) is smaller than δ. Once we introduce these tunnels, we need to
compute a monotone path from (0, 0) to (1, 1) in the grid which uses tunnels. Finally, we
need to search for the minimum δ for which there is a feasible solution.

Challenge and ideas. Let n be the total number of vertices of the input curves. A
priori there are potentially O(n2) horizontal edges of the grid that might contain endpoints
of a tunnel, and as such, there are potentially O(n4) different families of tunnels that the
algorithm might have to consider. A careful analysis of the structure of these families shows
that, in general, it is sufficient to consider one (canonical) tunnel per family. Using c-
packedness and simplification, we can reduce the number of relevant grid edges to near
linear. This in turn reduces the number of potential tunnels that need to be inspected to
O(n2). This is still insufficient to get a near linear time algorithm. Surprisingly, we prove
that if we are interested only in a constant factor approximation, for every horizontal edge of
the grid we need to inspect only a constant number of tunnels. Thus, we reduce the number
of tunnels that the algorithm needs to inspect to near linear. And yet we are not done, as
naively computing the price of a tunnel requires time near linear in the size of the associated
subcurve. To overcome this, we develop a new data structure, so that after preprocessing
we can compute the price of a tunnel in polylogarithmic time per tunnel. Now, carefully
putting all these insights together, we get a near linear time algorithm for the approximate
decision version of the problem.
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However, to compute the minimum δ, for which the decision version returns true – which
is the shortcut Fréchet distance – we need to search over the critical values of δ. To this
end, we investigate and characterize the critical values introduced by the shortcut version
of the problem. Using the decision procedure, we perform a binary search of several stages
over these values, in the spirit of [DHW12], to get the required approximation.

Our results
(A) Computing the shortcut Fréchet distance. For a prescribed parameter ε > 0,

we present an algorithm for computing a (3 + ε)-approximation to the directed vertex-
restricted shortcut Fréchet distance between two given c-packed polygonal curves of
total complexity n, see Definition 2.5 for the formal definition of the distance being
approximated.
If we allow an unbounded number of shortcuts the running time of the new algorithm is
O
(
c2n log2 n

(
log n+ ε−2d log(1/ε)

))
, see Theorem 4.10 for the exact result. A variant of

this algorithm can also handle the case where we allow only k shortcuts, with running
time O

(
c2kn log3 n

)
, see Remark 4.11p26. In the analysis of these problems we use

techniques developed by Driemel et al. in [DHW12] and follow the general approach
used in the parametric search technique of devising a decision procedure which is used
to search over the critical events for the Fréchet distance. The shortcuts introduce a new
type of critical event, which we analyze in Section 4.3. The presented approximation
algorithms can be easily modified to yield polynomial-time exact algorithms for the
same problems (and for general polygonal curves). As such, the main challenge in
devising the new algorithm was to achieve near linear time performance. Furthermore,
the algorithm uses a new data structure (described next) that is interesting on its own
merit.

(B) Fréchet-distance queries between a segment and a subcurve. We present a data
structure that preprocesses a given polygonal curve Z, such that given a query segment
h, and two points p, p′ on Z (and the edges containing them), it (1+ε)-approximates the
Fréchet distance between h and the subcurve of Z between p and p′. Surprisingly, the
data structure works for any polygonal curve (not necessarily packed or dense), requires
near linear preprocessing time and space, and can answer such queries in polylogarithmic
time (ignoring the dependency on ε). See Theorem 5.9 for the exact result.

(C) Universal vertex permutation for curve simplification. We show how to prepro-
cess a polygonal curve in near-linear time and space, such that, given a number k ∈ IN,
one can compute a simplification in O(k) time which has K = 2k − 1 vertices (of the
original curve) and is optimal up to a constant factor with respect to the Fréchet dis-
tance to the original curve, compared to any curve which uses k vertices. Surprisingly,
this can be done by computing a permutation of the vertices of the input curve, such
that this simplification is the subcurve defined by the first K vertices in this permu-
tation. Namely, we compute an ordering of the vertices of the curves by their Fréchet
“significance”. See Theorem 6.7 for the exact result.

(D) Fréchet-distance queries between a curve with k vertices and a subcurve.
We use the above universal vertex permutation, to extend the data structure in (B)
to support queries with polygonal curves of multiple segments (as opposed to single
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segments) and obtain a constant factor approximation with polylogarithmic query time,
see Theorem 6.9. The query time is quadratic in the query curve complexity and
logarithmic in the input curve complexity.

Related work. Assume we are given two polygonal curves of total complexity n and we
are interested in computing the Fréchet distance between these curves. The problem has
been studied in many variations. We only discuss the results which we deem most relevant
and refer the reader to [BBMM12] for additional references.

Driemel et al. presented a near linear time (1+ε)-approximation algorithm for the Fréchet
distance assuming the curves are well behaved [DHW12]; that is, c-packed. In general, com-
puting the Fréchet distance exactly takes roughly quadratic time. After publication in the
seminal paper by Alt and Godau [AG95], their O(n2 log n)-time algorithm remained the state
of the art for more than a decade. This lead Alt to conjecture that the problem of deciding
whether the Fréchet distance between two curves is smaller or equal a given value is 3SUM-
hard. However, recently, there has been some progress in improving upon the quadratic
running time of the decision algorithm. First, Agarwal et al. presented a subquadratic
time algorithm for a specific variant of the Fréchet distance [AAKS13]. Buchin et al. build
upon their work and give an algorithm for the original Fréchet distance [BBMM12]. Their
algorithm is randomized and takes o(n2 log n) expected time overall to compute the Fréchet
distance. The decision algorithm they present is deterministic and takes subquadratic time.
The only lower bound known for the decision problem is Ω(n log n) and was given by Buchin
et al. [BBK+07]. A randomized algorithm simpler than the one by Alt and Godau, which has
the same running time, but avoids parametric search, was recently presented by Har-Peled
and Raichel [HR13].

Buchin et al. [BBW09] showed how to compute the partial Fréchet distance under the
L1 and L∞ metric. Here, one fixes a threshold δ, and computes the maximal length of
subcurves of the input curves that match under Fréchet distance δ. The running time of
their algorithm is roughly O(n3 log n). For the problem of counting the number of subcurves
that are within a certain Fréchet distance, a recent result by de Berg et al. provides a data
structure to answer such queries up to a constant approximation factor [MdB11]. To the
best of our knowledge the problem of computing the Fréchet distance when one is allowed
to introduce shortcuts has not been studied before.

Previous work on curve simplification. There is a large body of literature on curve
simplification. Since this is not the main subject of the paper, we only discuss a selection of
results which we consider most relevant, since they use the Fréchet distance as a quality mea-
sure. Agarwal et al. [AHMW05] give a near-linear time approximation algorithm to compute
a simplification which is in Fréchet distance ε to the original curve and of which the size is
at most the size of the optimal simplification with error ε/2. Abam et al. [AdBHZ10] study
the problem in the streaming setting, where one wishes to maintain a simplification of the
prefix seen so far. Their algorithm achieves an O(1) competitive ratio using O(k2) additional
storage and maintains a curve with 2k vertices which has a smaller Fréchet distance to the
prefix than the optimal Fréchet simplification with k vertices. Bereg et al. [BJW+08] give an
exact O(n log n) algorithm that minimizes the number of vertices in the simplification, but

6



using the discrete Fréchet distance, where only distances between the vertices of the curves
are considered. Simplification under the Fréchet distance has also been studied by Guibas
et al. [GHMS93].

Organization. In Section 2 we describe some basic definitions and results. In particular,
the formal problem statement and the definition of the directed vertex-restricted shortcut
Fréchet distance between two curves is given in Section 2.2. We also discuss some basic tools
needed for the algorithms. In Section 3, we describe the approximation algorithm for the
shortcut Fréchet distance. Here, we devise an approximate decision procedure in Section 3.2
that is used in the main algorithm, described in Section 3.3, to search over an approximate
set of candidate values. The analysis of this algorithm is given in Section 4. Since the
shortcuts introduce a new set of candidate values, we provide an elaborate study of these
new events in Section 4.3. The main result for approximating the shortcut Fréchet distance
is stated in Theorem 4.10. In the remaining sections we describe the new data structures.
In Section 5.4 we describe a data structure for a fixed curve, that answers queries for the
Fréchet distance between a subcurve and a given segment. In Section 6, we use this data
structure to compute the universal vertex permutation. The extension to query curves with
more than two vertices are described in Section 6.2. We conclude with discussion and some
open problems in Section 7.

2. Preliminaries

Notation. A curve X is a continuous mapping from [0, 1] to IRd, where X(t) denotes the
point on the curve parameterized by t ∈ [0, 1]. Given two curves X and Y that share an
endpoint, let X⊕Y denote the concatenated curve. We denote with X

[
x, x′

]
the subcurve

of X from X(x) to X(x′) and with X〈p, p′〉 the subcurve of X between the two points
p, p′ ∈ X. Similarly, Y

[
y, y′

]
denotes the line segment between the points Y (y) to Y (y′),

we call this a shortcut of Y . For a set of numbers U , an atomic interval is a maximum
interval of IR that does not contain any point of U in its interior.

2.1. Background and standard definitions
Some of the material covered in this section is standard, and follows the presentation in
Driemel et al. [DHW12]. A reparameterization is a one-to-one and continuous function
f : [0, 1] → [0, 1]. It is orientation-preserving if it maps f(0) = 0 and f(1) = 1. The
Fréchet distance is defined only for oriented curves, as we need to match the start and end
points of the curves. The orientation of the curves we use would be understood from the
context.

Definition 2.1. Let X : [0, 1] → IRd and Y : [0, 1] → IRd be two polygonal curves. We
define the width of an orientation-preserving reparametrization f : [0, 1] → [0, 1], with
respect to X and Y , as

widthf (X, Y ) = max
α∈[0,1]

‖X(f(α))− Y (α)‖ .
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The Fréchet distance between the two curves is

dF(X, Y ) = inf
f :[0,1]→[0,1]

widthf (X, Y ) .

Definition 2.2. Let X : [0, 1] → IRd and Y : [0, 1] → IRd be two polygonal curves. The
square [0, 1]2 represents their parametric space. For a point p = (xp, yp) ∈ [0, 1]2, we
define its elevation to be d(p) = ‖X(xp)− Y (yp)‖ . Let δ > 0 be a parameter, the δ-free
space of X and Y is defined as

D≤δ(X, Y ) =
{
p ∈ [0, 1]2

∣∣∣ d(p) ≤ δ
}
.

Free space diagram. We are interested only in polygonal curves, which we assume to
have uniform parameterizations. The parametric space can be broken into a (not necessarily
uniform) grid called the free space diagram, where a vertical line corresponds to a vertex
of X and a horizontal line corresponds to a vertex of Y .

Rv
i−1,j

Ci,j

Rv
i,j

Rh
i,j

Ihi,j−1





Ivi,j

Ihi,j

Ivi−1,j





Every two segments of X and Y define a free space cell
in this grid. In particular, let Ci,j = Ci,j(X, Y ) denote the free
space cell that corresponds to the ith edge of X and the jth
edge of Y . The cell Ci,j is located in the ith column and jth
row of this grid.

It is known that the free space, for a fixed δ, inside such
a cell Ci,j (i.e., D≤δ(X, Y ) ∩ Ci,j) is the clipping of an affine
transformation of a disk to the cell [AG95], see the figure on
the right; as such, it is convex and of constant complexity. Let Ihi,j denote the horizontal
free space interval at the top boundary of Ci,j, and Ivi,j denote the vertical free space
interval at the right boundary.

We define the complexity of the relevant free space, for distance δ, denoted by N≤δ(X, Y ),
as the total number of grid cells that have a non-empty intersection with D≤δ(X, Y ).

Observation 2.3. Given two segments pq and uv, it holds dF(pq, uv) = max(‖u− p‖,
‖v − q‖). To see this, consider the uniform parameterization p(t) = tp + (1 − t)q and
u(t) = tu + (1 − t)v, for t ∈ [0, 1]. It is easy to verify that f(t) = ‖p(t)− u(t)‖ is convex,
and as such f(t) ≤ max(f(0), f(1)), for any t ∈ [0, 1].

Free space events. To compute the Fréchet distance consider increasing δ from 0 to ∞.
As δ increases, structural changes happen to the free space. We are interested in the radii
(i.e., the value of δ) of these events.

δ

u

p

Consider a segment u ∈ X and a vertex p ∈ Y , a vertex-edge
event corresponds to the minimum radius of a ball centered at p,
such that u is tangent to the ball, see the figure on the left. In
the free space diagram, this corresponds to the event that a free
space interval consists of one point only. The line supporting this

boundary edge corresponds to the vertex, and the other dimension corresponds to the edge.
Naturally, the event could happen at a vertex of u. The second type of event, a monotonic-
ity event, corresponds to a value δ for which a monotone subpath inside the δ-free space
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becomes feasible. Geometrically, this corresponds to the common distance of two vertices
on one curve to the intersection point of their bisector with a segment on the other curve.

