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Abstract. Surrogate models are used for global approximation of responses generated

by expensive computer experiments like CFD applications. In this paper, we make use

of structural similarities which are shared by a class of related problems. We identify

these structures by applying statistical shape models. They are used to build a generic

surrogate model approximation to sample data of a new problem of the same class. In

a variable fidelity framework the generic surrogate model is combined with the sample

data to generate an efficient and globally accurate interpolation model, which requires

less costly sample evaluations than ordinary response surface methods. We demonstrate

our method with an aerodynamic test case and show that it significantly improves the

approximation quality.

1 Introduction

In multidisciplinary numerical simulation and optimization, surrogate modeling has

gained popularity during the last two decades. Numerical computation of realistic mod-

els still is challenging and computationally intensive. When the global behavior of an

input-output relationship of a computer experiment is sought, dense evaluations over the

whole input parameter space are out of reach. Surrogate models or also called metamod-

els or response surface models approximate or interpolate the output of a computer code

based on a moderate number of evaluations. Typically, the evaluation of the computer
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experiment dominates the overall computational cost of model generation. For the sake

of efficiency, methods have to be designed to use as few samples as possible without

sacrificing accuracy. Radial basis functions and the Kriging method are widely used be-

cause of their flexibility and ability to interpolate highly nonlinear functions. Improving

these methods is a major topic of ongoing research: On the one hand, adaptive sampling

strategies are investigated to reduce the number of required evaluations [41],[37]. On the

other hand, additional information which is assumed to be correlated with the response

is used to improve the accuracy of approximation, like gradient enhanced Kriging (GEK)

[27],[47],[30], Cokriging [12],[19],[18] and variable fidelity modeling (VFM) [17],[32].

All these approaches treat the response itself more or less as an unknown output of

a black-box. This paper is motivated by the assumption that for a predefined problem

class, the behavior of the response is not arbitrary, but rather related to other instances

of the mutual problem class. For example in computational fluid dynamics (CFD),

responses of aerodynamic coefficients, depending on the input parameters Mach num-

ber and angle of attack, share structural similarities for different airfoil geometries. To

identify these structures we make use of the concept of statistical shape models, which

use a principal component analysis to quantify modes of variation of a previously com-

puted training database. If functions of a problem class are accessible in form of such

a database, a new test case of this function family can be approximated using only few

evaluations. Instead of directly interpolating the samples, first the principal components

are fitted to the data which then act as a generic surrogate model (GSM). Based on this

model, interpolation of the samples is performed in a VFM framework.

The statistical interpolation method Kriging has been widely used in geostatistics since

the 1950s [22],[31], it was introduced in surrogate modeling for computer experiments in

the eighties [38] and is nowadays applied to CFD simulation and optimization, see e.g.

[27],[24],[14]. A survey about sampling strategies in optimization is given in [41], while

adaptive sampling strategies for global approximation can be found in [3],[27],[7],[15].

The authors in [20] present an early review and a recent one is given in [37]. Another

framework of improving the approximation quality uses secondary information about the

response. Gradient enhanced Kriging (GEK) incorporates derivatives [33],[21], which are

often available by adjoint computations. This approach is used in various fields of aero-

dynamic applications such as optimization [5],[29],[26],[47], uncertainty quantification

[9],[30] and global approximation [27],[37]. GEK can be interpreted as a special form of

Cokriging. This method also originates from geostatistics [46] and enables the incorpo-
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ration of any auxiliary variable which is correlated with the primary one. In the last

few years, it was also applied in aerodynamics and engineering [13],[12],[19], where the

approximation of few costly computations of high fidelity could be improved by a large

number of evaluations of a cheaper low fidelity model. Other variable fidelity modeling

(VFM) methods use bridge functions to correct the discrepancy between data of low

and high fidelity and date back almost as long as surrogate modeling for computer ex-

periments itself, e.g. [4]. Nowadays they are also used in aerodynamics [44],[36],[17],[28].

Recently a new VFM method was developed [16], which overcomes the difficulties of

model building and robustness in Cokriging as well as the problems of accuracy and

missing mean squared error prediction in the correction based VFM methods. While

statistical shape models are popular in the fields of computer vision and (medical) image

processing [6],[25],[8], to our knowledge this paper represents the first attempt to use this

technique in response surface methods for global approximation of expensive computer

experiments.

The outline is as follows. Section 2 presents Kriging as a surrogate modeling frame-

work for computer experiments. A database of surrogates for a predefined problem class

from aerodynamic simulation is considered in section 3 and the problem of establishing

a correspondence between the database elements is discussed. The concept of statistical

shape models as well as the POD method for L2-functions are presented in section 4. In

section 5, we describe the gappy POD method, extend it to the continuous case and ex-

plain how the gappy POD fit of the POD basis elements to some sample data establishes

a generic surrogate model. We discuss how the generic surrogate model approximation

and the sample data are combined by a variable fidelity modeling interpolation in section

6. In the final section, we present numerical results of the generic surrogate modeling

technique for responses of aerodynamic coefficients with a database of several airfoil

geometries and compare them to common Kriging.

2 Surrogate modeling

We consider a computer experiment like a CFD solver, whose evaluation is expensive.

