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COUPLED MODE EQUATION MODELING FOR OUT-OF-PLANE GAP SOLITONS IN

2D PHOTONIC CRYSTALS

TOMÁŠ DOHNAL∗ AND WILLY DÖRFLER∗

Abstract. Out-of-plane gap solitons in 2D photonic crystals are optical beams localized in the plane of periodicity of the

medium and delocalized in the orthogonal direction, in which they propagate with a nonzero velocity. We study such gap solitons

as described by the Kerr nonlinear Maxwell system. Using a model of the nonlinear polarization, which does not generate higher

harmonics, we obtain a closed curl-curl problem for the fundamental harmonic of the gap soliton. For gap solitons with frequencies

inside spectral gaps and in an asymptotic vicinity of a gap edge we use a slowly varying envelope approximation based on the

linear Bloch waves at the edge and slowly varying envelopes. We carry out a systematic derivation of the coupled mode equations

(CMEs) which govern the envelopes. This derivation needs to be carried out in Bloch variables. The CMEs are a system of coupled

nonlinear stationary Schrödinger equations with an additional cross derivative term. Examples of gap soliton approximations are

numerically computed for a photonic crystal with a hexagonal periodicity cell and an annulus material structure in the cell.

Key words. gap soliton, photonic crystal, Maxwell’s equations, Kerr nonlinearity, out of plane propagation, coupled mode

equations, slowly varying envelope approximation, Bloch transformation
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1. Introduction. Maxwell’s equations for electromagnetic waves in Kerr nonlinear dielectric materials

read

∂tD = ∇×H, (1.1a)

µ0∂tH = −∇× E , (1.1b)

∇ · D = 0, (1.1c)

∇ · H = 0 (1.1d)

for the electric field E , magnetic field H, the electric displacement field D with the constitutive relations

D = ε0
(
n2E + PNL

)
,

PNL,i =

3∑

j,l,m=1

χ
(3)
ijlmEjElEm for i = 1, 2, 3.

(1.2)

ε0, µ0 are the electric permittivity and magnetic permeability of vacuum, respectively, x 7→ n(x) is the refractive

index of the medium, and x 7→ χ(3)(x) is the cubic electric susceptibility of the medium.

We consider a 2D photonic crystal, i.e. we assume that the material coefficients change periodically

on a plane and are independent of the orthogonal component on that plane. Let a(1), a(2) ∈ R3 be linearly

independent lattice vectors defining the Bravais lattice Λ := span
Z
{a(1), a(2)} of the crystal. Then the required

periodicity reads

n(x) = n(x+R) ∈ R,

χ(3)(x) = χ(3)(x+R) ∈ R
3×3×3×3 for all x ∈ R

3 and all R ∈ Λ.
(1.3)

Without loss of generality we assume that the crystal is homogeneous in the x3-direction, i.e. a
(1)
3 = a

(2)
3 = 0

and ∂x3n = ∂x3χ
(3)
ijlm = 0 for all i, j, l,m. We denote by U the Wigner–Seitz cell corresponding to the Bravais

lattice. We use b(1), b(2) to denote the pair of vectors satisfying a(i) · b(j) = 2πδi,j for i, j ∈ {1, 2}, and let the

reciprocal lattice be Λ∗ := span
Z
{b(1), b(2)}. B denotes the first Brillouin zone, i.e. the Wigner–Seitz cell of

the reciprocal lattice.
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Note that from the relations in (1.2) it is clear that we are neglecting losses, material dispersion as

well as higher order nonlinearities and assuming that the third order nonlinear response of the medium is

instantaneous.

We will consider monochromatic waves propagating in the x3-direction, i.e. waves propagating out of the

plane of periodicity of the 2D crystal, and use the ansatz

(E ,H,D)(x, t) = ei(κx3−ωt)(E,H,D)(x1, x2;ω) + c.c., (1.4)

where κ ∈ R and c.c. denotes the complex conjugate of the first term on the right. The ansatz (1.4) contains

no higher harmonics, which is valid if the above form of PNL is replaced by a time averaged one, see below.

Alternatively, a physical justification of neglecting higher harmonics is based on the lack of phase matching

and absorption.

Note that for the field (1.4) the divergence free conditions (1.1c) and (1.1d) are automatically satisfied

provided ω 6= 0 since the spatially dependent parts

(
Ê , Ĥ, D̂

)
(x;ω) := eiκx3

(
E,H,D

)
(x1, x2;ω)

satisfy

D̂ =
i

ω
∇× Ĥ and µ0Ĥ = −

i

ω
∇× Ê , (1.5)

and thus ∇ · D̂ = ∇ · Ĥ = 0. Since our analysis below is for gap solitons with ω close to a band edge, the

condition ω 6= 0 is for us restrictive only when ω = 0 is in a gap and lies near a band edge. Note also that

even if higher harmonics are accounted for, the divergence free conditions are still satisfied for ω 6= 0 as (1.5)

then holds for each generated harmonic. Clearly, only odd, i.e., (2n+ 1)-th, n ∈ Z, harmonics are generated.

We will assume a centrosymmetric and isotropic χ(3)-tensor, which leads to the simplification

PNL = χ
(3)
ci (E · E)E ,

where χ
(3)
ci := χ

(3)
1111 = χ

(3)
2222 = χ

(3)
3333 for χ

(3)
ci : (x1, x2) ∈ R2 → R, see [21, Sec. 2d]. Inserting the ansatz (1.4)

in the nonlinearity PNL clearly generates the harmonics e±3i(κx3−ωt). These are, however, typically neglected

based on the physical arguments that the fundamental harmonics e±i(κx3−ωt) and the higher harmonics are

not phase matched and that at the higher values of frequency (i.e. at ±3ω) material absorption is usually

large preventing the generation of significant fields at these frequencies, see e.g. [9]. Considering only the

fundamental harmonics, the nonlinear polarization for the ansatz (1.4) becomes

PNL = χ
(3)
ci

(
2|E|2E + E ·E E

)
ei(κx3−ωt) + c.c. , (1.6)

i.e.

PNL = χ
(3)
ci

(
(3|E1|2+2|E2|2+2|E3|2)E1+(E2

2+E2
3)Ē1

(2|E1|2+3|E2|2+2|E3|2)E2+(E2
1+E2

3)Ē2

(2|E1|2+2|E2|2+3|E3|2)E3+(E2
1+E2

2)Ē3

)
ei(κx3−ωt) + c.c.. (1.7)

Another widely used model for the nonlinear polarization is

PNL = χ
(3)
ci [E · E ]avE ,

where [f ]av denotes the time average of f over the period of f , i.e. over t ∈ [0, π/ω] for f = E · E , cf. [26, 27].

The averaging generates no higher harmonics so that in this model (1.6) is exact. Note that the Kerr nonlinear

problem including all higher harmonics has been recently considered for a 1D periodic structure in [25].
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In the following we rescale the frequency by defining

ω̃ :=
ω

c

but drop the tilde again for better readability. For convenience we will denote the square of the refractive

index by

η(x) := n2(x) for all x ∈ R
3.

With the ansatz (1.4) equations (1.1a) and (1.1b) become

−icωD = ∇×H + i
(

0
0
κ

)
×H, (1.8a)

icωµ0H = ∇× E + i
(

0
0
κ

)
× E. (1.8b)

Since all our functions are independent of x3, we let from now on x = (x1, x2) ∈ R2. Using the fact that E

depends only on x1 and x2, a second order formulation of (1.8) reads

(
L− ω2η

)
E = ω2PNL, (1.9)

where

LE := ∇×∇× E + iκ

(
∂x1E3

∂x2E3

∂x1E1+∂x2E2

)
+ κ2

(
E1

E2
0

)
, (1.10)

and

PNL = χ
(3)
ci

(
2|E|2E + E ·E E

)
.

Having determined E, the magnetic field can be recovered by

H = − i
ωµ0

(
∇× E + i

(
0
0
κ

)
× E

)
.

Based on the analogy with the periodic nonlinear Schrödinger equation [23], equation (1.9) is expected

to have localized H(curl,R2)-solutions E for any ω in a spectral gap of the linear problem Lu = ω2ηu. Such

solutions are called gap solitons. The aim of this paper is to provide an approximation of gap solitons E of

(1.9) for ω in an ε2-vicinity (0 < ε ≪ 1) of a gap edge using a slowly varying envelope approximation. As

we show, envelopes of such gap solitons satisfy a system of nonlinear constant coefficient equations, so called

coupled mode equations (CMEs) posed in the slow variables y = εx. The CMEs can be numerically solved

with less effort than the nonlinear Maxwell system (1.9) in the variable x. An asymptotic approximation of

a gap soliton of (1.9) near a gap edge is then the sum of linear Bloch waves at the edge, modulated by the

corresponding envelopes.

Asymptotic approximations via CMEs have been analyzed for gap solitons of the stationary periodic

nonlinear Schrödinger equation in 1D [24] as well as in 2D [12, 13, 14]. In these works the approximation

via CMEs was also rigorously justified using Lyapunov–Schmidt reductions. Gap solitons of the nonlinear

Maxwell’s equations have been approximated by CMEs in the case of 1D photonic crystals with a small

(infinitesimal) contrast in the periodicity [16, 24, 25], where [16] considers gap solitons modulated also in time.

To our knowledge the problem of a systematic CME approximation of gap solitons of nonlinear Maxwell’s

equations describing 2D or 3D photonic crystals does not appear in the literature. Although CMEs have been

formally derived for pulses in Maxwell’s equations with a 2D periodic medium of small contrast [2, 1, 11], these

pulses cannot be true gap solitons because in 2D and 3D a large enough contrast is necessary for the opening
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of spectral gaps. In this paper we consider a 2D photonic crystal with a finite contrast in the periodicity. For

our examples we use a photonic crystal which has several spectral gaps [4].

Besides the above cited works on coupled mode modeling of gap solitons there are a number of papers on

the slowly varying envelope approximation of nonlinear pulses in periodic structures with the pulse frequency

lying within the spectral bands. The envelope in this case can be typically modeled by the time dependent

nonlinear Schrödinger equation and the approximation holds on large but finite time intervals [9, 6, 10].

The rest of the paper is organized as follows. In Section 2 we study the linear band structure ωn(k) of

(1.9) (with χ
(3)
ci = 0) and obtain thus the linear spectrum of the problem. We also discuss possible symmetries

in the band structure and among the corresponding Bloch waves. An example of a photonic crystal from [4] is

then provided, for which the band structure is numerically computed and three band gaps are observed on the

positive half axis ω > 0. In Section 3 we present a slowly varying envelope approximation of gap solitons of

(1.9) for ω in the vicinity of a spectral edge and carry out a systematic formal derivation of CMEs describing

the envelopes. Next, examples of CMEs are presented for the concrete photonic crystal given in Section 2

as well as for other theoretical situations. Here the symmetries in the band structure and among the Bloch

waves play an important role in determining properties of the CME coefficients. In Section 4 we plot the

approximation of two gap solitons in the chosen photonic crystal. The approximation requires computing the

Bloch waves at the edge and solving the corresponding CMEs.

2. Linear Band Structure.

2.1. The periodic eigenvalue problem. We study first the linear problem

Lu = ω2ηu on R
2 (2.1)

and define the band structure as well as the linear Bloch waves.

By the Bloch–Floquet theory, see [19] or [15, Ch. 3], solution modes of (2.1) are given by the Bloch waves

un(k; . ) for n ∈ N that satisfy

Lun(k; . ) = ωn(k)
2ηun(k; . ),

un(k; . +R) = un(k; . )e
ik·R for all R ∈ Λ,

(2.2)

where k = (k1, k2) sweeps the first Brillouin zone B ⊂ R2.