2.2. The k-shortcut Fréchet distance
Definition 2.4. For a polygonal curve Y , we refer to any order-preserving concatenation
of k + 1 non-overlapping (possibly empty) subcurves of Y with k shortcuts connecting the
endpoints of the subcurves in the order along the curve, as a k-shortcut curve of Y .
Formally, for values 0 ≤ y1 ≤ y2 ≤ · · · ≤ y2k ≤ 1, the shortcut curve is defined as Y

[
0, y1

]
+

Y
[
y1, y2

]
+ Y

[
y2, y3

]
+ · · ·+ Y

[
y2k−1, y2k

]
+ Y

[
y2k, 1

]
. If each Y (yi) is a vertex of Y, we refer

to the shortcut curve as being vertex-restricted, otherwise we say it is unrestricted.

Definition 2.5. Given two polygonal curves X and Y , we define their continuous k-
shortcut Fréchet distance as the minimal Fréchet distance between the curve X and any
unrestricted k-shortcut curve of Y . We denote it with dS(k,X, Y ). If we do not want to
bound the number of shortcuts, we omit the parameter k and denote it with dS(X, Y ). The
vertex-restricted k-shortcut Fréchet distance is defined as above using only vertex-
restricted shortcut curves of Y . Furthermore, note that in all cases we allow only one of the
input curves to be shortcut, namely Y , thus we call the distance measure directed.

In this paper, we study the directed vertex-restricted k-shortcut Fréchet distance for the
case of bounded and unbounded k. In the following, we will omit the predicates directed
and vertex-restricted when it is clear from the context.

Free space. The k-reachable free space Rk
≤δ(X, Y ) is

Rk
≤δ(X, Y ) =

{
p = (xp, yp) ∈ [0, 1]2

∣∣∣ dS

(
k,X

[
0, xp

]
, Y
[
0, yp

])
≤ δ

}
.

This is the set of points that have an (x, y)-monotone path from (0, 0) that stays inside the
free space and otherwise uses at most k tunnels, which are defined in the next subsection.

2.3. Tunnels and gates – definitions

2.3.1. Tunnels

In the parametric space, a shortcut Y
[
yp, yq

]
and the subcurve X

[
xp, xq

]
, that it is being

matched to, correspond to a the rectangle with corners p and q, where p = (xp, yp) and
q =(xq, yq). By shortcutting the curve on the vertical axis, we are collapsing this rectangle
to a single row, see Figure 2.1 (C). More precisely, this is the free space diagram of the
shortcut and the subcurve. We call this row a tunnel and denote it by τ(p, q). We require
xp ≤ xq and yp ≤ yq for monotonicity. Figure 2.1 shows the full example of a tunnel. We
call the Fréchet distance of the shortcut segment to the subcurve the price of this tunnel
and denote it with prc(τ(p, q)) = dF

(
X
[
xp, xq

]
, Y
[
yp, yq

])
. A tunnel τ(p, q) is feasible for

δ if it holds that d(p) ≤ δ and d(q) ≤ δ, i.e., if p, q ∈ D≤δ(X, Y ). (Note that in turn the
feasibility of a monotone path in the free space of the tunnel is determined by the price of the
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p

Y (yp)

Y (yq)

xp xq

yp

yq

X
Y

X
Z

(0, 0)

(1, 1)

(A)

(D)(E)

(B)

Y (yp)

Y (yq)

X(xq)

X(xp)

(C)

q

q

p

Figure 2.1: (A) Example of two dissimilar curves that can be made similar by shortcutting
one of them. (B) A tunnel τ(p, q) corresponds to a shortcut and a subcurve matched to each
other and (C) their free space diagram. (D) The tunnel connects previously disconnected
components of the free space. (E) The curve Z resulting from shortcutting Y . Its (regular)
Fréchet distance from X is dramatically reduced.

tunnel.) Now, let u = Y (yp) and v = Y (yq) and let e be the edge of X that contains X(xp)
(resp., e′ the edge that contains X(xq)) for the tunnel τ(p, q). We denote with T (e, e′, u, v)
the family of tunnels that τ(p, q) belongs to. Furthermore, let T≤δ(e, e′, u, v) denote the
subset of these tunnels that are feasible for δ.

Definition 2.6. The canonical tunnel of the tunnel family T (e, e′, u, v), denoted by
τmin(e, e′, u, v), is the tunnel that matches the shortcut uv to the subcurve X[s, t], such
that s and t are the values realizing

rmin(e, e′, u, v) = min
X(s)∈e,X(t)∈e′,

s≤t

max
(
‖X(s)− u‖ ,
‖X(t)− v‖

)
. (2.1)

We refer to rmin(e, e′, u, v) as the minimum radius of this family. The canonical tunnel
may not be uniquely defined if only one of the two values s or t determines the minimum
radius. In this case, we define s and t as the values minimizing ‖X(s)− u‖ and ‖X(t)− v‖
for X(s) ∈ e and X(t) ∈ e′, individually. We call the price of the canonical tunnel the
canonical price of this tunnel family.

Clearly, one can compute the canonical tunnel T (e, e′, u, v) in constant time. In particu-
lar, the price of this canonical tunnel is

prc(τmin(e, e′, u, v)) = dF

(
X
[
s, t
]
, uv

)
. (2.2)

10



X
Y
Z

Figure 2.2: The directed k-shortcut Fréchet does not satisfy the triangle inequality. In the
depicted counter-example it holds that dS(k,X, Z) > dS(k,X, Y ) + dS(k, Y, Z) for any value
of k and for k unbounded. This holds true in the vertex-restricted and in the continuous
case.

We emphasize that a shortcut is always a segment connecting two vertices of the curve
Y , and a tunnel always lies in the parametric space; that is, they exist in two completely
different domains.

Observation 2.7. The minimum radius of a tunnel family rmin(e, e′, u, v) corresponds to
either (i) the distance of u to its closest point on e, (ii) the distance of v to its closest point
on e′, or (iii) the common distance of u and v to the intersection of their bisector with the
edge e (i.e., a monotonicity event). Note that the event in case (iii) can only happen if e = e′.

2.3.2. Gates

Ci,j

U

p qLet U be a subset of the parametric space that is convex in every cell. Let Ihi,j
be a free space interval. We call the left endpoints of U ∩ Ihi,j the left gate
of U in the cell Ci,j, and similarly the right endpoint is the right gate. The
figure to the right shows an example of gates p and q. The set of gates of
U are the gates with respect to all cells in the free space diagram. We define
the canonical gate of a vertex-edge pair as the point in parametric space that minimizes
the vertex-edge distance. Note that canonical gates serve as endpoints of canonical tunnels
that span across columns in the free-space diagram.

2.4. Curve simplification
We use the following simple algorithm for the simplification of the input curves. It is easy
to verify that the curve simplified with parameter µ is in Fréchet distance at most µ to the
original curve, see [DHW12].

Definition 2.8. Given a polygonal curve XXX and a parameter µ > 0. First mark the initial
vertex of XXX and set it as the current vertex. Now scan the polygonal curve from the current
vertex until it reaches the first vertex that is in distance at least µ from the current vertex.
Mark this vertex and set it as the current vertex. Repeat this until reaching the final vertex
of the curve, and also mark it. We refer to the resulting curve X that connects only the
marked vertices, in their order along XXX, as a µ-simplification of XXX and we denote it with
simpl(XXX,µ).
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During the course of the algorithm we will simplify the input curves in order to reduce
the complexity of the free space. The k-shortcut Fréchet distance does not satisfy the
triangle inequality, as can be seen by the counter-example shown in Figure 2.2. Therefore,
we need the next lemma to ensure that the computed distance between the simplified curves
approximates the distance between the original curves. The proof is straightforward and can
be found in [Dri13].

Lemma 2.9 ([Dri13]). Given a simplification parameter µ and two polygonal curves XXX
and YYY , let X = simpl(XXX,µ) and Y = simpl(YYY , µ) denote their µ-simplifications, respectively.
For any k ∈ IN, it holds that dS(k,X, Y )− 2µ ≤ dS(k,XXX,YYY ) ≤ dS(k,X, Y ) + 2µ. Similarly,
dS(X, Y )− 2µ ≤ dS(XXX,YYY ) ≤ dS(X, Y ) + 2µ.

Lemma 2.10 ([DHW12]). For any two c-packed curves XXX and YYY in IRd of total complexity
n, and two parameters 0 < ε < 1 and δ > 0, we have that N≤δ(simpl(XXX,µ) , simpl(YYY , µ)) =
O(cn/ε), where µ = Θ(εδ).

2.5. Building blocks for the algorithm
The algorithm uses the following two non-trivial data structures.

Data-Structure 2.11. Given a polygonal curve Z with n vertices in IRd, one can build a
data structure, in O

(
χ2n log2 n

)
time, using O(χ2n) space, where χ = ε−d log(1/ε), that

supports a procedure price(p, q) which receives two points p and q in the parametric space of
X and Y and returns a value φ, such that φ ≤ prc(τ(p, q)) ≤ (1+ε)φ in O(ε−3 log n log log n)
time. See Section 5.4p31 and Theorem 5.9p33.

Data-Structure 2.12. For given parameters ε and δ, and two c-packed curves XXX and YYY
in IRd, let X = simpl(XXX,µ) and X = simpl(YYY , µ), where µ = εδ. One can compute all the
vertex-edge pairs of the two simplified curves X and Y in distance at most δ from each other,
in time O(n log n+ c2n/ε). See below for details.

We describe here how to realize Data-Structure 2.12. Observe that X and Y have density
φ = O(c). Now, we build the data structure of de Berg and Streppel [dBS06] for the segments
of Y (with ε = 1/2). For each vertex of X we compute all the segments of Y that are in
distance at most δ from it, using the data structure [dBS06]. Each query takes O(log n+kφ)
time, where k is the number of edges reported. Lemma 2.10 implies that the total sum of
the k’s is O(cn/ε). We now repeat this for the other direction. This way, one can realize
Data-Structure 2.12.

2.6. Monotonicity of the prices of tunnels
The following two lemmas imply readily that under certain conditions the prices of tunnels
which share an endpoint are approximately monotone with respect to the x-coordinate of
their starting point. We will exploit this in the approximation algorithm that computes
the reachability in the free-space diagram. We will see in Section 3.1 that this drastically
reduces the number of tunnels that need to be inspected in order to decide if a particular
cell is reachable.

12



Lemma 2.13. Given a value δ > 0 and two curves X1 and X2, such that X2 is a subcurve of
X1, and given two line segments Y 1 and Y 2, such that dF

(
X1, Y 1

)
≤ δ and the start (resp.,

end) point of X2 is in distance δ to the start (resp., end) point of Y 2, then dF

(
X2, Y 2

)
≤ 3δ.

Proof: Let u denote the subsegment of Y 1 that is matched to X2 under an
optimal Fréchet mapping betweenX1 and Y 1. We know that dF(X2, u) ≤ δ
by this mapping. The start point of Y 2 is in distance 2δ to the start point
of u, since they are both in distance δ to the start point of X2 and the
same holds for the end points. This implies that dF

(
u, Y 2

)
≤ 2δ. Now,

by the triangle inequality, dF

(
X2, Y 2

)
≤ dF(X2, u) + dF

(
u, Y 2

)
≤ 3δ.

X1

X2

≤ δ

Y 1

Y 2

u

Lemma 2.14. Consider two polygonal curves X and Y , three points p, q and r in their
free space, and let δ′ = max(d(p) , d(q) , d(r)). If x(p) ≤ x(q) ≤ x(r) then prc(τ(q, r)) ≤
3 max

(
δ′, prc(τ(p, r))

)
.¬

Proof: Let X1 be the subcurve X
[
xp, xr

]
, and let X2 = X

[
xq, xr

]
. Similarly, let Y 1 be

the shortcut Y
[
yp, yr

]
and let Y 2 = Y

[
yq, yr

]
. By Lemma 2.13 prc(τ(q, r)) ≤ 3δ′ for δ′ =

max
(
dF

(
X1, Y 1

)
, δ
)
.

We will see in Section 3.3.2 that the monotonicity property of Lemma 2.14 also enables a
faster search over tunnel events. The property holds even if the tunnels under consideration
are not valid. For example if xp < xr and yp > yr then the tunnel τ(p, r) is not a valid tunnel
and it cannot be used by a valid solution. Nevertheless, τ(p, r) has a well defined price, and
these prices have the required monotonicity property.

