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MULTIDIMENSIONAL STOCHASTIC BURGERS EQUATION

ZDZISŁAW BRZEŹNIAK, BEN GOLDYS AND MISHA NEKLYUDOV

ABSTRACT. We consider multidimensional stochastic Burgers equation on the torusTd and the whole
spaceRd . In both cases we show that for positive viscosityν > 0 there exists a unique strong global
solution inLp for p > d. In the case of torus we also establish a uniform inν a priori estimate and
consider a limitν ց 0 for potential solutions. In the case ofRd uniform with respect toν a priori
estimate established if a Beale-Kato-Majda type conditionis satisfied.

1. INTRODUCTION

The aim of this paper is to study the existence and the uniqueness of solutions to the multidimen-
sional stochastic Burgers equation of the following form:

(1.1)

{

∂u
∂t = ν∆u+ u · ∇u+ f + ξ, t > 0, x ∈ O,
u(0, x) = u0(x), x ∈ O,

where eitherO = R
d or O = T

d. In the equation abovef is a deterministic force andξ is a
multidimensional noise, white in time and correlated in space. We do not assume thatu0, f andξ are
of gradient form. The parameterν > 0 is known as viscosity. In this paper we will also study the
limit of solutions to (1.1) whenν → 0.

Equation (1.1) has been proposed by Burgers [10] as a toy model for turbulence, see also Weinan
[41]. Later, numerous applications were found in Astrophysicsand Statistical Physics. For an inter-
esting review of applications and problems related to equation (1.1), see [3] and references therein.
The Burgers equation with data of non-potential type arisesin many areas of Physics, including gas
dynamics and the theory of inelastic granular media, see forexample [4]. The theory of equation (1.1)
in the non-potential case is largely a terra incognita, see the review [3], where a variety of open prob-
lems can be found. This paper and the preceding work [23] by the second and third named authours
are the first steps towards answering some of these questions.

One dimensional stochastic Burgers equation has been fairly well studied. Da Prato, Debussche,
Temam [16], see also Bertini, Cancrini and Jona-Lasinio [5], showed the existence of a unique global
solution for one dimensional Burgers equation with additive noise. The existence and uniqueness
results have been extended to the case of multiplicative noise by Da Prato, Gatarek [17] and Gyöngy,
Nualart [25].

Multidimensional Burgers equation has been studied much less comprehensively. Kiselev, La-
dyzhenskaya [31] proved the existence and uniqueness of a global solution tothe deterministic Burg-
ers equation a bounded domainO in the class of functionsL∞(0, T ;L∞(O)) ∩ L2(0, T ;H1,2

0 (O)).
The main idea of their proof is to apply maximum principle to deduce a priori estimates similar to the
a priori estimates for the Navier-Stokes equation. Ton [11] established convergence of solutions on
small time interval when we take the limitν → 0 and when the initial condition is zero.
The assumption that the initial condition and force have gradient form considerably simplifies analysis
of the Burgers equation. It is well known that in this case onecan apply the Hopf-Cole transformation
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(([28], [13])) to reduce the multidimensional Burgers equation eitherto the heat equation or to the
Hamilton-Jacobi equation, see for example [19]. The number of works on the Hopf-Cole transfor-
mation is huge and we will not try to list them all here. We onlymention Dermoune [18], where
the Hopf-Cole transformation is used to show the existence of solution to the stochastic multidimen-
sional Burgers equation with additive noise. Khanin et al [24] proved the existence of the so called
quasi stationary solution by the Hopf-Cole transformationand Stochastic Lax formula, thus partially
extending to many dimensions an important paper [39] by Sinai. This approach however has certain
intrinsic problems. In particular, it seems difficult to findan a priori estimate for the solution without
additional assumptions on the initial condition as in Dermoune [18] p. 303, Theorem 4.2. Hence, it
is difficult to characterize functional spaces in which solution lies or to characterize quasi stationary
solution, see Definition 1 in [24].

In this paper we consider multidimensional Burgers equation (1.1) in Lp(O,Rd), p > d, in the
domainO being either a torusTd or the full spaceRd. In both cases we prove, in Theorems 4.1 and
4.3 respectively, the existence and uniqueness of solutions for every initial conditionu0 ∈ Lp(O,Rd)
and establish a priori estimates. In particular, Theorem 4.3 holds in the caseO = R

d and ξ = 0
thus improving our previous results from [23]. In the case ofO = R

d however, the a priori estimates
are nonuniform with respect toν. Theorems 4.1 and 4.3 extend all aforementioned results on the
existence and uniqueness of solutions to (1.1) to the stochastic case.
In Theorem 4.6 we provide a general sufficient condition under which uniform with respect toν
estimates can be derived onRd as well. It is interesting to note that this condition can be viewed
as a modification and an extension to the stochastic case of the famous Beale-Kato-Majda condition
assuring the existence of global solutions to the deterministic Navier-Stokes equation.
Finally, we apply our results to the gradient case. It is easyto see that in the gradient case the Beale-
Kato-Majda condition holds and therefore the existence anduniqueness of global solutions follows
from our general results. Morevoer, we obtain the estimatesuniform in ν on the torus and on the
whole space and as a consequence we show that there exists a vanishing viscosity limit for equation
(1.1) for everyu0 ∈ Lp

(

O,Rd
)

.
In our proofs we extend the approach of [23], where the deterministic caseξ = 0 was studied.