It is well-known that L is self-adjoint and has a compact inverse and that there thus exists a sequence of

eigenvalues {ωn}n≥1 with limn→∞ ωn = ∞ and each eigenspace is of finite dimension. These eigenvalues are

nonnegative and we use the natural ordering ωn−1 ≤ ωn for n ≥ 1. The mapping k 7→ ωn(k) is called the n-th

band of the spectral problem (2.2). Of course, (2.2) allows also non-positive bands −ωn. These are typically

labeled via ω−n = −ωn and will play no role in our analysis. We therefore restrict ourselves to ωn ≥ 0 for

n ∈ N. The Bloch waves in (2.2) can be written in the form

un(k;x) = pn(k;x)e
ik·x,

where the pn are Λ-periodic in x, i.e. pn(k;x+R) = pn(k;x) for all x ∈ U , R ∈ Λ. These satisfy the eigenvalue

problem

(
L̃(k)− ω2

n(k)η(x)
)
pn(k;x) = 0 for all x ∈ U,

pn(k;x+R) = pn(k;x) for all x ∈ ∂U and all R ∈ Λ,
(2.3)

with

L̃(k)pn(k;x) = (∇+ ik′)× (∇+ ik′)× pn(k;x),
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where k = (k1, k2) ∈ B, k′ = (k1, k2, κ)
T . Since pn is x3-independent, L̃(k) can be written as

L̃(k) =

(
κ2−(∂x2+ik2)

2 (∂x1+ik1)(∂x2+ik2) iκ(∂x1+ik1)

(∂x1+ik1)(∂x2+ik2) κ2−(∂x1+ik1)
2 iκ(∂x2+ik2)

iκ(∂x1+ik1) iκ(∂x2+ik2) −(∂x1+ik1)
2−(∂x2+ik2)

2

)
.

In the variable k the Bloch waves un and the eigenvalues ωn are easily proved to fulfill

ωn(k) = ωn(k +K), pn(k +K;x) = pn(k;x)e
−iK·x for all x ∈ U, K ∈ Λ∗. (2.4)

Due to the self-adjoint nature of L̃(k) we can normalize the Bloch functions via

〈pn(k; . ), ηpm(k; . )〉 = δn,m, (2.5)

where 〈f, g〉 = 〈f, g〉L2(U)3 =
∫
U f(x) · g(x) dx for f, g : R2 → C3.

For purposes of the later asymptotic analysis of gap solitons we also present calculations of first and second

order derivatives of the bands at extremal points. Suppose the band ωn∗
has an extremum at k = k∗ ∈ B and

denote ω∗ := ωn∗
(k∗). By direct differentiation of (2.3) we see that the “generalized Bloch functions” ∂kj

pn∗
,

for j ∈ {1, 2}, are solutions of the system

(
L̃(k∗)− ω2

∗η
)
∂kj

pn∗
(k∗; . ) = −∂kj

L̃(k∗)pn∗
(k∗; . ). (2.6)

Applying the differentiation ∂2ki,kj
, for i, j ∈ {1, 2}, to (2.3) and evaluation at n = n∗, k = k∗ yields

(
L̃(k∗)− ω2

∗η(x)
)
∂2ki,kj

pn∗
(k∗;x)

= 2ω∗η(x)∂
2
ki,kj

ωn∗
(k∗)pn∗

(k∗;x)− ∂2ki,kj
L̃(k∗)pn∗

(k∗;x)

− ∂ki
L̃(k∗)∂kj

pn∗
(k∗;x)− ∂kj

L̃(k∗)∂ki
pn∗

(k∗;x).

Necessarily, due to the Fredholm alternative, the right hand side is L2-orthogonal to pn∗
(k∗; . ), which lies in

the kernel of L̃(k∗)− ω2
∗η with periodic boundary conditions on U . This yields the formula

(
∂2kωn∗

(k∗)
)
i,j

= ∂2ki,kj
ωn∗

(k∗)

=
1

2ω∗

〈
∂2ki,kj

L̃(k∗)pn∗
(k∗; . ) + ∂ki

L̃(k∗)∂kj
pn∗

(k∗; . ) + ∂kj
L̃(k∗)∂ki

pn∗
(k∗; . ), pn∗

(k∗, ·)
〉
. (2.7)

A straightforward differentiation of L̃(k) yields

∂k1 L̃(k∗) =

(
0 i(∂x2+ik∗,2) −κ

i(∂x2+ik∗,2) −2i(∂x1+ik∗,1) 0

−κ 0 −2i(∂x1+ik∗,1)

)
,

∂k2 L̃(k∗) =

(−2i(∂x2+ik∗,2) i(∂x1+ik∗,1) 0

i(∂x1+ik∗,1) 0 −κ

0 −κ −2i(∂x2+ik∗,2)

)
,

∂2k1
L̃ ≡

(
0 0 0
0 2 0
0 0 2

)
, ∂2k2

L̃ ≡
(

2 0 0
0 0 0
0 0 2

)
, and ∂2k1,k2

L̃ ≡
(

0 −1 0
−1 0 0
0 0 0

)
, (2.8)

where k∗,j , for j ∈ {1, 2, 3}, is the j-th component of k∗. With these the explicit forms of (2.7) read

∂2k1
ωn∗

(k∗) =
1

ω∗

〈(
i(∂x2+ik∗,2)∂k1

pn∗,2(k∗; . )−κ∂k1
pn∗,3(k∗; . )

i(∂x2+ik∗,2)∂k1
pn∗,1(k∗; . )−2i(∂x1+ik∗,1)∂k1

pn∗,2(k∗; . )+pn∗,2(k∗; . )

−2i(∂x1+ik∗,1)∂k1
pn∗,3(k∗; . )−κ∂k1

pn∗,1(k∗; . )+pn∗,3(k∗; . )

)
, pn∗

(k∗; . )

〉
, (2.9)

∂2k2
ωn∗

(k∗) =
1

ω∗

〈(−2i(∂x2+ik∗,2)∂k2
pn∗,1(k∗; . )+i(∂x1+ik∗,1)∂k2

pn∗,2(k∗; . )+pn∗,1(k∗; . )

i(∂x1+ik∗,1)∂k2
pn∗,1(k∗; . )−κ∂k2

pn∗,3(k∗; . )

−κ∂k2
pn∗,2(k∗; . )−2i(∂x2+ik∗,2)∂k2

pn∗,3(k∗; . )+pn∗,3(k∗; . )

)
, pn∗

(k∗; . )

〉
, (2.10)
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and

∂2k1,k2
ωn∗

(k∗) = 1
2ω∗

〈(−2i(∂x2+ik∗,2)∂k1
pn∗,1(k∗; . )+i(∂x1+ik∗,1)∂k1

pn∗,2(k∗; . )+i(∂x2+ik∗,2)∂k2
pn∗,2(k∗; . )

i(∂x1+ik∗,1)∂k1
pn∗,1(k∗; . )+i(∂x2+ik∗,2)∂k2

pn∗,1(k∗; . )−2i(∂x1+ik∗,1)∂k2
pn∗,2(k∗; . )

−2i(∂x2+ik∗,2)∂k1
pn∗,3(k∗; . )−2i(∂x1+ik∗,1)∂k2

pn∗,3(k∗; . )

)

+

( −κ∂k2
pn∗,3(k∗; . )−pn∗,2(k∗; . )

−κ∂k1
pn∗,3(k∗; . )−pn∗,1(k∗; . )

−κ
(
∂k1

pn∗,2(k∗; . )+∂k2
pn∗,1(k∗; . )

)
)
, pn∗

(k∗; . )

〉
.

(2.11)

2.2. Symmetries of the Band Structure and the Bloch waves. Symmetries in the refractive index

function η yield symmetries in the band structure and among Bloch waves. We restrict our attention to the

cases of discrete rotational and axial reflection symmetry, which are relevant for the example we present below.

The results of this section will be important when determining properties of the coefficients of coupled mode

equations in Section 3.4.

2.2.1. Rotational symmetry. Assume that the photonic crystal satisfies the rotational symmetry

η(x) = η(rα(x)) for all x ∈ R
2 (2.12)

for some α ∈ (−π, π] with the rotation rα defined by

rα(x) =
(

cos(α)x1−sin(α)x2

sin(α)x1+cos(α)x2

)

Below we use the notation rα(v) = (cos(α)v1 − sin(α)v2, sin(α)v1 +cos(α)v2)
T if v is a two dimensional vector

v ∈ C2 and rα(v) = (cos(α)v1 − sin(α)v2, sin(α)v1 + cos(α)v2, v3)
T if v is a three dimensional vector v ∈ C3.

The symmetry (2.12) implies a symmetry of the Rayleigh quotient corresponding to the eigenvalue problem

(2.3) and thus a symmetry of the band structure. In detail, for k ∈ B we have

ω2
n(k) = min

V⊂Hcurl
per (U)

dimV =n

max
w∈V,w 6=0

∫
U
|(∇+ ik′)× w(x)|2 dx∫

U η(x)|w(x)|
2 dx

,

and the corresponding extremal point is pn(k; . ). Due to the relation

((∇+ irα(k
′))× f) (rα(x)) = rα [(∇+ ik′)× r−α (f(rα(x)))] for all smooth f : R2 → R

3

we get

∫

U

|(∇+ irα(k
′))× w(x)|2 dx =

∫

U

|(∇+ ik′)× r−α (w(rα(x))) |
2 dx,

and symmetry (2.12) yields

∫

U

η(x)|w(x)|2 dx =

∫

U

η(x)|r−α(w(rα(x)))|
2 dx.

As a result we obtain that

ωn(k) = ωn(rα(k)) for all n ∈ N and all k ∈ B. (2.13)

If ωn(k) has geometric multiplicity one as an eigenvalue of (2.3), we have also a symmetry of the corresponding

Bloch functions, namely

pn(rα(k);x) = eiar−α (pn(k; rα(x))) for all n ∈ N and some a = a(n) ∈ R. (2.14)
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Note that a renormalization of pn(rα(k);x), in order to obtain a = 0 in (2.14), is in general impossible when

rα(k)
.
= k, where k

.
= l reads “k congruent to l” and means k = l+K for some K ∈ Λ∗. This is because in this

case pn(rα(k);x) and pn(k;x) are related by (2.4) and a renormalization of the left hand side of (2.14) would

affect the right hand side in the same way. When rα(k) is not congruent to k, e.g. when k ∈ int(B) \ {0}, then

one can set a = 0 in (2.14).

¿From the symmetry (2.13) we can deduce a symmetry of the second derivatives of ωn. Using the identity

∂kωn(k) = ∂k(ωn(rα(k))) = (rα)
T (∂kωn)(rα(k)), we get by further differentiation




∂2k1
ωn(rα(k))

∂2k2
ωn(rα(k))

∂2k1,k2
ωn(rα(k))


 =




cos2(α) sin2(α) − sin(2α)

sin2(α) cos2(α) sin(2α)
1
2 sin(2α) − 1

2 sin(2α) cos(2α)







∂2k1
ωn(k)

∂2k2
ωn(k)

∂2k1,k2
ωn(k)


 (2.15)

for all k ∈ B and n ∈ N.

2.2.2. Reflection symmetry. If the photonic crystal satisfies the reflection symmetry

η(x) = η(S1(x)) for all x ∈ R
2, where S1(x) = (−x1, x2)

T , (2.16)

then similarly to Section 2.2.1 we have

ωn(k) = ωn(−k1, k2) for all k ∈ B and n ∈ N. (2.17)

Again, if ωn(k) has geometric multiplicity one as an eigenvalue of (2.3), then

pn(S1(k);x) = eiaS1 (pn(k;S1(x))) for all n ∈ N and some a = a(n) ∈ R, (2.18)

where S1(v) = (−v1, v2, v3)
T for v ∈ C

3. Just as above, unless k
.
= S1(k), we can set a = 0 in (2.18). The

symmetry (2.17) implies

∂2k1
ωn(k) = (∂2k1

ωn)(−k1, k2), ∂2k2
ωn(k) = (∂2k2

ωn)(−k1, k2),

∂2k1,k2
ωn(k) = −(∂2k1,k2

ωn)(−k1, k2)
(2.19)

for all k ∈ B and n ∈ N.