Lemma 2.15. For a parameter δ ≥ 0, let p1, . . . , pm be m points in the δ-free space in
increasing order by their x-coordinates, and let ψi = prc(τ(pi, pm)) for any 1 ≤ i ≤ m.
Then, we have:

(A) If ψi ≥ δ then for all j > i, we have prc(τ(pj, pm)) ≤ 3ψi.
(B) If ψi > 3δ then for all j < i, we have prc(τ(pj, pm)) ≥ ψi/3.

Proof: To see the first part of the claim, note that by Lemma 2.14, prc(τ(pj, pm)) ≤
3 max(δ, ψi) ≤ 3ψi. As for the second part, we have by the same lemma that δ < ψi/3 ≤
max(δ, prc(τ(pj, pm))), and thus ψi/3 ≤ prc(τ(pj, pm)).

3. Approximating the shortcut Fréchet distance
We describe the algorithm to approximate the directed vertex-restricted shortcut Fréchet
distance between two given polygonal curves X and Y where the number of shortcuts that
can be used in a solution is unbounded. In Section 4 we prove the correctness and analyze
the complexity of this algorithm.

¬Here, d(p) is the elevation of p, see Definition 2.2, and τ(q, r) is the tunnel between q and r, see
Section 2.3.1.
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3.1. The tunnel procedure
A key element in the decision procedure is the tunnel procedure depicted in Figure 3.1.
During the decision procedure, we will repeatedly invoke the tunnel procedure with a set
of gates R, for which we already know that they are contained in the reachable free space
R∞≤δ(X, Y ), and the left gate associated with a horizontal free space interval of D≤δ(X, Y ),
in order to determine, if and to which extent this interval is reachable.

Intuitively, this procedure receives as input a set of reachable points in the parametric
space and a free space interval (in the form of the left gate) and we are asking if there exists
an affordable tunnel connecting a reachable point to the interval. Here, affordable means
that its price is less than δ. More precisely, the procedure receives a set of gates R and a
gate p as input and returns the endpoint of an (approximately) affordable tunnel that starts
at a gate of R and ends either at p or the leftmost point to the right of p in the same free
space interval. If a tunnel between a gate in R and the free space interval of p exists, which
has price less than δ, then the algorithm will return the endpoint of a tunnel of price less
than or equal to (1 + ε)3δ. If the algorithm returns null, then we know that no such tunnel
of price less than δ exists.

The main idea of the tunnel procedure is the following. For a given tunnel, we can (1+ε)-
approximate its price, using a data structure which answers these queries in polylogarithmic
time, see Data-Structure 2.11. The desired tunnel could be a vertical tunnel which starts
at a gate of R, or a tunnel between a gate of R and p. Naively, one could test all tunnels
that start from a gate in R and end in p, however, this takes time at least linear in the size
of R. Since we are only interested in a constant factor approximation, it is sufficient, by
Lemma 2.14, to test only the tunnel which corresponds to the shortest subcurve of X. The
corresponding gates can be found in polylogarithmic time using a two dimensional range
tree, which is built on the set R and we assume is available to us. We can maintain the
range tree during the decision procedure depicted in Figure 3.2. The technical details are
described in the proof of Lemma 4.2p20. An alternative solution that uses a balanced binary
search tree only is described in [Dri13].

3.2. The decision algorithm
In the decision problem we want to know whether the shortcut Fréchet distance between
two curves, X and Y , is smaller or equal a given value δ. The free space diagram D≤δ(X, Y )
may consist of a certain number of disconnected components and our task is to find a
monotone path from (0, 0) to (1, 1), that traverses these components while using shortcuts
between vertices of Y to “bridge” between points in different components or where there is
no monotone path connecting them (see Figure 2.1). The decision algorithm exploits the
monotonicity of the tunnel prices shown in Lemma 2.14 and is based on a breadth first search
in the free space diagram (a similar idea was used in [DHW12], but here the details are more
involved).

Given two curves X and Y , and parameters δ and ε, the algorithm may output an answer
equivalent to “yes” if there exists a shortcut curve Y ′ of Y , such that dS(X, Y ′) ≤ δ and an
answer equivalent “no” if there exists no shortcut curve such that dS(X, Y ′) ≤ (1 + ε)3δ.
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tunnel(R, p, ε, δ)
1: Let q = (xq, yq) point in R with max value of xq,

such that xq ≤ xp and yq < yp, where p = (xp, yp).
2: φ = price(q, p), see Data-Structure 2.11.
3: if φ ≤ 3δ then
4: Return p // tunnel τ(q, p)
5: Compute j such that xp ∈ Iedge(X, j) = [xj, xj+1]
6: Let q = (xq, yq) point in R with min value of xq,

such that xq ∈ Iedge(X, j), xq ≥ xp, and yq < yp
7: if q does not exist then
8: Return null.
9: v = (xq, yp)

10: if d(v) ≤ δ then
11: Return v // vertical tunnel τ(q, v)
12: else
13: Return null.

Figure 3.1: The tunnel procedure receives a set of gates R and a gate p in the parametric
space and returns the endpoint of an affordable tunnel between R and p (or a point close to
it) if it exists. The technical details of the range queries in Line 1 and Line 6 are described
in the proof of Lemma 4.2p20.

3.2.1. Detailed description of the decision procedure

The decision algorithm is depicted in Figure 3.3 (and Figure 3.2). The algorithm uses a
directed graph G that has a node v(i, j) for every free space cell Ci,j whose boundary has
a non-empty intersection with the free space D≤δ(X, Y ). These intersections are defined as
the free space intervals Ihi,j, Ivi,j, Ihi−1,j and Ivi,j−1, see Section 2.1. For any path along the
edges of the graph G from v(1, 1) to v(i, j), there exists a monotone path that traverses the
corresponding cells of D≤δ(X, Y ) while using zero or more affordable tunnels. A node v(i, j)
can have an incoming edge from another node v(i′, j′), if i′ ≤ i and j′ ≤ j and either v(i′, j′)
is a neighboring node, or the two cells can be connected by an affordable tunnel which
starts at the lower boundary of the cell corresponding to v(i′, j′) and ends at the upper
boundary of the cell corresponding to v(i, j). The idea of the algorithm is to propagate
reachability intervals Rv

i,j ⊂ Ivi,j and Rh
i,j ⊂ Ihi,j while traversing a sufficiently large subgraph

starting from v(1, 1), and computing the necessary parts of this subgraph on the fly. We
store these intervals with the cell v(i, j) that has them on the top (resp., right) boundary.
The reachability intervals Rv

i,j being computed satisfy

R∞≤δ(X, Y ) ∩ Ivi,j ⊆ Rv
i,j ⊆ R∞≤(1+ε)3δ(X, Y ) ∩ Ivi,j, (3.1)

and an analogous statement applies to Rh
i,j. The aim is to determine if either (1, 1) ∈

R∞≤(1+ε)3δ(X, Y ) or (1, 1) /∈ R∞≤δ(X, Y ). Throughout the whole algorithm we also maintain
a set of gates R, which represents the endpoints of the horizontal reachability intervals
computed so far.
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decider(X, Y, ε, δ)
1: Assert that d(0, 0) = ‖X(0)− Y (0)‖ ≤ δ and d(1, 1) ≤ δ
2: Let Q be a min-priority queue for nodes v(i, j) with keys (jn+ i)
3: Compute and enqueue the cells Ci,j that have non-empty Ihi,j or Ivi,j.
4: Let R = {(0, 0)}.
5: while Q 6= ∅ do
6: Dequeue node v(i, j) and its copies from Q
7: Let p be the left gate of Ihi,j
8: v = tunnel(R, p, ε, δ)
9: Compute Rh

i,j and Rv
i,j from v, Rv

i−1,j, Rh
i,j−1, Ivi,j and Ihi,j

10: if Rv
i,j 6= ∅ then

11: Enqueue v(i+ 1, j) and insert edge between v(i, j) and v(i+ 1, j)
12: if Rh

i,j 6= ∅ then
13: Enqueue v(i, j + 1) and insert edge between v(i, j) and v(i, j + 1)
14: Add gates of Rh

i,j to R
15: if (1, 1) ∈ R then
16: Return “dS(X, Y ) ≤ (1 + ε)3δ”
17: else
18: Return “dS(X, Y ) > δ”

Figure 3.2: The decision procedure decider for the shortcut Fréchet distance.

We will traverse the graph by handling the nodes in a row-by-row order, thereby handling
any node v(i, j) only after we handled the nodes v(i′, j′), where j′ ≤ j, i′ ≤ i and (i′ + j′) <
(i+ j). To this end we keep the nodes in a min-priority queue where the node v(i, j) has the
key (jn+ i). The correctness of the computed reachability intervals will follow by induction
on the order of these keys. Furthermore, it will ensure that we handle each node at most
once and that we traverse at most three of the incoming edges to each node of the graph.

The queue is initialized with the entire node set at once. To compute this initial node
set and the corresponding free space intervals we use Data-Structure 2.12. The algorithm
then proceeds by handling nodes in the order of extraction from this queue. When dequeuing
nodes from the queue, the same node might appear three times (consecutively) in this queue.
Once from each of its direct neighbors in the grid and once from the initial enqueuing.

In every iteration, the algorithm dequeues the one or more copies of the same node v(i, j)
and merges them into one node if necessary. Assume that v(i, j) has an incoming edge that
corresponds to an affordable tunnel. Let p be the left gate of Ihi,j. We invoke tunnel(R, p, ε, δ)
to test if this is the case. If the call returns null, then there is no such affordable tunnel.
Otherwise, we know that the returned point v is contained in Rh

i,j. If there were more than
one copies of this node in the queue, we also access the reachability intervals of the one or
two neighboring vertices (i.e., Rv

i−1,j and Rh
i,j−1). Using the reachability information from

the at most three incoming edges obtained this way, we can determine if the cells Ci,j+1 and
Ci+1,j are reachable, by computing the resulting reachability intervals Rh

i,j at the top side
and Rv

i,j the right side of the cell Ci,j. Since the free space within a cell is convex and of
constant complexity, this can be done in constant time.
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Decider(XXX,YYY , ε, δ)
1: Let ε′ = ε/10
2: Compute X = simpl(XXX,µ) and Y = simpl(YYY , µ) with µ = ε′δ
3: Call decider(X, Y, ε′, δ′) with δ′ = (1 + 2ε′)δ
4: Return either “dS(XXX,YYY ) ≤ (1 + ε)3δ” or “dS(XXX,YYY ) > δ”

Figure 3.3: The resulting decision procedure Decider. A detailed description of the complete
algorithm is given in Section 3.2.1.

Now, if Rh
i,j 6= ∅ we create a node v(i, j + 1), connect it to v(i, j) by an edge, we enqueue

it, and add the gates of Rh
i,j to R. If Rv

i,j 6= ∅ we create a node v(i + 1, j), connect it to
v(i, j) by an edge, and we enqueue it. If we discover that the top-right corner of the free
space diagram is reachable this way, we output the equivalent to “yes” and the algorithm
terminates. In this case we must have added (1, 1) as a gate to R. The algorithm may also
terminate before this happens if there are no more nodes in the queue, in this case we output
that no suitable shortcut curve exists.

3.3. The main algorithm
The given input is two curves X and Y . We want to use the approximate decision procedure
Decider, described above, in a binary search like fashion to compute the shortcut Fréchet
distance. Conceptually, one can think of the decider as being exact. In particular, the
algorithm would, for a given value of δ, call the decision procedure twice with parameters δ
and δ′ = δ/4 (using ε = 1/3). If the two calls agree, then we can make an exact decision,
if the two calls disagree, then we can output a O(1)-approximation of the shortcut Fréchet
distance.

The challenge is how to choose the right subset of candidate values to guide this binary
search. Some of the techniques used for this search have been introduced in previous papers.
In particular, this holds for the search over vertex-vertex, vertex-edge and monotonicity
events which we describe as preliminary computations in Section 3.3.1. This stage of the
algorithm eliminates the candidate values that also need to be considered for the approxi-
mation of the standard Fréchet distance and it is almost identical to the algorithm presented
in [DHW12].

As mentioned before, a monotone path could also become usable by taking a tunnel.
There are two types of events associated with a tunnel family: The first time such that any
tunnel in this family is feasible, which is the creation radius. Fortunately, the creation
radii of all tunnels are approximated by the set of vertex-vertex and vertex-edge event radii,
and our first stage search (see Section 3.3.1) would thus take care of such events.