It is treated as a black-box, depending on input parameters x ∈ Rd and we observe

a scalar response y(x). We want to approximate the unknown function y : Rd → R
in a domain of interest Ω ⊂ Rd by a surrogate model ŷ(x) which can be evaluated at
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low computational cost. The Kriging method is a statistical method of interpolating n

given data pairs {(xi, y(xi))}ni=1 of evaluations of the unknown function y(x). In this

section we only give a brief review, following [38] and [21]. For more information about

constructing the surrogate we refer to [34],[14],[39]. For the interpolation model, the

deterministic response is treated as a sum of a linear regression part and a “lack of fit”

term

y(x) =
K∑
k=1

βkfk(x) + z(x), x ∈ Ω ⊂ Rd, (1)

where fk(x) : Rd → R are known functions with coefficients βk ∈ R and z(x) is the

realization of a stationary Gaussian process, which captures the nonlinear behavior of

the response. The regression part usually consists of low order polynomials (simplest

case: K=1, f1 ≡ 1) and the Gaussian process is assumed to satisfy

E [z(x)] = 0, Cov [z(x), z(w)] = σ2R(w − x) ∀x,w ∈ Ω, (2)

where σ2 is the process variance and R(w − x) is a spatial correlation function, which

will be explained further at the end of this section.

The Kriging predictor

ŷ(x) := c(x)>Y (3)

is a weighted sum of the given response evaluations Y := (y(x1), . . . , y(xn))>. With the

weights ci(x) chosen as the solution of the optimization problem

min
c(x)∈Rn

MSE[ŷ(x)] = E[(c(x)>Y − y(x))2]

s. t. E[c(x)>Y − y(x)] = 0,

(4)

it is also a best linear unbiased estimator (BLUE). The solution of (4) is given by the

solution of the linear equation[
R F

F> 0

](
c(x)

µ(x)

)
=

(
r(x)

f(x)

)
(5)

where R = [R(xi, xj)]i,j ∈ Rn×n denotes the positive definite and symmetric correlation

matrix, r(x) = (R(x, xi))i ∈ Rn contains the correlations between x and every xi.

F = [fk(xi)]i,k ∈ Rn×K is the linear regression design matrix and f(x) = (fk(x))k ∈ RK

contains the evaluations of the design functions in x. µ(x) ∈ RK are the Lagrange
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multipliers for the unbiasedness condition in (4).

Using (5), a closed term for the Kriging estimator (3) can now easily be derived:

ŷ(x) = c(x)>Y =

(
r(x)

f(x)

)> [
R F

F> 0

]−1(
Y

0

)
. (6)

Inserting any xi (i = 1, . . . , n), it becomes obvious that the Kriging predictor is in fact

an interpolator (ŷ(xi) = y(xi)). Solving the linear equation independently from x in (6)

only once for a given dataset, the Kriging predictor can be evaluated efficiently at the

cost of a dot product of size n+K, ending up with a cheaply accessible surrogate model

for y(x).

The spatial correlation function (2) is modeled as a product of one dimensional cor-

relation functions

R(w − x, θ) =

d∏
k=1

R(k)(
∣∣w(k) − x(k)

∣∣, θ(k)), (7)

still depending on so-called hyperparameters θ =
(
θ(1), . . . , θ(d)

)
which determine the

correlation lengths. Popular choices for the correlation function are exponential func-

tions of the type R(k)(
∣∣w(k) − x(k)

∣∣, θ(k)) = exp
{
−θ(k)

∣∣w(k) − x(k)
∣∣p}, p ∈ [1, 2], or cubic

splines, all satisfying R(0) = 1 and R(|w − x|) −−−−−−→
|w−x|→∞

0. The hyperparameters θ(k)

are usually determined by solving a maximum likelihood problem

max
θ,β,σ2

(2π)−
n
2 σ−n(detR(θ))−

1
2 exp

{
− 1

2σ2
(Y − Fβ)>R(θ)−1(Y − Fβ)

}
. (8)

R(θ) again denotes the correlation matrix, now depending on θ. It is possible to cancel

out β and σ2 by necessary first order conditions

β(θ) =
(
F>R(θ)−1F

)−1
F>R(θ)−1Y (9)

σ2 (θ, β(θ)) =
1

n
(Y − Fβ(θ))>R(θ)−1(Y − Fβ(θ)) (10)

and the problem can be reduced to

min
θ

{
σ2 (θ, β (θ)) (detR(θ))

1
n

}
. (11)

However, when solving the maximum likelihood problem with a gradient based algo-
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rithm, formulation (11) can cause difficulties due to highly nonlinear implicit dependen-

cies and it is advisable to rather use (8) [37].

3 Function database for aerodynamic simulation

We now concretize our test case for better understanding without loss of generality. Our

goal is to generate surrogate models for scalar aerodynamic coefficients lift (cl), drag

(cd) and pitching moment (cm) for two-dimensional airfoil geometries, which depend

on the input parameters Mach number (Ma) and angle of attack (α). For every input

parameter configuration, the response can be evaluated by running a simulation with

a (computationally intensive) CFD solver. We assume that the responses of different

airfoils constitute a mutual problem class and share structural similarities. When already

having generated surrogate models for several airfoil geometries, theses similarities can

be used to improve the quality of a surrogate model for a new instance of this problem

class.

We consider a database of surrogate models y1(x), . . . , ym(x) for the same problem

class and we omit the superscript for simplicity (yi := ŷi). In our case, each yi ∈ C1(Ω) is

the response of an aerodynamic coefficient (e.g. lift) depending on the input parameters

x = (Ma, α) for a particular airfoil geometry. So the database consists of previously

computed response surface functions corresponding to m different airfoils. Furthermore

we assume each response function to have a sufficient accuracy, i.e. it represents a globally

valid surrogate model in the domain of interest Ω ⊂ R2.