We start with a proof of the local existence and uniqueness ofmild solutions inLp(O,Rd), p ≥ d,
following the argument of Weissler [33]. Then we find a priori estimates using the Maximum Principle
and then show that the local solution is in fact global. We note here that this method was applied earlier
to the deterministic Burgers equation by Kiselev, Ladyzhenskaya [31].

AcknowledgementWe would like to thank Y. Sinai for pointing out reference [31].

2. FORMULATION OF THE PROBLEM AND SOME AUXILIARY FACTS

Let O be eitherTd or Rd. In both cases we will use the same notation∆ for the generator of the
heat semigroup(St) in L

p(O) := Lp
(

O,Rd
)

for p ∈ (1,∞). Let us recall that

domLp(O)(∆) = H2,p
(

R
d ,Rd

)

if O = R
d

and
domLp(O)(∆) = H2,p

per

(

T
d,Rd

)

if O = T
d.

We will use the standard notationHn,p(O) = Hn,p
(

O,Rd
)

for the Sobolev spaces ofRd -valued
functions with the norm

|f |n,p = |(I −△)
n
2 f |Lp(O).

The dual space space ofH
n,p(O) will be denoted byH−n,q(O) with q = p

p−1 .
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Let (Ω,F , (Ft)t≥0,P) be a probability space with the filtration satisfying the usual conditions. We
will denote byMp([0, T ],Hn,p(O)) the space ofHn,p(O)-valued progressively measurable processes
endowed with the norm

‖u‖T,n,p =



E

T
∫

0

|u(s, ·)|p
Hn,p(O) ds





1
p

.

Let (Wt)t≥0 be a standard cylindrical Wiener process on separable Hilbert spaceH defined on
(Ω,F , (Ft)t≥0,P). Let us recall that forp ≥ 2 the spaceLp(O) is anM -type 2 Banach space
and therefore the stochastic integration theory is developed [6] can be applied in this space. In order
to give a meaning to equation (1.1) we will consider first its linearized version

(2.1)

{

∂z
∂t = ν∆z + f + ξ, t > 0, x ∈ O,
z(0, x) = 0, x ∈ O.

that will be understood as a stochastic evolution equation in the spaceLp(O):

(2.2) dz = (ν△z + f) dt+ g dWt, z(0) = 0.

To define solution to equation (2.2), let us recall that for a Banach spaceX and separable Hilbert space
H, we denote byγ(H,X) the Banach space ofγ–radonifying operators fromH toX (see definition
3.7 of [29]). If g ∈ Mp ([0, T ]; γ (H,Lp(O))) andf ∈ Mp

(

[0, T ];H−1,p(O)
)

then solution to (2.2)
is given by the formula

z(t) =

∫ t

0
Sν
t−sf(s)ds+

∫ t

0
Sν
t−sg(s)dW (s).

The regularity properties of Ornstein-Uhlenbeck process were studied in a vast number of articles,
see for instance [6] and references therein. The following theorem has been proved by Brzezniak
[6] (Corollary 3.5) and Krylov [32] (Theorem 4.10 (i) and Theorem 7.2(i), chapter 5) for the case of
whole space. The case of torus can be proved similarly.

Theorem 2.1. Assumen ∈ Z and f ∈ Mp([0, T ],Hn−1,p(O)), g ∈ Mp([0, T ], γ(H,Hn,p(O))),

p > 2, 1
2 > β > α > 1

p . Then equation(2.2) has unique solutionz ∈ C
α− 1

p ([0, T ],Hn+1−2β,p(O))
a.s..

Forφ ∈ H
1,p(O) we define a function

F (v) = (v∇)v.

Definition 2.2. Assume thatu0 ∈ L
p(O), f ∈Mp([0, T ],H−1,p(O)), g ∈Mp([0, T ], γ(H,Lp(O))).

A progressively measurableLp(O)-valued continuous processu defined on[0, T ] is said to be a mild
solution of the stochastic Burgers equation with the initial conditionu0 if F (u(·)) ∈ L1(0, T ;Lp(O))
a.s.,u = v + z wherez : Ω → L∞(0, T ;Lp(O)) satisfies equation(2.2) andv satisfies equality

(2.3) v(t) = Sν
t u0 +

t
∫

0

Sν
t−s(F (v(s) + z(s))) ds, t ∈ [0, T ].

Remark2.3. We believe it is possible to define a weak solution to Burgers equation as in definition
8.5, p. 184 of [9]. Then it should be possible to prove that sufficiently regular processu is a weak
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solution iff it is a mild solution, i.e. solves

(2.4) u(t) = Sν
t u0 +

t
∫

0

Sν
t−s(F (u(s))) ds + z(s), t ∈ [0, T ],

wherez satisfies equation (2.2). In our paper we prove the existence and uniqueness of the solution
of (2.4). This is done via a substitution

(2.5) u = v + z.

For a process of the form (2.5) we can prove that it is a mild solution iff it is a strong solution according
to the following definition.

Definition 2.4. Assume thatu0, f , g satisfy the same assumptions as in the definition2.2. We call
progressively measurable processu : Ω → L∞(0, T ;Lp(O)) a strong solution of stochastic Burgers
equation with the initial conditionu0 iff F (u) ∈ L1(0, T ;Lp(O)) a.s. andu = v + z wherez : Ω →
L∞(0, T ;Lp(O)) satisfies equation(2.2) andv ∈ C1((0, T ];Lp(O)) satisfies equality

∂v

∂t
(t) = ν△v(t) + F (v(t) + z(t)), t ∈ [0, T ](2.6)

v(0) = u0.(2.7)

Remark2.5. It is possible to define in a similar fashion strong and mild solution of stochastic Burgers
equation without referring to the Ornstein-Uhlenbeck processz. However, the definition given above
has certain merit since it allows to transfer all noise effects to the processz and consider PDE with
random coefficients instead of SPDE.