The other events we have to worry about are the first time that the feasible family
of tunnels becomes usable via a tunnel (i.e., the price of some tunnel in this family is
below the distance threshold δ). Luckily, it turns out that it is sufficient to search over the
price of the canonical tunnel associated with such a family. The price of a specific tunnel
can be approximated quickly using Data-Structure 2.11. However, there are Θ(n4) tunnel
families, and potentially the algorithm has to consider all of them. Fortunately, because of
c-packedness, only O(n2) of these events are relevant. A further reduction in running time
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is achieved by using a certain monotonicity property of the prices of these tunnels and our
ability to represent them implicitly to search over them efficiently.

3.3.1. The algorithm – First stage

We are given two c-packed polygonal curvesXXX and YYY with total complexity n. We repeatedly
compute sets of event values and perform binary searches on these values as follows.

We compute the set of vertices V of the two curves, and using well-separated pairs
decomposition, we compute, in O(n log n) time, a set U of O(n) distances that, up to a
factor of two, represents any distance between any two vertices of V . Next, we use Decider
(with fixed ε = 1/3) to perform a binary search for the atomic interval in U that contains
the desired distance. Let [α, β] denote this interval. If 10α ≥ β/10 then we are done, since
we found a constant size interval that contains the Fréchet distance. Otherwise, we use the
decision procedure to verify that the desired radius is not in the range [α, 10α] and [β/10, β].
For α′ = 3α, β′ = β/3, let I ′ = [α′, β′] denote the obtained interval.

We now continue the search using only decider and the simplified curvesX = simpl(XXX,µ)
and Y = simpl(YYY , µ), where µ = α′. We extract the vertex-edge events of X and Y that are
smaller than β′, see Section 2.1. To this end, we compute all edges of X that are in distance
at most β′ of any vertex of Y and vice versa using Data-Structure 2.12. Let U ′ be the set of
resulting distances. We perform a binary search, using decider to find the atomic interval
I ′′ = [α′′, β′′] of U ′ ∩ I ′ that contains the shortcut Fréchet distance between X and Y .

Finally, we again search the margins of this interval, so that either we found the desired
approximation, or alternatively we output the interval [10α′′, β′′/10],

3.3.2. Second Stage – Searching over tunnel prices

It remains to search over the canonical prices of tunnel families T (e, e′, u, v), where e 6= e′.
After the first stage, we have an interval [α, β] = [10α′′, β′′/10], and simplified curves X and
Y of which the shortcut Fréchet distance is contained in [α, β] and approximates dS(XXX,YYY ).
By Lemma 2.10, the number of vertex-edge pairs in distance β is bounded by O(cn/ε).
The corresponding horizontal grid edges in the parametric space contain the canonical gates
which are feasible for any value in [α, β]. Let P denote the m = O(cn/ε) points in the
parametric space that correspond to the canonical gates of these vertex-edge pairs; that is,
for every feasible pair p (a vertex of Y ) and e (an edge of X), we compute the closest point
q on e to p, and place the point corresponding to (q, p) in the free space into P.

It is sufficient to consider the tunnel families between these vertex-edge pairs, since all
other families are not feasible in the remaining search interval. Thus, if we did not care
about the running time, we could compute and search over the prices of the tunnels P× P,
using Data-Structure 2.11. Naively, this would take roughly quadratic time. Instead, we use
a more involved implicit representation of these tunnels to carry out this task.

Implicit search over tunnel prices. Consider the implicit matrix of tunnel prices M =
P×P where the entry M(i, j) is a (1 + ε)-approximation to the price of the canonical tunnel
τ(pi, pj). By Lemma 2.15, the first j values of the jth row of this matrix are monotonically

Since for the case where e = e′ the canonical price coincides with the creation event value.
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decreasing up to a constant factor, since they correspond to tunnels that share the same
endpoint pj and are ordered by their starting points pi (we ignore the values in this matrix
above the diagonal). Using Data-Structure 2.11 we can (1 + ε)-approximate a value in the
matrix in polylogarithmic time per entry. Similarly, the lower triangle of this matrix is sorted
in increasing order in each column. As such, this matrix is sorted in both rows and columns
and one can apply the algorithm of Frederickson and Johnson [FJ84] to find the desired value.
This requires O(logm) calls to Decider, the evaluation of O(m) entries in the matrix, and
takes O(m) time otherwise. Here, we are using Decider as an exact decision procedure.
The algorithm will terminate this search with the desired constant factor approximation to
the shortcut Fréchet distance.

4. Analysis

4.1. Analysis of the tunnel procedure
Lemma 4.1. Given the left gate p of a free space interval Ihi,j and a set of gates R, and
parameters 0 < ε ≤ 1 and δ > 0, the algorithm tunnel depicted in Figure 3.1 outputs one
of the following:

(i) A point v ∈ Ihi,j, such that there exists a tunnel τ(q, v) of price prc(τ(q, v)) ≤ (1 + ε)3δ
from a gate q ∈ R, or

(ii) null, in this case, there exists no tunnel of price less than or equal to δ between a gate
of R and a point in Ihi,j.

Furthermore, in case (i), there exists no other point r ∈ [p, v] that is the endpoint of a tunnel
from R with price less than or equal to δ.

Proof: The correctness of this procedure follows from the monotonicity of the tunnel prices,
which is testified by Lemma 2.14. Let φ be the (1 + ε)-approximation to the price of the
tunnel, that we compute in Line 2. This tunnel starts at a point in R and ends in p and
it corresponds to the shortest subcurve X̂ of X over any such tunnel. Lemma 2.14 implies
that if φ < 3δ then there can be no other tunnel of price less than δ, which corresponds to
a subcurve of X that contains X̂. Therefore, the price of any tunnel from a point q ∈ R,
which lies in the lower left quadrant of p, to a point that lies in the upper right quadrant of
p has a price larger than δ. In particular, this holds for those tunnels that end to the right
of p in the same free space interval. The only other possibility for a tunnel from R to Ihi,j is
a vertical tunnel that lies to the right of p. Observe that a vertical tunnel which is feasible
for δ always has price at most δ, since it corresponds to a subcurve of X that is equal to
a point which is in distance δ to the shortcut edge. In Line 5 and Line 6 we compute the
leftmost gate of R in the lower right quadrant of p which lies in the same column as p. If
there exists such a point with a vertical tunnel that ends in the free space interval Ihi,j, then
we return the endpoint of this tunnel. Otherwise we can safely output the equivalent to the
answer that there exists no tunnel of price less than δ.
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4.2. Analysis of the decision procedure
Clearly, the priority queue operations take O(N logN) time and O(N) space, where N =
N≤δ(X, Y ) is the size of the node set, which corresponds to the complexity of the free space
diagram. We invoke the tunnel procedure once for each node. Since we add at most a
constant number of gates for every cell to R, the size of this set is also bounded by O(N).
Therefore, after the initialization the algorithm takes time near linear in the complexity of the
free space diagram. We can reduce this complexity by first simplifying the input curves with
µ = Θ(εδ) before invoking the decider procedure, thereby paying another approximation
factor. We denote the resulting wrapper algorithm with Decider, it is depicted in Figure 3.3.
Now, the initial computation of the nodes takes near-linear time by Data-Structure 2.12 and
therefore the overall running time is near linear. A more detailed analysis of the running
time can be found in the following.

Lemma 4.2. Given parameters δ > 0 and 0 < ε ≤ 1 and two c-packed polygonal curves XXX
and YYY in IRd of total complexity n. The algorithm Decider depicted in Figure 3.3 outputs
one of the following: (i) “dS(XXX,YYY ) ≤ (1 + ε)3δ”, or (ii) “dS(XXX,YYY ) > δ”. In any case, the
output returned is correct. The running time is O

(
Cn log2 n

)
, where C = c2ε−2d log(1/ε).

Proof: The algorithm Decider computes the simplified curves X = simpl(XXX,µ) and Y =
simpl(YYY , µ) with µ = Θ(εδ), before invoking the algorithm decider described in Figure 3.2
on these curves. By the correctness of the tunnel procedure (i.e., Lemma 4.1), one can
argue by induction that the subsets of points of R∞≤δ(X, Y ) intersecting a grid edge are
sufficiently approximated by the reachable intervals computed by decider (see Eq. (3.1)p15).
By Lemma 2.9, this approximates the decision with respect to the original curves sufficiently.

It remains to analyze the running time. By Lemma 2.10, the size of the node set of the
graph G is bounded by N = O(cn/ε). This also bounds the size of the point set R and the
number of calls to the tunnel procedure, as those are at most a constant number per node.
During the tunnel procedure, which is depicted in Figure 3.1, we

(A) approximate the price of one tunnel in Line 2, and
(B) invoke two orthogonal range queries on the set R in Line 1 and Line 6.

As for (A), building the data structure that supports this kind of queries takes T1 =
O
(
nε−2d log2(1/ε) log2 n

)
time by Data-Structure 2.11. Since we perform O(N) such queries,

this takes T2 = O(Nε−3 log n log log n) = O(cnε−4 log n log log n) time overall. As for (B),
again, the set of gates R is a finite set of two dimensional points and we can use two di-
mensional range trees (with fractional cascading as described in [dBCvKO08]) to support
the orthogonal range queries. We want to build this tree by adding O(N) points throughout
the algorithm execution. Since the range tree is a static data structure, we have to make it
dynamic, but we only need to support insertions, and no deletions. This can be easily done
by using the logarithmic method if we allow an additional logarithmic factor to the running
time, see also [BS80, Ove83]. In this method, the point set is distributed over O(logN)
static range trees, which need to be queried independently and which are repeatedly re-
built throughout the algorithm. Overall, maintaining this data structure and answering the
orthogonal range queries takes T3 = O(N log2 N) time.
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During the algorithm, we maintain a priority queue, where each node is added and ex-
tracted at most three times. As such, the priority queue operations take time in O(N logN).
The initial computation of the node set takes T4 = O(n log n+c2n/ε) by Data-Structure 2.12.

Therefore, the overall running time is T1 + T2 + T3 + T4, which is

O
(
nε−2d log2(1/ε) log2 n+ cnε−4 log n log log n+ cn log2 n+ n log n+ c2n/ε

)
= O

(
Cn log2 n

)
,

where C = c2ε−2d log(1/ε).

Observation 4.3. It is easy to modify the decider algorithm such that it also outputs the
respective shortcut curve and reparametrization which satisfies the Fréchet distance. We
would modify the tunnel procedure such that it returns not only the endpoint, but also the
starting point of the computed tunnel. During the algorithm, we then insert an edge for
each computed tunnel, thereby creating at most three incoming edges to each node. After the
algorithm terminates, we can trace any path backwards from (1, 1) to (0, 0) in the subgraph
computed this way. This path encodes the shortcut curves as well as the reparametrizations.

4.3. Analysis – understanding tunnel events
The main algorithm uses the procedure Decider to perform a binary search for the minimum
δ for which the decision procedure returns “yes”. In the problem at hand we are allowed to
use tunnels to traverse the free space diagram, and it is possible that a path becomes feasible
by introducing a tunnel. The algorithm has to consider this new type of critical events.

Consider the first time (i.e., the minimal value of δ) that a decision procedure would try
to use a tunnel of a certain family.

Definition 4.4. Given a tunnel family T (ei, ej, u, v), we call the minimal value of δ such
that T≤δ(ei, ej, u, v) is non-empty the creation radius of the tunnel family and we denote
it with rcrt(ei, ej, u, v). (Note, that the price of a tunnel might be considerably larger than
its creation radius.)

Lemma 4.5. The creation radius rcrt(ei, ej, u, v) = rmin(ei, ej, u, v), see Definition 2.6.

Proof: Recall that the creation radius of the tunnel family is the minimal value of δ such
that any tunnel in this family is feasible. Let u′ be the closest point on ei to u, and v′ the
closest point on ej to v. If u′ appears before v′ on X, then the canonical tunnel is realized
by X(xq) = u′ and X(xq) = v′ and the claim holds. In particular, this is the case if i < j.

Now, the only remaining possibility is that u′ appears after v′ on e. It must be that i = j,
therefore let e = ei = ej. Observe that in this case any tunnel in the family which is feasible
for δ also has a price that is smaller or equal to δ. Consider the point r realizing the quantity

min
r∈e

max
(
‖r − u‖ , ‖r − v‖

)
.

Note that r is the subcurve of X corresponding to the (vertical) canonical tunnel in this case.
We claim that for any subsegment ûv̂ ⊆ e (agreeing with the orientation of e) we have that
dF(ûv̂, uv) ≥ dF(r, uv). If û = v̂ then the claim trivially holds.
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Figure 4.1: Two cases: v′ appears either before or after û along e, assuming that u′ appears
after v′ on e.

Assume that v′ appears after û along e (the case depicted in Figure 4.1). Since u′ appears
after v′ along e, we have that ‖v′ − u‖ ≤ ‖û− u‖, as moving away from u′ only increases the
distance from u. Therefore,

dF(r, uv) ≤ dF(v′, uv) = max(‖v′ − u‖ , ‖v′ − v‖) ≤ max(‖û− u‖ , ‖v̂ − v‖) = dF(ûv̂, uv) .