In the fields of computer vision and image processing, statistical shape models built

from a dataset of examples have been widely used [8]. After establishing correspondence

between the database functions by admissible transformations, also called alignment,

a principal component analysis is performed to identify the most important modes of

variation. Often Euclidean or similarity transformations are used to establish correspon-

dence between the images, e.g. see [6]. For an overview on image registration techniques

and possible transformations see [11],[43],[48].

As an admissible transformation we define the following one, which is an affine trans-
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formation in each dimension of Ω ⊂ R2 and in the image space y(Ω) ⊂ R:

x(qj) :=

(
x(1)(1 + qj1) + qj2
x(2)(1 + qj3) + qj4

)
, (12)

yj
(
x(qj), qj

)
:= yj

(
x(qj)

)
(1 + qj5) + qj6, (13)

parametrized by qj ∈ R6 (j = 1, . . . ,m). Note that the transformation is chosen such

that yj (x(0), 0) = yj(x) for qj = 0. We emphasize that this transformation was found

to be suitable for our test cases, other problem classes could require other admissible

transformations. One function y1(x) is defined as a reference, meaning no transformation

is applied (q1 := 0). For the other transformation parameters q2, . . . , qm an optimization

problem with 6(m− 1) unknowns has to be solved:

min
q2,...,qm

1

m(m− 1)

m∑
j=1

∑
k>j

∫
Ω

(
yj
(
x(qj), qj

)
− yk

(
x(qk), qk

))2
dx+

δ

2

m∑
j=2

qj
>
qj . (14)

The solution minimizes the overall sum of squared differences, while for robustness a

penalty term is included which guarantees that the transformation does not become too

large. This nonlinear least squares problem is solved by a Gauß-Newton algorithm [35].

Some computational issues will now be addressed briefly. The integral in (14) must

be approximated by a numerical quadrature

∫
Ω
f(x)dx ≈

N∑
i=1

wif(xi), (15)

e.g. with the xi as elements of a
√
N ×

√
N -tensorgrid and positive weights wi. With

the term

ei,j,k :=
√
wi

(
yj
(
x(xi, q

j), qj
)
− yk

(
x(xi, q

k), qk
))
, (16)

e ∈ RN
m(m−1)

2 , (17)

we can write the first summand of (14) in discretized form as a sum of squared differences

SSD(q) =
1

m(m− 1)

m∑
k=1

∑
j>k

N∑
i=1

e2
i,j,k. (18)
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Then using

J :=
∂e(q)

∂q
∈ RN

m(m−1)
2

×6m, (19)

the Gauß-Newton algorithm needs the gradient and an approximation to the Hessian

∇qSSD(q) = J>e ∈ R6m (20)

∇2
qSSD(q) ≈ J>J ∈ R6m×6m. (21)

Each entry of the symmetric matrix J>J is a dot product of length N m(m−1)
2 and there

are 6m(6m+1)
2 entries to compute, so the algorithm can really benefit from parallelization.

Furthermore, the memory usage by storing the matrix J is O(Nm3).

4 Proper orthogonal decomposition

For the dataset (y1, . . . , ym), yi ∈ L2(Ω;R), we want to perform a proper orthogo-

nal decomposition (POD) which is also called principal component analysis (PCA) or

Karhunen-Loève transformation, see also [1] or [42]. Again, we omit the superscripts for

simplicity (yi := ŷi, see (3),(13)). We keep in mind that in this paper, all functions are

surrogate models which have been aligned by admissible transformations, but the POD

method applies for any yi ∈ L2(Ω) as well. In PCA significant structures of the dataset

are identified which is realized by an orthogonal decomposition of the covariance matrix

C(y) :=
[
(yi, yj)L2(Ω)

]
i,j
∈ Rm×m. (22)

We point out that classically mean centered functions are considered, i.e. the proper

orthogonal decomposition is performed on (y̌1, . . . , y̌m), y̌i := yi − 1
m

∑m
k=1 yk [8]. This

leads to a decomposition of the space of variations from the mean instead of the space

spanned by the functions themselves. In the statistical shape model

1

m

m∑
k=1

yk +
l∑

j=1

ajψj (23)

the principal components of variation ψj ∈ L2(Ω) from the mean are controlled by

parameters aj ∈ R (j = 1, . . . , l). We investigated proper orthogonal decompositions of

both mean centered (y̌1, . . . , y̌m) and plain datasets (y1, . . . , ym). In our test cases, mean
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centering did not produce better results while increasing the complexity of algorithmic

implementation, so we decided to use the plain formulation.