3. THE EXISTENCE OF A LOCAL SOLUTION TO THESTOCHASTIC BURGERS EQUATION

Theorem2.1allow us to work pathwise i.e. we assume that some version ofz of specified regularity
is fixed.

Local existence of solution of Burgers equation inLp(O) can be shown in the same way as for
Navier-Stokes equation (see [22], [26], [30], [33], [34] and others). Here we only state main points of
the proof following the work of Weissler [33].

We will use following version of abstract theorem proved in [33], p. 222, Theorem 2, see also [26]
and [30].

Theorem 3.1. LetW ,X, Y , Z be Banach spaces continuously embedded in some topologicalvector
spaceX . Rt = etA, t ≥ 0 beC0-semigroup on X, which satisfies the following additional conditions

(a1) For eacht > 0, Rt extends to a bounded mapW → X. For somea > 0 there are positive
constantsC andT such that

(3.1) |Rth|X ≤ Ct−a|h|W , h ∈W, t ∈ (0, T ].

(a2) For eacht > 0, Rt is a bounded mapX → Y . For someb > 0 there are positive constantsC
andT such that

(3.2) |Rth|Y ≤ Ct−b|h|X , h ∈ X, t ∈ (0, T ].

Furthermore, function|Rth|Y ∈ C((0, T ]), h ∈ X and

(3.3) lim
t→0+

tb|Rth|Y = 0,∀h ∈ X.
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(a3) For eacht > 0,Rt is a bounded mapX → Z. For somec > 0 there are positive constantsC and
T such that

(3.4) |Rth|Z ≤ Ct−c|h|X , h ∈ X, t ∈ (0, T ].

Furthermore, function|Rth|Z ∈ C((0, T ]), h ∈ X and

(3.5) lim
t→0+

tc|Rth|Z = 0,∀h ∈ X.

Let alsoG : Y × Z → W be a bounded bilinear map,L ∈ L∞(0, T ;L(Y ∩ Z,W )), and let
G(u) = G(u, u), u ∈ Y ∩ Z, f ∈ L∞(0, T ;W ). Assume also thata+ b+ c ≤ 1.

Then for eachu0 ∈ X there isT > 0 and unique functionu : [0, T ] → X such that:

(a) u ∈ C([0, T ],X), u(0) = u0.
(b) u ∈ C((0, T ], Y ), lim

t→0+
tb|u(t)|Y = 0.

(c) u ∈ C((0, T ], Z), lim
t→0+

tc|u(t)|Z = 0.

(d)

u(t) = Rtu0 +

t
∫

0

Rt−τ (G(u(τ)) + L(u(τ)) + f(τ))dτ, t ∈ [0, T ]

Remark3.2. Weissler [33] considers only the case ofL = f = 0. The general case follows similarly
(see also [23]).

In the next proposition we will summarize properties of the heat semigroup onO.

Proposition 3.3. Assume that eitherO = T
d or O = R

d and△ is a corresponding periodic (respec-
tively free) Laplacian with domain of definitiondomLp(O)(∆). Then

(i)

|∇met△h|Lq(O) ≤ ct−
m
2
− d

2r |h|Lp(O), t ∈ (0, T ],(3.6)

1

r
=

1

p
−

1

q
, 1 < p ≤ q <∞, h ∈ L

p(O).

Furthermore,

(3.7) lim
t→0+

t
m
2
+ d

2r |∇met△h|Lq(O) = 0, h ∈ L
p(O).

(ii) Let p ∈ (1,∞). Then for anyt > 0, et△ : Lp(O) → H
1,p(O) is a bounded map. Moreover, for

eachT > 0 there existsC = C(p, T ), such that

(3.8) |et△h|H1,p(O) ≤ Ct−
1
2 |h|Lp(O), t ∈ (0, T ], h ∈ L

p(O).

Furthermore,

(3.9) lim
t→0+

t
1
2 |et△h|H1,p(O) = 0, h ∈ L

p(O).

Proof. See for example books by Lunardi [37] or by Quittner, Souplet [38]. �

Now we can formulate the following results about the existence and uniqueness of a local mild
solution of the auxiliary deterministic problem.

Theorem 3.4. Assume thatp ≥ d. Then for allu0 ∈ L
p(O), z ∈ L∞(0, T ;L2p(O)∩H

1,p(O)), there
existsT0 = T0(ν, |u0|Lp(O), |z|L∞(0,T ;L2p(O)∩H1,p(O))) > 0 such that there exists unique mild solution
u ∈ L∞(0, T0;L

p(O)) of equation(2.3). Furthermore
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(a) u : (0, T0] → L
2p(O) is continuous andlim

t→0
t

d
4p |u(t)|L2p(O) = 0.

(b) u : (0, T0] → H
1,p(O) is continuous andlim

t→0
t
1
2 |u(t)|H1,p(O) = 0.

