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Abstract. A spectral method is developed for the direct solution of linear ordinary differential
equations with variable coefficients. The method leads to matrices which are almost banded, and a
numerical solver is presented that takes Ø(m2n) operations, where m is the number of Chebyshev
points needed to resolve the coefficients of the differential operator and n is the number of Chebyshev
coefficients needed to resolve the solution to the differential equation. We prove stability of the
method by relating it to a diagonally preconditioned system which has a bounded condition number,
in a suitable norm. For Dirichlet boundary conditions, this implies stability in the standard 2-
norm. An adaptive QR factorization is developed to efficiently solve the resulting linear system and
automatically choose the optimal number of Chebyshev coefficients needed to represent the solution.
The resulting algorithm can efficiently and reliably solve for solutions that require as many as a
million unknowns.
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1. Introduction. Spectral methods are an important tool in scientific comput-
ing and engineering for solving differential equations (see, for instance, [6, 21, 23, 44,
45]). Although the computed solutions can converge super-algebraically to the solu-
tion of the differential equation, conventional wisdom states that spectral methods
lead to dense, ill-conditioned matrices. In this paper, we introduce a spectral method
which continues to converge super-algebraically to the solution, but only requires
solving an almost banded, well-conditioned linear system.

Throughout, we consider the family of linear differential equations on [−1, 1]:

 Lu = f and Bu = c (1.1)

where  L is an Nth order linear differential operator

 Lu = aN (x)
dNu

dxN
+ · · ·+ a1(x)

du

dx
+ a0(x)u,

B denotes K boundary conditions (Dirichlet, Neumann, etc.), c ∈ CK and a0, . . . , aN ,
f are suitably smooth functions on [−1, 1]. We make the assumption that the dif-
ferential equation is not singular; i.e., the leading variable coefficient aN (x) does not
vanish on the interval [−1, 1].

Within spectral methods there is a subdivision between collocation methods and
coefficient methods; the former construct matrices operating on the values of a func-
tion at, say, Chebyshev points; the latter construct matrices operating on coefficients
in a basis, say, of Chebyshev polynomials. Here there is a common belief that collo-
cation methods are more adaptable to differential equations with variable coefficients
[4, section 9.2]; i.e., when a0(x), . . . , aN (x) are not constant. However, the spectral
coefficient method that we construct is equally applicable to differential equations
with variable coefficients.
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For example, the first order differential equation (chosen so the entries in the
resulting linear system are integers)

du

dx
+ 4xu = 0 and u(−1) = c, (1.2)

results in our spectral method forming the almost banded n× n linear system



1 −1 1 −1 1 −1 · · · (−1)n−1

2 −1

2 2 −1

1 3 −1
. . .

. . .
. . .

1 n− 3 −1

1 n− 2

1 n− 1





u0

u1

u2

...

...

un−1


=



c

0

0

...

...

0


. (1.3)

We then approximate the solution to (1.2) as

u(x) =

n−1∑
k=0

ukTk(x)

where Tk is the Chebyshev polynomial of degree k (of the first kind). Moreover,
the stability of solving (1.3) is directly related to that of a diagonally preconditioned
matrix system which has 2-norm condition number bounded above by 53.6 for all n.

Our method is based on:
1. Representing derivatives in terms of ultraspherical polynomials. This results

in diagonal differentiation matrices.
2. Representing conversion from Chebyshev polynomials to ultraspherical poly-

nomials by a banded operator.
3. Representing multiplication for variable coefficients by banded operators in

coefficient space. This is achieved by approximating the variable coefficients
by a truncated Chebyshev (and thence ultraspherical) series.

4. Imposing the boundary conditions using boundary bordering, that is, K rows
of the linear system are used to impose K boundary conditions. For (1.2),
the last row of the linear system has been replaced and then permuted to the
first row. This allows for a convenient solution basis to be used for general
boundary conditions.

5. Using an adaptive QR decomposition to determine the optimal truncation
denoted by nopt. We develop a sparse representation for the resulting dense
matrix, allowing for efficient back substitution.

The resulting stable method requires only Ø(nopt) operations and calculates the
Chebyshev coefficients of the solution (as well as its derivatives) to machine pre-
cision. A striking application of the method is to singularly perturbed differential
equations, where the bandwidth of the linear system is uniformly bounded, and the
accuracy is unaffected by the extremely large condition numbers.

This paper is organized as follows. We first provide an overview of existing spec-
tral methods. In section 2, we construct the method for first order differential equa-
tions and apply it to two problems with highly oscillatory variable coefficients. In
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the third section, we extend the approach to higher order differential equations by
using ultraspherical polynomials, and present numerical results of the method applied
to challenging second and higher-order differential equations. In the fourth section,
we prove stability and convergence of the method in high order norms, which reduce
to the standard 2-norm for Dirichlet boundary conditions. In section 5, we present
a fast, stable algorithm to solve the almost banded linear systems in Ø(nopt) oper-
ations, where nopt is automatically determined, allowing for the efficient solution of
differential equations that require as many as a million unknowns (see Figure 5.2). In
the final section we describe directions for future research.

Remark The Matlab and C++ code used for the numerical results is available
from [35].

1.1. Existing techniques. Chebyshev polynomials or, more generally, Jacobi
polynomials have been abundantly used to construct spectral coefficient methods. In
this section we briefly survey some existing techniques.

1.1.1. Tau-method. The tau-method was originally proposed by Lanczos [28]
and is analogous to representing differentiation as an operator on Chebyshev coef-
ficients [4]. The resulting linear system, which is constructed by using recurrence
relationships between Chebyshev polynomials, is always dense — even for differential
equations with constant variable coefficients — and is typically ill-conditioned. The
boundary conditions are imposed by replacing the last few rows of the linear system
with entries constraining the solution’s coefficients.

This method was made popular and extended by Ortiz and his colleagues [23, 38]
and can be made into an automated black-box solver, but this is more due to how the
boundary conditions are imposed rather than the specifics of this approach. Therefore,
we will use the same technique called boundary bordering for the boundary conditions.

1.1.2. Basis recombination. An alternative to boundary bordering is to im-
pose the boundary conditions by basis recombination. That is, for our simple example
(1.2), by computing the coefficients in the expansion

u(x) = cT0(x) +

∞∑
k=1

ũkφk(x)

where

φk(x) =

{
Tk(x)− T0(x) k even

Tk(x) + T0(x) k odd.

The basis is chosen so that φk(−1) = 0, and there are many other possible choices.
Basis recombination runs counter to an important observation of Orszag [37]:

Spectral methods in a convenient basis (like Chebyshev) can outperform an awkward
problem-dependent basis. The problem-dependent basis may be theoretically elegant,
but convenience is worth more in practice. In detail, the benefit of using boundary
bordering instead of basis recombination include: (1) the solution is always com-
puted in the convenient and orthogonal Chebyshev basis; (2) a fixed basis means we
can automatically apply recurrence relations between Chebyshev polynomials (and
later, ultraspherical polynomials) to construct multiplication matrices for incorpo-
rating variable coefficients; (3) the structure of the linear systems does not depend
on the boundary condition(s), allowing for a fast, general solver; and (4) while basis
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recombination can result in well-conditioned linear systems, the solution can be in
terms of an unstable basis for very high order boundary conditions.