In this section, we introduce the POD method for the continuous case and follow the

discussion of [45]. Let Ω ⊂ Rd be bounded, L2(Ω;R) denotes the Hilbert space with

(f, g)L2(Ω) =
∫

Ω f(x)g(x)dx and ‖f‖2L2(Ω) =
∫

Ω f(x)2dx for all f, g ∈ L2(Ω). We assume

the m functions yi ∈ L2(Ω) (i = 1, . . . ,m) to be linear independent and define y(x) :=

(y1(x), . . . , ym(x)) ∈ Rm. For the POD method, consider Ym = span {y1, . . . , ym} ⊂
L2(Ω) of dimension m. Let {ψ1, . . . , ψm} be an orthonormal basis of Ym. Clearly, when

using the complete basis, every yi can be represented by a linear combination of its

elements

yi =
m∑
j=1

(yi, ψj)L2(Ω) ψj (i = 1, . . . ,m). (24)

But we search for an orthonormal set of functions {ψ1, . . . , ψl} ⊂ Ym of dimension

l ≤ m, which describes Ym as good as possible, i.e. every yi is approximated by a linear

combination of {ψ1, . . . , ψl}. This leads to the following optimization problem:

min
ψ1,...,ψl∈Ym

m∑
i=1

∥∥∥∥yi − l∑
j=1

(yi, ψj)L2(Ω) ψj

∥∥∥∥2

L2(Ω)

s. t. (ψi, ψj)L2(Ω) = δij (i, j = 1, . . . , l)

(25)

Expanding the norm in (25) and using (ψi, ψj)L2(Ω) = δij yields an equivalent formula-

tion:

max
ψ1,...,ψl∈Ym

m∑
i=1

l∑
j=1

(yi, ψj)
2
L2(Ω)

s. t. (ψi, ψj)L2(Ω) = δij (i, j = 1, . . . , l)

(26)

The solution {ψ1, . . . , ψl} of (26) is called POD-basis of rank l. We now briefly explain

how the POD-basis is determined.

We define the operator C : L2(Ω)→ Ym,

Cψ :=

m∑
i=1

(ψ, yi)L2(Ω) yi. (27)

Then for C exists a series of orthonormal eigenfunctions {ψi}∞i=1 and corresponding
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nonnegative real eigenvalues {λi}∞i=1 with

Cψi = λiψi (28)

λ1 ≥ . . . ≥ λm > 0 (29)

λi = 0 (i > m), (30)

see [23]. Furthermore, {ψi}∞i=1 is an orthonormal basis for L2(Ω) and span{ψ1, . . . , ψm} =

Ym, which implicates that {ψ1, . . . , ψm} is an orthonormal basis for Ym. Also, for any

l ≤ m {ψ1, . . . , ψl} is the unique solution of (25). The error can be expressed by the

sum of the m− l remaining eigenvalues

m∑
i=1

∥∥∥∥yi − l∑
j=1

(yi, ψj)L2(Ω) ψj

∥∥∥∥2

L2(Ω)

=
m∑

j=l+1

λj . (31)

So the POD-basis is determined by the first l eigenfunctions of C which correspond

to the l largest eigenvalues. A finite approach for solving the eigensystem (28) can be

derived [45]: Because ψk ∈ Ym (k = 1, . . . , l), we set

ψk = κk

m∑
i=1

vki yi (k = 1, . . . , l). (32)

Inserting (32) into the eigensystem (28) yields

κk

m∑
j=1

(
m∑
i=1

(yi, yj)L2(Ω) v
k
i

)
yj = κk

m∑
j=1

(
λkv

k
j

)
yj (k = 1, . . . , l) (33)

and exploiting the linear independence of {y1, . . . , ym} we conclude

m∑
i=1

(yi, yj)L2(Ω) v
k
i = λkv

k
j (k = 1, . . . , l; j = 1, . . . ,m). (34)

This is a discrete eigenvalue problem and with the covariance matrix C = C(y) from (22)

we can write it as

Cvk = λkv
k (k = 1, . . . , l). (35)

So for determining the POD-basis {ψ1, . . . , ψl} of rank l one has to compute the l eigen-

vectors vk ∈ Rm of C which correspond to the l largest eigenvalues λk. Setting κk = 1√
λk
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for normalization in (32), the POD-basis elements are

ψk =
1√
λk

m∑
i=1

vki yi (k = 1, . . . , l). (36)

With notations Vl :=
[
vki
]
i,k
∈ Rm×l and Σl := diag(

√
λ1, . . . ,

√
λl) ∈ Rl×l we can also

write

ψ(x) := (ψ1(x), . . . , ψl(x)) = y(x)VlΣ
−1
l ∈ R1×l. (37)

5 Gappy POD in Hilbert spaces

The gappy POD method was first introduced in [10] for reconstructing images of faces

from incomplete data. A mask function was used which set the greyscale of every pixel

to zero which was not part of the incomplete dataset. In [2], the gappy POD method

was applied to CFD problems for the first time and a selection vector was used to set

the missing flow solution vector’s entries to zero. We now introduce a straightforward

approach for applying this methodology to L2(Ω), where the gappy data is given by

function evaluations on a discrete subset of Ω. But first we briefly recap how a “non

gappy” function is approximated by the POD-basis.

When approximating an arbitrary function φ ∈ L2(Ω) (not necessarily φ ∈ Ym) with

the POD-basis, the solution of the optimization problem

min
a
(ψ)
1 ,...,a

(ψ)
l ∈R

1

2

∥∥∥∥φ(x)−
l∑

j=1

a
(ψ)
j ψj(x)

∥∥∥∥2

L2(Ω)

(38)

is sought. This is a linear least squares problem and using optimality conditions and

exploiting (ψi, ψj)L2(Ω) = δij one derives

a
(ψ)
j = (φ, ψj)L2(Ω) (j = 1, . . . , l). (39)

The approximating function φ̃(x) :=
∑l

j=1 a
(ψ)
j ψj(x) is a projection of φ(x) onto the

subspace Y l := span {ψ1, . . . , ψl} ⊂ Ym ⊂ L2(Ω).