Otherwise, if v′ appears before û along e, as depicted in Figure 4.1 on the right, then

dF(r, uv) ≤ dF(û, uv) = max(‖û− u‖ , ‖û− v‖) ≤ max(‖û− u‖ , ‖v̂ − v‖) = dF(ûv̂, uv) ,

since moving away from v′ only increases the distance from v.
This implies that the minimum δ for a tunnel in T (ei, ei, u, v) to be feasible is at least

dF(r, uv) = rcrt(ei, ei, u, v). And r testifies that there is a tunnel in this family that is feasible
for this value.

The following lemma describes the behavior when δ rises above a tunnel price, such that
the area in the free space that lies beyond this tunnel potentially becomes reachable by using
this tunnel. More specifically, it implies that the first time (i.e., the minimal value of δ) that
any tunnel of a family T (ei, ej, u, v) is usable (i.e., its price is less than δ), any tunnel in the
feasible set T≤δ(ei, ej, u, v) associated with this family will be usable.

Lemma 4.6. Given a value δ ≥ 0, we have for any tunnel τ(f, g) in the feasible subset of a
given tunnel family T≤δ(ei, ej, u, v), that

(i) if δ ≤ prc(τmin(ei, ej, u, v)), then prc(τ(f, g)) = prc(τmin(ei, ej, u, v)),
(ii) otherwise, prc(τ(f, g)) ≤ δ.

Proof: We first handle the case that i 6= j. Let ei = pipi+1 and ej = pjpj+1.

u vpi

pi+1 pj
pj+1p q

uα vαuopt voptLet p ∈ ei and q ∈ ej be some points on these
edges, that correspond to f and g, respectively. Ob-
serve that since this is a feasible tunnel in this fam-
ily, we have that

max(‖p− u‖ , ‖q− v‖) ≤ δ.

Consider the optimal Fréchet matching of X〈p, q〉 with uv, and let uopt and vopt be the
points on uv that are matched to pi+1 and pj by this optimal Fréchet matching. Let α =
dF(X〈pi+1, pj〉 , uαvα), where uαvα is the subsegment of uv minimizing α.
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We have, by Observation 2.3, that

dF(X〈p, q〉 , uv) = max
(

dF(ppi+1, uuopt) , dF

(
X〈pi+1, pj〉 , uoptvopt

)
, dF(pjq, voptv)

)

= max


‖p− u‖ ,

‖pi+1 − uopt‖ ,
dF(X〈pi+1, pj〉 , uoptvopt) ,

‖pj − vopt‖ ,
‖q− v‖


= max

(
‖p− u‖ , dF(X〈pi+1, pj〉 , uoptvopt) , ‖q− v‖

)
≥ max( ‖p− u‖ , dF(X〈pi+1, pj〉 , uαvα) , ‖q− v‖ )
= max

(
dF(ppi+1, uuα) , dF(X〈pi+1, pj〉 , uαvα) , dF(pjq, v1v)

)
≥ dF(X〈p, q〉 , uv) .

For α = dF(X〈pi+1, pj〉 , uαvα), this implies dF(X〈p, q〉 , uv) = max(‖p− u‖ , α, ‖q− v‖),
where α ≤ max(α, δ) is equal for all tunnels in the family. Now, if δ ≤ prc(τmin(ei, ej, u, v))
then we have prc(τmin(ei, ej, u, v)) = α ≥ δ and

prc(τ(f, g)) = dF(X〈p, q〉 , uv) = max(‖p− u‖ , α, ‖q− v‖) ≤ max(α, δ) = α.

This proves (i). Otherwise, we have prc(τmin(ei, ej, u, v)) < δ. Which implies that α < δ,
but then prc(τ(f, g)) ≤ δ, implying (ii).

If i = j then the Fréchet distance is between the shortcut segment and a subsegment of
ei. But this distance is the maximum distance between the corresponding endpoints, by Ob-
servation 2.3. As the distance between endpoints of shortcuts and subcurves corresponding
to tunnels of T≤δ(ei, ej, u, v) is at most δ, and by Lemma 4.5 the claim follows.

Lemma 4.7 below implies that the set of creation radii of all tunnels is approximated
by the set of vertex-vertex and vertex-edge event radii. A similar lemma was shown in
[DHW12], to prove this property for the monotonicity event values. Therefore, the algorithm
eliminates these types of events in the first stage, in addition to eliminating the vertex-vertex
and vertex-edge events.

Lemma 4.7. Consider an edge e = pq of a curve XXX, and two vertices u and v of a curve
YYY . We have that x/2 ≤ rcrt(e, e, u, v) ≤ 2x, where x is in the set {d(u, e) , d(v, e) , ‖u− v‖}.

Proof: First, observe that rcrt(e, e, u, v) ≥ ‖u− v‖ /2, as it is the maximum distance of some
point on e from both u and v. In particular, if rcrt(e, e, u, v) ≤ 2 ‖u− v‖ then we are done.

As such, it must be that rcrt(e, e, u, v) > 2 ‖u− v‖. Assume that u is closer to e than
v, and let u′ be the closest point on e to u. By the triangle inequality, the distance of v
from u′ is in the range I =

[
‖u− u′‖ , ‖u− u′‖+ ‖u− v‖

]
. Observe that rcrt(e, e, u, v) ≥

‖u− u′‖ and rcrt(e, e, u, v) ≤ max(‖u− u′‖ , ‖v − u′‖). Thus, rcrt(e, e, u, v) ∈ I. Note that
if ‖u− u′‖ ≤ ‖u− v‖ then we are done, as this implies that rcrt(e, e, u, v) is in the range[
‖u− v‖ , 2 ‖u− v‖

]
. Otherwise, rcrt(e, e, u, v) is in the range

[
‖u− u′‖ , 2 ‖u− u′‖

]
. In either

case, the claim follows.
The case that v is closer to e than u follows by symmetry.
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4.4. Analysis of the main algorithm
The following lemma can be obtained using similar arguments as in the analysis of the main
algorithm in [DHW12]. We provide a simplified proof for the case here, where we are only
interested in a constant factor approximation.

Lemma 4.8. Given two c-packed polygonal curves XXX and YYY in IRd with total complexity n,
the first stage of the algorithm (see Section 3.3.1) outputs one of the following:
(A) a O(1)-approximation to the shortcut Fréchet distance between XXX and YYY ;
(B) an interval Î, and curves X and Y with the following properties:

(i) dS(X, Y ) is contained in Î and dS(X, Y ) /3 ≤ dS(XXX,YYY ) ≤ 3dS(X, Y ),
(ii) Î contains no vertex-edge, vertex-vertex, or monotonicity event values and no

tunnel creation radii (as defined in Section 4.3) of X and Y .
The running time is O

(
c2n log3 n

)
.

Proof: We first prove the correctness of the algorithm as stated in the claim. The set U
approximates the vertex-vertex distances of the vertices of XXX and YYY up to a factor of two.
Therefore, the interval I = [α, β], which we obtain from the first binary search, contains
no vertex-vertex distance of XXX that is more than a factor of two away from its boundary.
This implies that the simplification X = simpl(XXX,µ) results in the same curve for any
µ ∈ [3α, β/3]. An analogous statement holds for YYY . Unless, a constant factor approximation
is found either in the interval [α, 10α] or the interval [β/10, β], the algorithm continues the
search using the procedure decider and the curves simplified with µ = 3α.

It is now sufficient to search for a constant factor approximation to dS(X, Y ) in the
interval I ′ = [3α, β/3], since this will approximate the desired Fréchet distance by a constant
factor. Indeed, by the result of the initial searches, we have that 3µ ≤ 10α ≤ dS(XXX,YYY ).
Lemma 2.9 imply that dS(X, Y ) ≤ dS(XXX,YYY ) + 2µ ≤ 3dS(XXX,YYY ) . On the other hand, the
same lemma implies that dS(X, Y ) ≥ dS(XXX,YYY ) − 2µ ≥ dS(XXX,YYY ) /3. This implies, that
dS(X, Y ) ∈ I ′ = [3α, β/3], since dS(XXX,YYY ) ∈ [10α, β/10]. Note that this also proves the
correctness of (i), since the returned interval is contained in I ′.

Observe that the set of vertex-vertex distances of X and Y is contained in the set of
vertex-vertex distances of XXX and YYY . Clearly, I ′ cannot contain any vertex-vertex distances
of X and Y . The algorithm therefore extracts the remaining vertex-edge events U ′ from the
free space diagram and performs a binary search on them. We obtain the atomic interval
I ′′ = [α′′, β′′], which contains no vertex-edge events of X and Y . Note that by Eq. (2.1)p10
and Lemma 4.5, the monotonicity event values, as described in Section 2.1, coincide with
the values of δ where a tunnel within a column of the parametric space becomes feasible,
that is, with the quantity rcrt(e, e, u, v). By Lemma 4.7, these event values would have to
lie within a factor two of the boundaries of the interval I ′′. Therefore, we again search the
margins of this interval, so that either we found the desired approximation, or alternatively,
it must be in the interval I ′′′ = [10α′′, β′′/10], which now contains no vertex-vertex, vertex-
edge, monotonicity or tunnel creation events of X and Y . Since I ′′′ is the interval that the
algorithm returns, unless it finds a constant factor approximation to the desired Fréchet
distance, the above argumentation implies (i) and (ii).

As for the running time, computing the set U using well-separated pairs decomposition
can be done in O(n log n) time, see [DHW12]. Computing the set U ′ takes time in O(n log n+
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c2n), by Data-Structure 2.12 with µ = β/3 and δ = β. The algorithm invokes the decision
procedure O(log n) times, and this dominates the overall running time, see Lemma 4.2.

Lemma 4.9. Given two c-packed polygonal curves XXX and YYY in IRd of total complexity
n, one can compute a constant factor approximation to dS(XXX,YYY ). The running time is
O
(
c2n log3 n

)
.

Proof: First, the algorithm performs the preliminary computations as described in Sec-
tion 3.3.1. By Lemma 4.8, we either find a constant factor approximation, or we obtain
an interval [α, β] and simplified curves X and Y . Furthermore, the interval [α, β] does not
contain any vertex-vertex, vertex-edge, monotonicity, or tunnel creation events of X and Y .
Let P be the canonical gates that are feasible in the β-free space of X and Y . We have that
m = |P| = O(n) and we can compute them using Data-Structure 2.12 in O(n log n + c2n)
time, for ε = 1/3. Thus, the running time up to this stage is bounded by O

(
c2n log3 n

)
, by

Lemma 4.8.
Now, we invoke the second stage of the algorithm described in Section 3.3.2 on the matrix

of implicit tunnel prices defined by P and return the output as our solution.
Consider a monotone path in the parametric space that corresponds to the optimal

solution. If the price of this path is determined by either a vertex-vertex, a vertex-edge or a
monotonicity event then we have found an approximation to the shortcut Fréchet distance
already in the first stage of the search algorithm. If it is dominated by a tunnel price and this
tunnel has both endpoints in the same column of the free space, then by Observation 2.3
it is a creation radius. By Lemma 4.5 this is equivalent to the minimum radius of the
corresponding tunnel family. By Observation 2.7 the minimum radius corresponds to either
a vertex-edge event or a monotonicity event. Thus, it lies outside the interval [α, β], since
by Lemma 4.8 these critical values were eliminated in the first stage. Otherwise, this critical
tunnel has to be between two columns. Let δ be the price of this tunnel (which is also the
price of the whole solution).

Consider what happens to this path if we slightly decrease δ. Since δ is optimal, then
the critical tunnel either ceases to be feasible or its price is not affordable anymore.

If the critical tunnel is no longer feasible, then one of its endpoints is also an endpoint
of the free space interval it lies on. Consider the modified path in the free space, which uses
the new endpoint of the free space interval. If the free space interval is empty, then this
corresponds to a vertex edge event, and this is not possible inside the interval [α, β]. The
other possibility is that the path is no longer monotone. However, this corresponds to a
monotonicity event, which again we already handled because of Lemma 4.8.

If the tunnel is still feasible, then it must be that the endpoints of this tunnel are contained
in the interior of the free space interval and not on its boundary. Now Lemma 4.6 (i) implies
that the price of this tunnel is equal to the price of the canonical tunnel. As such, the price
of the optimal solution is being approximated correctly in this case.

Observe that in the second stage we are searching over all tunnel events that lie in the
remaining search interval (whether they are relevant in our case or not). Hence, the search
would find the correct critical value, as it is one of the values considered in the search.