An analogous discussion, of course, applies for the reflection symmetry η(x) = η(S2(x)) for all x ∈ R2,

where S2(x) = (x1,−x2)T . One the obtains

∂2k1
ωn(k) = (∂2k1

ωn)(k1,−k2), ∂2k2
ωn(k) = (∂2k2

ωn)(k1,−k2),

∂2k1,k2
ωn(k) = −(∂2k1,k2

ωn)(k1,−k2)
(2.20)

for all k ∈ B and n ∈ N and if ωn(k) has geometric multiplicity one as an eigenvalue of (2.3), then

pn(S2(k);x) = eiaS2 (pn(k;S2(x))) for all n ∈ N and some a = a(n) ∈ R. (2.21)

2.2.3. Combination of rotational and reflection symmetries. If both the reflection symmetry

(2.16) and the rotational symmetry (2.12) for some α ∈ (−π,−π], |α| 6= π/2, hold, then for k along the

rays with angles π/2 − α/2 and −(π/2 + α/2) the mixed derivative ∂2k1,k2
ωn(k) can be expressed in terms of

∂2k1
ωn(k) and ∂

2
k2
ωn(k). This is because for k along these rays we have (−k1, k2) = rα(k) or (k1,−k2) = rα(k),

so that both (2.15) and (2.19) or (2.20) apply. In detail, suppose

(−k1, k2) = rα(k), i.e. k = |k|ei(π/2−α/2) or k = |k|e−i(π/2+α/2) = −|k|ei(π/2−α/2).

Then it follows that

∂2k1
ωn(k) = (∂2k1

ωn)(−k1, k2) = cos2(α)∂2k1
ωn(k)− sin(2α)∂2k1,k2

ωn(k) + sin2(α)∂2k2
ωn(k),
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where the first equality holds due to (2.19) and the second due to (2.15). As a result, for α ∈ (−π, π], |α| 6= π/2,

and k = ±|k|ei(π/2−α/2) we get

∂2k1,k2
ωn(k) =

1

2
tan(α)

(
∂2k2

ωn(k)− ∂2k1
ωn(k)

)
. (2.22)

Identity (2.22) applies also in the case when the S2 reflection symmetry and the rotational symmetry (2.12)

are both present for some α ∈ (−π,−π], |α| 6= π/2. Then (2.22) holds for k that satisfy

(k1,−k2) = rα(k), i.e. k = ±|k|e−iα/2.

2.3. Example: Hexagonal Lattice with a Circular Material Structure. As an example we con-

sider the hexagonal lattice in the (x1, x2)-plane generated by the vectors

a(1) = a0

(
cos(π/3)
sin(π/3)

)
and a(2) = a0 ( 10 ) with a0 > 0.

In the Wigner–Seitz cell U the material structure is given by the annulus centered at the lattice point in the

origin and having outer and inner radii a0/2 and a0(1.31/4.9) respectively. The material properties are given

by η(x) = 2.1025 for a0(1.31/4.9) ≤ |x| ≤ a0/2 and η(x) = 1 otherwise. This is the same as the crystal

used in [4], where the corresponding band structure was also computed. One choice of vectors generating the

reciprocal lattice is

b(1) = 2π
J12

(
a
(2)
2

−a
(2)
1

)
= 2π

a0 sin(π/3) (
0
1 ) , b(2) = 2π

J12

(
−a

(1)
2

a
(1)
1

)
= 2π

a0

( 1
− cot(π/3)

)
,

where J12 = det(a(1), a(2)) = a
(1)
1 a

(2)
2 − a

(1)
2 a

(2)
1 . These vectors have been obtained via the formulas b̃(1) =

2π ã(2)×ã(3)

J12
and b̃(2) = 2π ã(3)×ã(1)

J12
, where ã(j) = (a(j)

T

, 0)T , b̃(j) = (b(j)
T

, 0)T for j ∈ {1, 2} and ã(3) = (0, 0, 1)T ,

cf. [5, Ch. 5]. Figure 2.1 shows the crystal geometry and the corresponding Brillouin zone.

In this case both the rotational symmetry (2.12) with α = π/3, the reflection symmetry (2.16) as well

as the analogous symmetry S2 do hold. The band structure and Bloch waves can therefore be recovered

via (2.13), (2.14) and (2.17), (2.18) from the irreducible Brillouin zone B0 in Figure 2.1, i.e. the triangle

with vertices Γ,M,K, where Γ = (0, 0)T , M = 1
2b

(2), and K = 1√
3
|b(2)|(1, 0)T . These points are called high

symmetry points.

Next we provide some specific information about the values of the second derivatives of ωn at the high

symmetry points of the Brillouin zone at hand using symmetries (2.15), (2.19), and (2.20). This information

will be used in Section 3.4

Identity (2.15) with k = 0 and α = π/3 yields

∂2k2
ωn(Γ) = ∂2k1

ωn(Γ) and ∂2k1,k2
ωn(Γ) = 0 for all n ∈ N. (2.23)

Symmetry (2.20) implies

∂2k1,k2
ωn(K) = 0 for all n ∈ N. (2.24)

At k = r2π/3(M) (= 1
2b

(1)) we have k1 = 0 so that (2.19) implies

∂2k1,k2
ωn(r2π/3(M)) = 0 for all n ∈ N. (2.25)

Relation (2.22) then yields

∂2k2
ωn(r2π/3(M)) = ∂2k1

ωn(r2π/3(M)) for all n ∈ N. (2.26)
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b(2)

Γ K

M
B0

Fig. 2.1: (a) Hexagonal lattice with a cylindrical material structure, (b) the corresponding first

Brillouin zone B with a shaded irreducible Brillouin zone B0. Note that the Brillouin zone has

been scaled to fit the figure.

Applying now (2.15) with α = 2π/3, we get

∂2k1
ωn(M) = ∂2k1

ωn(r2π/3(M)), ∂2k2
ωn(M) = ∂2k1

ωn(r2π/3(M)), and ∂2k1,k2
ωn(M) = 0 (2.27)

for all n ∈ N. Because rπ/3(M) is obtained from r2π/3(M) by the reflection (k1, k2) → (k1,−k2), we also have

∂2k1
ωn(M) = ∂2k1

ωn(rπ/3(M)), ∂2k2
ωn(M) = ∂2k1

ωn(rπ/3(M)), and ∂2k1,k2
ωn(rπ/3(M)) = 0.

As an example we took the configuration from [4] as described in Section 2.3. The computations were

done with a finite element Maxwell solver that uses lowest order Nedelec elements [22]. These elements were

implemented in the software deal.II [7]. The eigenvalue problems were solved by a Krylov–Schur method.∗

We computed the eigenvalues {ωn(k)}n=1,14 and corresponding eigenfunctions {pn(k, ·)}n=1,14 for each

vertex k in a discretization of the Brillouin zone B. The error level of this computations is about 10−3 in the

curl-norm and it is estimated from a series of computations on a sequence of nested grids.

In Figure 2.2 we present the numerically computed band structure over ∂B0 (following the tradition) for

the above described crystal and for κ = 5(2π/a0). Here, ∂B0 is represented by 128 k-points. It has, however,

been checked that the observed gaps do not get narrower in the interior of B. Three band gaps appear on the

positive half of the ω axis, one between 0 and ω1, another one between ω6 and ω7 and the last one between

ω12 and ω13.

To get the extremal points at the band edges we used a bisection method in k which was initialised with

data obtained from the band structure computation. The approximations to 1st and 2nd order derivatives of

∗SLEPc package (http://www.grycap.upv.es/slepc/)
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k 7→ ωn(k) at the extremal values were obtained by first projecting k 7→ ωn(k) onto a locally quadratic finite

element space and then taking mean values of the derivatives around vertices.

Gamma M K Gamma

3.6

3.65

3.7

3.75

3.8

3.85

3.9

3.95
ω

 /c

 

 

s
2

s
4

s
5

s
3

s
1

Fig. 2.2: Band structure k 7→ ωn(k) for the described hexagonal lattice with the cylindrical

material structure: the first 14 eigenvalues along ∂B0. Three band gaps appear on the positive

half axis Ω ≥ 0: one between 0 and ω1, one between ω6 and ω7, and one between ω12 and ω13.

Gap edges are marked by s1, . . . , s5.

3. Derivation of Coupled Mode Equations for Gap Solitons near Band Edges.

3.1. Slowly varying envelope approach. We seek gap solitons E of (1.9). Afterward, the full electric

field can be recovered via (1.4).

In the following let us assume that

(A1) the spectrum {ωn(k) : k ∈ B, n ∈ N} possesses a gap,

(A2) one of the gap edges, denoted by ω∗, is attained at precisely N ∈ N points k(1), . . . , k(N) ∈ B by bands

with indices n1, . . . , nN , respectively, where the k-points and/or band indices are not necessarily all

distinct,

(A3) for each j ∈ {1, . . . , N} the band ωnj
is twice continuously differentiable in k at k = k(j),

(A4) ∂2kωnj
(k(j)), the Hessian of ωnj

at k = k(j), is (positive or negative) definite for each j ∈ {1, . . . , N}.

The smoothness assumption (A3) is needed to justify our Taylor expansions of ωnj
near k(j). Bands ωn

are generally only Lipschitz continuous due to possible transversal intersections of bands and their numbering

according to size [20]. Away from points of intersection or tangency bands can be shown to be actually analytic

in k by standard perturbation theory [18]. The simplest situation when (A3) is satisfied is thus when each

band ωnj
is isolated near k(j), which is equivalent to n1 = . . . = nN due to our ordering of bands according to

size of ωn(k) at each k.

Note that since each band ωnj
has an extremum at k = k(j), we have ∂k1ωnj

(k(j)) = ∂k2ωnj
(k(j)) = 0 for

j ∈ {1, . . . , N}. Assumption (A4) then guarantees that the leading order terms in the Taylor expansion of the

band ωnj
around k = k(j) are in fact quadratic.

The asymptotic expansion for the electrical field E of gap solitons with ω in the gap and in the vicinity
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of the edge ω∗ is expected [12, 13] to be of the following slowly varying envelope form

ε

N∑

j=1

Aj(y)unj
(k(j);x) + ε2ψ(1)(x) + ε3ψ(2)(x) +O(ε4),

ω = ω∗ +Ωε2, y = εx, 0 < ε≪ 1,

(3.1)

where Aj : R
2 → C is a fast decaying smooth function and where Ω = ±1. The sign of Ω is determined by the

condition that ω∗ + ε2Ω lies in the gap.

Performing a multiple scales analysis in the physical variables (x, y) is impossible. The reason is that in

order to solve the resulting equations at each order of the expansion, one has to ensure that inhomogeneous

terms are orthogonal to the kernel of L − ω2
∗η, i.e., to unj

(k(j); . ) for all j ∈ {1, . . . , N}. This orthogonality

needs to be checked on the common period of those unj
. If, however, one of the components of k(j) is irrational,

the corresponding unj
is not even periodic and this approach fails similarly to [13]. We therefore perform the

asymptotic analysis in Bloch variables where all functions are U -periodic in x and orthogonality conditions

are always posed over U .

Let us define the Bloch transform T : E 7→ Ẽ and its inverse, cf. [8, Ch. 7], by

Ẽ(k;x) = (T E)(k;x) =
∑

K∈Λ∗

eiK·xÊ(k +K), E(x) = (T −1Ẽ)(x) =

∫

B

eik·xẼ(k;x) dk

for all x, k ∈ R2, where Ê denotes the Fourier transform of E

Ê(k) := (FE)(k) :=
1

(2π)2

∫

R2

E(x)e−ik·x dx, E(x) = (F−1Ê)(k) :=

∫

R2

Ê(k)eik·x dk.

