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CLASSICAL ONE-PHASE STEFAN PROBLEMS FOR DESCRIBING
POLYMER CRYSTALLIZATION PROCESSES∗

RAMÓN ESCOBEDO† AND LUIS A. FERNÁNDEZ‡

Abstract. A free boundary problem framework is proposed to approximate the solution of
a deterministic nonisothermal polymer crystallization model in which crystallization fronts appear
as the result of the combination of two heat transfer processes: the heat conduction due to the
application of a cooling temperature below the polymer melting temperature threshold, and the latent
heat production due to the phase change. When the latent heat is larger than the sensible heat of the
crystallization process, a classical one-phase Stefan problem can be formulated which allows one to
derive analytical approximations describing, for arbitrary applied cooling temperature profiles, the
main features of the crystallization process: the relation between the latent heat and the specific heat
capacity, the evolution of the temperature distribution, and the advance of the crystallization front.
Analytical expressions of magnitudes of industrial interest such as the crystallization time are also
derived, allowing the design of optimal cooling strategies for the applied temperature. The limits
of the suitability of this framework are discussed, pointing out its applicability to other polymer
crystallization models.

Key words. free boundary problems, nonlinear parabolic equations, numerical simulations,
Stefan problem
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1. Introduction. Polymer crystallization can be viewed as a phase change pro-
cess whereby an initially amorphous molecular state evolves into an ordered crystalline
state. When cooled below their melting temperature threshold, amorphous polymer
molecular chains tend to curl and form ordered packages (crystals) held together
by less ordered regions [5]. If the cooling temperature is kept below this threshold
and above a second threshold (of vitrification), crystals continue to appear and grow
until an almost fully ordered structure is reached, complete crystallization being im-
possible to achieve due to the amorphous inclusion of the crystalline elements [15].
Therefore, this process of molecular rearrangement takes place in a range of tempera-
ture (Tg, Tf), where Tg is the vitrification threshold below which there is not enough
molecular agitation to allow package formation (the polymer is just vitrified into an
amorphous glass), and Tf is the freezing threshold above which the ordered structure
remains disaggregated due to molecular agitation [2]. Amorphous solidification due
to hypercooling is not considered in this paper.

Stefan problems are a classical mathematical tool for describing heat transfer
phenomena in which two distinct phases are separated by a sharp moving boundary
where the phase change takes place. It is well known that Stefan problems are not
recommended in modeling polymer crystallization [1, 10, 16], due to the fact that
phase changes described by Stefan problems take place at a given critical temperature,
whereas polymer crystallization occurs in a wide range of temperatures [2, 18].
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‡Departamento de Matemáticas, Estad́ıstica y Computación, Universidad de Cantabria, Av. de

los Castros s/n, 39005 Santander, Spain (lafernandez@unican.es).

254

D
ow

nl
oa

de
d 

07
/2

7/
22

 to
 1

93
.1

44
.1

78
.4

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A STEFAN PROBLEM IN POLYMER CRYSTALLIZATION 255

Recently, a number of different models for polymers have been proposed [11, 5].
Among them, a deterministic nonisothermal model for the crystallization of poly-
mers has been considered and studied in [12]. The model, borrowed from a stochas-
tic particle model introduced in [5], consists of a reaction-diffusion system with two
strongly coupled nonlinear partial differential equations, one for the temperature dis-
tribution and the other for the crystallinity (the volume fraction occupied by crys-
tals). A special feature of the model is the truncation to zero of the nucleation
and growth rate functions at the freezing temperature Tf when the temperature is
greater than or equal to this value. Details of this choice were given in [12], and a
similar treatment can be found in models of frontal polymerization processes (see,
e.g., [8]).

The vanishing of the rate functions is the key ingredient of the model which
gives rise to the formation of crystallization fronts, preserving at the same time the
characteristic temperature range of phase change proper from polymer crystallization
processes. Numerical results on the shape, width, and speed of these moving fronts
were presented in [12]. Here, we show that the classical one-phase Stefan problem
serves as a reduction of the model proposed in [12] and yields important clues about
the polymer crystallization process.

More precisely, when the latent heat released by the growth of crystals is much
larger than the sensible heat of the crystallization process, we will show that the
classical one-phase Stefan problem describes quite accurately the evolution of the
temperature distribution and the smooth part of the advance of the crystallization
front and this, independently of the shape and the width of the front, for arbitrary ap-
plied cooling temperature profiles and along almost the entire crystallization process.
This is done by formulating a free boundary problem (FBP) framework allowing us
to derive analytical approximations of fundamental features of the model, such as the
relation between the latent heat of the process and the specific heat capacity or the
velocity of propagation of the crystallization front, and important properties from the
viewpoint of industry, such as the total crystallization time and the optimal cooling
strategy for the applied cooling temperature profile (see [13]). Finally, the limits of
applicability of this framework are established, pointing out situations where the com-
parison between the polymer crystallization model and the corresponding one-phase
Stefan problem is not appropriate.