There is one negative consequence of boundary bordering: it results in non-
symmetric matrices — even for self-adjoint differential operators — potentially dou-
bling the computational cost of solving the resulting linear system when using direct
methods. However, our focus is on general differential equations, which are not nec-
essarily self-adjoint.

1.1.3. Petrov–Galerkin methods. Petrov–Galerkin methods solves linear ODEs
using different bases for representing the solution (trial basis) and the right-hand side
of the equation (test basis). The boundary conditions determine the trial basis [31],
and the boundary conditions associated to the dual differential equation can deter-
mine the test basis [41]. Shen has constructed bases for second, third, fourth and
higher odd order differential equations with constant coefficients so that the resulting
matrices are banded or easily invertible [17, 41, 42, 43]. Moreover, it was shown that
very specific variable coefficients preserve this matrix structure [44]. These methods
can be very efficient, but the method for imposing the boundary conditions is difficult
to automate.

Our method will also use two different bases: the Chebyshev and ultraspherical
polynomial bases. This choice preserves sparsity as do those considered in [17, 31, 41,
43], but our bases will depend on the order of the differential equation and not the
boundary conditions.

1.1.4. Integral reformulation. Integral reformulation expresses the solution’s
Nth derivative in a Chebyshev expansion, solves for those coefficients before inte-
grating back to obtain the coefficients of the solution [11, 24, 50]. The same idea
was previously advocated by Clenshaw [9] and a comparison was made to the tau-
method by Fox [22] who concluded that Clenshaw’s method was more accurate. In
the case of constant coefficients, an alternative approach is to integrate the differential
equation itself, which results in a banded system [47]. Recently, integration reformu-
lation has received considerable attention in the literature because it can construct
well-conditioned linear systems [19, 29, 47].

Clenshaw’s method was a motivating example for (F. W. J.) Olver’s algorithm
[33, 30]: a method for choosing the optimal truncation parameter nopt for calculating
solutions to recurrence relationships (i.e., banded linear systems). The original paper
considered dense boundary rows to handle the boundary conditions for Clenshaw’s
method. In section 5.3 we develop the adaptive QR decomposition which is a general-
ization of Olver’s algorithm. The original approach was based on adaptive Gaussian
elimination without pivoting, with a proof of numerical stability for sufficiently large
n, but, by replacing LU with QR, we achieve stability for all n.

Many of the ideas that we develop in this paper are equally applicable to integral
reformulation, as the resulting matrices are also almost banded. However, imposing
boundary conditions requires additional variables related to the integration constants,
considerably complicating the representation of multiplication. Moreover, integral
reformulation does not maintain sparsity for mixed operators such as

d

dx
a(x)

du

dx
,

as the integration will no longer annihilate the outer differentiation, which corresponds
to a dense operator. Our approach avoids such issues.
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1.1.5. Preconditioned iterative methods. Another approach to obtain well-
conditioned linear systems is preconditioning, with the most common being motivated
by a finite difference stencil [36], the operator representing the ODE with all its
variable coefficients set to constants [3, 44], a finite element approximation [5, 14]
or integration preconditioners [26, 20]. Once preconditioned, iterative solvers can be
employed along with the Fast Fourier Transformation, which can be more efficient
than dense solvers in certain situations [4, 6, 44]. While specially designed iterative
methods can outperform direct methods for specific problems, they do not provide
the generality and robustness that we require.

Differential equations with highly oscillatory or nonanalytic variable coefficients
are one example where iterative methods may be necessary to achieve computational
efficiency, as the multiplication operators have very large bandwidth in coefficient
space, resulting in essentially dense linear systems. Iterative methods based on matrix-
vector products avoid this growth in complexitiy, hence can be more efficient. How-
ever, the matrix-vector product has to be user-supplied code which is unlikely to be
optimized in terms of memory caching or memory allocation; therefore, significant
benefits over direct methods will only appear for problems that require large n [49].
Moreover, direct methods provide better stability and robustness [24]. Finally, while
the computational efficiency of our approach is lost for large bandwidth variable co-
efficients, numerical stability is maintained, as demonstrated in the second example
of section 2.5.

2. Chebyshev polynomials and first order differential equations. For
pedagogical reasons, we begin by solving first-order differential equations of the form

u′(x) + a(x)u(x) = f(x) and u(−1) = c (2.1)

where a : [−1, 1] → C and f : [−1, 1] → C are continuous functions with bounded
variation. The continuity assumption ensures that (2.1) has a unique continuously
differentiable solution on the unit interval [39], while bounded variation ensures a
unique representation as a uniformly convergent Chebyshev expansion [32, Thm. 5.7].
An exact representation of a continuous function g(x) with bounded variation is

g(x) =

∞∑
k=0

gkTk(x), g0 =
2

π

∫ 1

−1

g(x)√
1− x2

dx, gk =
1

π

∫ 1

−1

g(x)Tk(x)√
1− x2

dx (2.2)

where Tk(x) = cos
(
k cos−1(x)

)
. One way to approximate g(x) is to truncate (2.2)

after the first n terms, to obtain the polynomial (of degree at most n− 1)

gtrunc(x) =

n−1∑
k=0

gkTk(x). (2.3)

The n coefficients {gk} can be obtained by numerical quadrature in O(n2) operations.
A second approach is to interpolate g(x) at n Chebyshev points — i.e., cos(kπ/(n−1))
for k = 0, 1, . . . , n− 1 — to obtain the polynomial

ginterp(x) =

n−1∑
k=0

g̃kTk(x). (2.4)

In this case, the n coefficients {g̃k} can be computed with a Fast Cosine Transform
in just O(n log n) operations. The coefficients {g̃k} and {gk} are closely related by an
aliasing formula stated by Clenshaw and Curtis [10].
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Usually, in practice, g(x) will be many times differentiable on [−1, 1], and then
(2.3) and (2.4) converge uniformly to g(x) at an algebraic rate as n→∞. Moreover,
the convergence is spectral (super-algebraic) when g is infinitely differentiable, which
improves to be exponential when g is analytic in a neighbourhood of [−1, 1]. If g is
entire, the convergence rate improves further to be super-exponential.

Mathematically, we seek the Chebyshev coefficients of the truncation (2.3), of a(x)
and f(x) which are defined by the integrals (2.2). However, we use the coefficients
in the polynomial interpolant (2.4) as an approximation, since the coefficients match
to machine precision for sufficiently large n. The degree of the polynomial used to
approximate a(x) will later be closely related to the bandwidth of the almost banded
linear system associated to (2.1).

The spectral method in this paper solves for the coefficients of the solution in a
Chebyshev series. In order to achieve this, we need to be able to represent differenti-
ation, u′(x), and multiplication, a(x)u(x), in terms of operators on coefficients.

2.1. First order differentiation operator. The derivatives of Chebyshev poly-
nomials satisfy

dTk
dx

=

{
kC

(1)
k−1 k ≥ 1

0 k = 0
(2.5)

where C
(1)
k−1(x) is the Chebyshev polynomial of the second kind of degree k − 1. We

use C(1) instead of U to highlight the connection to ultraspherical polynomials, which
are key to extending the method to higher order differential equations (see section 3).