By definition we have the following properties of the Bloch transform

Ẽ(k;x+R) = Ẽ(k;x) for all R ∈ Λ,

Ẽ(k +K;x) = e−iK·xẼ(k;x) for all K ∈ Λ∗. (3.2)

Multiplication of two functions f, g in physical space corresponds to convolution in Bloch space, i.e.,

(
T (fg)

)
(k;x) =

∫

B

f̃(k − l;x)g̃(l;x) dl =:
(
f̃ ∗B g̃

)
(k;x),

where (3.2) is used if k − l /∈ B. Especially, if x 7→ f(x) is U -periodic, then

(
T (fg)

)
(k;x) = f(x)(T g)(k;x).

This can be easily checked by writing f in the form of a Fourier series, i.e. f(x) =
∑

K∈Λ∗ cKe
iK·x, cf. [8,

Ch. 7]. Exploiting this observation and applying the Bloch transform to (1.9) leads to

(
L̃(k)− ω2η(x)

)
Ẽ(k;x) = ω2P̃NL(k;x) for all x, k ∈ R

2,

where

P̃NL(k; . ) = χ
(3)
ci T

(
2|E|2E + E · E E

)
= χ

(3)
ci

(
2(E .∗B E) ∗B E + (E .∗B E) ∗B E

)
,

with f .∗B g :=
∑

j fj ∗B gj for vector valued f, g, while f ∗B g is understood componentwise for scalar f and

vector valued g. By definition of the Bloch– and Fourier transformation one immediately finds

T
(
Aj(ε . )e

ik(j)·( . ))(k;x) = ε−2
∑

K∈Λ∗

Âj

(
1
ε (k − k(j) +K)

)
eiK·x,
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so that the asymptotic ansatz (3.1) is transformed to

εψ̃(0)(k;x) + ε2ψ̃(1)(k;x) + ε3ψ̃(2)(k;x) +O(ε4), (3.3)

where

ψ̃(0)(k;x) = ε−2
N∑

j=1

∑

K∈Λ∗

Âj

(
1
ε (k − k(j) +K)

)
eiK·xpnj

(k(j);x).

Similarly to [13] and [14], due to the fast decay of the Bloch transform ofAj in k, we approximate Âj

(
1
ε (k − k(j) +K)

)

by χDεr

(
k − k(j) +K

)
Âj

(
1
ε (k − k(j) +K)

)
for some r ∈ (0, 1), where χS is the indicator function of a set S,

Dδ := Bδ(0) with Bδ(z) := {k ∈ R2 : |k − z| < δ} for δ > 0, z ∈ R2.

We will therefore introduce the approximation

Ẽ(k;x) = ε−1Ẽ(0)(k;x) + Ẽ(1)(k;x) + εẼ(2)(k;x) +O(ε2)

with

Ẽ(0)(k;x) =
N∑

j=1

∑

K∈Λ∗

χDεr

(
k − k(j) +K

)
Âj

(
1
ε (k − k(j) +K)

)
eiK·xpnj

(k(j);x)

for all k ∈ B and x ∈ R2. In the following we will use the notation Km = m1b
(1) +m2b

(2) ∈ Λ∗ for m ∈ Z2 for

convenience. As an abbreviation we let ℓ(j,m)(k) := 1
ε (k − k(j) +Km) for k ∈ R2 and m ∈ Z2, so that Ẽ(0) is

given as

Ẽ(0)(k;x) =

N∑

j=1

∑

m∈Z2

χDεr

(
ℓ(j,m)(k)

)
Âj

(
ℓ(j,m)(k)

)
eiK

m·xpnj
(k(j);x). (3.4)

Note that Ẽ(0)( . ;x) is supported on a set of (for sufficiently small ε) disjoint balls Bεr (k
(j) − Km), j ∈

{1, . . . , N}, m ∈ Z2.

3.2. Formal asymptotic analysis. Let us proceed with a formal asymptotic analysis of (1.9). First,

we consider k close to k(j) −Km, i.e., k ∈ Bεr (k
(j) −Km) for some j ∈ {1, . . . , N},m ∈ Z2. Then

L̃(k) = L̃
(
k(j) −Km + εℓ(j,m)(k)

)

= L̃(k(j) −Km) + εℓ(j,m)(k) · ∂kL̃(k
(j) −Km) +

1

2
ε2Q(ℓ(j,m)(k)),

(3.5)

where we have used the fact that the second derivatives of L̃ are constant in k, see (2.8), and where

ℓ(j,m)(k) · ∂kL̃(k
(j) −Km) =

2∑

i=1

ℓ
(j,m)
i (k)∂ki

L̃(k(j) −Km), and

Q(ℓ(j,m)(k)) =

2∑

a,b=1

ℓ(j,m)
a (k)ℓ

(j,m)
b (k)∂2ka,kb

L̃.

Using (3.3), (3.4), (3.5) and ω = ω∗ + Ωε2, we get a hierarchy of equations at each power of ε for x ∈ U

and k ∈ Bεr (k
(j) − Km). We now study the equations related to ε−1, ε0, ε1 under the condition that the

nonlinear term contributes to ε1, which is confirmed later in (3.14).

O(ε−1): The resulting equation is

Âj

(
ℓ(j,m)(k)

) (
L̃(k(j) −Km)− ω2

∗η(x)
) (
pnj

(k(j);x)eiK
m·x)

= Âj

(
ℓ(j,m)(k)

)
eiK

m·x
(
L̃(k(j))− ω2

∗η(x)
)
pnj

(k(j);x)
!
= 0.
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This holds by the definitions of ω∗ = ωnj
(k(j)) and pnj

(k(j); . ).

O(1): The resulting equation is

(
L̃(k(j) −Km)− ω2

∗η(x)
)
Ẽ(1)(k;x)

= −Âj(ℓ
(j,m)(k)

)(
ℓ(j,m)(k) · ∂kL̃(k

(j) −Km)
)(
pnj

(k(j);x)eiK
m·x)

= −Âj

(
ℓ(j,m)(k)

)
eiK

m·x(ℓ(j,m)(k) · ∂kL̃(k
(j))
)
pnj

(k(j);x)
!
= 0.

Using (2.6), the solution is found to be

Ẽ(1)(k;x) = Âj(ℓ
(j,m)(k))eiK

m·x(ℓ(j,m)(k) · ∂kpnj
(k(j);x)

)
, (3.6)

where ℓ(j,m)(k) · ∂kpnj
(k(j);x) =

∑2
i=1 ℓ

(j,m)
i (k)∂ki

pnj
(k(j);x).

O(ε): The contribution of L̃(k)Ẽ is

(
L̃(k(j) −Km)− ω2

∗η(x)
)
Ẽ(2)(k;x)

+ 1
2Q(ℓ(j,m))Ẽ(0)(k;x) − 2ω∗Ωη(x)Ẽ

(0)(k;x)

+
(
ℓ(j,m)(k) · ∂kL̃(k

(j) −Km)
)
Ẽ(1)(k;x).

By insertion of the previous results this gives (for k ∈ Bεr (k
(j) −Km))

(
L̃(k(j) −Km)− ω2

∗η(x)
)
Ẽ(2)(k;x)

+
[
1
2Q(ℓ(j,m)(k))pnj

(k(j);x)− 2ω∗Ωη(x)pnj
(k(j);x)

+
(
ℓ(j,m)(k) · ∂kL̃(k

(j) −Km)
)(
ℓ(j,m)(k) · ∂kpnj

(k(j);x)
)]
Âj

(
ℓ(j,m)(k)

)
eiK

m·x

!
= ω2

∗χ
(3)
ci (x)

1

ε4

(
2
(
Ẽ(0) .∗B Ẽ(0)

)
∗B Ẽ

(0) +
(
Ẽ(0) .∗B Ẽ

(0)
)
∗B Ẽ(0)

)
(k;x) (3.7)

=: ω2
∗χ

(3)
ci (x)G̃j(k, x).

The remainder of the section is devoted to the analysis of the structure of G̃j in (3.7) and to the derivation

of a solvability condition for (3.7).

Let us first analyze the nonlinearity. The convolutions in (3.7) can be expanded into the form

Ẽ(0)
a ∗B Ẽ

(0)
b ∗B

˜
E

(0)
c =

N∑

α,β,γ=1

ξα,a ∗B ξβ,b ∗B ξ
×
γ,c, (3.8)

where a, b, c ∈ {1, 2, 3}, and functions ξα,a and ξ×α,a are given by

ξα,a(k;x) := pnα,a(k
(α);x)

∑
z∈Z2

χDεr

(
k − k(α) +Kz

)
Âα

(
1
ε (k − k(α) +Kz)

)
eiK

z·x,

ξ×α,a(k;x) := pnα,a(k
(α);x)

∑
z∈Z2

χDεr

(
k + k(α) −Kz

)
Âα

(
1
ε (k + k(α) −Kz)

)
e−iKz·x.

Note that (3.8) represents all the nonlinear terms in (3.7) due to commutativity of ∗B. The summands in (3.8)

have the form

(ξα,a ∗B ξβ,b ∗B ξ
×
γ,c)(k;x) =

∑

n,o,q∈Z2

gnoq(k;x) =
∑

n∈M
(2)
α , o∈M

(2)
β

, q∈Mγ

gnoq(k;x), (3.9)
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where (with indices α, β, γ, a, b, c suppressed)

gnoq(k;x) = ei(K
n+Ko−Kq)·xpnα,a(k

(α);x)pnβ ,b(k
(β);x)pnγ ,c(k

(γ);x)
∫

B

∫

B

χDεr

(
k − t− k(α) +Kn

)
Âα

(
1
ε (k − t− k(α) +Kn)

)

× χDεr

(
t− s− k(β) +Ko

)
Âβ

(
1
ε (t− s− k(β) +Ko)

)

× χDεr

(
s+ k(γ) −Kq

)
Âγ

(
1
ε (s+ k(γ) −Kq)

)
ds dt

(3.10)

and with

Mγ = {z ∈ Z
2 : k − k(γ) +Kz ∈ Bεr (0) for some k ∈ B and all ε > 0},

M
(2)
♭ = {z ∈ Z

2 : k − k(♭) +Kz ∈ Bεr(0) for some k ∈ B+ B and all ε > 0}

for ♭ ∈ {α, β}. The truncation of the series in (3.9) comes from the fact that for s, t, k ∈ B we have t−s ∈ B+B

and k−t ∈ B+B so that the three characteristic functions in (3.10) can be nonzero only for n ∈M
(2)
α , o ∈M

(2)
β ,

and q ∈Mγ . More precisely, this is seen as follows.

Only those combinations of n, o, q which produce nonzero values of all the three characteristic functions in

(3.10) and of the function χDεr

(
. −k(j)+Km

)
in (3.7) for given j and some k, t, s ∈ B are of relevance. Firstly,

χDεr

(
s + k(γ) −Kq

)
is nonzero for some s ∈ B and for arbitrary ε > 0 if and only if s0 := −k(γ) +Kq ∈ B

(the closure of B) for some q ∈ Z2, which is equivalent to

q ∈Mγ . (3.11)

Secondly, for a fixed q the factor χDεr

(
t−s−k(β)+Ko

)
is nonzero for all ε > 0 and some t ∈ B and s obtained

in the first step if and only if t0 := s0 + k(β) −Ko ∈ B, i.e.,

k(β) − k(γ) +Kq −Ko ∈ B. (3.12)

This can always be satisfied by a choice of o ∈M
(2)
β . Finally, for fixed q and o we need that χDεr

(
k− t−k(α)+

Kn
)
does not vanish for some k ∈ B with k − k(j) +Km ∈ Dεr and all ε > 0, where this latter restriction is

due to the restriction k ∈ Bεr (k
(j) − Km) in (3.7). In other words, we need that k0 := k(j) − Km ∈ B and

0 = k0 − t0 − k(α) +Kn, i.e.

k(α) + k(β) − k(γ) +Kq −Ko −Kn = k(j) −Km ∈ B (3.13)

for some n ∈ Z2. In fact, all solutions for n of (3.13) lie in M
(2)
α .