Now for the gappy POD method, suppose φ(x) itself is unknown again and only a set
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of n data pairs of evaluations

{(xi;φ(xi))}ni=1 , (40)

xi ∈ Ω ⊂ Rd, φ(xi) ∈ R, xi 6= xj (i 6= j), (i = 1, . . . , n)

is available. Based on the data, we want to reconstruct the unknown function φ ∈ L2(Ω).

Assuming there is a strong relation between φ and Ym, we approximate φ by a φ̃ ∈ Y l.
Similar to (38), we pose an optimization problem

min
a
(ψ)
1 ,...,a

(ψ)
l ∈R

1

2

n∑
i=1

(
φ(xi)−

l∑
j=1

a
(ψ)
j ψj(xi)

)2

, (41)

which again is a linear least squares problem. Clearly, though the ψj are orthonormal

in L2(Ω), meaning (ψi, ψj)L2(Ω) = δij , this is not the case anymore on a subset of Ω.

Particularly,
∑n

k=1 ψi(xk)ψj(xk) (i 6= j) is generally not equal to zero. Introducing the

design matrix

Ψ := [ψj (xi)]
n,l
i=1,j=1 ∈ Rn×l, n ≥ l, rank Ψ = l. (42)

and ϕ := (φ(x1), . . . , φ(xn))> ∈ Rn×1, the solution of (41) is given by the linear equation

Ψ>Ψa(ψ) = Ψ>ϕ. (43)

Since every ψj (j = 1, . . . , l) is a linear combination of {y1, . . . , ym}, we now derive a

framework for avoiding multiple redundant evaluations of yi(x) both while solving (43)

and also for evaluating φ̃(x) =
∑l

j=1 a
(ψ)
j ψj(x). Even if each yj(x) is a surrogate model,

depending on its complexity and l, m and n, the evaluations needed can be a bottleneck

in the model generation. We define

Y := [yj (xi)]
n,m
i=1,j=1 ∈ Rn×m (44)

and analogously to (37) we get

Ψ = YVlΣ
−1
l . (45)
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Also, with (37) we get for the approximating function

φ̃(x) =

l∑
j=1

a
(ψ)
j ψj(x)

= ψ(x)a(ψ)

= y(x) VlΣ
−1
l a(ψ)︸ ︷︷ ︸

:=a(y)∈Rm×1

(46)

such that we have a closed form of φ̃(x) = y(x)a(y) =
∑m

j=1 a
(y)
j yj(x) as a linear combi-

nation of {y1, . . . , ym}.

Because the database elements y1, . . . , ym have been transformed by solving the align-

ment problem (14), the unknown function φ(x) (respectively its known evaluations

{(xi;φ(xi))}ni=1) has to be allowed a transformation of the same class. At this point

the task is not finding an overall alignment, but fitting the POD basis to a fixed set of

data pairs {(xi, φ(xi))}ni=1. So rather than transforming φ(x), we (equivalently) apply

a transformation to the approximating function φ̃(x), parametrized by p. The double

bar indicates that we deal with a second transformation after the already known initial

transformation of the database functions by alignment (parametrized by q):

x(p) :=

(
x(1)(qj)(1 + p1) + p2

x(2)(qj)(1 + p3) + p4

)
(47)

=

(x(1)(1 + qj1) + qj2

)
(1 + p1) + p2(

x(2)(1 + qj3) + qj4

)
(1 + p3) + p4

 , (48)

yj
(
x(p), qj

)
:= yj

(
x(p)

)
(1 + qj5) + qj6, (49)

φ̃
(
x(p), p, a(ψ)

)
:= φ̃

(
x(p), a(ψ)

)
+ p5 (50)

= y
(
x(p), q

)
VlΣ

−1
l a(ψ) + p5. (51)

Here p does not contain a scaling parameter like qj in (13), because it would be linear

dependent on a(ψ). The linear least squares problem (41) is then augmented by the

transformation parameters p ∈ R5 and again a penalty term is included:

min
a(ψ)∈Rl,p∈R5

1

2

n∑
i=1

(
φ(xi)− φ̃

(
xi(p), p, a

(ψ)
))2

+
δ

2
p>p. (52)
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This nonlinear least squares problem is solved by a Gauß-Newton algorithm for a and

p simultaneously. Unlike (14), this can be accomplished without computational issues.

Intuitively, an initial value for the algorithm is p = 0 (no transformation) and its corre-

sponding linear least squares solution a(ψ) = (Ψ>Ψ)−1Ψ>ϕ (43).

We call the approximation φ̃
(
x(p), p, a(ψ)

)
to the unknown function φ(x) ∈ L2(Ω)

based on the data pairs of evaluations {(xi;φ(xi))}ni=1 and the function database {y1, . . . , ym}
a generic surrogate model (GSM). It is a least squares approximation to the data pairs

and not an interpolation like the Kriging surrogate model. We consider the information

contained in the data points as extremely valuable, especially since the evaluations of

φ(xi) are assumed computationally very expensive. So a surrogate model should be

as accurate as possible particularly in the proximity of any xi, which can be realized

by interpolation rather than approximation. Therefore, the next section will introduce

a Kriging type data fusion method to generate an interpolation model which uses the

generic surrogate model as a global trend.