Now, we use (2.5) to derive a simple expression for the derivative of a Chebyshev
series. Suppose that u(x) is given by the Chebyshev series

u(x) =

∞∑
k=0

ukTk(x). (2.6)

Differentiating scales the coefficients and changes the basis:

u′(x) =

∞∑
k=1

kukC
(1)
k−1(x).

In other words, the vector of coefficients of the derivative in a C(1) series is given by
D0u where D0 is the differentiation operator

D0 =


0 1

2
3

. . .


and u is the (infinite) vector of Chebyshev coefficients for u(x). Note that this differ-
entiation operator is sparse, in stark contrast to the classic differentiation operator in
spectral collocation methods [4].

2.2. Multiplication operator for Chebyshev series. In order to handle vari-
able coefficients of the form a(x)u(x) in (2.1), we need to represent the multiplication
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of two Chebyshev series as an operator on coefficients. To this end, we express a(x)
and u(x) in terms of their Chebyshev series

a(x) =

∞∑
j=0

ajTj(x) and u(x) =

∞∑
k=0

ukTk(x)

and multiply these two expressions together to obtain

a(x)u(x) =

∞∑
j=0

∞∑
k=0

ajukTj(x)Tk(x) =

∞∑
k=0

ckTk(x),

desiring an explicit form for c = (c0, c1, . . . , )
>

. By Proposition 2.1 of [1] we have that

ck =

{
a0u0 + 1

2

∑∞
l=1 alul k = 0

1
2

∑k−1
l=0 ak−lul + a0uk + 1

2

∑∞
l=1 alul+k + 1

2

∑∞
l=0 al+kul k ≥ 1,

(2.7)

and in terms of operators c = M0[a]u where M0[a] is a Toeplitz plus an almost
Hankel operator given by

M0[a] =
1

2





2a0 a1 a2 a3 . . .

a1 2a0 a1 a2
. . .

a2 a1 2a0 a1
. . .

a3 a2 a1 2a0
. . .

...
. . .

. . .
. . .

. . .


+



0 0 0 0 . . .

a1 a2 a3 a4 . .
.

a2 a3 a4 a5 . .
.

a3 a4 a5 a6 . .
.

... . .
.

. .
.

. .
.

. .
.




.

At first glance, it appears that the multiplication operator and any truncation of it
are dense. However, since a(x) is continuous with bounded variation, we are able
to uniformly approximate a(x) with a finite number of Chebyshev coefficients to any
desired accuracy. That is, for any ε > 0 there exists an m ∈ N such that∥∥∥∥∥a(x)−

m−1∑
k=0

akTk(x)

∥∥∥∥∥
L∞([−1,1])

< ε.

As long as m is large enough, to all practical purposes, we can use the truncated
Chebyshev series to replace a(x). Recall, in our implementation we approximate
this truncation by the polynomial interpolant of the form (2.4). Hence, the n × n
principal part ofM0[a] is banded with bandwidth m for n > m. Moreover, m can be
surprisingly small when a(x) is analytic or many times differentiable.

There is still one ingredient absent: The operator D0 returns coefficients in a C(1)

series, whereas the operator M0[a] returns coefficients in a Chebyshev series; hence,
D0 +M0[a] is meaningless. In order to correct this, we require an operator that maps
coefficients in a Chebyshev series to those in a C(1) series.

2.3. Conversion operator for Chebyshev series. The Chebyshev polynomi-
als Tk(x) can be written in terms of the C(1) polynomials by the recurrence relation

Tk =


1
2

(
C

(1)
k − C

(1)
k−2

)
k ≥ 2

1
2C

(1)
1 k = 1

C
(1)
0 k = 0.

(2.8)
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A more general form of (2.8), which we will use later, is given in [34]. Suppose that
u(x) is given by the Chebyshev series (2.6). Then, using (2.8) we have

u(x) =

∞∑
k=0

ukTk(x) = u0C
(1)
0 (x) +

1

2
u1C

(1)
1 (x) +

1

2

∞∑
k=2

uk

(
C

(1)
k (x)− C(1)

k−2(x)
)

=

(
u0 −

1

2
u2

)
C

(1)
0 (x) +

∞∑
k=1

1

2
(uk − uk+2)C

(1)
k (x).

Hence, the C(1) coefficients for u(x) are S0u where S0 is the conversion operator

S0 =


1 − 1

2
1
2 − 1

2
1
2 − 1

2
. . .

. . .


and u is the vector of Chebyshev coefficient for u(x). Note that this conversion
operator, and any truncation of it, is sparse and banded.

2.4. Discretization of the system. Now, we have all the ingredients to solve
any differential equation of the form (2.1). Firstly, we can represent the differential
operator as

 L := D0 + S0M0[a],

which takes coefficients in a Chebyshev series to those in a C(1) series. Due to this
fact, the right-hand side f(x) must be expressed in terms of its coefficients in a C(1)

series. Hence, we can represent the differential equation (2.1), without its boundary
conditions, as

 Lu = S0f .

where u and f denote the vectors of coefficients in the Chebyshev series of the form
(2.2) for u(x) and f(x), respectively.

We truncate the operators to derive a practical numerical scheme, which corre-
sponds to applying the n×∞ projection operator given by

Pn = (In,0), (2.9)

where In is the square identity matrix of size n. Truncating the differentiation operator
to PnD0P>n results in an n×n matrix with a zero last row. This observation motivates
us to impose the boundary condition by replacing the last row of Pn  LP>n . We take the
convention of permuting this boundary row to the first row so that the linear system
is close to upper triangular. That is, in order to obtain an approximate solution to
(2.1) we solve the system

An


u0
u1
...

un−1

 =


c

(
Pn−1S0P>n

)
(Pnf)

 , (2.10)
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with

An =


T0(−1) T1(−1) . . . Tn−1(−1)

Pn−1  LP>n

 .

(Note that Tk(−1) = (−1)k.) The solution u(x) is then approximated by the com-
puted solution,

ũ(x) =

n−1∑
k=0

ukTk(x).

Remark Traditionally, one generates the spectral system by discretizing each
operator individually; i.e., we would make the approximation

Pn−1  LP>n ≈ Pn−1D0P>n +
(
Pn−1S0P>n

) (
PnM[a]P>n

)
.

However, we use can generate Pn−1  LP>n precisely, via

Pn−1  LP>n = Pn−1DnP>n +
(
Pn−1S0P>n+m

) (
Pn+mM[a]P>n

)
.

This means that each row of the operator can be generated exactly and allows us
to develop the adaptive QR algorithm in section 5. Moreover, exact truncations are
of critical importance for infinite dimensional linear algebra and for approximating
spectra and pseudospectra [25].

2.5. Numerical examples. The traditional approach solves the linear system
(2.10) for progressively larger n, and terminates the process when the tail of the
solution falls below relative magnitude of machine epsilon. This is the procedure
employed in Chebfun [46, 18] and results in Ø(nopt log nopt) complexity. Instead the
adaptive QR algorithm of section 5 can be used to find the optimal truncation and
solve for the solution, concurrently which reduces the complexity to just Ø(nopt).