In summary, for α, β, γ ∈ {1, . . . , N} the term gnoq is nonzero in (3.10) if n, o, q satisfy (3.11), (3.12) and

(3.13). So the term ξα,a ∗B ξβ,b ∗B ξ
×
γ,c enters G̃j provided

Aα,β,γ,j :=
{
(n, o, q) ∈ (Z2)3 : n ∈M (2)

α , o ∈M
(2)
β , q ∈Mγ and (3.12), (3.13) hold

}

is nonempty for some m ∈ Mj. Note that we omitted an index m in this definition, because the set is either

nonempty or empty for all m ∈ Mj . Indeed, if m is one index that meets the requirements with (n, o, q) and

z is any other index in Mj, then z meets the requirements for (n +m − z, o, q). Aα,β,γ,j can be constructed

by a computer code that scans all possible combinations of n, o, q. This will be discussed in Section 3.4.

Due to the characteristic function, the integration domains in (3.10) can be reduced to s ∈ Bεr (−k(γ) +

Kq)∩B and t ∈ B2εr (k
(β)−k(γ)−Ko+Kq)∩B. Now we introduce the change of variables s̃ := (s+k(γ)−Kq)/ε
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and t̃ := (t− k(β) + k(γ) +Ko −Kq)/ε to get

gnoq(k;x) = ε4ei(K
n+Ko−Kq)·xpnα,a(k

(α);x)pnβ ,b(k
(β);x)pnγ ,c(k

(γ);x)

×

∫

D2εr−1∩B−k(β)+k(γ)+Ko−Kq

ε

∫

D
εr−1∩B+k(γ)−Kq

ε

χD
εr−1

(
k−(k(α)+k(β)−k(γ))+Kn+Ko−Kq

ε − t̃
)

× Âα

(
k−(k(α)+k(β)−k(γ))+Kn+Ko−Kq

ε − t̃
)
χD

εr−1
(t̃− s̃)Âβ(t̃− s̃)χD

εr−1
(s̃)Âγ(s̃) ds̃ dt̃.

(3.14)

The factor ε4 in this formula shows that G̃j = O(1) as required for the consistent asymptotic expansion. If

(3.13) is satisfied, (3.14) becomes

gnoq(k;x) = ε4ei(k
(α)+k(β)−k(γ)−k(j)+Km)·xpnα,a(k

(α);x)pnβ ,b(k
(β);x)pnγ ,c(k

(γ);x)

×

∫

D2εr−1∩ B−k(β)+k(γ)+Ko
−Kq

ε

∫

D
εr−1∩ B+k(γ)

−Kq

ε

χD
εr−1

(
k−k(j)+Km

ε − t̃
)

× Âα

(
k−k(j)+Km

ε − t̃
)
χD

εr−1
(t̃− s̃)Âβ(t̃− s̃)χD

εr−1
(s̃)Âγ(s̃) ds̃ dt̃

(3.15)

for k ∈ Bεr (k
(j) − Km). As we show in Remark 3.1, summing, for fixed k, j,m, the terms (3.15) over

(n, o, q) ∈ Aα,β,γ,j yields a double convolution integral in s̃, t̃ over the full discs D2εr−1 and Dεr−1 , i.e.,

(
ξα,a ∗B ξβ,b ∗B ξ

×
γ,c

)
(k;x) = ε4ei(k

(α)+k(β)−k(γ)−k(j)+Km)·xpnα,a(k
(α);x)pnβ ,b(k

(β);x)pnγ ,c(k
(γ);x)

×

∫

D2εr−1

∫

D
εr−1

χD
εr−1

(
ℓ(j,m)(k)− t̃

)
Âα

(
ℓ(j,m)(k)− t̃

)
χD

εr−1
(t̃− s̃)Âβ(t̃− s̃)χD

εr−1
(s̃)Âγ(s̃) ds̃ dt̃

=: ε4ei(−k(j)+Km)·xunα,a(k
(α);x)unβ ,b(k

(β);x)unγ ,c(k
(γ);x) h̃

(ε)
α,β,γ(ℓ

(j,m)(k))

(3.16)

for k ∈ Bεr (k
(j) − Km). Here we have used unα,a(k

(α);x) = pnα,a(k
(α);x)eik

(α)·x, etc., and we defined

h̃
(ε)
α,β,γ(ℓ

(j,m)(k)) as an abbreviation for the integral on the right hand side.

Remark 3.1. To show that the sum of gnoq over (n, o, q) ∈ Aα,β,γ,j yields a double convolution integral

over full discs, let us first note that the definitions of Mγ and M
(2)
β ensure

⋃

q∈Mγ

(
(B+ k(γ) −Kq) ∩Dεr

)
= Dεr , (3.17)

and

⋃

o∈M
(2)
β

(
(B− k(β) + k(γ) +Ko −Kq) ∩D2εr

)
= D2εr . (3.18)

These are obvious when k(γ) ∈ int(B) and k(β), k(γ) ∈ int(B), respectively, because thenMγ =M
(2)
β = {(0, 0)T}.

But when k(γ) ∈ ∂B, then only a fraction of −k(γ) + Dεr lies in B (in our example with a hexagonal B the

fraction is a half unless k(γ) is a vertex of B, in which case it is a third) and the rest lies in periodicity cells

centered at neighboring reciprocal lattice points. Each point ℓ in this rest is therefore mapped to B via ℓ+Kq with

some q ∈Mγ, and we thus have (3.17). By an analogous argument, observing that k(β)−(k(γ)−Kq) ∈ B+Dεr

for all q ∈Mγ, we get (3.18) from the definition of M
(2)
β .

Let us now assume (3.13) and show that for each Kq fixed, i.e. for each fixed integration domain in the

inner integral in (3.14), the sum of gnoq over (n, o, q) ∈ Aα,β,γ,j yields an integration over the full disc D2εr

in the outer integral. If this were not the case, i.e. if ∃ℓ ∈ D2εr such that ℓ /∈ B − k(β) + k(γ) + Ko − Kq
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for any such (n, o, q) ∈ Aα,β,γ,j, then by (3.18) there would be o ∈ M
(2)
β such that (n, o, q) /∈ Aα,β,γ,j while

(3.12) and (3.13) are satisfied. This is a contradiction to the definition of Aα,β,γ,j. After that we sum over

all q ∈Mγ and the result follows from (3.14).

We now write the d-th component (d ∈ {1, 2, 3}) of G̃j as

G̃j,d(k;x) = ε−4χDεr
(k − k(j) +Km)

3∑

a,b,c=1

Γ
(d)
a,b,c

(
Ẽ(0)

a ∗B Ẽ
(0)
b ∗B

˜
E

(0)
c

)
(k;x), (3.19)

where the integer coefficients Γ
(d)
a,b,c can be easily derived from (1.7). In detail we have Γ

(1)
1,1,1 = Γ

(2)
2,2,2 = Γ

(3)
3,3,3 =

3, Γ
(1)
1,2,2 = Γ

(1)
2,1,2 = Γ

(1)
1,3,3 = Γ

(1)
3,1,3 = Γ

(1)
2,2,1 = Γ

(1)
3,3,1 = 1, Γ

(2)
1,2,1 = Γ

(2)
2,1,1 = Γ

(2)
3,2,3 = Γ

(2)
2,3,3 = Γ

(2)
1,1,2 = Γ

(2)
3,3,2 = 1,

Γ
(3)
1,3,1 = Γ

(3)
3,1,1 = Γ

(3)
2,3,2 = Γ

(3)
3,2,2 = Γ

(3)
1,1,3 = Γ

(3)
2,2,3 = 1, and the remaining Γ

(d)
a,b,c are zero. Finally, using (3.16),

we get for k ∈ Bεr (k
(j) −Km)

G̃j,d(k;x) = ei(−k(j)+Km)·x
3∑

a,b,c=1

Γ
(d)
a,b,c

∑

α,β,γ∈{1,...,N} s.t.
Aα,β,γ,j 6=∅

unα,a(k
(α);x)unβ ,b(k

(β);x)

×unγ ,c(k
(γ);x)h̃

(ε)
α,β,γ(ℓ

(j,m)(k)).

(3.20)

In order to make the discussion of the asymptotic hierarchy complete, we also have to consider the part of

the k−domain outside the neighborhoods of k(j). For k ∈ B such that k− k(j) +Km ∈ B \Dεr for all m ∈Mj

we have
(
L̃(k(j) −Km;x)− ω2

∗η(x)
)
Ẽ(l)(k;x) = 0 for l ∈ {0, 1} so that Ẽ(0)(k; . ) ≡ Ẽ(1)(k; . ) ≡ 0 for such k.

3.3. Coupled mode equations. We return now to equation (3.7). Due to the Fredholm alterna-

tive the existence of Λ-periodic solutions Ẽ(2) of equation (3.7) is equivalent to L2-orthogonality of (3.7) to

pnj
(k(j);x)eiK

m·x, which needs to be ensured for all m ∈ Mj and j ∈ {1, . . . , N}. The range of ℓ(j,m) is a

different section of the disc Dεr−1 for each m ∈Mj . This section is a (1/|Mj|)-th of the full disc so that these

|Mj | equations actually build one equation in ℓ ∈ Dεr−1 . Figure 3.1 shows these sections for two example

points k(j). One example is for |Mj | = 2 and the other one for |Mj | = 3.

When imposing the orthogonality condition, the common factor eiK
m·x of the right hand side of (3.7) is

canceled in the complex inner product with pnj
(k(j);x)eiK

m·x, so that the same solvability condition holds for

all m ∈Mj. Using (3.7), (2.5), and (2.7) (with n∗ and k∗ replaced by nj and k(j)), we obtain

ΩÂj(ℓ)−
1

2

(
ℓ21∂

2
k1
ωnj

(k(j)) + ℓ22∂
2
k2
ωnj

(k(j)) + 2ℓ1ℓ2∂
2
k1,k2

ωnj
(k(j))

)
Âj(ℓ) + N̂j(ℓ) = 0 (3.21)

for ℓ ∈ Dεr−1 , where

N̂j(ℓ) =
ω∗
2

〈
χ
(3)
ci ( . )G̃j(ℓ; . ), pnj

(k(j); . )e−iKm·( . )〉

=
ω∗
2

3∑

a,b,c,d=1

Γ
(d)
a,b,c

∑

α,β,γ∈{1,...,N} s.t.
Aα,β,γ,j 6=∅

∫

U

χ
(3)
ci (x)unα,a(k

(α);x)unβ ,b(k
(β);x)

× unγ ,c(k
(γ);x)unj ,d(k

(j);x) dx h̃
(ε)
α,β,γ(ℓ)

=:
∑

α,β,γ∈{1,...,N} s.t.
Aα,β,γ,j 6=∅

Iα,β,γ,jh̃
(ε)
α,β,γ(ℓ),
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(a)

b

b

b

b

b

b

b

B
+
k(j)

Bεr (k
(j))

b

m(1)

m(2)

εl(j,m
(2))

εl(j,m
(1))

(b)

b

b

b

b

b

b

b

B
+
k(j)

Bεr (k
(j))

m(1)

m(2)

m(3)

b

εl(j,m
(2))

εl(j,m
(1))

εl(j,m
(3))

Fig. 3.1: Two example points k(j) in the case of the hexagonal lattice and the corresponding

ranges of εℓ(j,m) for all m ∈ Mj . In (a) we have Mj = {(0, 0)T , (1, 1)T } =: {m(1),m(2)} and

in (b) Mj = {(0, 0)T , (0, 1)T , (1, 1)T } =: {m(1), m(2),m(3)}. The shaded sections along the

boundary of B are those k ∈ B for which χDεr
(k− k(j) +Km) 6= 0 for the m ∈ Mj written next

to the respective section.

i.e. with (1.7) and the definition of Γ in (3.19)

Iα,β,γ,j :=
ω∗
2

3∑

a,b,c,d=1

Γ
(d)
a,b,c

∫

U

χ
(3)
ci unα,a(k

(α); . )unβ ,b(k
(β); . )unγ ,c(k

(γ); . )unj ,d(k
(j); . )

=
ω∗
2

∫

U

χ
(3)
ci

[
2(unα

(k(α); . ) · unγ
(k(γ); . ))unβ

(k(β); . )

+(unα
(k(α); . ) · unβ

(k(β); . ))unγ
(k(γ); . )

]
· unj

(k(j); . ) .