6 Hierarchical Kriging

Variable fidelity modeling (VFM) comprises methods for improving the approximation

quality of interpolating only few computationally expensive evaluations (high fidelity)

when having access to secondary data. This secondary data may consist of cheaper

computations of a less accurate model (low fidelity) or a second variable which is as-

sumed to be correlated with the primary variable. E.g. in CFD, computations with a

Navier-Stokes code are regarded as high fidelity data, while computations of the same

problem with an Euler code serve as low fidelity data. In this paper, we use the generic

surrogate model φ̃ (51) as the low fidelity model to improve the interpolation quality

of the (high fidelity) evaluations {(xi;φ(xi))}ni=1. So far, two major VFM frameworks

could be distinguished. Cokriging, originally developed in geostatistics, establishes a

relation between primary and auxiliary variable by cross correlation [46]. Other VFM

methods use an (additive, multiplicative or hybrid) bridge function, which corrects the

discrepancy between a lo-fi and a hi-fi surrogate model [17]. Recently, a new robust VFM

method was introduced [16], whose implementation and computational complexity does

not exceed the common Kriging method. It is called hierarchical Kriging and the ansatz

is a straightforward extension of section 2.
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In the Kriging model (1)

φ(x) = βφ̃
(
x(p), p, a

)
+ z(x), x ∈ Ω ⊂ Rd, (53)

the regression term is replaced by the lo-fi model (in our case the generic surrogate model

φ̃) with β ∈ R and z(x) capturing the lack of fit like in (2). Analogously to (3), the

hierarchical Kriging predictor

φ̂(x) = c(x)>ϕ (54)

is a weighted sum of ϕ = (φ(x1), . . . , φ(xn))>. Again, the weights ci(x) are determined

by solving the linear equation[
R Φ

Φ> 0

](
c(x)

µ(x)

)
=

(
r(x)

φ̃(x(p), p, a)

)
(55)

which minimizes the mean squared error subject to the unbiasedness constraint (4). R,

r(x), c(x) and µ(x) are the same as in (5), while Φ =
[
φ̃(xi(p), p, a)

]
i
∈ Rn×1 replaces

the linear regression design matrix and φ̃(x(p), p, a) ∈ R contains the evaluation of

the generic surrogate model in x. In the same manner we derive a closed form of the

hierarchical Kriging predictor

φ̂(x) = c(x)>ϕ =

(
r(x)

φ̃(x(p), p, a)

)> [
R Φ

Φ> 0

]−1(
ϕ

0

)
(56)

or equivalently with β =
(
Φ>R−1Φ

)−1
Φ>R−1ϕ

φ̂(x) = βφ̃(x(p), p, a) + r(x)>R−1 (ϕ− βΦ) . (57)

Formulation (56) is more suitable for the implementation, because β does not need to

be computed explicitly and the solution of the linear system
[
R Φ

Φ> 0

]−1
( ϕ0 ) only has to

be computed once since it is independent of x. Also one can witness that, inserting any

xi (i = 1, . . . , n), the hierarchical Kriging predictor is an interpolator (φ̂(xi) = φ(xi)).

Formulation (57) demonstrates how the predictor works. Assuming that the generic

surrogate model fit φ̃ approximates the data φ(xi), β will be close to 1. The second

summand is a weighted sum of correlation functions which “pulls” the response towards

the exact evaluations φ(xi).

Figure 1 outlines the generic surrogate modeling framework. We distinguish between
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Figure 1: Generic surrogate modeling framework

offline costs and online costs for model generation. The three steps on the left hand

side, generation of accurate surrogate models for all database functions, solving the

correspondence problem and computing the proper orthogonal decomposition, only have

to be performed once so they are merely offline costs. When interpolating sample data

for any new test case, evaluating the computer experiment for the samples, the gappy

POD fit and building the hierarchical Kriging model are online costs. We assume that

one single evaluation of the computer experiment φ(xi), e.g. a CFD solution, dominates

the computational cost of model generation.

7 Numerical Results

We choose the following test case for the validation of the methods of this paper. For

two-dimensional airfoil geometries, we approximate the aerodynamic coefficients lift (cl),

drag (cd) and pitching moment (cm), depending on the Mach number and the angle of

attack α. The data is obtained by RANS computations with the DLR TAU-code [40].
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We consider a database of 24 airfoils: 23 airfoils from the NACA 4-digit series (first

digit ∈ [3.0, 6.0], second digit ∈ [1.0, 6.0] and the last two digits which determine the

thickness are fixed at 12) and the RAE 2822, see figure 2. For each airfoil, we compute an

accurate surrogate model for each problem class (cl(Ma, α), cd(Ma, α), cm(Ma, α)) in the

reference domain Ω := [0.2, 0.9]× [−4◦,+12◦]. Note that if alignment of the database is

considered (14), the surrogates should be accurate in a domain larger than the reference

domain (e.g. [0.1, 1.0] × [−6◦,+14◦]) due to possible translations (12) in the alignment

process, see figure 3. For each airfoil, 400 CFD solutions are computed on a 20 × 20

tensorgrid which covers the reference domain. This sums up to 9600 CFD simulations for

generating the database. Depending on the input parameters (Ma, α), one flow solution

takes from 30 minutes to over 3 hours of CPU time. All computations can be performed

independently from each other in parallel and using two AMD Opteron architectures

with 48 2.3GHz cores each, the generation of the databases took approximately two

weeks.