The paper is organized as follows. In section 2, the model is introduced and solved
numerically. Expressions defining the latent heat and the enthalpy functions are given.
The jump of enthalpy across the crystallization front is derived. In section 3, the FBP
framework is established, and a one-phase Stefan problem is formulated to approx-
imate the solution of the polymer crystallization model. In section 4, the solution
of the Stefan problem is compared with the numerical solution of the crystallization
model for constant applied temperature, exponentially decreasing applied tempera-
ture, and for the general case of an arbitrary applied temperature. In all cases, the
Stefan problem constitutes an excellent approximation of the crystallization process,
provided the latent heat is large enough. The fundamental role of the latent heat to
sensible heat relation is then derived from the crystallization model equations, and
analytical estimates of the crystallization time are obtained. Conclusions and open
problems are presented in section 5.

Let us remark that some important features of the model, such as the oscillatory
behavior of the temperature field [12] and the effect of the size of the discontinuity in
the nucleation and growth rate function, are not studied in the present work.
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256 RAMÓN ESCOBEDO AND LUIS A. FERNÁNDEZ

2. The deterministic model of polymer crystallization.

2.1. Model equations, conditions, and parameter values. Crystallization
is here considered to consist of two processes: the nucleation process, which describes
the birth of crystals (when and where some spots appear), and the growth process of
these nucleated crystals. Both processes depend on the temperature and have a ran-
dom nature; however, under usual industrial conditions, a multiple scale assumption
can be made, and a deterministic approximation can be used [7, 12]. The experimen-
tal setup consists of a one-dimensional sample of a given material characterized by
the thermal diffusivity and the rate functions of nucleation and growth. The sample
is cooled by applying a low temperature at one of its sides.

At the macroscopic scale, the crystallization process may be modeled as a reaction-
diffusion problem for the temperature distribution T (x, t) and the degree of crys-
tallinity y(x, t), described by the following system of two coupled nonlinear partial
differential equations:

yt(x, t) =
[
Gy(x, t) + v0N(1− y(x, t))

]
(1− y(x, t))θ(T (x, t)),(2.1)

Tt(x, t) = σTxx(x, t) + aGGy(x, t)(1 − y(x, t))θ(T (x, t))(2.2)

with the boundary and initial conditions

T (0, t) = u(t),(2.3)

Tx(L, t) = 0,(2.4)

y(x, 0) = 0,(2.5)

T (x, 0) = T0,(2.6)

where L is the length of the sample and u(t) is the cooling temperature applied at
x = 0, whose typical values range from 0 to 100◦C but can also be negative.

As we will show later, (2.1) and (2.5) preclude the possibility that the total crys-
tallization (y ≡ 1) takes place. Equations (2.1) and (2.2) are coupled by the nucleation
rate bN(T ) = Nθ(T ) and the growth rate bG(T ) = Gθ(T ), both depending on the
instantaneous temperature through the exponentially decreasing rate function [7, 19]:

θ(T ) =

{
e−βT if T < Tf ,
0 if T ≥ Tf .

(2.7)

The critical temperature thresholds at which nucleation and growth processes are
respectively triggered are assumed to be the same, namely, Tf . The fact that the rate
function θ(T ) vanishes above the crystallization threshold Tf is the key ingredient for
the emergence of the main feature of the model, the formation of a crystallization
front. Although θ(T ) can be chosen to be continuous at Tf , we have used the more
general case in which θ(T ) exhibits a jump of size e−βTf ; see [12], where this expression
was first introduced.

An important quality of the model is that the contribution of the crystallinity
and the temperature to the variation of the crystallinity are decoupled: (2.1) can be
written as yt = ζ(y)bG(T ) + v0κ(y)bN (T ), where ζ(y) = y(1− y) and κ(y) = (1− y)2

account for the onset of nucleation and the mechanisms of aggregation and saturation
of nuclei [6].

Parameter values are oriented for isotactic polypropylene (i-PP), for which typical
values of the sample length and the thermal diffusivity are 0.01 m and 10−7 m2 s−1,
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Table 2.1

Typical values and units of the parameters.