Proof of Theorem3.4. We apply Theorem3.1 to equation (2.3) with X = L
p(O), Y = L

2p(O),

Z = H
1,p(O), W = L

2p
3 (O), R· = e·△, L = F (z, ·) + F (·, z), f = F (z, z). It follows from

the Hölder inequality thatF : L2p(O) × H
1,p(O) → L

2p
3 (O) is a bounded bilinear map. Hence

the functionf satisfies the assumption of Theorem (3.1), i.e. f ∈ L∞(0, T ;W ). Condition (3.1) is
satisfied witha = d

4p by estimate (3.6). Conditions (3.2), (3.3) are satisfied withb = d
4p by (3.6) and

(3.7). Conditions (3.4), (3.5) are satisfied withc = 1
2 by (3.8) and (3.9). �

Corollary 3.5. Let p ≥ d, θ ∈ (0, 1), u0 ∈ L
p(O), z ∈ L∞(0, T ;H1,2p(O) ∩ H

1,p(O)), z ∈
Cθ((0, T ],H1,2p(O)). Thenv ∈ C1((0, T ];Lp(O)) ∩ C((0, T ];H2,p(O)) ∩ Cθ

loc((0, T ],H
2,p(O)) ∩

C1+θ
loc ((0, T ],Lp(O)) andv is a solution to the system

(3.10) v′ = ν△v − F (v + z).

Proof of Corollary3.5. Let us show that there existT1 such thatv ∈ C((0, T1],H
1,2p(O)) and

lim
t→0

t
1
2 |u(t)|H1,2p(O) = 0. We apply Theorem3.1 with following dataX = Y = L

p(O),

Z = H
1,2p(O),W = L

2p
3 (O). Then it follows from Hölder inequality thatF : Lp(O)×H

1,2p(O) →

L
2p
3 (O) is a bounded bilinear map. Conditions (3.1) is satisfied witha = d

4p by estimate (3.6). Con-
ditions (3.2),(3.3) are satisfied with arbitraryb > 0 because heat semigroup is analytic onL

p(O).
Conditions (3.4),(3.5) are satisfied withc = 1

2 by (3.8) and (3.9).
As a result by part (c) of the Theorem3.1we get existence ofT1 such thatv ∈ C((0, T1],H

1,2p(O))

andlim
t→0

t
1
2 |v(t)|H1,2p(O) = 0. PutT2 = min{T, T1}. Therefore, we have

|F (v + z)|L1(0,T2;Lp(O)) ≤

T2
∫

0

|v(s) + z(s)|L2p(O)|∇(v + z)|L2p(O) ds

≤

T2
∫

0

1

s
d
4p

+ 1
2

sup
s
(s

d
4p |v(s) + z(s)|L2p) sup

s
(s

1
2 |v(s) + z(s)|H1,2p)ds

≤ sup
s
(s

d
4p |v(s) + z(s)|L2p) sup

s
(s

1
2 |v(s) + z(s)|H1,2p)T

1
2
− d

4p

2 <∞.(3.11)

Let us show that for anyε > 0 the functionF (v(·) + z(·)) : [ε, T2] → L
p(O) is Hölder continuous of

order
(

1
2 −

d
4p

)

. Then the result will follow from Theorem 4.3.4, p. 137 in [37] and inequality (3.11).

SinceF : H1,2p(O) → L
p(O) is locally Lipschitz it is easy to notice that it is enough to prove that

v : [ε, T2] → H
1,2p(O) is Hölder continuous for anyε > 0. Since we have the representation

(3.12) v(t) = St−εv(ε) −

t
∫

ε

St−s(F (v(s) + z(s)))ds, t ∈ [ε, T2],
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it is enough to show that each term of this representation is Hölder continuous. Similarly to (3.11) we
have

(3.13) sup
t∈[0,T2]

t
1
2
+ d

4p |F (v(t) + z(t))|Lp ≤ sup
s
s

d
4p |v(s) + z(s)|L2p sup

s
s

1
2 |v(s) + z(s)|H1,2p <∞

and it follows by Proposition 4.2.3 part (i), p.130 of [37] that
t
∫

0

St−sF (v(s) + z(s)) ds ∈

C
1
2
− d

4p (0, T2;L
p). �

Corollary 3.6. Suppose that assumptions of Corollary3.5 are satisfied. Assume also thatz ∈
Cθ((0, T ],Hk+1,2p(O)), for somek ∈ N. Thenv ∈ Cθ((0, T ],Hk+2,p(O))∩C1+θ((0, T ],Hk,p(O)).

Proof. We will show the result fork = 1. General case follows similarly. We fix someε > 0. We
have by the Theorem3.4, part (a) thatv(ε) ∈ L

2p(O). As a result, by means of the corollary3.5we
infer that

(3.14) v ∈ Cθ([ε, T ],H2,2p(O)) ∩ C1+θ([ε, T ],L2p(O)).