For the first example, we consider the linear differential equation

u′(x) + x3u(x) = 100 sin
(
20,000x2

)
u(−1) = 0 (2.11)

which has a highly oscillatory forcing term. The exact solution is

u(x) = e−
x4

4

(∫ x

−1
100e

t4

4 sin
(
20,000t2

)
dt

)
.

The computed solution is a polynomial of degree 20,391 and uniformly approxi-
mates the exact solution to essentially machine precision. The computed solution is
of very high degree because at least 2 coefficients are required per oscillation — the
Nyquist rate. In Figure 2.1 we plot the computed oscillatory solution, and a real-
ization of the matrix when n = 50, which shows the almost banded structure of the
linear system.

The approximate solution is expressed in terms of a Chebyshev basis, which is
convenient for further manipulation. For example, its maximum is 2.3573 (circled in
Figure 2.1), its integral is 3.2879 and the equation u(x) − 1.3 = 0 has 113 solutions
in x ∈ [−1, 1].
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Fig. 2.1: Left: The highly oscillatory solution to (2.11) with the maximum of the
solution computed and marked by a circle. Right: Sparsity structure of the almost
banded linear system, with the number of non-zero entries denoted by nz.
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Fig. 2.2: Left: The computed solution to (2.12) with a = 5 × 104. Right: Plot
of the Cauchy error for the solution coefficients, which shows the 2-norm difference
between the coefficients of the approximate solution when solving an n × n and an
d1.01ne × d1.01ne matrix system.

As a second example we consider the linear differential equation

u′(x) +
1

ax2 + 1
u(x) = 0 and u(−1) = 1. (2.12)

We take a = 5 × 104, in which case the variable coefficient can be approximated to
roughly machine precision by a polynomial of degree 7,350, and hence, only for very
large n is the linear system (2.10) banded. The exact solution to (2.12) is

u(x) = exp

(
− tan−1(

√
ax) + tan−1(

√
a)√

a

)
,

which can be approximated to machine precision by a polynomial of degree 5,377,
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determined by interpolating at Chebyshev points. On the other hand, the computed
solution ũ(x), is a polynomial of degree 5,093 such that

(∫ 1

−1
(u(x)− ũ(x))

2
dx

) 1
2

= 2.86× 10−15.

The solution contains a thin boundary layer and contains a singularity in the complex
plane which is close in proximity to the [−1, 1]. This means that the associated
Berstein ellipse is restricted and therefore, a large degree polynomial is required to
approximate the solution (see, for example, [12]). A plot of the solution and the
Cauchy error are included in Figure 2.2. The Cauchy error plot confirms that the
solution is, up to machine precision, independent of the number of coefficients in its
expansion for n ≥ 5,100.

3. Ultraspherical polynomials and high order differential equations. We
now generalize the approach to high order differential equations of the form

N∑
λ=0

aλ(x)
dλu(x)

dxλ
= f(x) on [−1, 1], (3.1)

with general boundary conditions Bu = c. We assume that the boundary operator
B is given in terms of the Chebyshev coefficients of u. For example, for Dirichlet
conditions

B =

(
T0(−1) T1(−1) T2(−1) · · ·
T0(1) T1(1) T2(1) · · ·

)
=

(
1 −1 1 −1 · · ·
1 1 1 1 · · ·

)
,

and for Neumann conditions

B =

(
T ′0(−1) T ′1(−1) T ′2(−1) · · ·
T ′0(1) T ′1(1) T ′2(1) · · ·

)
=

(
0 1 −4 · · · (−1)k+1k2 · · ·
0 1 4 · · · k2 · · ·

)
.

We can also impose less standard boundary conditions; e.g., we can impose that the
solution integrates to a constant by using the Clenshaw–Curtis weights [10] (com-
putable in Ø(n log n) operations [48]) or it evaluates to a fixed constant in (−1, 1).
In fact, because we are using boundary bordering, any boundary condition which de-
pends linearly on the solution’s coefficients can be imposed in an automated manner.

The approach of the first order method relied on three relations: differentiation
(2.5), multiplication (2.7) and conversion (2.8). To generalize the spectral method
to higher order differential equations we use similar relations, now in terms of higher
order ultraspherical polynomials.

The ultraspherical (or Gegenbauer) polynomials C
(λ)
0 (x), C

(λ)
1 (x), . . . are a family

of polynomials orthogonal with respect to the weight

(1− x2)λ−
1
2 .

We will only use ultraspherical polynomials for λ = 1, 2, . . ., defined uniquely by
normalizing the leading coefficient so that

C
(λ)
k (x) =

2k(λ)k
k!

xk + Ø(xk−1),
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where (λ)k = (λ+k−1)!
(λ−1)! denotes the Pochhammer symbol. In particular, the ultras-

pherical polynomials with λ = 1 are the Chebyshev polynomials of the second kind,
which we denote by C(1).

Importantly, ultraspherical polynomials satisfy an analogue of (2.5) [34],

dC
(λ)
k

dx
=

{
2λC

(λ+1)
k−1 k ≥ 1

0 k = 0.
, λ ≥ 1. (3.2)

Moreover, they also satisfy an analogue to (2.8)

C
(λ)
k =


λ
λ+k

(
C

(λ+1)
k − C(λ+1)

k−2

)
k ≥ 2

λ
λ+1C

(λ+1)
1 k = 1

C
(λ+1)
0 k = 0,

λ ≥ 1. (3.3)

Suppose that u(x) is represented as the Chebyshev series (2.6). Then, for λ =
1, 2, . . ., (2.5) implies that

dλu(x)

dxλ
=

∞∑
k=1

kuk
dλ−1C

(1)
k−1(x)

dxλ−1
.

By applying the relation (3.2) λ− 1 times we obtain

dλu(x)

dxλ
= 2λ−1(λ− 1)!

∞∑
k=λ

kukC
(λ)
k−λ(x).

This means that the λ-order differentiation operator takes the form

Dλ = 2λ−1(λ− 1)!


λ times︷ ︸︸ ︷

0 · · · 0 λ
λ+ 1

λ+ 2
. . .

 .

The λ-order differentiation operator that does not change bases can be constructed
from recurrence relations [16] and this can be used to construct spectral methods [15].
However, the differentiation operator is not sparse.

In the process of differentiation Dλ converts coefficients in a Chebyshev series
to coefficients in a C(λ) series. Moreover, using (3.3) the operator which converts
coefficients in C(λ) series to those in a C(λ+1) series is given by

Sλ =


1 − λ

λ+2
λ
λ+1 − λ

λ+3
λ
λ+2 − λ

λ+4

. . .
. . .

 .

As before, we also require a multiplication operator, but this time representing
the multiplication between two C(λ) ultraspherical series.
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3.1. Multiplication operator for ultraspherical series. In order to handle
the variable coefficients in (3.1), we must represent multiplication of two ultraspherical
series in coefficient space. Given two functions

a(x) =

∞∑
j=0

ajC
(λ)
j (x) and u(x) =

∞∑
k=0

ukC
(λ)
k (x),

we have

a(x)u(x) =

∞∑
j=0

∞∑
k=0

ajukC
(λ)
j (x)C

(λ)
k (x). (3.4)

To obtain a C(λ) series for a(x)u(x) we use the linearization formula given by Carlitz
[7], which takes the form

C
(λ)
j (x)C

(λ)
k (x) =

min(j,k)∑
s=0

cλs (j, k)C
(λ)
j+k−2s(x) (3.5)

where

cλs (j, k) =
j + k + λ− 2s

j + k + λ− s
(λ)s(λ)j−s(λ)k−s
s!(j − s)!(k − s)!