Symbol Physical meaning Typical value Symbol Physical meaning Typical value

u(t) applied temperature 0–100◦C v0 initial mass 0.01
Tf freezing temperature 70◦C N nucleation factor 20 s−1

T0 initial temperature 100◦C G growth factor 5 s−1

σ thermal diffusivity 0.002 m2 s−1 β rate function exponent 0.1 (◦C)−1

aG nonisothermal factor 2500◦C L length of the sample 1 m

)B()A(
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Fig. 2.1. Time evolution of (A) the degree of crystallinity y(x, t) and (B) the temperature field
T (x, t) for u(t) = 40◦C and the typical values reported in Table 2.1. Note that the axes have been
inverted in (B).

respectively [4]. For numerical convenience and clearness in figures, the sample lengh
is fixed to L = 1 m, so thermal diffusivity scales to 10−3 m2 s−1 in (2.2). The freezing
temperature Tf in i-PP ranges from 130◦ to 170◦C. We have used a wide range of
values of the nucleation and growth rate coefficients G and N which, taken under
the isokinetic assumption (N/G = constant), allowed us to keep the temperatures
in the normalized interval [0, 100]◦C. The nonisothermal factor aG is taken so that
the hypercooling regime is avoided. The specific heat capacity c does not appear
explicitly in the model. Parameters describing properties of the material are assumed
to be constant and equal in both phases.

Parameter values used in our simulations are shown in Table 2.1. They have
been adjusted with the aim of emphasizing the patterns and features exhibited by the
model, which have shown to be quite stable and coherent for a wide range of values.
Main features and extensive numerical simulations can be found in [12] and [13].

2.2. Numerical solution. Figure 2.1 shows the numerical solution of (2.1)–
(2.7) for a constant applied temperature u(t) = 40◦C and the parameter values of
Table 2.1.

The crystallinity distribution exhibits an advancing front with decreasing speed,
accompanied by a free boundary separating two linear regimes in the temperature
field. The temperature field results from the combination of two opposite thermal
phenomena: the heat conduction, which contributes to reducing the temperature
when the applied temperature u(t) is lower than the freezing threshold Tf , and the
reheating, produced by the latent heat L released by the change of phase from liquid
to solid. The competition between these two processes gives rise to the oscillatory
behavior exhibited by the temperature field, which in turn induces the advance by
bumps of the most advanced crystallized point.
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258 RAMÓN ESCOBEDO AND LUIS A. FERNÁNDEZ

For parabolic equations, the speed of propagation of information is infinite. Hence,
heat conduction affects instantaneously the whole sample and the decrease of temper-
ature takes place everywhere in the sample when the applied cooling temperature is
under Tf .

The key role of the truncated rate function θ(T ) is that as soon as T ≥ Tf , the
information propagation is stopped (yt = 0) and no nucleation or growth can occur,
giving rise to the formation of the so-called crystallization band pattern shown in
Figure 2.1(A), a moving thin interval where the phase change process takes place,
separating two homogeneous regions of constant value: the upper region is the solid
(or crystalline) phase, where y is almost equal to 1 (see section 2.5), and the lower
region is the liquid (or amorphous) phase, where y = 0.

2.3. Latent heat function. Equation (2.2) describes the heat balance between
heat conduction and latent heat production due to the growth of nuclei [4]. In non-
isothermal polymer crystallization models, this relation is usually written as

Tt(x, t) = σTxx(x, t) +
Λ

c
yt(x, t),(2.8)

where Λ is the latent heat (J/Kg) and c is the specific heat capacity [11, 5, 7] (J
Kg−1◦C−1).

The latent heat may be understood as the heat produced at the point x during
the time interval [0, t], that is, the amount of heat produced by the phase transition
which has made the degree of crystallinity grow from its initial value 0 to y(x, t).

Equation (2.2) can in fact adopt this classical form, where the source term is
proportional to the variation of the crystallinity: (2.1) is (1 − y) θ(T ) = yt/[Gy +
v0N(1− y)], so

Tt = σTxx + aGGy
yt

Gy + v0N(1− y)
= σTxx +

aGy

y + δ(1− y)
yt = σTxx +

Λδ(y)

c
yt,

where δ = v0N/G and Λδ(y) is the latent heat function of our framework. The
function Λδ(y) is time- and space-dependent through the degree of crystallinity y(x, t)
and is a well-defined function, the denominator never being equal to zero because
δ/(δ−1) /∈ [0, 1] for the typical values of the parameters. As expected, Λδ(y) depends
on the nucleation and growth parameters N and G, the initial mass of nuclei v0, and
the nonisothermal factor aG (times c).

In order to activate the mechanism which avoids the immediate nucleation in the
entire liquid phase, the latent heat L released by the phase change must be large
enough to raise the temperature from the cooling value u(t) to the cutoff value Tf ;
that is,

L � cmax
t

{
Tf − u(t)

}
.(2.9)

In this case, the reheating makes the temperature grow above Tf , thus stopping
the advance of the crystallization band. Inside the band, the crystallinity grows and,
once it becomes large enough to conduct the heat to the most advanced point of crys-
tallization, the temperature falls under Tf and the nucleation and growth processes
are again triggered.