Hence,

(3.15) v + z ∈ Cθ([ε, T ],H2,2p(O))

Therefore, we have following estimates for nonlinearity

|F (v + z)|Cθ([ε,T ],Lp(O)) ≤ |v + z|L∞(ε,T ;L2p(O))|∇(v + z)|Cθ([ε,T ],L2p(O))

+ |∇(v + z)|L∞(ε,T ;L2p(O))|v + z|Cθ([ε,T ],L2p(O)) <∞(3.16)

where we have used (3.15). Furthermore,

|∇F (v + z)|Cθ([ε,T ],Lp(O)) ≤ C|∇(v + z)|L∞(ε,T ;L2p(O))|∇(v + z)|Cθ([ε,T ],L2p(O))

+ |v + z|L∞(ε,T ;L2p(O))|△(v + z)|Cθ([ε,T ],L2p(O))

+ |△(v + z)|L∞(ε,T ;L2p(O))|v + z|Cθ([ε,T ],L2p(O)) <∞,(3.17)

where we have used (3.15). Thus, combining inequalities (3.16) and (3.17) we getF (v + z) ∈
Cθ([ε, T ],H1,p(O)), ∀ε > 0. Therefore by a maximal regularity result, see Theorem 4.3.1, p. 134 of
[37], it follows thatv ∈ Cθ([ε, T ],H3,p(O)) ∩C1+θ([ε, T ],H1,p(O)). �

In the next lemma we will show that either local solution defined in previous theorems is global or
it blows up. Let us denote byTmax maximal existence time of solution.

Lemma 3.7. Assume thatu0 ∈ L
p(O), z ∈ L∞([0, T ],H1,2p(O) ∩H

1,p(O)), z ∈ Cθ(0, T ;Lp(O)),
p > d, θ ∈ (0, 1) andTmax < T . Letu ∈ C([0, Tmax);L

p(O)) be a maximal local mild solution to
the Burgers equation(2.3). Then

(3.18) lim sup
tրTmax

|u(t)|2
Lp(O) = ∞.

Question3.8. Can the Lemma3.7 be strengthened to showlim instead oflim sup in the equality
(3.18)?

Question3.9. It would be interesting to extend the Lemma3.7to the case whenp = d.
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Proof of Lemma3.7. We will argue by contradiction. Assume that there exitsR > 0 such that

(3.19) |u(t)|2
Lp(O) ≤ R, t ∈ (0, Tmax].

Let us denote

(3.20) K1 = sup
t∈[0,Tmax)

|u(t)|Lp(O) <∞.

Sincez ∈ L∞([0, T ],H1,p(O)) we have the similar bound forv = u− z:

(3.21) sup
t∈[0,Tmax)

|v(t)|Lp(O) < K ′
1 = K1 + |z|L∞([0,Tmax],H1,p(O)).

Let us fixε ∈ (0, Tmax). We will show that there existC,α > 0 such that

(3.22) |u(t)− u(τ)|Lp(O) ≤ C|t− τ |α, t, τ ∈ [ε, Tmax).

Then it follows from inequalities (3.19) and (3.22) that there existy ∈ L
p(O) such that

(3.23) lim
tրTmax

|u(t)− y|Lp(O) = 0,

and we have a contradiction with the definition ofTmax. Thus, we need to show the inequality (3.22).
We will first show that

(3.24) K2 = sup
t∈[ε,Tmax)

|u(t)|H1,p(O) <∞.

It is enough to show

(3.25) sup
t∈[ε,Tmax)

|∇v(t)|Lp(O) <∞.

Indeed, the inequality (3.24) immediately follows from inequalities (3.21), (3.25) and the regularity
of z. We have

(3.26) ∇v(t) = ∇St−εv(ε) −

t
∫

ε

∇St−s(F (v(s) + z(s))) ds.

Hence, fort ∈ (ε, Tmax) we have

|∇v(t)|Lp(O) ≤ |∇St−εv(ε)|Lp(O) +

t
∫

ε

|∇St−sF (v(s) + z(s))|Lp(O) ds

≤
C|v(ε)|Lp(O)

(t− ε)1/2
+ C

t
∫

ε

|S(t−s)/2F (v(s) + z(s))|Lp(O)

|t− s|1/2
ds

≤
C|u0|Lp(O)

t1/2
+ C

t
∫

ε

|F (v(s) + z(s))|
Lp/2(O)

|t− s|1/2+d/(2p)
ds

≤
C|u0|Lp(O)

t1/2
+ C

t
∫

ε

|v(s) + z(s)|Lp(O)

|t− s|1/2+d/(2p)
|∇v(s) +∇z(s)|Lp(O) ds

≤
C|u0|Lp(O)

t1/2
+ C(K ′

1)
2T + CK ′

1

t
∫

ε

|∇v(s)|Lp(O)

|t− s|1/2+d/(2p)
ds <∞,(3.27)
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where the second and third inequalities follow from the property (3.6) of the heat semigroup, fourth
inequality follows from the Hölder inequality, assumption (3.20) is used in the fifth one and the last
inequality follows from (c), Theorem3.4. Now if 1

2 + d
2p < 1 (i.e. if p > d) we can use a version of

the Gronwall inequality ([27], Lemma 7.1.1, p. 188) to conclude that estimate (3.25) holds. Thus we
get an estimate (3.24).

Now we can turn to the proof of uniform continuity condition (3.22). Sinceu = v + z and
z ∈ Cθ(0, T ;Lp(O)) it is enough to show (3.22) with v instead ofu. We have

(3.28) v(t) − v(τ) = St−τv(τ)− v(τ)−

t
∫

τ

St−s(F (v(s) + z(s))) ds.