The running time of second stage is bounded by:
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(A) O(n log n log log n) time to compute the needed entries in the matrix, using Data-
Structure 2.11.

(B) O
((
c2n log2 n

)
log n

)
time for the O(log n) calls to Decider.

(C) O(n) for other computations.
Therefore, the overall running time of the algorithm is O

(
c2n log3 n

)
.

4.5. Result
The following theorem states the main result for approximating the shortcut Fréchet distance.

Theorem 4.10. Given two c-packed polygonal curves XXX and YYY in IRd, with total complexity
n, and a parameter ε > 0, the algorithm of Section 3 computes a (3 + ε)-approximation to
the shortcut Fréchet distance between X and Y in O

(
c2n log2 n

(
log n+ ε−2d log(1/ε)

))
time.

The algorithm also outputs the shortcut curve of YYY and the reparametrizations that realize
the respective shortcut Fréchet distance.

Proof: The result follows from Lemma 4.9. This yield an interval I that contains the value
of the optimal solution. We can turn any constant factor approximation into a (3 + ε)-
approximation, using Decider with ε′ = ε/3 by invoking it over a constant number of
subintervals of the form [α, β], where β = (3 + ε)α. These intervals are required to cover I,
and as such, Decider would return the desired approximation for one of them (the running
time of each call to Decider is stated in Lemma 4.2).

It is easy to modify the algorithm, such that it also outputs the shortcut curve and the
reparametrizations realizing the approximate Fréchet distance, see Observation 4.3.

Remark 4.11. One can extend the algorithm of Theorem 4.10 so that it approximates the
Fréchet distance where only k shortcuts are allowed. The basic algorithm is similar, except
that we keep track for the points of R how many shortcuts were used in computing them.
The resulting algorithm has running time O

(
c2kn log3 n

)
(for ε a constant). This version of

the algorithm is described in the first author’s thesis, see [Dri13].

5. Data structures for Fréchet-distance queries

Given a polygonal curve Z in IRd, we build a data structure that supports queries for the
Fréchet distance of subcurves of Z to query segments pq. We describe the data structure
in three stages. After establishing some basic facts in Section 5.1, we first describe a data
structure that achieves a constant factor approximation in Section 5.2. We proceed by
describing a data structure that answers queries for the Fréchet distance of the entire curve
to a query segment up to an approximation factor of (1 + ε) in Section 5.3. Finally, we
describe how to combine these two results to obtain the final data structure for segment
queries in Section 5.4.
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5.1. Useful lemmas for curves and segments
Definition 5.1. For a curve Z, the segment connecting its endpoints is its spine, denoted
by spine(Z).

The following is a sequence of technical lemmas that we need later on. These lemmas
testify that:

(A) The spine of a curve is, up to a factor of two, the closest segment to this curve with
respect to the Fréchet distance, see Lemma 5.2.

(B) The Fréchet distance between a curve and its spine is monotone, up to a factor of
two, with respect to subcurves, see Lemma 5.3.

(C) Shortcutting a curve cannot increase the Fréchet distance of the curve to a line seg-
ment, see Lemma 5.4 or [BBW08].

Lemma 5.2. Let pq be a segment and Z be a curve. Then, (i) dF(pq, Z) ≥ dF(pq, spine(Z)),
and (ii) dF(pq, Z) ≥ dF(spine(Z) , Z) /2.

Proof: Let r and u be the endpoints of Z; that is spine(Z) = ru.
(i) Since in any matching of pq with Z it must be that p is matched to r, and q is matched

to u, it follows that dF(pq, Z) ≥ max(‖p− u‖ , ‖q− v‖) = dF(pq, ru) = dF(pq, spine(Z)), by
Observation 2.3.

(ii) By (i) and the triangle inequality, we have that

dF(spine(Z) , Z) ≤ dF(spine(Z) , pq) + dF(pq, Z) ≤ 2dF(pq, Z) ,

which implies the claim.

Lemma 5.3. Given two curves Z and Ẑ, such that Ẑ is a subcurve of Z. Then, we have
that dF

(
spine

(
Ẑ
)
, Ẑ
)
≤ 2dF(spine(Z) , Z).

Proof: Consider the matching that realizes the Fréchet distance between Z and spine(Z). It
has to match the endpoints of Ẑ to points q and r on spine(Z). We have that dF

(
Ẑ, qr

)
≤

dF(Z, spine(Z)). By Lemma 5.2 (i), we have dF

(
spine

(
Ẑ
)
, qr
)
≤ dF

(
Ẑ, qr

)
≤ dF(Z, spine(Z)).

Now, by the triangle inequality, we have that

dF

(
Ẑ, spine

(
Ẑ
))
≤ dF

(
Ẑ, qr

)
+ dF

(
qr, spine

(
Ẑ
))
≤ 2dF(Z, spine(Z)) .

Lemma 5.4. Let Z = u1u2 . . . un be a polygonal curve, pq be a segment, and let i < j be
any two indices. Then, for Z ′ = Z〈u1, ui〉⊕uiuj⊕Z〈uj, un〉, we have dF(Z ′, pq) ≤ dF(Z, pq).

Proof: Consider the matching realizing dF(Z, pq), and break it into three portions:
• the portion matching Z〈u1, ui〉 with a “prefix” pp′ ⊆ pq,
• the portion matching Z〈ui, uj〉 with a subsegment p′q′ ⊆ pq, and
• the portion matching Z〈uj, un〉 with a “suffix” q′q ⊆ pq.

Now, by Lemma 5.2 (i), we have that

dF(Z, pq) = max
(

dF(Z〈u1, ui〉 , pp′) , dF(Z〈ui, uj〉 , p′q′) , dF(Z〈uj, un〉 , q′q)
)

≥ max
(

dF(Z〈u1, ui〉 , pp′) , dF(uiuj, p′q′) , dF(Z〈uj, un〉 , q′q)
)

≥ dF(Z ′, pq) .
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5.2. Stage 1: Achieving a constant-factor approximation
In this section we describe a data structure that preprocesses a curve Z to answer queries for
the Fréchet distance of a subcurve of Z to a query segment up to a constant approximation
factor. This data structure will be the basis for later extensions.

A query is specified by points u, v, p and q. Here u and v are points on Z (and we are
also given the edges of Z containing these two points), and the points p and q define the
query segment. Our goal is to approximate dF(pq, Z〈u, v〉).

5.2.1. The data structure

Preprocessing. Build a balanced binary tree T on the edges of Z. Every internal node ν
of T corresponds to a subcurve of Z, denoted by cr(ν). Let seg(ν) denote the spine of cr(ν)
(Definition 5.1). For every node, we precompute its Fréchet distance of the curve cr(ν) to
the segment seg(ν). Let dν denote this distance.

Answering a query. For the time being, assume that u and v are vertices of Z. In this
case, one can compute, in O(log n) time, k = O(log n) nodes ν1, . . . , νk of T , such that
Z〈u, v〉 = cr(ν1)⊕ cr(ν2)⊕· · ·⊕ cr(νk). We compute the polygonal curve Y = seg(ν1)⊕· · ·⊕
seg(νk), and compute its Fréchet distance from the segment pq. We denote this distance by
d = dF(pq, Y ). We return

∆ = d+ kmax
i=1

dνi

as the approximate distance between pq and the subcurve Z〈u, v〉.

5.2.2. Analysis

Lemma 5.5. Given a polygonal curve Z with n edges, one can preprocess it in O(n log2 n)
time, such that for any pair u, v of vertices of Z and a segment pq, one can compute, in
O(log n log log n) time, a 3-approximation to dF(pq, Z〈u, v〉).

Proof: The construction of the data structure and how to answer a query is described above.
For the preprocessing time, observe that computing the Fréchet distance of a segment to a
polygonal curve with k segments takes O(k log k) time [AG95]. Hence, the distance compu-
tations in each level of the tree T take O(n log n) time, and O(n log2 n) time overall.

As for the query time, computing Y takes O(log n) time, and computing its Fréchet
distance from pq takes O(log n log log n) time [AG95].

Finally, observe that the returned distance ∆ is a realizable Fréchet distance, as we can
take the matching between pq and Y , and chain it with the matching of every edge of Y
with its corresponding subcurve of Z. Clearly, the resulting matching has width at most ∆.

Let t be the index realizing maxki=1 dνi
. Then, by repeated application of Lemma 5.4, we

have that d = dF(pq, Y ) ≤ dF(pq, Z). Thus,

∆ = d+ kmax
i=1

dνi
= dF(pq, Y ) + dνt ≤ dF(pq, Z) + dF(seg(vt) , cr(vt))

≤ dF(pq, Z) + 2 min
p′q′⊆pq

dF(p′q′, cr(vt)) ≤ 3dF(pq, Z) .
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To see the last step, consider the matching realizing dF(pq, Z), and consider the subsegment
p′q′ of pq that is being matched to cr(vt) ⊆ Z. Clearly, dF(p′q′, cr(vt)) ≤ dF(pq, Z).

Theorem 5.6. Given a polygonal curve Z with n edges, one can preprocess it in O(n log2 n)
time and using O(n) space, such that, given a query specified by

(i) a pair of points u and v on the curve Z,
(ii) the edges containing these two points, and

(iii) a pair of points p and q,
one can compute, in O(log n log log n) time, a 3-approximation to dF(pq, Z〈u, v〉).

Proof: This follows by a relatively minor modification of the above algorithm and analysis.
Indeed, given u and v (and the edges containing them), the data structure computes the two
vertices u′, v′ that are endpoints of these edges that lie between u and v on the curve. The
data structure then concatenates the segments uu′ and v′v to the approximation Y (here Y
is computed for the vertices u′ and v′). The remaining details are as described above.

5.3. Stage 2: A segment query to the entire curve
In this section we describe a data structure that preprocesses a curve to answer queries for
the Fréchet distance of the entire curve to a query segment up to an approximation factor
of (1 + ε). We will use this data structure as a component in our later extensions.

5.3.1. The data structure

We need the following relatively easy construction of an exponential grid. Figure 5.1 illus-
trates the idea. The details can be found in [Dri13].

Lemma 5.7 ([Dri13]). Given a point u ∈ IRd, a parameter 0 < ε ≤ 1 and an interval
[α, β] ⊆ IR one can compute in O

(
ε−d log(β/α)

)
time and space an exponential grid of

points G(u), such that for any point p ∈ IRd with ‖p− u‖ ∈ [α, β], one can compute in
constant time a grid point p′ ∈ G(u) with ‖p− p′‖ ≤ (ε/2) ‖p− u‖.

Preprocessing. We are given a polygonal curve Z in IRd with n segments, and we would
like to preprocess it for (1+ε)-approximate Fréchet distance queries against a query segment.
To this end, let L = dF(uv, Z), where uv is the spine of Z. We construct an exponential grid
G(u) of points around u with the range [α, β] = [εL/4, L/ε] as described in Lemma 5.7 and
illustrated in Figure 5.1. We construct the same grid G(v) around the vertex v.

Now, for every pair of points (p′, q′) ∈ G(u) × G(v) we compute the Fréchet distance
D[p′, q′] = dF(p′q′, Z) and store it. Thus, we take O(χ2n log n) time to build a data structure
that requires O(χ2) space, where χ = ε−d log(1/ε).

Answering a query. Given a query segment pq, we compute the distance

r = max
(
‖p− u‖ , ‖q− v‖

)
.
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Figure 5.1: We build an exponential grid around each endpoint of the curve, such that for
any point p, which has distance to the endpoint in the range [εL/4, L/ε], there exists a grid
point p′ which is relatively close by.

If r ≤ εL/4, then we return L−r as the approximation to the distance dF(pq, Z). If r ≥ L/ε
then we return r as the approximation. Otherwise, let p′ (resp., q′) be the nearest neighbor
to p in G(u) (resp., G(v)). We return the distance

∆ = D[p′, q′]−max(‖p− p′‖ , ‖q− q′‖)

as the approximation.

5.3.2. Analysis

Lemma 5.8. Given a polygonal curve Z with n vertices in IRd, one can build a data struc-
ture, in O(χ2n log n)) time, that uses O(χ2) space, such that given a query segment pq one
can (1 + ε)-approximate dF(pq, Z) in O(1) time, where χ = ε−d log(1/ε).

Proof: The data structure is described above. Given pq we compute the distance of the
endpoints of this segment from the endpoints of Z. If they are too close, or if one of them
is too far away, then we are done since in this case the Fréchet distance is dominated either
by these distances or by the precomputed value L. Otherwise, we find the two cells in the
exponential grid that contain p and q (that is, the indices of the grid points that are close
to them) as described above. Using the indices of the grid points, we can directly look-up
the approximation of the Fréchet distance in constant time.