Figure 2: Airfoil database, 9 examples from the NACA 4-digit series and the RAE 2882.
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Figure 3: Red: reference domain Ω, blue: preimages of Ω for the transformations (12).

For each of the three test cases, after solving the correspondence problem (14) the

database contains the aligned surrogate models y1(x), . . . , y24(x). Figure 4 shows four
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examples of lift responses. Mutual characteristics like the linear behavior in the left

part, the local maximum in the upper right corner or the curvature which reaches from

the lower right to the upper middle are aligned as good as possible by the admissible

transformation.
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Figure 4: cl database functions

Subsequently, the proper orthogonal decomposition of Y = span {y1, . . . , y24} is per-

formed. The choice of the POD-basis’ rank l, i.e. the number of POD-basis elements, is

carried out automatically. Using the approximation error formula (31), l is chosen such

that ∑l
j=1 λj∑24
j=1 λj

≥ 0.999. (58)

In this way, we guarantee that the POD-basis {ψ1, . . . , ψl} contains at least 99.9% of

Y’s information. Table 1 shows the number of required POD-basis elements for the

three test cases. Using an aligned database reduces the number by one in each case,
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meaning that by aligning the characteristic features of the database functions the total

variation is reduced. Figure 5 illustrates the rapid decay of the eigenvalues for the cl test

case, therefore already four POD-basis elements are sufficient for (58). The properties

of ψ1, . . . , ψ4 are depicted in figure 6: ψ1 is close to an average cl response, ψ2 and ψ3

both essentially control the curvature from the lower right to the upper middle as well

as the position of the local maximum in the upper right and ψ4 mostly influences the

behavior in the lower right.

cl cd cm
POD (aligned) 4 4 5
POD (no alignment) 5 5 6

Table 1: Rank of the POD-basis.

0 5 10 15 20 25
10

−6

10
−4

10
−2

10
0

10
2

Figure 5: Distribution of the eigenvalues λi for the cl POD basis

With the POD-basis, we are now able to perform hierarchical Kriging interpolation

(56) based on the generic surrogate model (51) for new test cases, i.e. for responses of

new airfoil geometries. We choose a NACA 3.375 2.875 1 2 profile, an airfoil which is

not contained in the database, to demonstrate our surrogate modeling framework. The

CFD solver is evaluated on a 40×40 discrete grid Ωval ⊂ Ω to generate a set of validation

data for the purpose of error evaluation. We use

η1 =
1

σ |Ωval|
∑
x∈Ωval

∣∣∣φ̂(x)− φ(x)
∣∣∣ (59)

and η∞ =
1

σ
max
x∈Ωval

∣∣∣φ̂(x)− φ(x)
∣∣∣ , (60)
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Figure 6: cl POD basis

the relative average error and the relative maximum error as measures of accuracy, where

σ denotes the standard deviation of the set {φ(x)}x∈Ωval and
∣∣Ωval

∣∣ = 1600. In a first

study, the performance of ordinary Kriging interpolation is compared to hierarchical

Kriging based on the generic surrogate model with and without the alignment (figure

7). We compute 10 Latin hypercube samplings each for the sample sizes 5, 7, 10, 15, 20,

30, 40 and 50 and use them to generate interpolations, for each of the three surrogate

modeling techniques and for each of the three responses cl, cd, cm. For each sample

size, an average performance of the 10 Latin hypercube samplings is computed. The

figure shows clearly that both hierarchical Kriging methods (blue and red) outperform

the ordinary Kriging method (green) in terms of average error as well as maximum error.

Exceptions are the accuracy of the cl and the cm approximations for the Latin hypercube

sample sizes of 5 and 7, respectively. The reason is that for very small sample sizes, the

gappy POD approximation (41)/(52) has too many degrees of freedom (number of basis

elements plus optionally number of transformation parameters) compared to the number
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of conditions (number of samples). This results in the few samples being approximated

very closely by the linear combination of (aligned) POD-basis elements at the cost of an

unfavorable behavior in the rest of the domain Ω. One can further observe that using

transformations in the generic surrogate model (red) decreases the approximation errors

compared to hierarchical Kriging based on non aligned generic surrogate models (blue)

for sample sizes ≥ 20. So the effort for the solution of a nonlinear least squares gappy

POD problem is justified. The computational costs of surrogate model generation are

negligible compared to one single evaluation of the CFD solver: the maximum CPU

time for a sample size of 50 was 40 seconds. Comparing the performances of both

hierarchical Kriging methods depending on the sample size, one recognizes that with

increasing number of samples the accuracy is not necessarily improved, especially for 40

and 50 samples.

Therefore, we also apply adaptive sampling strategies. Unlike Latin hypercube or

Monte Carlo sampling strategies, the samples are generated sequentially. At every stage

of the adaptive process, a surrogate model is generated and assessed in order to find

a new sample location x∗, in which the unknown function is evaluated. The data pair

(x∗, φ(x∗)) is subsequently added to the current sampling. We investigated two adaptive

sampling strategies, which are easy to implement in the generic surrogate modeling

framework. The first one chooses the new sample x∗ where the predicted mean squared

error MSE
[
φ̂(x)

]
:= E

[(
φ̂(x)− φ(x)

)2
]

is highest [37]. This quantity can easily be

computed by

MSE
[
φ̂(x)

]
= σ2

1−

(
r(x)

φ̃(x(p), p, a)

)> [
R Φ

Φ> 0

]−1(
r(x)

φ̃(x(p), p, a)

) , (61)

it is equal to zero in every previously sampled location and grows with distance to them.