(3.22)

The symmetries in Γ
(d)
a,b,c imply symmetries in Iα,β,γ,j. Namely, due to the symmetries Γ

(d)
a,b,c = Γ

(d)
b,a,c and

Γ
(d)
a,b,c = Γ

(c)
a,b,d we have

Iα,β,γ,j = Iβ,α,γ,j and Iα,β,γ,j = Iα,β,j,γ for all α, β, γ, j ∈ {1, . . . , N}, (3.23)

and due to Γ
(d)
a,b,c = Γ

(b)
c,d,a we have

Iα,β,γ,j = Iγ,j,α,β for all α, β, γ, j ∈ {1, . . . , N}. (3.24)

Symmetries (3.23) and (3.24) imply, in particular, that Iα,β,α,β = Iα,β,β,α ∈ R for all α, β ∈ {1, . . . , N}.

Let the crystal satisfy the rotational symmetry η(x) = η(rν (x)) and χ
(3)
ci (x) = χ

(3)
ci (rν(x)) for all x ∈ R2

and some ν ∈ (−π, π] and let U be chosen so that rν(U) = U . If for each m ∈ {α, β, γ, j} ⊂ {1, . . . , N} there

exists m′ ∈ {1, . . . , N} such that

k(m
′) = rν(k

(m)),

and if ωn(k
(m)) is a geometrically simple eigenvalue of (2.3) for each m ∈ {α, β, γ, j}, then

Iα,β,γ,j = Iα′,β′,γ′,j′ . (3.25)
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This is seen by the change of variables y = rν(x) in (3.22), using the facts rν(U) = U and rν(v) · rν(w) = v ·w

for all v, w ∈ C3, and employing the symmetry (2.14).

Additional symmetries in Iα,β,γ,j arise when a spatial reflection symmetry in η and χ
(3)
ci is present. For

instance when η(x) = η(S2(x)), χ
(3)
ci (x) = χ

(3)
ci (S2(x)) for all x ∈ R2 (see Section 2.2.2) and if for each

m ∈ {α, β, γ, j} ⊂ {1, . . . , N} there exists m′ ∈ {1, . . . , N} such that

k(m
′) = S2(k

(m))

and such that S2(k
(m))

.
= k(m) does not hold for any m ∈ {α, β, γ, j}, then

Iα,β,γ,j = Iα′,β′,γ′,j′ . (3.26)

This is proved via a change of variables in (3.22) using (2.21), where a = 0 due to our assumptions. A similar

result holds for the reflection symmetry in x1.

Returning now back to (3.21), for smooth envelopes Aj we can neglect the contribution of Âj from

ℓ ∈ R2 \Dεr−1 or simply assume that Âj satisfy (3.21) also there. This step can be rigorously justified via a

persistence argument similar to that in [13, 14]. h̃
(ε)
α,β,γ will then be replaced by Âα ∗ Âβ ∗ Âγ . The inverse

Fourier transform then produces the coupled mode equations

ΩAj +
1

2

(
∂2k1

ωnj
(k(j))∂2y1

+ ∂2k2
ωnj

(k(j))∂2y2
+ 2∂2k1,k2

ωnj
(k(j))∂2y1,y2

)
Aj +Nj = 0 (3.27)

on R2, where Nj is given by

Nj =
∑

α,β,γ∈{1,...,N} s.t.
Aα,β,γ,j 6=∅

Iα,β,γ,jAαAβAγ .

Note that the coupled mode equations have the same general structure as those for gap solitons of the scalar

Gross–Pitaevskii equation [13].

A localized solution A of (3.27) should produce via (3.1) an approximation of a gap soliton of the Maxwell

problem (1.9). A rigorous justification of this statement can be done via the Lyapunov–Schmidt reduction

similarly to [12, 13, 14] and will be the subject of a future project. System (3.27) does not have localized

solutions for arbitrary values of coefficients. The coefficients of the derivative terms are given by the band

structure and Ω = ±1 is determined by the condition that ω = ω∗+ ε2Ω lies in the gap. But the function χ
(3)
ci

in Iα,β,γ,j has not been fixed and remains free at this point.

The linear part of the operator in (3.27) is definite due to our assumption (A4) in Section 3.1 and the fact

that Ω < 0 at upper edges and Ω > 0 at lower edges. The linear part of the operator is positive definite at

lower edges ω∗, where k(j) are points of maxima and negative definite at upper edges. In case N = 1, where

N1 = γ|A1|2A1 and γ = 3ω∗

2

∫
U
χ
(3)
ci |unj

(k(1); . )|4, a localized solution exists in the upper edge case only if

χ
(3)
ci is such that γ > 0 while in the lower edge case χ

(3)
ci has to produce γ < 0. Physically it makes sense to set

χ
(3)
ci = 0 there, where η = 1 (i.e. in vacuum/air). In the annulus regions, where η = 2.1025, we set χ

(3)
ci = 1

(a focusing nonlinearity) if γ > 0 is needed and χ
(3)
ci = −1 (a defocusing nonlinearity) if γ < 0 is required.

This is in agreement with previous results on bifurcation of gap solitons from spectral edges in the periodic

nonlinear Schrödinger equation [17, 3, 23, 12, 13], where bifurcation from upper/lower edges occurs for the

focusing/defocusing nonlinearity respectively. In the case N > 1 our numerical examples produce all Iα,β,γ,j

of the same sign so that we set in the annulus regions, once again, χ
(3)
ci = 1 if ω∗ is an upper edge of a gap

and χ
(3)
ci = −1 if it is a lower edge.
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3.4. Examples of Coupled Mode Equations. We present next coupled mode equations for gap

solitons in the vicinity of spectral edges for the example in Section 2.3 as well as for other canonical examples.

As seen in Figure 2.2, there are 3 spectral gaps (0, s1), (s2, s3) and (s4, s5) on the positive part of the spectral

ω axis for this specific example. We have the numerical values

s1 = ω1(Γ) ≈ 3.610, s2 = ω6(Γ) ≈ 3.701, s3 = ω7(Γ) ≈ 3.750,

s4 = ω12(0, 2.351) ≈ 3.873, s5 = ω13(0, 2.407) ≈ 3.882.

At s1 and s2 several bands lie very close to each other at the extremal point k = Γ. It is, however, not known

whether these truly touch and the eigenvalues have higher multiplicity than one. Numerical tests have shown

that varying the value of η for the annulus material does not change the ordering of bands at k = Γ near s1
and s2. We, therefore, assume that the edges s1 and s2 are simple eigenvalues at k = Γ leading to N = 1 at

s1 and s2. If it can be proved that, for instance, s1 is indeed a double eigenvalue, then N = 2 at s1. Likewise,

N would change if the multiplicity could be established for s2.

Similarly, the band ω12 is close to ω = s5 at four distinct k-points along ∂B0. At the point k = (0, 2.351)

the numerical value is maximal and an analogous test shows that it remains maximal for a range of values of

η. We thus assume that within B0 the value ω = s5 is attained only at k = (0, 2.351). Due to the discrete

rotational symmetry of the band structure we thus have N = 6 at s5. Analogously, we have N = 6 at s4.

Except for the simplest case with N = 1, like in Section 3.4.1, we determine the sets Aα,β,γ,j using

a Matlab program. First of all, it is clear that for any k♭ ∈ B the sets M♭ and M
(2)
♭ contain only those

(n, o, q) ∈ Z2 with nl, ol, ql ∈ {−1, 0, 1} for l = 1, 2. To determine Aα,β,γ,j, we therefore need to test only

finitely many integer vectors (n, o, q) for conditions (3.12), (3.13). For an example with N = 3 we show in

Section 3.4.2 the resulting sets Aα,β,γ,j computed using this routine.

3.4.1. Coupled Mode Equations near Edges for the Example in Section 2.3.

Coupled Mode Equations near the Edges s1, s2 and s3 (N = 1).

At the edges s1, s2 and s3 in Figure 2.2 the situation is particularly simple. As discussed at the beginning

of Section 3.4, we have N = 1 and k(1) = Γ = ( 00 ). Since k(1) ∈ int(B), any (small) neighborhood of k(1)

lies completely within B and thus M1 = {( 00 )}. A simple inspection determines that we have A1,1,1,1 ={
(( 0

0 ) , (
0
0 ) , (

0
0 ))
}
. The resulting coupled mode equation for A = A1 is

(
Ω+ α(∂2y1

+ ∂2y2
)
)
A+ γ|A|2A = 0, (3.28)

where α = 1
2∂

2
k1
ωn1(Γ) =

1
2∂

2
k2
ωn1(Γ) (cf. (2.23)) and γ = I1,1,1,1.

The three cases s1, s2 and s3 differ by the value of n1, i.e. the band index. At ω∗ = s1 we have n1 = 1,

at ω∗ = s2 we have n1 = 6 and at ω∗ = s3 we have n1 = 7. And, as discussed at the end of Section 3.3, at

the upper edges s1, s3 we have Ω = −1 and the function χ
(3)
ci has the value 1 in the annulus regions and 0

otherwise. At s2 we have Ω = 1 and χ
(3)
ci = −1 in the annuli.

In Section 4.1 we present a numerical example on a gap soliton approximation near s2. We list here,

therefore, the numerical values of the CME coefficients for the case s2:

ω∗ = s2 ≈ 3.701 : α ≈ −0.0107, γ ≈ −3.057.

Coupled Mode Equations near the Edge s5 (N = 6).

At the upper edge s5 in Figure 2.2 we have N = 6, n1 = n2 = . . . = n6 = 13, k(1) ≈ (0, 2.458) lying on

the line from Γ to r2π/3(M), and k(j), j = 2, . . . , 6, obtained via a rotation of k(1). In detail

k(j) = r(j−1)
π
3
(k(1)) for j = 2, . . . , 6.
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The symmetry properties (2.15), (2.19), and (2.20) produce relations among the linear coefficients of the

CMEs. The sets Aα,β,γ,j are either empty or contain solely the element {( 00 ) , (
0
0 ) , (

0
0 )} as checked by the

Matlab routine. The resulting CMEs are

(Ω + α1∂
2
y1

+ β1∂
2
y2
)A1 +N1 = 0,

(Ω + α2∂
2
y1

+ β2∂
2
y2

+ µ∂2y1,y2
)A2 +N2 = 0,

(Ω + α2∂
2
y1

+ β2∂
2
y2

− µ∂2y1,y2
)A3 +N3 = 0,

(Ω + α1∂
2
y1

+ β1∂
2
y2
)A4 +N4 = 0,

(Ω + α2∂
2
y1

+ β2∂
2
y2

+ µ∂2y1,y2
)A5 +N5 = 0,

(Ω + α2∂
2
y1

+ β2∂
2
y2

− µ∂2y1,y2
)A6 +N6 = 0,

(3.29)

where Ω = −1, α1 = ∂2k1
ω13(k

(1)), β1 = ∂2k2
ω13(k

(1)), α2 = 1
4 (α1 +3β1), β2 = 1

4 (3α1 +β1), µ =
√
3
4 (α1 −β1) =

∂2k1,k2
ω13(k

(2)), and

N1 = 2

6∑

i=1

Ii,1,i,1|Ai|
2A1 − I1,1,1,1|A1|

2A1 + 2(I2,5,4,1A2A5 + I3,6,4,1A3A6)Ā4,

N2 = 2

6∑

i=1

Ii,2,i,2|Ai|
2A2 − I2,2,2,2|A2|

2A2 + 2(I1,4,5,2A1A4 + I3,6,5,2A3A6)Ā5,

N3 = 2

6∑

i=1

Ii,3,i,3|Ai|
2A3 − I3,3,3,3|A3|

2A3 + 2(I1,4,6,3A1A4 + I2,5,6,3A2A5)Ā6,

N4 = 2

6∑

i=1

Ii,4,i,4|Ai|
2A4 − I4,4,4,4|A4|

2A4 + 2(I2,5,1,4A2A5 + I3,6,1,4A3A6)Ā1,

N5 = 2

6∑

i=1

Ii,5,i,5|Ai|
2A5 − I5,5,5,5|A5|

2A5 + 2(I1,4,2,5A1A4 + I3,6,2,5A3A6)Ā2,

N6 = 2

6∑

i=1

Ii,6,i,6|Ai|
2A6 − I6,6,6,6|A6|

2A6 + 2(I1,4,3,6A1A4 + I2,5,3,6A2A5)Ā3.