Then

|v(t)− v(τ)|Lp(O) ≤ |St−τv(τ) − v(τ)|Lp(O)

+|

t
∫

τ

St−sF (v(s) + z(s)) ds|Lp(O) = (I) + (II).(3.29)

The first term can be estimated as follows, where thesup is taken over the set{φ ∈ C∞
0 (O) :

|φ|Lq(O) = 1},

(I) = sup |〈St−τv(τ)− v(τ), φ〉| = sup |〈v(τ), St−τφ− φ〉|

= sup |〈v(τ), ν

t
∫

τ

△Ss−τφds〉| = ν sup |〈∇v(τ),

t
∫

τ

∇Ss−τφds〉|

≤ ν sup |∇v(τ)|Lp(O)

t
∫

τ

|∇Ss−τφ|Lq(O) ds

≤ ν sup |∇v(τ)|Lp(O)C

t
∫

τ

|φ|Lq(O)

|s− τ |1/2
ds ≤ νCK2|t− τ |1/2.(3.30)

For the second term, by using the property (3.6) of heat semigroup and the Hölder inequality we have

(II) ≤

t
∫

τ

|F (v(s) + z(s))|
Lp/2(O)

|t− s|
d
2p

ds ≤

t
∫

τ

|u(s)|Lp(O)|∇u(s)|Lp(O)

|t− s|
d
2p

ds

≤ CK2
2 |t− τ |1−

d
2p .(3.31)

Finally, the last inequality follows from estimate (3.24).
Combining inequalities (3.30) and (3.31) we get (3.22). �

4. THE EXISTENCE OF A GLOBAL SOLUTION TOSTOCHASTIC BURGERS EQUATION

In this section we continue to work pathwise. We will now state the global existence result for the
case of torus.
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Theorem 4.1. Fix p > d. Assume thatu0 ∈ L
p(Td) a.s.,f ∈ M2p([0, T ],H3,2p(Td)), and g ∈

M2p([0, T ], γ(H,H4,2p(Td))). Then there exists a unique strong globalL
p(Td)-valued solutionu of

the Burgers equation. Moreover,

(4.1) |u(t)|p
Lp(Td)

≤ C(|u0|
p
Lp(Td)

+ |z|2L∞(0,T ;H2,p(Td)))e
|∇z|

L1(0,T ;L∞(Td)) , t ∈ [0, T ].

Proof of Theorem4.1. SupposeTmax < T . Let v = u − z. It is enough to find an estimate forv in
L
∞(Td) norm. Then the estimate of norm ofv in L

p(Td) will immediately follow. Therefore, it is
enough to prove that for any fixed0 < δ < Tmax, we have

(4.2) |v|L∞((0,Tmax;L∞(Td)) ≤ (|v(δ)|H1,p(Td) + |z|2L∞(0,Tmax;H2,p(Td)))e
Tmax+|∇z|

L1(0,Tmax ;L∞(Td)) .

to prove (4.2) we note first that the local solutionv satisfies the equation

v′ = ν△v − (v + z)∇v − v∇z − (z∇)z.

Let φ(t) = ve
−

t∫

0

(1+|∇z|L∞) ds
− |z|2

L∞(0,Tmax;H2,p(Td))
, t ∈ [0, Tmax). Then

φ′ = ν△φ−(v+z)∇φ+(φ+ |z|2L∞(0,Tmax;H2,p(Td)))(−∇z−|∇z|L∞ −1)−(z∇)ze
−

·∫

0

(1+|∇z|L∞) ds

or, equivalently,

ν△φ− (v + z)∇φ+ φ(−∇z − |∇z|L∞ − 1)− φ′

= |z|2L∞(0,Tmax;H2,p(Td))(∇z + |∇z|L∞ + 1) + (z∇)ze
−

·∫

0

(1+|∇z|L∞) ds
≥ 0.

Now (4.2) follows from the Maximum Principle (Theorem 7, p. 174, [20]). �

Remark4.2. We remark that in the a priori estimate above we can take the limit ν → 0 under appro-
priate assumptions for the noise.

Now we will formulate similar results for the whole space. Inthis case we do not have an embed-
dingL

∞ ⊂ L
p. Hence estimate inL∞ does not imply estimate inLp. Nevertheless it is possible to

get the following global existence result.

Theorem 4.3. Fix p > d. Assume thatu0 ∈ L
p(Rd ) a.s., f ∈ M2p([0, T ],H3,2p(Rd )), g ∈

M2p([0, T ], γ(H,H4,2p(Rd ))). Then there exists a unique strong globalL
p(Rd)-valued solutionu of

Burgers equation and we have

|u(t)|p
Lp(Rd )

≤ (|u0|
p
Lp(Rd )

+ |F (z)|L1(0,t;Lp(Rd ))) exp
{

(p+ 1)t|z|L∞(0,t;H2,p(Rd )) + (p− 1)t

+
2t

νp
(C|u0|

2p
Lp(Rd )

+ |z|4L∞(0,t;H2,p(Rd )))e
2t|z|

L∞(0,t;H2,p(Rd ))

}

, t ≥ 0.(4.3)

Remark4.4. We note that we cannot take the limitν → 0 in the a priori estimate above.