(2λ)j+k−s
(λ)j+k−s

(j + k − 2s)!

(2λ)j+k−2s
(3.6)

and (λ)k = (λ+k−1)!
(λ−1)! is the Pochhammer symbol. We substitute (3.5) into (3.4) and

rearrange the summation signs to obtain

a(x)u(x) =

∞∑
j=0

 ∞∑
k=0

k∑
s=max(0,k−j)

a2s+j−kc
λ
s (k, 2s+ j − k)uk

C
(λ)
j (x). (3.7)

From (3.7) the (j, k) entry of the multiplication operator representing the product of
a(x) in a C(λ) series is

Mλ[a]j,k =

k∑
s=max(0,k−j)

a2s+j−kc
λ
s (k, 2s+ j − k), j, k ≥ 0.

In practice, a(x) will be approximated by a truncation of its C(λ) series,

a(x) ≈
m−1∑
j=0

ajC
(λ)
j (x), (3.8)

and with this approximation the matrix PnMλ[a]P>n is banded with bandwidth m for
n > m. The expansion (3.8) can be computed by approximating the firstm Chebyshev
coefficients in the Chebyshev series for a(x) and then applying a truncation of the
conversion operator Sλ−1 · · ·S0.

The formula for cλs (j, k), (3.6), cannot be used directly to form Mλ[a] due to
arithmetic overflow issues that arise for j, k ≥ 70. Instead, we cancel terms in the
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numerator and denominator of (3.6) and match up the remaining terms of similar
magnitude to obtain an equivalent, but more numerically stable formula

cλs (j, k) =
j + k + λ− 2s

j + k + λ− s
×
s−1∏
t=0

λ+ t

1 + t
×
j−s−1∏
t=0

λ+ t

1 + t

×
s−1∏
t=0

2λ+ j + k − 2s+ t

λ+ j + k − 2s+ t
×
j−s−1∏
t=0

k − s+ 1 + t

k − s+ λ+ t
. (3.9)

All the fractions are of magnitude O(1) in size, and hence PnMλ[a]P>n can be formed
in floating point arithmetic. For the purposes of computational speed, we only apply
(3.9) once per entry, and use the recurrence relation

cλs+1(j, k + 2) = cλs (j, k)× j + k + λ− s
j + k + λ− s+ 1

× λ+ s

s+ 1
×

× j − s
λ+ j − s− 1

× 2λ+ j + k − s
λ+ j + k − s

× k − s+ λ

k − s+ 1

to generate all the other terms required.
Remark In the special case when λ = 1, the multiplication operator M1[a] can

be decomposed as a Toeplitz operator plus a Hankel operator.

3.2. Discretization of the system. We now have everything in place to be able
to solve high order differential equations of the form (3.1). Firstly, we can represent
the differential operator as

 L :=MN [aN ]DN +

N−1∑
λ=1

SN−1 · · · SλMλ[aλ]Dλ + SN−1 · · · S0M0[a0],

which takes coefficients in a Chebyshev series to those in a C(N) series. Due to this
fact, the right hand side f(x) must be expressed in terms of its coefficients in a C(N)

series. Moreover, we impose the K boundary conditions on the solution by replacing
the last K rows of Pn  LP>n and permute these to the first K rows. That is, in order
to obtain an approximate solution to (3.1) we solve the system

An


u0
u1
...

un−1

 =


c

Pn−KSN−1 · · · S0f

 ,

where

An =


BP>n

Pn−K  LP>n


and f is again a vector containing the Chebyshev coefficients of the right-hand side
f . The solution u(x) is then approximated by the n-term Chebyshev series:

u(x) ≈
n−1∑
k=0

ukTk(x).
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Fig. 3.1: Left: The highly oscillatory solution to (3.10) with ε = 10−9. Right:
The Cauchy error for the solution coefficients. The plot shows the 2-norm differ-
ence between the coefficients of the approximate solution when solving an n× n and
d1.01ne × d1.01ne matrix system.
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Fig. 3.2: Plot of the condition number of the linear systems to solve (3.10) against
the size of the discretization, for ε = 1×10−9 (solid), ε = 1×10−4 (dashed) and ε = 1
(dot-dashed). For ε = 1 we employ the diagonal preconditioner presented in section
4. The plot demonstrates that the 2-norm condition number is bounded from above.
The observed error in the solution is considerably better than what is suggested by
the bounding constants, as seen in Fig. 3.1.

3.3. Numerical examples. For the first example we consider the Airy differ-
ential equation

εu′′(x)− xu(x) = 0 with u(−1) = Ai

(
− 3

√
1

ε

)
, u(1) = Ai

(
3

√
1

ε

)
(3.10)

where Ai(·) is the Airy function of the first kind.

In Figure 3.1 we take ε = 10−9 and plot the computed solution which is a poly-
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Fig. 3.3: Left: The solution to the boundary layer problem (3.11) with ε = 10−7.
Right: The Cauchy error in the 2-norm for the solution coefficients.

nomial of degree 20,003. The exact solution to (3.10) is the scaled Airy function,

u(x) = Ai

(
3

√
1

ε
x

)
.

Letting ũ(x) denote the computed solution, we have(∫ 1

−1
(u(x)− ũ(x))

2

)1/2

= 2.44× 10−12

which is surprisingly good when compared with the ill-conditioning inherent in this
singularly perturbed differential equation. Numerically we witness that the spectral
method delivers much better accuracy than standard bounds based on the condition
number would suggest. The Cauchy error plot in Figure 3.1 indicates that the solution
coefficients themselves are resolved to essentially machine precision, for n ≥ 20,000.
In Figure 3.2 we show numerical evidence that with a simple diagonal preconditioner,
which we analysis in the next section the condition number of the linear systems
formed are bounded for all n. Later, for ε = 1, we also show in Figure 5.3 that the
derivatives of the solution are well approximated.

For the second example we consider the boundary layer problem,

εu′′(x)− 2x

(
cos(x)− 8

10

)
u′(x) +

(
cos(x)− 8

10

)
u(x) = 0 (3.11)

with boundary conditions

u(−1) = u(1) = 1.

Perturbation theory shows that the solution has two boundary layers at ± cos−1(8/10)
both of width Ø(ε1/4). In Figure 3.3 we take ε = 10−7. The computed solution is
of degree 15,394 and it is confirmed by the Cauchy error plot that the solution is
well-resolved.
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Fig. 3.4: Left: Plot of the solution to the 10th order differential equation. Right: Plot
of the Cauchy error in the 2-norm for the solution coefficients.

For the last example we consider the high order differential equation

u(10)(x) + cosh(x)u(8)(x) + x2u(6)(x) + x4u(4)(x) + cos(x)u(2)(x) + x2u(x) = 0

with boundary conditions

u(−1) = u(1) = 0, u′(−1) = u′(1) = 1, u(k)(±1) = 0, 2 ≤ k ≤ 4.