Due to symmetries, many of the coefficients in the nonlinear terms are equal. Symmetry (3.25) with ν = π/3

and symmetry (3.23) imply

γ0 :=I1,1,1,1 = I2,2,2,2 = . . . = I6,6,6,6,

γ1 :=I2,1,2,1 = I3,2,3,2 = . . . = I6,5,6,5 = I1,6,1,6

=I1,2,1,2 = I2,3,2,3 = . . . = I5,6,5,6 = I6,1,6,1,

γ2 :=I3,1,3,1 = I4,2,4,2 = I5,3,5,3 = I6,4,6,4 = I1,5,1,5 = I2,6,2,6

=I1,3,1,3 = I2,4,2,4 = I3,5,3,5 = I4,6,4,6 = I5,1,5,1 = I6,2,6,2,

γ3 :=I4,1,4,1 = I5,2,5,2 = I6,3,6,3 = I1,4,1,4 = I2,5,2,5 = I3,6,3,6,

γ4 :=I2,5,1,4 = I3,6,2,5 = I1,4,3,6 = I2,5,4,1 = I3,6,5,2 = I1,4,6,3.

Using (3.24) and (3.23), we get

γ4 = I3,6,4,1 = I3,6,1,4 = I1,4,5,2 = I1,4,2,5 = I2,5,6,3 = I2,5,3,6.

We have γ0, γ1, γ2, γ3 ∈ R as explained below (3.24).
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Finally, because k(1) = (k
(4)
1 ,−k

(4)
2 )T , k(2) = (k

(3)
1 ,−k

(3)
2 )T , and k(5) = (k

(6)
1 ,−k

(6)
2 )T with k(1), k(2) and

k(5) lying in the interior of B away from the line k2 = 0, the symmetry (3.26) applies and we get

I2,5,4,1 = I3,6,1,4.

Therefore

I2,5,4,1 = I3,6,1,4 = I3,6,4,1 = I4,1,5,2 = I2,5,4,1 (3.30)

so that also γ4 ∈ R. The second, third and fourth equalities in (3.30) hold due to (3.23), (3.25), and (3.24).

As a result the nonlinear terms in (3.29) can be simplified to

N1 := 2
(γ0
2
|A1|

2 + γ1(|A2|
2 + |A6|

2) + γ2(|A3|
2 + |A5|

2) + γ3|A4|
2
)
A1 + 2γ4(A2A5 +A3A6)A4,

N2 := 2
(γ0
2
|A2|

2 + γ1(|A1|
2 + |A3|

2) + γ2(|A4|
2 + |A6|

2) + γ3|A5|
2
)
A2 + 2γ4(A1A4 +A3A6)A5,

N3 := 2
(γ0
2
|A3|

2 + γ1(|A2|
2 + |A4|

2) + γ2(|A1|
2 + |A5|

2) + γ3|A6|
2
)
A3 + 2γ4(A1A4 +A2A5)A6,

N4 := 2
(γ0
2
|A4|

2 + γ1(|A3|
2 + |A5|

2) + γ2(|A2|
2 + |A6|

2) + γ3|A1|
2
)
A4 + 2γ4(A2A5 +A3A6)A1,

N5 := 2
(γ0
2
|A5|

2 + γ1(|A4|
2 + |A6|

2) + γ2(|A1|
2 + |A3|

2) + γ3|A2|
2
)
A5 + 2γ4(A1A4 +A3A6)A2,

N6 := 2
(γ0
2
|A6|

2 + γ1(|A1|
2 + |A5|

2) + γ2(|A2|
2 + |A4|

2) + γ3|A3|
2
)
A6 + 2γ4(A1A4 +A2A5)A3

with γ0, γ1, γ2, γ3, γ4 ∈ R. A system of six CMEs with the same structure as above arises also at the edge s4.

In Section 4.2 a numerical example of gap soliton asymptotics near s5 is given. The numerical values of

the coefficients in the CMEs (3.29) for s5 are

ω∗ = s5 ≈ 3.882 : α1 ≈ 0.0189, α2 ≈ 0.146, β1 ≈ 0.189, β2 ≈ 0.0614, µ ≈ −0.0736,

γ0 ≈ 1.282, γ1 ≈ 0.789, γ2 ≈ 0.757, γ3 ≈ 1.193, γ4 ≈ 0.714.

As s5 is an upper edge edge, the coefficients γj , j ∈ {0, . . . , 4}, were computed using χ
(3)
ci = 1 in the annulus

regions.

3.4.2. Additional CME Examples.

Example of Coupled Mode Equations for N = 2.

An example of a situation for N = 2 is when the locations of the extrema are k(1) = K, k(2) = rπ/3(K).

With b(1), b(2) as in Section 2.3 we then have k(1) = 4π
3a0

( 10 ) and k
(2) = 2π

3a0

(
1√
3

)
. The corresponding integer

shift sets are M1 = {( 00 ) , (
0
1 ) , (

1
1 )}, M2 = {( 00 ) , (

1
0 ) , (

1
1 )}. Due to the rotation symmetry of the bands and

their labeling according to size, we necessarily have n1 = n2. We define n∗ := n1 = n2. From (2.24) we have

∂2k1,k2
ωn∗

(k(1)) = 0

and using (2.15) with α = π/3, we obtain

∂2k1
ωn∗

(k(2)) = 1
4

(
∂2k1

ωn∗
(k(1)) + 3∂2k2

ωn∗
(k(1))

)
,

∂2k2
ωn∗

(k(2)) = 1
4

(
3∂2k1

ωn∗
(k(1)) + ∂2k2

ωn∗
(k(1))

)
,

∂2k1,k2
ωn∗

(k(2)) =
√
3
4

(
∂2k1

ωn∗
(k(1))− ∂2k2

ωn∗
(k(1))

)
.

After having numerically checked the sets Aα,β,γ,j for all combinations of α, β, γ, j to determine the nonlinear

terms, we thus arrive at the CMEs
(
Ω + α1∂

2
y1

+ β1∂
2
y2

)
A1 +

(
γ0|A1|

2 + 2γ1|A2|
2
)
A1 = 0,

(
Ω+ α2∂

2
y1

+ β2∂
2
y2

+ µ∂2y1,y2

)
A2 +

(
γ0|A2|

2 + 2γ1|A1|
2
)
A2 = 0,

(3.31)
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where α1 = 1
2∂

2
k1
ωn∗

(k(1)), β1 = 1
2∂

2
k2
ωn∗

(k(1)), and α2 = 1
4 (α1 + 3β1), β2 = 1

4 (3α1 + β1), µ =
√
3
2 (α1 − β1),

γ0 := I1,1,1,1 = I2,2,2,2 using symmetry (3.25) with ν = π/3, and γ1 := I1,2,1,2 = I1,2,2,1 using (3.23).

Example of Coupled Mode Equations for N = 3..

Let us assume that a gap edge for N = 3 has extremal points at k(1) = M , k(2) = rπ/3(M), k(3) =

r2π/3(M). With the choice of the reciprocal lattice vectors b(1), b(2) as in Section 2.3 we have k(1) = 1
2b

(2),

k(2) = 1
2

(
b(1) + b(2)

)
, and k(3) = 1

2b
(1) with the corresponding integer shift sets M1 = {( 00 ) , (

0
1 )}, M2 =

{( 00 ) , (
1
1 )}, and M3 = {( 00 ) , (

1
0 )}. Similarly to Section 3.4.2 we have n1 = n2 = n3 =: n∗. Using (2.15) and

(2.25)–(2.27), we get

∂2k1
ωn∗

(k(1)) = ∂2k1
ωn∗

(k(2)) = ∂2k1
ωn∗

(k(3)) = ∂2k2
ωn∗

(k(1)) = ∂2k2
ωn∗

(k(2)) = ∂2k2
ωn∗

(k(3)) =: α,

∂2k1,k2
ωn∗

(k(1)) = ∂2k1,k2
ωn∗

(k(2)) = ∂2k1,k2
ωn∗

(k(3)) = 0.

The sets Aα,β,γ,j are, once again, determined using the Matlab routine and the results are for illustration

j term
(α

β
γ

)

k(α) + k(β) (n, o, q)T from Aα,β,γ,j coefficient of

in Nj −k(γ) − k(j) m = Mj(:, 1) m = Mj(:, 2) the term

1 |A1|2A1

(

1
1
1

)

(

0
0

)

(

0 0
0 0
0 0

)

,
(

0 0
0 1
0 1

) (

0 1
0 0
0 0

)

,
(

0 1
0 1
0 1

)

I1,1,1,1

|A2|2A1

(

1
2
2

)

(

0
0

)

(

0 0
0 0
0 0

)

,
(

0 0
1 1
1 1

) (

0 1
0 0
0 0

)

,
(

0 1
1 1
1 1

)

2I1,2,2,1
(

2
1
2

)

(

0
0

)

(

0 0
0 0
0 0

)

,
(

0 0
1 1
1 1

)

,
(

1 0
0 1
1 1

)

,
(

1 0
−1 0
0 0

) (

0 1
0 0
0 0

)

,
(

0 1
1 1
1 1

)

,
(

1 1
0 1
1 1

)

,
(

1 1
−1 0
0 0

)

|A3|2A1

(

1
3
3

)

(

0
0

)

(

0 0
0 0
0 0

)

,
(

0 0
1 0
1 0

) (

0 1
0 0
0 0

)

,
(

0 1
1 0
1 0

)

2I1,3,3,1
(

3
1
3

)

(

0
0

)

(

0 −1
0 1
0 0

)

,
(

0 −1
1 1
1 0

)

,
(

1 0
0 0
1 0

)

,
(

1 0
−1 0
0 0

) (

0 0
0 1
0 0

)

,
(

0 0
1 1
1 0

)

,
(

1 1
0 0
1 0

)

,
(

1 1
−1 0
0 0

)

A2
2A1

(

2
2
1

)

b(1)
(

0 0
1 0
0 0

)

,
(

0 0
1 1
0 1

)

,
(

1 0
0 0
0 0

)

,
(

1 0
0 1
0 1

) (

0 1
1 0
0 0

)

,
(

0 1
1 1
0 1

)

,
(

1 1
0 0
0 0

)

,
(

1 1
0 1
0 1

)

I2,2,1,1

A2
3A1

(

3
3
1

)

b(1) − b(2)
(

0 −1
1 0
0 0

)