Now, we argue about the quality of the approximation using the notation which is also
used above. There are three cases: either (i) r ≤ εL/4, or (ii) L ≤ εr, or (iii) εL/4 ≤ r ≤ L/ε.
Let ∆ be the returned value. We claim that in all three cases, it holds that

∆ ≤ dF(pq, Z) ≤ (1 + ε)∆. (5.1)
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First note that by the triangle inequality,

L− r ≤ dF(pq, Z) ≤ L+ r. (5.2)

Now, in case (i) above, L dominates the distance value and we return ∆ = L − r. Thus,
Eq. (5.1) follows from Eq. (5.2).

In case (ii), r dominates the distance value and we return ∆ = r. Since r is at most
dF(pq, Z), again Eq. (5.1) follows from Eq. (5.2).

In case (iii), the precomputed Fréchet distance of p′q′ to Z dominates the distance. Recall
that we return ∆ = dF(p′q′, Z)− dF(p′q′, pq) in this case. Again, by the triangle inequality,
it holds that

dF(p′q′, Z)− dF(p′q′, pq) ≤ dF(pq, Z) ≤ dF(p′q′, Z) + dF(p′q′, pq) . (5.3)

Since r is at least εL/4 and by Observation 2.3, Lemma 5.7 implies that

dF(p′q′, pq) ≤ max(‖p− p′‖ , ‖q− q′‖) ≤ (ε/2)r,

thus, since also r is at most dF(pq, Z) it follows by Eq. (5.3) that

∆ ≤ dF(pq, Z) ≤ ∆ + 2dF(p′q′, pq) ≤ ∆ + εr ≤ (1 + ε)∆.

This implies the claim.

5.4. Stage 3: A segment query to a subcurve
In this section we describe a data structure that preprocesses a curve Z to answer queries for
the Fréchet distance of a subcurve of Z to a query segment up to an approximation factor
of (1 + ε). For this we combine the data structures developed in the previous sections.

As in Section 5.2, a query is defined by two points u and v on Z and a segment with
endpoints p and q. The goal is now a (1 + ε)-approximation to dF(pq, Z〈u, v〉).

5.4.1. The data structure

Preprocessing. Let Z be a given polygonal curve with n vertices. We build the data
structure of Theorem 5.6. Next, for each node of the resulting tree T , we build for its
subcurve the data structure of Lemma 5.8 using ε′ = ε/3.

Answering a query. Using the data structure of Theorem 5.6 we first compute a 3-
approximation r to dF(pq, Z〈u, v〉); that is, dF(pq, Z〈u, v〉) ≤ r ≤ 3dF(pq, Z〈u, v〉). This
query also results in a decomposition of Z〈u, v〉 into m = O(log n) subcurves. Let u =
v0, v1, . . . , vm−1, vm = v be the vertices of these subcurves, where v0v1 and vm−1vm are sub-
segments of Z.

We want to find points on pq that can be matched to v1, . . . , vm−1 under a (1 + ε)-
approximate Fréchet matching. To this end, we uniformly partition the segment pq into
segments of length at most εr/c1, where c1 is a sufficiently large constant which we define
later. Let Π be the set of vertices of this implicit partition. For each vertex vi, for i =
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Figure 5.2: Schematic illustration of the graph G on the vertex set ⋃Vi.
1, . . . ,m− 1, we compute its nearest point on pq, and let Vi ⊆ Π be the set of all vertices in
Π that are in distance at most 2r from vi. The set Vi is the set of candidate points to match
vi in the matching that realizes the Fréchet distance.

Now, we build a graph G where ⋃i Vi is the multiset of vertices. Two points x ∈ Vi and
y ∈ Vi+1 are connected by a direct edge in this graph if and only if y is after x in the oriented
segment pq. See Figure 5.2 for a schematic illustration. The price of such an edge x→ y is
a (1 + ε/4)-approximation to the Fréchet distance between Z〈vi, vi+1〉 and xy. The portion
Z〈vi, vi+1〉 of the curve corresponds to a node in T , and this node has an associated data
structure that can answer such queries in constant time (see Lemma 5.8). For any point
x ∈ V1, we directly compute the Fréchet distance v0v1 with px. Similarly, we compute, for
each y ∈ Vm−1, the Fréchet distance of the segment vm−1vm to the segment yq. We add the
corresponding edges to G together with the vertices p and q.

Using a variant of Dijkstra’s algorithm for bottleneck shortest paths, we now compute a
path in this graph which minimizes the maximum cost of any single edge visited by the path,
connecting p with q. The cost of this path is returned as the approximation to the Fréchet
distance between Z〈u, v〉 and pq. Intuitively, this path corresponds to the cheapest matching
of Z〈u, v〉 (broken into subcurves by the vertices v0, . . . , vm) with V0 × V1 × · · ·Vm−1 × Vm,
where V0 = {p}, Vm = {q}, and every subcurve Z〈vi, vi+1〉 is matched with two points in the
corresponding sets Vi and Vi+1.

5.4.2. Analysis

Query time. Computing the set of vertices v0, v1, . . . , vm takes O(m) = O(log n) time.
The graph G has N = O(m/ε) vertices and they can be computed in O(m/ε) time. In
particular, the number of vertices in Vi is bounded by O(1/ε), since they are spread apart
on a line segment by εr/c1 and contained inside a ball of radius 2r. Thus, the graph has
O
(
(1/ε)−2

)
edges connecting Vi with Vi+1 and M = O(m/ε2) edges in total. The cost of

each edge can be computed in constant time, see Lemma 5.8. Computing the cheapest path
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Figure 5.3: Illustration of the error introduced by snapping.

between p and q in G can be done in O(N logN + M) = O((m/ε) log(m/ε) +m/ε2) time,
using Dijkstra’s algorithm for bottleneck shortest paths. Overall, the query time is

O
(
m+ (m/ε) log(m/ε) +m/ε2

)
= O

(
ε−2 log n log log n

)
.

Quality of approximation. Consider the matching that realizes the Fréchet distance
between the query segment pq and the subcurve Z〈u, v〉, and break it at the vertices of
v0, . . . , vm. Now, snap the matching such that the endpoints of Z〈vi, vi+1〉 are mapped to
their closest vertices in Vi and Vi+1, respectively, for all i. This introduces an error of at
most εr/c1 ≤ (ε/3)dF(Z〈u, v〉 , pq), if we choose c1 ≥ 9, see Figure 5.3 for an illustration.
We get another factor of (1 + ε′) = (1 + ε/3) error since we are approximating the price of
these portions using Lemma 5.8. Therefore, the approximation has price at most

(1 + ε/3)(1 + ε/3) · dF(Z〈u, v〉 , pq) ≤ (1 + ε) · dF(Z〈u, v〉 , pq) .

Preprocessing time and space. Building the data structure described in Theorem 5.6
takes O(n log2 n) time. For each node v of this tree, building the data structure of Lemma 5.8
takes O(χ2l(v) log l(v)) time per node, where l(v) is the number of vertices of the curve stored
in the subtree of v. As such, overall, the preprocessing time is O

(
χ2n log2 n

)
. For each node,

this data structure requires O(χ2) space and thus the overall space usage is O(χ2n), where
χ = ε−d log(1/ε).

Putting the above together, we get the following result.

Theorem 5.9. Given a polygonal curve Z with n vertices in IRd, one can build a data
structure, in O

(
χ2n log2 n

)
time, that uses O(nχ2) space, such that for a query segment pq,

and any two points u and v on the curve (and the segments of the curve that contain them),
one can (1 + ε)-approximate the distance dF(Z〈u, v〉 , pq) in O(ε−2 log n log log n) time, and
χ = ε−d log(1/ε).

We emphasize that the result of Theorem 5.9 assumed nothing on the input curve Z. In
particular, the curve Z is not necessarily c-packed.

6. Universal vertex permutation and its applications
We would like to extend the data structure described in Section 5.2 to support queries with
curves of more than one segment. For this, we first introduce a new method to represent a
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polygonal curve in a way such that we can extract a simplification with a small number of
segments quickly. We describe this method in Section 6.1 and we describe the extension of
the data structure in Section 6.2.

6.1. Universal vertex permutation
We use the data structure described in Section 5.4 to preprocess Z, such that, given a number
of vertices k ∈ IN, we can quickly return a simplification of Z which has

(i) 2k − 1 vertices of the original curve and
(ii) minimal Fréchet distance to Z, up to a constant factor, compared to any simplification

of Z with only k vertices.
The idea is to compute a permutation of the vertices, such that the curve formed by the
first k vertices in this permutation is a good approximation to the optimal simplification of
a curve using (roughly) k vertices.

Definition 6.1. Let Z be a polygonal curve with vertices V (Z). Let V ⊆ V (Z) be a subset
of the vertices that contains the endpoints of Z. We call the polygonal curve obtained by
connecting the vertices in V in their order along Z a spine curve of Z and we denote it
with ZV . Additionally we may call ZV a k-spine curve of Z if it has k vertices.

Definition 6.2. Given a polygonal curve Z and a permutation Φ = 〈v1, . . . , vn〉 of the
vertices of Z, where v1 and v2 are the endpoints of Z, let Vi be the subset {vj | 1 ≤ j ≤ i}
of the vertices for any 2 ≤ i ≤ n. We call Φ a universal vertex permutation if it holds
that

(i) c1dF(ZVi
, Z) ≥ dF

(
ZVi+1 , Z

)
, for any 2 ≤ i < n, and

(ii) dF(ZVi
, Z) ≤ c2dF(Y, Z), for any polygonal curve Y with di/c3e vertices,

where c1, c2 and c3 are constants larger than one which do not depend on n.

6.1.1. Construction of the permutation

We compute a universal vertex permutation of Z. The idea of the algorithm is to estimate
for each vertex the error introduced by removing it, and repeatedly remove the vertex with
the lowest error in a greedy fashion.

Specifically, for each vertex v that is not an endpoint of Z, let v− be its predecessor on Z
and let v+ be its successor on Z. Let φv be a (11/10)-approximation of dF(Z〈v−, v+〉 , v−v+).
Insert the vertex v with weight φv into a min-heap H. Repeat this for all the internal vertices
of Z.

At each step, the algorithm extracts the vertex v from the heap H having minimum
weight. Let u = v−(ZH) and w = v+(ZH) be the predecessor and successor of v in the curve
ZH, respectively, where H denotes the set of vertices currently in the heap with the addition
of the two endpoints of Z.

The algorithm removes v from H and updates the weight of u and w in H (if the vertex
being updated is an endpoint of Z its weight is +∞ and its weight is not being updated).
Updating the weight of a vertex u is done by computing its predecessor and successor vertices
in the current curve ZH (i.e., u− = u−(ZH) and u+ = u+(ZH)) and approximating the Fréchet
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distance of the subcurve of (the original curve) Z between these two vertices and the segment
u−u+. Formally, the updated weight of u is φu, which is a (11/10)-approximation to

dF

(
Z
〈
u−, u+

〉
, u−u+

)
.

The updated weight of w is computed in a similar fashion.
The algorithm stops whenH is empty. Reversing the order of the handled vertices, results

in a permutation 〈v1, . . . , vn〉, where v1 and v2 are the two endpoints of Z.

Implementation details. Using Theorem 5.9, the initialization takes O
(
n log2 n

)
time

overall, using ε = 1/10. In addition, the algorithm keeps the current set of vertices of H
in a doubly linked list in the order in which the vertices appear along the original curve Z.
In each iteration, the algorithm performs one extract-min from the min-heap H, and calls
the data structure of Theorem 5.9 twice to update the weight of the two neighbors of the
extracted vertex. As such, overall, the running time of this algorithm is O

(
n log2 n

)
.

Extracting a spine curve quickly. Given a parameter K, we would like to be able to
quickly compute the spine curve ZVK

, where VK = {v1, . . . , vK}. To this end, we compute
for i = 1, . . . blog2 nc, the spine curve ZV2i

by removing the unused vertices from ZV2i+1 .
Naturally, we also store the original curve Z. Clearly, one can store these O(log n) curves in
O(n) space, and compute them in linear time. Now, given K, one can find the first curve
in this collection that has more vertices than K, copy it, and remove from it all the unused
vertices. Clearly, this query can be answered in O(K) time.

6.1.2. Analysis

Lemma 6.3. Let 〈v1, . . . , vn〉 be the permutation computed above. Consider a value k, and
let Vk = {u1, . . . , uk} be an ordering of the vertices of v1, . . . , vk by their order along Z.
Then, it holds that dF(Z,ZVk

) ≤ max1≤i≤k−1 dF(Z〈ui, ui+1〉 , uiui+1).

Proof: This is immediate as one can combine for i = 1, . . . , k − 1, the matchings realizing
dF(Z〈ui, ui+1〉 , viui+1) to obtain matchings of ZVk

and Z, and such that the Fréchet distance
is the maximum used in any of these matchings.