This is far from a practical example, and an exact solution seems difficult to construct.
Instead, we note that if u(x) is the solution then it is odd; that is, u(x) = −u(−x).
Our method does not impose such a condition and therefore, we can use it along with
the Cauchy error to gain confidence in the computed solution. The computed solution
ũ(x) is of degree 55 and plotted in Figure 3.4. Moreover, the computed solution is
odd to about machine precision,(∫ 1

−1
(ũ(x) + ũ(−x))

2

)1/2

= 1.252× 10−14.

4. Stability and convergence. The 2-norm condition number of a matrix A ∈
Cn×n is defined as

κ(A) = ‖A‖2
∥∥A−1∥∥

2
.

Without any preconditioning κ
(
An
)

grows proportionally with n, which is sig-
nificantly better than the typical growth of Ø(n2N ) in the condition number for the
standard tau and collocation methods (see section 4.3 of [6]). However, the accu-
racy seen in practice even outperforms this: the backward error is consistent with a
numerical method with bounded condition number. Later, we will show that a triv-
ial, diagonal preconditioner that scales the columns results in a linear system with a
bounded condition number. However, we observe that even without preconditioning
the linear systems can be solved to the same accuracy. We explain this with the
following proposition that the stability of QR is not affected by column scaling.

Proposition 4.1. Suppose R is a diagonal matrix. Solving Ac = b using
QR (with Givens rotations) is stable if QR applied to solve ARq = b is stable and
‖R‖∞ ≤ 1.
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Proof. This follows immediately from the invariance of Givens rotations to column
scaling and the stability of back substitution, see [27, pp. 374].

4.1. A diagonal preconditioner and compactness. Through-out this sec-
tion we assume that aN (x) = 1 (otherwise, divide through by the coefficient on the
highest order term, assuming it is nonsingular). We make the restriction that K = N ;
that is, the Nth order differential equation has exactly N boundary conditions. When
K > N it is more appropriate to choose a non-diagonal preconditioner, but we do not
analyse that situation here.

We show that there exists a diagonal preconditioner so that the preconditioned
system has bounded condition number in high order norms (Definition 4.2). For
Dirichlet boundary conditions the preconditioned system has bounded condition num-
ber in the 2-norm.

Define the diagonal preconditioner by,

R =
1

2N−1(N − 1)!
diag

(N times︷ ︸︸ ︷
1, . . . , 1 ,

1

N
,

1

N + 1
, . . .

)
.

In practice, we observe that many other diagonal preconditioners also give a bounded
condition number and it is likely that there are preconditioners which give better
practical bounds on the backward error, but only by a constant factor.

The analysis of (1.1) will follow from the fact that, on suitably defined spaces,(
B
L

)
R = I +K,

for a compact operator K, where L is the Nth order differential operator and B is a
boundary operator representing N boundary conditions. To this aim, we need to be
precise on which spaces these operators act on. Since we are working in coefficient
space, we will consider the problems as defined in `2λ spaces:

Definition 4.2. The space `2λ ⊂ C∞ is defined as the Banach space with norm

‖u‖`2λ =

√√√√ ∞∑
k=0

|uk|2(k + 1)2λ <∞.

We now show that the preconditioned operator is a compact perturbation of the
identity.

Lemma 4.3. Suppose that the boundary operator B : `2D → CK is bounded. Then(
B
L

)
R = I +K

where K : `2λ → `2λ is compact for λ = D − 1, D, . . ..
Proof. Firstly, note that(

B
 L

)
=

(
2N−1(N − 1)!PN

DN

)
+

(
B − 2N−1(N − 1)!PN

0

)
+

(
0

SN−1MN−1[aN−1]DN−1 + · · ·+ SN−1 · · · S1M1[a1]D + SN−1 · · · S0M[a0]

)
where PN : `2λ → CN is the N ×∞ projection operator (2.9).
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Secondly, we remark that R : `2λ → `2λ+1 and hence, BR : `2λ → CN is bounded
for λ = D− 1, D, . . .. Furthermore, Sk : `2λ → `2λ+1 is bounded for k = 1, 2, . . . and so
is, DN : `2λ → `2λ−1. It follows that(

2N−1(N − 1)!PN
DN

)
R = I : `2λ → `2λ.

Since

(
B − 2N−1(N − 1)!PN

0

)
R : `2λ → `2λ for λ = D − 1, D, . . . is bounded and

has finite rank, it is compact. Note that R is compact as an operator R : `2λ → `2λ, as
are SN−1, . . . ,S1 (since SkR−1 : `2λ → `2λ are bounded and R is compact). It follows
that the last term (

0
SN−1 · · · S0M[a0]

)
R : `2λ → `2λ

is compact, since M[a0] and S0 are also bounded. Finally, each of the intermediate

terms are compact since

(
0
Dk

)
R : `2λ → `2λ is bounded and Sk are compact.

We have shown that the preconditioned operator is the identity plus a sum of
compact operators and hence a compact perturbation of the identity.

The compactness of K allows us to show well-conditioning and convergence.

Lemma 4.4. Suppose that

(
B
 L

)
: `2λ+1 → `2λ is an invertible operator for some

λ ∈ {D − 1, D, . . .}. Then, as n→∞,

‖AnRn‖`2λ = Ø(1) and ‖(AnRn)−1‖`2λ = Ø(1),

for the diagonal matrix Rn = PnRP>n and truncated spectral matrix

An = Pn
(
B
 L

)
P>n .

Proof. Since R : `2λ → `2λ+1 is invertible, we have that I+K : `2λ → `2λ is invertible.
The lemma follows since K is compact,

AnRn = Pn(I +K)R−1P>n PnRP>n = In + PnKP>n ,

and P>n PnKP>n Pn converges in norm to K.

4.2. Convergence. Denote the coefficients of the exact solution by u, and note
that vector P>n Pnu agrees with u for the first n coefficients and thereafter has zero
entries. We show that our numerical scheme converges at the same rate as P>n Pnu
converges to u.

Theorem 4.5. Suppose f ∈ `2λ−N+1 for some λ ∈ {D − 1, D, . . .}, and that(
B
 L

)
: `2λ+1 → `2λ is an invertible operator. Define

un = A−1n Pn
(

c
SN−1 · · · S0f

)
.

Then

‖u− P>n un‖`2λ+1
≤ C‖u− P>n Pnu‖`2λ+1

→ 0.



20

Proof.

Let vn = R−1n un and v = R−1u. First note that(
B
 L

)
u =

(
B
 L

)
RR−1u = (I +K) v =

(
c

SN−1 · · · S0f

)
∈ `2λ

and that

vn = (AnRn)−1Pn(I +K)v

Moreover, since AnRn = Pn(I +K)P>n ,

Pnv = (AnRn)−1Pn(I +K)P>n Pnv,

and thus we have

v − P>n vn = v − P>n Pnv + P>n (AnRn)−1Pn(I +K)P>n Pnv

− P>n (AnRn)−1Pn(I +K)v

= (I − P>n (AnRn)−1Pn(I +K))(v − P>n Pnv).