,
(

0 −1
1 1
0 1

)

,
(

1 0
0 0
0 1

)

,
(

1 0
0 −1
0 0

) (

0 0
1 0
0 0

)

,
(

0 0
1 1
0 1

)

,
(

1 1
0 0
0 1

)

,
(

1 1
0 −1
0 0

)

I3,3,1,1

2 A2
1A2

(

1
1
2

)

−b(1)
(

0 0
0 1
1 1

)

,
(

0 0
−1 0
0 0

)

,
(

−1 0
0 0
0 0

)

,
(

−1 0
1 1
1 1

) (

0 1
0 0
0 0

)

,
(

0 1
1 1
1 1

)

,
(

1 1
0 1
1 1

)

,
(

1 1
−1 0
0 0

)

I1,1,2,2

|A1|2A2

(

1
2
1

)

(

0
0

)

(

0 0
0 0
0 0

)

,
(

0 0
0 1
0 1

)

,
(

−1 0
1 0
0 0

)

,
(

−1 0
1 1
0 1

) (

0 1
1 0
0 0

)

,
(

0 1
1 1
0 1

)

,
(

1 1
0 0
0 0

)

,
(

1 1
0 1
0 1

)

2I1,2,1,2
(

2
1
1

)

(

0
0

)

(

0 0
0 0
0 0

)

,
(

0 0
0 1
0 1

) (

1 1
0 0
0 0

)

,
(

1 1
0 1
0 1

)

|A2|2A2

(

2
2
2

)

(

0
0

)

(

0 0
0 0
0 0

)

,
(

0 0
1 1
1 1

) (

1 1
0 0
0 0

)

,
(

1 1
1 1
1 1

)

I2,2,2,2

|A3|2A2

(

2
3
3

)

(

0
0

)

(

0 0
0 0
0 0

)

,
(

0 0
1 0
1 0

) (

1 1
0 0
0 0

)

,
(

1 1
1 0
1 0

)

2I2,3,3,2
(

3
2
3

)

(

0
0

)

(

0 0
0 0
0 0

)

,
(

0 0
1 0
1 0

)

,
(

0 −1
0 1
0 0

)

,
(

0 −1
1 1
1 0

) (

1 0
0 1
0 0

)

,
(

1 0
1 1
1 0

)

,
(

1 1
0 0
0 0

)

,
(

1 1
1 0
1 0

)

A2
3A2

(

3
3
2

)

−b(2)
(

0 0
1 0
1 1

)

,
(

0 0
0 −1
0 0

)

,
(

0 −1
0 0
0 0

)

,
(

0 −1
1 1
1 1

) (

1 0
0 0
0 0

)

,
(

1 0
1 1
1 1

)

,
(

1 1
1 0
1 1

)

,
(

1 1
0 −1
0 0

)

I3,3,2,2

3 A2
1A3

(

1
1
3

)

b(2) − b(1)
(

0 1
0 0
1 0

)

,
(

0 1
−1 0
0 0

)

,
(

−1 0
0 1
0 0

)

,
(

−1 0
1 1
1 0

) (

0 0
0 1
0 0

)

,
(

0 0
1 1
1 0

)

,
(

1 1
0 0
1 0

)

,
(

1 1
−1 0
0 0

)

I1,1,3,3

|A1|2A3

(

1
3
1

)

(

0
0

)

(

0 1
0 0
0 1

)

,
(

0 1
0 −1
0 0

)

,
(

−1 0
1 0
0 0

)

,
(

−1 0
1 1
0 1

) (

0 0
1 0
0 0

)

,
(

0 0
1 1
0 1

)

,
(

1 1
0 0
0 1

)

,
(

1 1
0 −1
0 0

)

2I1,3,1,3
(

3
1
1

)

(

0
0

)

(

0 0
0 0
0 0

)

,
(

0 0
0 1
0 1

) (

1 0
0 0
0 0

)

,
(

1 0
0 1
0 1

)

A2
2A3

(

2
2
3

)

b(2)
(

0 0
0 1
0 0

)

,
(

0 0
1 1
1 0

)

,
(

0 1
0 0
0 0

)

,
(

0 1
1 0
1 0

) (

1 0
0 1
0 0

)

,
(

1 0
1 1
1 0

)

,
(

1 1
0 0
0 0

)

,
(

1 1
1 0
1 0

)

I2,2,3,3

|A2|2A3

(

2
3
2

)

(

0
0

)

(

0 0
0 0
0 0

)

,
(

0 0
1 1
1 1

)

,
(

0 1
1 0
1 1

)

,
(

0 1
0 −1
0 0

) (

1 0
0 0
0 0

)

,
(

1 0
1 1
1 1

)

,
(

1 1
1 0
1 1

)

,
(

1 1
0 −1
0 0

)

2I2,3,2,3
(

3
2
2

)

(

0
0

)

(

0 0
0 0
0 0

)

,
(

0 0
1 1
1 1

) (

1 0
0 0
0 0

)

,
(

1 0
1 1
1 1

)

|A3|2A3

(

3
3
3

)

(

0
0

)

(

0 0
0 0
0 0

)

,
(

0 0
1 0
1 0

) (

1 0
0 0
0 0

)

,
(

1 0
1 0
1 0

)

I3,3,3,3

Table 3.1: Calculation of the nonlinear terms for Section 3.4.2.

listed in Table 3.1. The resulting CMEs are

(
Ω + α(∂2y1

+ ∂2y2
)
)
A1 +

(
γ0|A1|

2 + 2γ1(|A2|
2 + |A3|

2)
)
A1 + γ2(A

2
2 +A2

3)A1 = 0,
(
Ω + α(∂2y1

+ ∂2y2
)
)
A2 +

(
γ0|A2|

2 + 2γ1(|A1|
2 + |A3|

2)
)
A2 + γ2(A

2
1 +A2

3)A2 = 0,
(
Ω + α(∂2y1

+ ∂2y2
)
)
A3 +

(
γ0|A3|

2 + 2γ1(|A1|
2 + |A2|

2)
)
A3 + γ2(A

2
1 +A2

2)A3 = 0,

(3.32)
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where the following symmetries have been used: γ0 := I1,1,1,1 = I2,2,2,2 = I3,3,3,3 due to (3.25) with ν = π/3;

γ1 := I1,2,2,1 = I2,3,3,2 = I1,2,1,2 = I2,3,2,3 due to (3.25) with ν = π/3, and (3.23). Moreover, γ1 = I2,1,1,2 =

I1,3,3,1 = I3,1,1,3, where the second equality follows from (3.25) with ν = π/3 and the facts that k(1) =

rπ/3(k
(3) − b(1)) and un(k

(3) − b(1);x) = un(k
(3);x) for all n ∈ N. Finally γ2 := I2,2,1,1 = I3,3,2,2 = I1,1,2,2 =

I2,2,3,3 due to (3.25) and (3.24), and γ2 = I2,2,1,1 = I1,1,3,3 using (3.25) together with k(1) = rπ/3(k
(3) − b(1))

and un(k
(3) − b(1);x) = un(k

(3);x) for all n ∈ N. All the nonlinear coefficients are real: γ0, γ1 ∈ R due to

(3.24) and γ2 ∈ R since γ2 = I2,2,1,1 = I1,1,2,2 by (3.24) and at the same time γ2 = I2,2,1,1 = I1,1,2,2 by (3.26),

where we are using the facts that k(2) = (k
(1)
1 ,−k

(1)
2 )T and that k(2)

.
= k(1) does not hold.

4. Numerical Examples of Gap Soliton Approximations. We compute here numerically localized

solutions of the CMEs for the examples s2, s5 in Section 3.4.1. Then, using the leading order term in (3.1), we

generate and plot an approximation of a gap soliton of the nonlinear Maxwell problem (1.9). In the evaluation

of (3.1) we position the photonic crystal so that the center of one of the annuli lies at the origin x = 0.

4.1. Gap Soliton near the Edge s2. Figure 4.1 plots in (a) the unique positive localized solution, the

so called Townes soliton, of (3.28) for the case ω∗ = s2 and in (b) the intensity I = |E1|2 + |E2|2 + |E3|2

of the leading order term in (3.1). In Figure 4.2 we show the absolute value of the individual components

E1, E2, E3. As the Townes soliton is radially symmetric, it was computed using the shooting method on (3.28)

in polar coordinates. The fourth to fifth order explicit Runge–Kutta method ODE45 of Matlab was used in

the shooting method.

Fig. 4.1: (a) CME solution, (b) intensity of the gap soliton approximation for the case ω∗ = s2.

See Section 4.1.

4.2. Gap Soliton near the Edge s5. Here we restrict to solutions of (3.29) with the symmetry

A1 = A4, A2 = A5, A3 = A6,

which reduces the problem to a system of three equations for A1, A2, A3. To find a localized solution, we

first replace µ by 0, and α1, α2, β1, β2 by the average of these four numbers. Also the coefficients in each Nj ,

j ∈ {1, 2, 3}, are replaced by their average. For this modified system the Townes soliton with A1 = A2 = A3

is computed via the shooting method as in Section 4.1. Then a numerical homotopy in the coefficients is used

to get a solution of (3.29). The homotopy is applied to a fourth order centered finite difference discretization

of (3.29). Our homotopy always results in A1 = 0 so that in the end we produce a solution of (3.29) with

A1 = A4 = 0 and A2 = A5 6= 0, A3 = A6 6= 0. The two components A2, A3 are plotted in Figure 4.3 together
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Fig. 4.2: Absolute value of the components E1, E2, E3 of the gap soliton approximation for

ω∗ = s2. See Section 4.1.

with the intensity of the corresponding leading order term in (3.1). In Figure 4.4 we plot the individual

components of E in absolute value.

Fig. 4.3: (a) CME solutions A2, A3, (b) intensity of the gap soliton approximation for the case

ω∗ = s5. See Section 4.2.

5. Conclusions. We have considered monochromatic out-of-plane gap solitons in Kerr nonlinear 2D

photonic crystals as described by the full vector Maxwell system. Using a model of the nonlinear polariza-

tion which does not produce higher harmonics, we arrive at a cubically nonlinear curl-curl problem for the

fundamental harmonic. For gap solitons with frequencies in spectral gaps but in an asymptotic vicinity of a

gap edge we assume a standard slowly varying envelope approximation based on the gap edge Bloch waves

modulated by slowly varying envelopes of small amplitude. These envelopes are then shown to satisfy a system

of coupled mode equations (CMEs) of the same structure as in the case of gap solitons of the 2D periodic

nonlinear Schrödinger equation [13, 14]. In particular the system generally involves mixed derivatives. Being

a constant coefficient system depending only on the slow variables, the CMEs is a simple effective model for

the near edge gap solitons. Similarly to [13] the derivation of CMEs needs to be carried out in Bloch variables

due to the possible quasi-periodicity of gap edge Bloch waves. Symmetries among the coefficients of the CMEs
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Fig. 4.4: Absolute value of the components E1, E2, E3 of the gap soliton approximation for

ω∗ = s2. See Section 4.2.

are determined using symmetries of the band structure and among the Bloch waves.

We provide an example of a photonic crystal with a hexagonal periodicity lattice and a circular material

structure in the periodicity cell. For this crystal three gaps are numerically observed (for ω > 0). CMEs are

then derived for several gap edges including a case where a system of six CMEs arises. Numerical computations

of localized solutions of these CMEs and of the corresponding gap soliton approximations are then performed.

For the CME system with six components only solutions with four nonzero components were numerically

constructed and it is unclear whether a solution with all six nonzero components exists.

A rigorous justification of the CMEs, which states that for a certain class of CME solutions the full Maxwell

system has gap soliton solutions which are indeed approximated by the slowly varying envelope asymptotic

expansion, is expected to hold by similar arguments to those in [12, 13, 14]. It will be the subject of future

work.
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