Let v1, . . . , vn be the permutation of the vertices of Z as computed in the preprocessing
stage, and let φ(vi) denote weight of vertex vi at the time of its extraction. We have the
following three lemmas to prove that the computed permutation is universal.

Lemma 6.4. For any 1 ≤ i ≤ n, it holds that maxi≤j≤n φ(vj) ≤ 4φ(vi).

Proof: We show that the weight of a vertex at the time of extraction is at most 4 times
smaller than the final weight of any of the vertices extracted before this vertex. Let vi be
a vertex and let φj(vi) be the weight of this vertex at the time of extraction of some other
vertex vj, with j > i. Clearly, φ(vj) = φj(vj) ≤ φj(vi), since the algorithm extracted vj with
the minimum weight at the time. If φ(vi) = φi(vi) ≥ φj(vi) then the claim holds.
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Otherwise, if φ(vi) = φi(vi) < φj(vi), then there must be a vertex which caused the weight
of vi to be updated. Let k be the minimum index such that j ≥ k > i and φj(vi) = φk(vi).
We have that φ(vi) is a 11

10 -approximation of the Fréchet distance dF(uiwi, Z〈ui, wi〉) for two
vertices ui and wi. Similarly, we have that φk(vi) is a 11

10 -approximation of the Fréchet
distance dF

(
ukwk, Z

〈
uk, wk

〉)
for two vertices uk and wk. Observe that since the extraction

of vk caused the weight of vi to be updated, it must be that Z
〈
uk, wk

〉
is a subcurve of

Z〈ui, wi〉. Hence, by Lemma 2.13, we have that
10
11 · φk(vi) ≤ dF

(
ukwk, Z

〈
uk, wk

〉)
≤ 3dF

(
uiwi, Z

〈
ui, wi

〉)
≤ 3 · 11

10 · φ(vi) .

Now it follows that φ(vj) ≤ φj(vi) = φk(vi) ≤ 4φ(vi), which proves the claim.

Lemma 6.5. For any 3 ≤ i ≤ n it holds that dF(ZVi
, Z) ≤ 5φ(vi+1).

Proof: Let u1, . . . , ui be the vertices in Vi in the order in which they appear on ZVi
. Consider

the mapping between Z and this spine curve, which associates every edge ujuj+1 of ZVi
with

the subcurve Z〈uj, uj+1〉. Clearly, it holds that

dF(Z,ZVi
) ≤ max

1≤j<i
dF(Z〈uj, uj+1〉 , ujuj+1) ≤ 11

10 max
i<j≤n

φ(vj) .

Indeed, if uj+1 is the successor of uj on Z, then dF(Z〈uj, uj+1〉 , ujuj+1) = 0, otherwise, there
must be a vertex which appears on Z in between uj and uj+1, which is contained in Vn \ Vi
and the weight of this vertex is the approximation of this distance at the time of extraction.
Now it follows by Lemma 6.4 that dF(Z,ZVi

) ≤ 5φ(vi+1).

Lemma 6.6. For any 2 ≤ k ≤ n/2−1, let Y ∗k be the curve with the smallest Fréchet distance
from Z with k vertices (note, that Y ∗k is not restricted to have its vertices lying on Z). We
have that dF(Z, Y ∗k ) ≥ (5/11)φ(vK+1), where K = 2k − 1.

Proof: Let f : Y ∗k → Z be the mapping realizing the Fréchet distance between Y ∗k and Z.
Let Vi = 〈v1, . . . , vi〉, for i = 1, . . . , n.

Y ∗
k

Z

wj

wj+1

ui

ui+1 ui+2

f(wj)

f(wj+1)
f−1(ui)

f−1(ui+2)

Since Y ∗k has only k vertices, it breaks Z into k − 1 sub-
curves. Since, K ≥ 2(k−1) + 1, there must be three consec-
utive vertices ui, ui+1, ui+2 on ZVK

and two vertices wj, wj+1
of Y ∗k , such that the vertices ui, ui+1, ui+2 appear on the sub-
curve Z ′ = Z〈f(wj), f(wj+1)〉, see the figure on the right.

Now, f−1(ui)f−1(ui+2) ⊆ wjwj+1 and by Lemma 5.2, we
have

dF(Z, Y ∗k ) ≥ dF

(
Z
〈
f(wj), f(wj+1)

〉
, wjwj+1

)
≥ dF

(
Z〈ui, ui+2〉 , f−1(ui)f−1(ui+2)

)
≥ dF

(
Z〈ui, ui+2〉 , f−1(ui)f−1(ui+2)

)
≥ 1

2dF

(
Z〈ui, ui+2〉 , spine(Z〈ui, ui+2〉)

)
≥ 1

2 ·
10
11φK+1(ui+1) ≥ 5

11φK+1(vK+1) = 5
11φ(vK+1) ,

as the simplification algorithm removed the minimum weight vertex at time K + 1 (i.e.,
vK+1).
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6.1.3. The result

Theorem 6.7. Given a polygonal curve Z with n edges, we can preprocess it using O(n)
space and O

(
n log2 n

)
time, such that, given a parameter k ∈ IN, we can output in O(k) time

a (2k − 1)-spine curve Z ′ of Z and a value δ, such that
(i) δ/11 ≤ dF(Y ∗k , Z), and

(ii) dF(Z ′, Z) ≤ δ,
where Y ∗k is the polygonal curve with k vertices with minimal Fréchet distance from Z. (For
k ≥ n/2 we output Z and δ = 0).

Proof: The algorithm computing the universal vertex permutation and its associated data
structure is described above, for K = 2k−1. Specifically, it returns the spine curve Z ′ = ZVK

as the required approximation, with the value δ = 5φ(vK+1). Computing Z ′ takes O(k) time.
By Lemma 6.5 and Lemma 6.6, we have that Z ′ and δ satisfy the claim.

Building the data structure takes O
(
n log2 n

)
time, and it uses O(n) space using ε = 1/10.

Each query to this data structure takes O(log n log log n) time. We perform a constant
number of these queries to the data structure per extraction from the heap, thus getting the
claimed preprocessing time.

6.2. Extending the data structure for Fréchet-distance queries
We use the universal vertex permutation described in the previous section to extend our
data structure of Section 5.2 to support queries with more than one segment.

6.2.1. The data structure

The input is a polygonal curve Z ∈ IRd with n vertices.

Preprocessing. Similar to the algorithm of Section 5.2, build a balanced binary tree T
on Z. For every internal node ν of T construct the data structure of Theorem 6.7 for cr(ν),
denoted by Dν , and store it at ν.

Answering a query. Given any two vertices u and v of Z, and a query polygonal curve
Q with k segments, the task is to approximate dF(Q, Z〈u, v〉). We initially proceed as in
Section 5.2, computing in O(log n) time, m = O(log n) nodes ν1, . . . , νm of T , such that
Z〈u, v〉 = cr(ν1)⊕ cr(ν2)⊕· · ·⊕ cr(νk). Now, extract a simplified curve with K vertices from
Dνi

, denoted by simplK(νi), for i = 1, . . . ,m, where K = 2k − 1. For i = 1, . . . ,m, let δi
denote the simplification error (as returned by Dνi

), where dF(simplK(νi) , cr(νi)) ≤ δi and
δi/11 is a lower bound to the Fréchet distance of any curve with at most k vertices from
cr(νi), for i = 1, . . . ,m (see Theorem 6.7).

Next, compute the polygonal curve S = simplK(ν1) ⊕ · · · ⊕ simplK(νm), and its Fréchet
distance from Q; that is, d = dF(S,Q). We return

∆ = d+ mmax
1≤i

δi, (6.1)

as the approximate distance between Q and Z〈u, v〉.
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6.2.2. Analysis

Query time. Extracting the m = O(log n) relevant nodes takes O(log n) time. Querying
these m data structures for the simplification of the respective subcurves, takes O(km)
overall, by Theorem 6.7. Computing the Fréchet distance between the resulting simplification
S of Z〈u, v〉, which has O(mk) edges, and Q takes O(k2m log(k2m)) time [AG95]. Thus
the overall time used for answering a query is bounded by O(m+ km+ k2m log(k2m)) =
O(k2m log(km)) = O(k2 log n log(k log n)).

Preprocessing time and space. Building the initial tree T takes O(n) time and it re-
quires O(n) space. Let l(ν) denote the number of vertices of cr(ν). For each node ν, com-
puting the additional information and storing it requires O(l(ν)) space and O

(
l(ν) log2 l(ν)

)
time. Recall that T is a balanced binary tree and for the nodes ν1, . . . , νt contained in one
level of the tree it holds that ∑t

1≤i l(νi) = n. Thus, computing and storing the additional
information takes an additional O

(
n log3 n

)
time and O(n log n) space by Theorem 6.7.

Quality of approximation. By the following lemma the data structure achieves a constant-
factor approximation.

Lemma 6.8. Given a polygonal curve Z and a query curve Q with k segments, the value
∆ (see Eq. (6.1)) returned by the above data structure is a constant-factor approximation to
dF(Q, Z〈u, v〉).

Proof: Clearly, ∆ bounds the required distance from above, as one can extract a matching
of Q and Z〈u, v〉 realizing ∆. As such, we need to prove that ∆ = O(r), where r =
dF(Q, Z〈u, v〉).

So, let f : Q → Z〈u, v〉 be the mapping realizing r = dF(Q, Z〈u, v〉), and let Qi =
f−1(cr(νi)), for i = 1, . . . ,m. Clearly, r = maxi dF(Qi, cr(νi)). Since Qi has at most k
vertices, by Theorem 6.7, we have

δi
11 ≤ dF(Qi, cr(νi)) ≤ r, and dF(simplK(νi) , cr(νi)) ≤ δi, (6.2)

for i = 1, . . . ,m. In particular, we have δi ≤ 11r. Now, by the triangle inequality, we have
that

dF(simplK(νi) ,Qi) ≤ dF(simplK(νi) , cr(νi)) + dF(cr(νi) ,Qi) ≤ δi + r ≤ 12r.

As such, d = dF(S,Q) ≤ maxi dF(simplK(νi) ,Qi) ≤ 12r. Now, ∆ = d+maxi δi ≤ 12r+11r =
23r.

The result. Putting the above together, we get the following result. We emphasize that k
is being specified together with the query curve, and the data structure works for any value
of k.

Theorem 6.9. Given a polygonal curve Z with n edges, we can preprocess it in O(n log3 n)
time and O(n log n) space, such that, given a query specified by
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(i) a pair of points u and v on the curve Z,
(ii) the edges containing these two points, and

(iii) a query curve Q with k segments,
one can approximate dF(Q, Z〈u, v〉) up to a constant factor in O(k2 log n log(k log n)) time.

Proof: The preprocessing is described and analyzed above. The query procedure needs to
be modified slightly since the u and v are not necessarily vertices of Z. However, this can be
done the same way as for the initial data structure in Theorem 5.6. Let u′, v′ be the first and
last vertices of Z contained in Z〈u, v〉. We now extract the m = O(log n) nodes ν1, . . . , νm
of T , such that

X = uu′ ⊕ cr(ν1)⊕ . . .⊕ cr(νm)⊕ v′v = Z〈u, v〉 .

We continue with the procedure as described above using this node set. The analysis of
Lemma 6.8 applies with minor modifications.

7. Conclusions
In this paper, we presented algorithms for approximating the Fréchet distance when one is
allowed to perform shortcuts on the original curves. More specifically the presented algo-
rithms approximate the directed vertex-restricted shortcut Fréchet distance. Surprisingly,
for c-packed curves it is possible to compute a constant factor approximation in a running
time which is near linear in the complexity of the input curves.

We also presented a way to compute an ordering of the vertices of the curve, such that any
prefix of this ordering serves as a good approximation to the curve in the Fréchet distance,
and it is optimal up to constant factors. We used this universal vertex permutation to
develop a data structure that can quickly approximate (up to a constant factor) the (regular)
Fréchet distance between a query curve and the input curve. Surprisingly, the query time is
logarithmic in the complexity of the original curve (and near quadratic in the complexity of
the query curve).

There are many open questions for further research. The most immediate questions being
how to extend our result to the other definitions of a shortcut Fréchet distance mentioned
in the introduction and how to improve the approximation factor. The work in this paper
is a step towards solving these more difficult questions.

As for exact computations, it is easy to see that one can obtain polynomial-time al-
gorithms by modifying the algorithms presented in this paper even for general polygonal
curves, see also [Dri13]. Surprisingly, a more recent result shows that if the requirement that
shortcuts have to start and end at input vertices is dropped, the problem of computing the
shortcut Fréchet distance becomes NP-Hard [BDS13, Dri13].
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