Finally, we use the fact that ‖R−1u‖`2λ ≤
1
N ‖u‖`2λ+1

and ‖Rv‖`λ+1
≤ (N+1)‖v‖`2λ

to bound the error in the solution by the error in the Chebyshev series of u and its
truncation,

‖u− P>n un‖`2λ+1
≤ (N + 1)‖v − P>n vn‖`2λ
≤ (N + 1)

[
1 +

∥∥(AnRn)−1
∥∥
`2λ

(
1 + ‖K‖`2λ

)] ∥∥v − P>n Pnv
∥∥
`2λ

≤ C
∥∥u− P>n Pnu

∥∥
`2λ+1

.

Since u ∈ `2λ+1 we know that
∥∥u− P>n Pnu

∥∥
`2λ+1

→ 0 as n→∞.

5. Fast linear algebra for almost banded matrices. The spectral method
we have described requires the solution of a linear system Ax = b where A ∈ Cn×n.
The matrix A is banded, with mR = Ø(m) non-zero superdiagonals and mL = Ø(m)
non-zero subdiagonals (so that m = mL + mR + 1), except for the first K dense
boundary rows. The typical structure of A is depicted in Figure 5.1. Here, we describe
a stable algorithm to solve Ax = b in Ø(m2n) operations and with space requirement
Ø(mn).

We will solve Ax = b by computing a QR factorization using Given’s rotations.
However, the resulting upper triangular part will be dense because of fill-in caused
by the boundary rows. We will show that these dense rows can still be represented
sparsely, and that the resulting upper triangular matrix can be solved in O(m2n)
operations.

Remark Alternatively, the A = QRP ∗ decomposition can be constructed in
O(m2n) operations by apply Given’s rotations to the left and the right, which prevents
the boundary row(s) causing fill-in [8]. However, with this decomposition it is unclear
whether the optimal truncation nopt can be determined in Ø(nopt) operations.
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Fig. 5.1: Structure of operators during QR factorization. Left: Depicts the structure
of the original differential operator. Right: Depicts a j filled-in matrix obtained after
upper triangularizing the first j columns.

5.1. QR factorization for filled-in matrices. Represent the matrix A after
the jth stage of the QR decomposition, where the jth column has been completely
reduced, by B. We claim that B has the form of a j filled-in matrix.

Definition 5.1. B is a j filled-in matrix if, for k = 1, . . . , j, the kth row of B
has the form

e>k B =

( k−1 times︷ ︸︸ ︷
0, . . . , 0 ,

banded terms︷ ︸︸ ︷
Bk,k, . . . , Bk,k+m−1,

fill-in terms︷ ︸︸ ︷
b>k B1:K,k+m:n

)
, (5.1)

where bk ∈ CK . Furthermore, every row k = j + 1, . . . , j +mL + 1 has the form

e>k B =

(j times︷ ︸︸ ︷
0, . . . , 0,

banded terms︷ ︸︸ ︷
Bk,j+1, . . . , Bk,k+mR

,

fill-in terms︷ ︸︸ ︷
b>k B1:K,k+mR+1:n

)
.

The remaining rows have the form

e>k B =

(k−mL−1 times︷ ︸︸ ︷
0, . . . , 0 ,

banded terms︷ ︸︸ ︷
Bk,k−mL , . . . , Bk,k+mR ,

n− k −mR times︷ ︸︸ ︷
0, . . . , 0

)
. (5.2)

See Figure 5.1 for a depiction of a j filled-in matrix. Essentially, it is a banded
matrix where the top-right part can be filled with linear combinations of the boundary
rows. Note that each row of a filled-in matrix takes at most m+K entries to represent,
a bound which is independent of j. Since the QR factorization only applies Given’s
rotations on the left (i.e. linear combinations of rows), and the initial matrix is a
0 filled-in matrix, the elimination results in j filled-in matrices. This means that
throughout the elimination, the matrix can be represented with O(mn) storage.

In section 5.3, we perform QR factorization adaptively on the operator. This
is successful because the representation as a j filled-in matrix is independent of the
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number of columns, and the rows below the (j+mL)th are unchanged from the original
operator, hence can be added during the factorization.

5.2. Back substitution for filled-in matrices. After we have performed n
stages of Given’s rotations, the first n rows are of the form (5.1) and hence are upper
triangular. Thus, we can now perform back substitution, by truncating the right-hand
side. The last m rows consist only of banded terms, and standard back substitution
is used to calculate un−m+1, . . . , un. We then note that the kth row imposes the
condition

Bk,kuk = ck −
m∑
s=1

Bk,k+suk+s − b>k

n∑
s=k+m+1

B1:K,sus

on the solution. We can thus obtain an Ø(mn) back substitution algorithm by the
following:

Algorithm 1 Back substitution for filled-in matrices

pn−m = 0 (i.e., a vector of K zeros)
for k = n−m− 1→ 1 do

pk = uk+m+1B1:K,k+m+1 + pk+1

uk = 1
Bk,k

(
ck −

∑m
s=1Bk,k+suk+s − b>k pk

)
end for

This is mathematically equivalent to standard back substitution. However, the
reduced number of operations decreases the accumulation of round-off error.

5.3. Optimal truncation. One does not know apriori how many coefficients
nopt are required to resolve the solution to relative machine precision. A straightfor-
ward algorithm for finding nopt is to continually double the discretization size until
the difference in the computed coefficients is below a given threshold, which will re-
sult in an Ø(nopt log nopt) algorithm. We will present an alternative approach that
achieves the optimal Ø(nopt) complexity.

For the simple equation

u′ + u = f and u(1) = c,

the truncation of the operator is tridiagonal with a single dense boundary row. This
is equivalent to an inhomogeneous three-term recurrence boundary value problem. The
problem of adaptively truncating such recurrence relationships is solvable by (F. W. J.)
Olver’s algorithm [33]. The central idea is to apply row reduction (without pivoting)
adaptively. The row-reduction applied to the right-hand side, when combined with
a concurrent adaptive computation of the homogeneous solutions to the recurrence
relationship, allowed an explicit bound for the relative error. An alternative (and
simpler) bound for the absolute error was obtained in examples. The case of dense
boundary rows, with an application to the Clenshaw method [9] as motivation, was
also considered. Adaptation of the algorithm to higher order difference equations was
developed by Lozier [30].

We adapt this approach to our case by incorporating it into the QR factorization
of subsection 5.1. By using QR factorization in place of Gaussian elimination, we
avoid potential numerical stability issues of the original Olver’s algorithm in the low
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Fig. 5.2: Time versus optimal truncation, showing linear computational cost for the
C++ implementation (left) and the Matlab implementation (right). Examples are
(3.10) (solid), (5.3) (dot-dashed) and (5.4) (dashed).

order coefficients. The key observation is that the boundary terms B and the rows
of the form (5.2) can be evaluated lazily, with bounded computational cost per entry.
Thus the truncation parameter n is not involved in the proposed QR factorization
algorithm (only in the back substitution), hence the optimal truncation nopt can be
found adaptively.

Represent the Given’s rotations that reduces the first n columns of A by the
orthonormal operator Qn ∈ C(n+mL)×(n+mL), so that(

Q?n
I

)
A =

(
Rn F

W

)
where Rn ∈ Cn×n is upper triangular. Our right-hand side is

(
Q?n

I

)(
c

SN−1 · · · S0f

)
=

 r1:n
rn+1:n+mL

0


where we use the fact that f has only finite number of nonzero entries and assume
that n + mL is greater than the number of nonzero entries. Thus our numerical
approximation un = R−1n r1:n has the forward error:

(
Q?n

I

)
A

un
0
0

−
 r1:n

rn+1:n+mL

0

 =

Rnun
0
0

−
 r1:n

rn+1:n+mL

0

 =

 0
rn+1:n+mL

0

 .