The new sample location is determined by

x∗ = arg max
x∈Ωval

MSE
[
φ̂(x)

]
. (62)

A second adaptive sampling strategy for variable fidelity modeling is proposed in [17]. In

the sequel, we distinguish between the GSM-based hierarchical Kriging φ̂GSM(x) := φ̂(x)

and an ordinary Kriging interpolation φ̂KRI(x). Assuming that both surrogate models

will converge to the true function φ(x) with growing (maybe very large) number of
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Figure 7: Average performances for Latin hypercube samplings.

samples, a new sample is added where the error between both models is highest:

x∗ = arg max
x∈Ωval

∣∣∣φ̂GSM(x)− φ̂KRI(x)
∣∣∣ . (63)

22



10 20 30 40 50
10

−2

10
−1

10
0

# samples

η
1

c
L

 

 

LHC

adaptive MSE

adaptive KRI

10 20 30 40 50
10

−1

10
0

10
1

# samples

η
∞

c
L

 

 

LHC

adaptive MSE

adaptive KRI

10 20 30 40 50
10

−2

10
−1

10
0

# samples

η
1

c
D

 

 

LHC

adaptive MSE

adaptive KRI

10 20 30 40 50
10

−1

10
0

10
1

# samples

η
∞

c
D

 

 

LHC

adaptive MSE

adaptive KRI

10 20 30 40 50
10

−2

10
−1

10
0

# samples

η
1

c
M

 

 

LHC

adaptive MSE

adaptive KRI

10 20 30 40 50
10

−1

10
0

10
1

# samples

η
∞

c
M

 

 

LHC

adaptive MSE

adaptive KRI

Figure 8: Comparison of Latin hypercube samplings and adaptive sampling strategies.

For the hierarchical Kriging based on aligned gappy POD fittings which performed best

in the study above, we compare both adaptive sampling strategies to the average Latin

hypercube performance (red) in figure 8. For both methods we use an initial sampling

with 5 points. For the MSE method (cyan) no clear assessment is possible. For the

cl response its performance is comparable to the Latin hypercube samplings up to 30
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Figure 9: Distribution of samples.

samples and outperforms them for larger sample sizes. The cd response is approximated

more accurately by the Latin hypercube samplings than by the MSE method throughout

almost all sample sizes, only for 40-50 samples the adaptive MSE is more accurate in

terms of the average error η1. For the cm response, its average error is comparable to

the nonadaptive samplings’ performance, while the maximum error can not be reduced
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in the adaptive process and is higher than for Latin hypercubes. The second adaptive

strategy (magenta) seems to produce more robust results. Despite a long starting phase

for the cd response, where it performs worse than the Latin hypercube samplings, at the

latest for 45 samples it is more accurate, even earlier for cl and cm. Figure 9 illustrates

surrogate models and the distributions of sample points generated by the two adaptive

methods. The 5 point initial sampling is depicted in black squares. The MSE method

merely generates a space filling design. When the correlation lengths of the x1 and the

x2 dimension differ, many samples are placed at the lower and upper boundary of the

axis with the larger correlation length, an observation already described in a previous

publication [37]. The second method adds more samples in regions where the response

has larger gradients or curvature, e.g. high Mach number for all three responses or

the already mentioned curvature of the cl response. This behavior is desirable, since

traditionally in these regions surrogate models are least accurate and need more samples

to describe the characteristics of the true function φ(x). On the other hand, the lower

and upper boundary of the α-axis obtain almost as many samples as in the MSE sampling

strategy. These two attributes make this sampling strategy the most powerful in our

test cases. We emphasize that in a previous study of similar test cases [37], adaptive

sampling strategies also required a starting phase and the benefit compared to Latin

hypercube samplings was observed only after a total number of 40-60 samples.

8 Conclusions

In this paper a new approach for globally valid surrogate models was developed. We

proposed a variable fidelity framework, which uses a generic surrogate model as a global

trend. Generic surrogate models can be used, whenever surrogate models for multiple

test cases of a predefined problem class are available. We addressed how to estab-

lish correspondence between these database functions and how to identify characteristic

structures by POD. The generic surrogate model was introduced as a gappy POD fit to

the sample data and we extended the method to nonlinear transformations. Hierarchical

Kriging, a recently developed VFM method, was used to interpolate sample data based

on the generic surrogate model. In contrast to other VFM methods, where high-fidelity

and low-fidelity data are both computed “online”, i.e. for every new test case of a prob-

lem class, in generic surrogate modeling the database functions are computed once and

stored (“offline”), such that for every new test case of the mutual problem class only the
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high-fidelity data has to be computed online. We validated the methods in a test case

of aerodynamic coefficients of two-dimensional airfoils depending on the input parame-

ters (Ma, α). A database of surrogates was generated using RANS computations with

DLR TAU for 24 airfoils. For a new airfoil not contained in the database interpolations

were generated for Latin hypercube samplings. Hierarchical Kriging based on generic

surrogate models performed more accurate than ordinary Kriging interpolations and the

benefit was largest for sample sizes up to 30. We also showed that further improvement

of the approximation quality is possible using adaptive sampling strategies. Requiring

significantly less expensive samples to achieve a desired accuracy than ordinary Kriging,

hierarchical Kriging based on generic surrogate models describes an efficient framework

in surrogate modeling.
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