Proof. SupposeTmax < T . Let v = u − z. Thenv satisfies system (3.10). Let us multiply i-th
equation of system (3.10) on vi|vi|p−2, i = 1, . . . , d, take a sum w.r.t.i and integrate w.r.t. to time
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and space variable. We get fort ≥ t0 > 0

|v(t)|p
Lp(Rd )

+ 2ν

t
∫

t0

∫

Rd

∑

i

|v|p−2(s, x)|∇vi(s, x)|2dxds

+ (p− 2)ν

t
∫

t0

∫

Rd

∑

i

|v|p−4(s, x)|(vi(s, x),∇vi(s, x))|2dxds

≤ |v(t)|p
Lp(Rd )

+ νp

t
∫

t0

∫

Rd

∑

i

|v|p−2(s, x)|∇vi(s, x)|2dxds

≤ |v(t0)|
p
Lp(Rd )

+

t
∫

t0

∫

Rd

|F (z)|pdxds+ (p− 1)

t
∫

t0

∫

Rd

|v|pdxds

+ p

t
∫

t0

|∇z|L∞(s)

∫

Rd

|v|pdxds+

t
∫

t0

∫

Rd

|v|p div(v + z) dxds.(4.4)

The last term in the inequality (4.4) can be estimated from above as follows

t
∫

t0

∫

Rd

|v|p div(v + z) dx ds ≤

t
∫

t0

|div z|L∞(Rd )|v(s)|
p
Lp(Rd )

ds

+

t
∫

t0

|v|L∞([t0,t]×Rd )

∫

Rd

|v|p−1|div v|dxds

=

t
∫

t0

|div z|L∞(Rd )|v(s)|
p
Lp(Rd )

ds + |v|L∞([t0,t]×Rd )

t
∫

t0

∫

Rd

|v|
p
2 |v|

p
2
−1|div v|dxds

≤

t
∫

t0

|div z|L∞(Rd )|v(s)|
p
Lp(Rd )

ds + |v|L∞([t0,t]×Rd )

( 1

4ε

t
∫

t0

∫

Rd

|v|pdxds + ε

t
∫

t0

∫

Rd

|v|p−2|div v|2dxds
)

, ε > 0,(4.5)

where the last inequality follows from the Young inequality. We can estimateL∞ norm of v by
Feynman-Kac formula in the same way as in the torus case abovei.e. we have

(4.6) |v|L∞([δ,t];L∞(Rd )) ≤ (|v(δ)|H1,p(Rd ) + |z|2L∞(0,t;H2,p(Rd )))e
|∇z|

L1(0,t;L∞(Rd )) ,

for any fixed0 < δ ≤ t < Tmax. For t ≥ t0 > 0 denote

Q(t0, t) = (|v(t0)|H1,p(Rd ) + |z|2L∞(0,t;H2,p(Rd )))e
|∇z|

L1(0,t;L∞(Rd )) .
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Combining inequalities (4.4), (4.5) and (4.6) we infer that

|v(t)|p
Lp(Rd )

+ νp

t
∫

t0

∫

Rd

|v|p−2(s, x)|∇v(s, x)|2dxds

≤ |v(t0)|
p
Lp(Rd )

+

t
∫

t0

∫

Rd

|F (z)|pdxds + (p − 1)

t
∫

t0

|v(s)|p
Lp(Rd )

ds

+ (p + 1)

t
∫

t0

|∇z(s)|L∞ |v(s)|p
Lp(Rd )

ds+ εQ(t0, t)

t
∫

t0

∫

Rd

|v|p−2|div v|2dxds

+
Q(t0, t)

4ε

t
∫

t0

|v(s)|p
Lp(Rd )

ds, ε > 0(4.7)

Putε = νp
2Q(t0,t)

. Then

|v(t)|p
Lp(Rd )

+
νp

2

t
∫

t0

∫

Rd

|v|p−2(s, x)|∇v(s, x)|2dxds

≤ |v(t0)|
p
Lp(Rd )

+

t
∫

t0

∫

Rd

|F (z)|pdxds

+

t
∫

t0

(

(p+ 1)|∇z(s)|L∞ + (p− 1) +
Q(t0, t)

2

2νp

)

|v(s)|p
Lp(Rd )

ds.(4.8)

Now we apply the Gronwall Lemma to conclude that

|v(t)|p
Lp(Rd )

+
νp

2

t
∫

t0

∫

Rd

|v|p−2(s, x)|∇v(s, x)|2dxds

≤



|v(t0)|
p
Lp(Rd )

+

t
∫

t0

∫

Rd

|F (z)|pdxds





· exp
{

(p+ 1)|∇z|L1([t0,t],L∞) + (p− 1)t+
tQ(t0, t)

2

2νp

}

.(4.9)

Taking the limitt→ Tmax andt0 → 0 we get contradiction. �

In the next Theorem we will show that if a Beale-Kato-Majda type condition is satisfied i.e. vortic-
ity is bounded then then a priori estimate holds uniformly inν ≥ 0.

Theorem 4.5. Fix p > d andθ ∈ (0, 1). Assume thatu0 ∈ L
p(Rd ), f ∈ M2p([0, T ],H3,2p(Rd )),

g ∈ M2p([0, T ], γ(H,H4,2p(Rd ))). Let u ∈ L∞([0, Tmax);L
p(Rd )) be a strong maximal local

solution of Burgers equation. Assume also that a.s.

(4.10) curlu ∈ L∞(0, Tmax;L
∞(Rd )),
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and there existst0 ∈ (0, T ) such that

(4.11) div u(t0, ·) ∈ L
∞(Rd ).

ThenTmax = T and we have a.s.

|u(t)|p
Lp(Rd )

≤ C(|u0|
p
Lp(Rd )

+ |F (z)|L1(0,t;Lp(Rd )))

exp
{

C(t− t0)(|div u(t0, ·)|L∞(Rd ) + | curlu|L∞((0,t]×Rd )

+|z|2L∞(0,T ;H3,p(Rd ))(1 + |u0|Lp + |z|2
H2,p(Rd ))e

t|z|
H2,p(Rd ))

}

.(4.12)

Proof. The proof follows the lines of Theorem 2.2 in [23] and is omitted.
�

Remark4.6. It is possible to construct random dynamical system corresponding to the solution of
stochastic Burgers equation following the argument of the first name auhour and Yuhong Li [8].