Since we calculate rn+1:n+mL during the algorithm, we know the forward error exactly.
Having a bound on ‖A−1‖ allows us to bound the backward error; i.e., ‖u− P>n un‖.
This can be improved further by adapting the procedure of [33, 30], which in a sense
calculates an alternative bound based on the homogeneous solutions of the difference
equation as part of the algorithm.

In Figure 5.2, we apply the adaptive QR decomposition to solve the Airy equation
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of example (3.10) with ε = 1, 10−1, 10−2, . . . , 10−13, as well as

u′′ + (7 + 2x+ 6x2)u =

ν∑
k=0

Tk(x) for u(−1) = 1, u(1) = 1, (5.3)

u′′ + cosxu =

ν∑
k=0

Tk(x) for u(−1) = 1, u(1) = 1 (5.4)

for increasing values of ν, up to 2 million. In the last example, we replace cosx with
its 13 point Chebyshev interpolating polynomial. We plot the number of seconds
the calculation takes versus the adaptively calculated optimal truncation nopt. This
demonstrates the Ø(nopt) complexity of the algorithm, and the fact that the algorithm
easily scales to more than a million unknowns. It also shows that, while Ø(nopt)
complexity is maintained, the computational cost does increase with the bandwidth
of the variable coefficient. In the Airy example (3.10), the time taken for ε = 10−13

is less than 11 seconds1, with the nopt calculated to be approximately 2 million. For
example (5.4), a calculation resulting in nopt being 2 million increases the timing to
95 seconds.

On the right of Figure 5.2 we plot the timing of Matlab’s built-in sparse LU
solver applied to the truncated equation, with n = nopt pre-specified. Even without
the added difficulty of calculating nopt, the computational cost grows faster than Ø(n),
prohibiting its usefulness for extremely large n.

Remark We calculated Figure 5.2 using C++. There is a great deal of room for
optimizing the implementation, as we do not use GPU, parallel or vector processing
units.

5.4. Linear algebra stability in higher order norms. We first remark that,
if B is a bounded operator from `21 → `20, such as Dirichlet boundary conditions, then
the results of section 4 prove that the preconditioned linear system has bounded 2-
norm condition number as n→∞. Because the QR decomposition is computed using
Givens rotations, which are stable in `20 [27], as is backward substitution, we see that
the linear algebra scheme applied to the preconditioned operator is stable, and has
Ø(m2n) complexity.

The results of section 4 also show convergence and well-conditioning in high order
norms. One would expect numerical round-off in QR decomposition to destroy this
convergence property. However, in practice, this is not the case. In Figure 5.3, we
solve the standard Airy equation as a two point boundary value problem:

u′′ − xu = 0, u(−1) = Ai(−1) and u(1) = Ai(1).

We witness convergence in higher order norms as well. In other words, the computed
solution has a fast decaying tail, and all of the absolute error is in the low order
coefficients.

Convergence in higher order norms implies convergence of derivatives, and this is
verified by differentiating the computed solution by applying S−10 D1 repeatedly. (We
note that the banded, upper triangular nature of S0 means that its inverse applied to
a vector is computable in Ø(n) operations; after all, this corresponds to differentiating
without converting bases which can be done in O(n) operations [32].) We compare

the computed derivatives with the true derivatives of the Airy function Ai(p) at a
single point, x = −1/2, and witness convergence for p = 1, 5 and 20.

1CPU times were calculated on a 2011 iMac, with a 2.7 Ghz Intel Core i5 CPU
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Fig. 5.3: Left: The Cauchy error of the solution coefficients measured in the: (solid)
`21-norm, (dashed) `220-norm, (dot-dashed) `2100-norm. Right: The relative error in
derivatives of the solution at x = − 1

2 for the 1st (solid), 20th (dashed), 100th (dot-
dashed) derivative. This plot shows that for sufficiently large discretisations very high
derivatives of the solution can be resolved.

We note that the stability of the QR algorithm in higher order norms appears to
follow from Q being almost banded: it is banded along the superdiagonal, and decays
exponentially along the subdiagonals. In the case where the boundary conditions are
such that A itself is banded, exponential decay in Q = AR−1 follows since R−1 has
exponentially decay, due to R being banded and well-conditioned [13].

Since `2λ is a Hilbert space, Givens rotations can be constructed with the relevant
inner product, resulting in orthogonal operations (i.e., with condition number one) in
`2λ. The stability of such an algorithm in `2λ follows immediately. With this modifica-
tion, we have an Ø(m2n) stable algorithm which is guaranteed to converge in higher
order norms.

Remark While we have discussed the convergence in higher order norms with
Dirichlet boundary conditions, the exact same logic applies to the convergence and
stability observed with higher order boundary conditions, such as Neumann condi-
tions.

6. Future work. We have designed a spectral method that achieves Ø(n) com-
putational cost, stability and generality for solving linear ODEs. We determined the
optimal truncation adaptively using the QR factorization. We believe that the ideas
introduced in this paper will serve as a basis for future spectral methods.

An exciting generalization of this work will be to higher dimensions, where the
density of matrices has inhibited the usefulness of spectral methods. A similar ap-
proach, based on boundary recombination, was used in [41] for the Helmholtz equa-
tion. Adapting our method to rectangular domains, using tensor products of ultra-
spherical polynomials, results in a tensor product of almost banded matrices. Con-
structing an adaptive QR decomposition to such matrices will be crucial for achieving
competitive computational costs, and for optimally choosing the number of unknowns
needed in each dimension.

Using the theory of [40], there are potentially generalization of ultraspherical
polynomials to deltoid domains. What is less clear is how the results would be gen-
eralizable to other domains, such as the the triangle.
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For problems with boundary layers, or localized oscillatory behaviour, it can be
more efficient to subdivide the unit interval, in order to minimize the total number of
unknowns. This will be of fundamental importance for PDEs, where solutions typi-
cally have singularities at corners. In the 1D case, it is straightforward to incorporate
subdivision by representing the operators as block matrices, with additional bound-
ary rows to impose continuity. Whether the adaptive QR decomposition can be easily
generalized to such matrices is less clear.

Finally, an extension of this work is to nonlinear differential equations, of the
form

Bu = 0 and  Lu+ g(u) = f.

Our approach can be incorporated into an infinite-dimensional Newton iteration, á la
[2, 18]. The Newton iteration takes the form

uk+1 = uk +

(
B

 L + g′(uk)

)−1(
0

 Luk + g(uk)− f

)
.

Since the linear operator that is inverted involves the solution itself, the bandedness
of multiplication is lost, at least when näıvely implemented. It may be possible to
overcome this difficulty by using the fact that the derivative for Newton iteration need
not be accurate to machine precision. Moreover, the decay in the coefficients of the
operator can combine with decay in the solution, hence the entries of the operator
can be truncated more aggressively while maintaining accuracy. However, even with
a dense representation of the operator, the stability of the resulting algorithm is
preserved in initial numerical experiments.
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