5. GRADIENT CASE

In this section we will consider a particular case when the initial condition and force are potential.

Corollary 5.1. Fix p > d. Assume thatψ0 ∈ H1,p(O) a.s.,U ∈ M2p([0, T ],H4,2p(O)), V ∈
M2p([0, T ], γ(H,H5,2p(O))). Then there exists unique global solutionu ∈ C(0, T ;Lp(O)) a.s. of
equation

{

du+ (u∇)udt = (ν△u+∇U) dt+∇V dwt

u(0) = ∇ψ0.

Furthermore, ifψ0, U, V are non random then forO = T
d we have

E sup
s∈[0,t]

|u(s)|p
Lp(O) ≤ C(|ψ0|H1,p , |U |L1([0,t],H2,p), |V |L2([0,t],γ(H,H3,p))),

and forO = R
d we have

E log(1 + sup
s∈[0,t]

|u(s)|p
Lp(O)) ≤ C(|ψ0|H1,p , |U |L1([0,t],H2,p), |V |L2([0,t],γ(H,H3,p))),

Proof. The first part follows immediately from Corollary4.1 and Theorem4.5. The second part
follows from estimates (4.1), (4.12) and Fernique Theorem. Indeed, ifU, V are non random then
Ornstein-Uhlenbeck processz has gaussian distribution inL2([0, T ],H1,p(O)) ⊂ L1([0, T ],L∞(O)).

�

Consequently, sinceu is a gradient of a certain function provided the initial condition and the force
are gradients we can deduce the following corollary.

Corollary 5.2. Fix p > d andν > 0. Assume thatψ0 ∈ H1,p(O) a.s.,U ∈ M2p([0, T ],H4,2p(O)),
V ∈ M2p([0, T ], γ(H,H5,2p(O))). Then there exists unique global solutionψν ∈ C(0, T ;H1,p(O))
a.s. of the equation

(5.1)

{

dψν + |∇ψν |2dt = (ν△ψν + U) dt+ V dWt

ψν(0) = ψ0.

Furthermore, ifψ0, U, V are non random then forO = T
d we have

(5.2) E sup
s∈[0,t]

|ψν(s)|p
H1,p(O)

≤ C(|ψ0|H1,p(O), |U |L1([0,t],H2,p(O)), |V |L2([0,t],γ(H,H2,p(O)))), t ≥ 0.
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and forO = R
d we have

(5.3)
E log(1+ sup

s∈[0,t]
|ψν(s)|p

H1,p(O)
) ≤ C(|ψ0|H1,p(O), |U |L1([0,t],H2,p(O)), |V |L2([0,t],γ(H,H2,p(O)))), t ≥ 0.

We can notice that the estimates (5.2), (5.3) are uniform w.r.t.ν. This leads us to the following
Corollary.

Corollary 5.3. Fix p > d. Assume thatψ0 ∈ H1,p(O) a.s., U ∈ L1([0, T ],H2,p(O)), V ∈
Lp(0, T ; γ(H,H2,p(O))). Then there exists unique global viscosity solutionψ ∈ C(0, T ;H1,p(O))
of the equation

(5.4)

{

dψ + |∇ψ|2dt = Udt+ V dWt

ψ(0) = ψ0.

and forO = T
d we have

(5.5) E sup
s∈[0,t]

|ψ(s)|p
H1,p(O)

≤ C(|ψ0|H1,p , |U |L1([0,t],H2,p), |V |L2([0,t],γ(H,H2,p))), t ≥ 0.

Furthermore, forO = R
d we have

(5.6) E log(1 + sup
s∈[0,t]

|ψ(s)|p
H1,p(O)

) ≤ C(|ψ0|H1,p , |U |L1([0,t],H2,p), |V |L2([0,t],γ(H,H2,p))), t ≥ 0.

Remark5.4. The Corollaries5.2 and 5.3 are different from results of [19] because they consider
viscosity solutions in the space of continuous functions while we consider solutions inH1,p(O), p >
d.

Proof. Let {ψν}ν>0 ∈ C(0, T ;H1,p(O))∩C1,2((0, T ]×O) be sequence of solutions of the equation
(5.1). SinceH1,p(O) ⊂ C(O,Rd), p > d and estimate (4.1) (corr. estimate (4.12) if O = R

d ) we
have uniform w.r.t.ν estimateP-a.s.

|ψν |p
C(0,T ;C(O,Rd))

≤ K(T, ψ0, h, d), T > 0, p > d.(5.7)

Then according to Theorem 1.1, p. 175 in [2] we have that there exist uniformly bounded upper con-

tinuous subsolutionψ∗ =
∗

lim sup
ν→0

ψν
P-a.s. and uniformly bounded lower continuous supersolution

ψ∗ =
∗

lim inf
ν→0

ψν
P-a.s. of equation (5.4). Therefore, by comparison principle for viscosity solutions

of Hamilton-Jacobi equations (see Theorem 2, p. 585 and Remark 3, p. 593 of [15]), ψ∗ ≤ ψ∗ and
ψ = ψ∗ = ψ∗. Thus,ψν locally uniformly converges to unique viscosity solutionψ of equation (5.4)
P-a.s. Estimate (5.2) implies thatψ satisfies (5.5).

�
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