When (2.9) does not hold, that is, when the latent heat is not large enough, the
temperature falls rapidly under Tf in the whole sample and nucleation and growth take
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Fig. 2.2. Hypercooled sample with u(t) ≡ 0◦C and values of Table 2.1 except aG = 200◦C. Note
that T (x, t) falls under Tf at t ≈ 200 s, making y > 0 in the whole sample, so that the typical band
structure is not formed.

place everywhere in the sample, thus preventing the formation of the band structure;
see Figure 2.2. A liquid cooled to so low a temperature is referred to as hypercooled [1].

Among other results, the study presented in this paper provides an analytical
approximation of the relation between the latent heat released in the crystallization
process and the specific heat capacity, which will allow us to obtain the conditions
(values of the parameters) under which the crystallization band pattern is expected
to emerge.

2.4. Equation for the enthalpy function. The enthalpy function Hδ(y) as-
sociated to the latent heat Λδ(y) is given by

Hδ(y)
def
=

∫ y

0

Λδ(z) dz =
c aG
1− δ

(
y − δ

1− δ
ln
[
(1− δ)y + δ

]
+

δ ln δ

1− δ

)
.(2.10)

The latent heat and enthalpy functions allow us to write (2.2) in the form of the
classical heat balance equation, which straightforwardly becomes

Tt(x, t) = σTxx(x, t) +
1

c

∂

∂t

(
Hδ(y(x, t))

)
.(2.11)

Integrating this equality with respect to time in [0, t], we arrive at the main equation
for the enthalpy function,

1

c
Hδ(y(x, t)) = T (x, t)− σ

∫ t

0

Txx(x, s) ds− T0,(2.12)

showing how the degree of crystallinity is related to the temperature field through the
enthalpy function Hδ, whose jump across the region of phase change (the interface)
is given by

Hδ(y) =

{
0 if y = 0 (the liquid phase),
caGKδ if y = 1 (the solid phase),

(2.13)

where Kδ = [1 + δ(ln δ − 1)]/(1− δ)2 is a dimensionless parameter.
When the interface is thin enough with respect to the size of the sample, as in

Figure 2.1 but not as in Figure 2.2, an FBP framework can be set up in which (2.12)
allows us to derive a Stefan condition for the evolution of the interface.
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2.5. Maximum degree of crystallinity and complete crystallization time.
The degree of crystallinity shown in Figure 2.1(A) exhibits an upper plateau in which
the crystallinity appears to have reached the maximum value y = 1. However, it
is well known that due to the amorphous inclusion of the crystalline elements, the
complete crystallization can never be achieved [15]. This feature is derived from (2.1)
in the following result.

Theorem 2.1. For a given temperature distribution T (x, t), (x, t) ∈ [0, L]×(0, τ),
there exists one and only one solution of (2.1):

y(x, t) = 1− 1

1 + δ
(
eG

∫ t
0
θ(T (x,s))ds − 1

) .(2.14)

Proof. In (2.1), we can separate the terms depending on y and T in the form

θ(T ) =
yt[

Gy + v0N(1− y)
]
(1 − y)

=
yt
G

[
1− δ

y + δ(1 − y)
+

1

1− y

]
.(2.15)

Integrating this expression with respect to time in [0, t], we get

ln |δ + (1− δ)y(x, t)| − ln |δ| − ln |1− y(x, t)| = G

∫ t

0

θ(T (x, s))ds.

Taking exponentials in this equality, we have

δ +
y(x, t)

1− y(x, t)
= δeG

∫ t
0
θ(T (x,s))ds.

Rearranging terms yields (2.14). Note that x acts as a simple parameter in this
expression.

For δ = 1, the crystallinity at an arbitrary point x can be written as

y(x, t) = 1− e−G
∫

t
0
θ(T (x,s))ds,(2.16)

a classical expression found in the seminal works of Kolmogorov [20] and Avrami [3]
(and also [7, 4]). Equation (2.16) shows that for large growth rates, the crystallinity
reaches values close to the fully crystalline phase very quickly; see [4, p. 1044] for a
multiple scale analysis.

Remark 1. As a consequence of (2.14) we can deduce that y(x, t) ∈ [0, 1) for
every (x, t) ∈ [0, L] × (0, τ). Although the maximum value y(x, t) = 1 cannot be
reached, the exponential in (2.14) becomes so large during numerical simulations that
the full crystallization can be considered attained, that is, y(x, t) ≥ 1 − ε0 for some
small ε0 > 0 (we have used ε0 = 10−16). For simplicity, from now on we will just
say y(x, t) = 1, understanding it in this way. From this viewpoint, the complete
crystallization (y(x, t) = 1 ∀x ∈ [0, L]) is reached at time tcryst = 22.475 × 103s for
the parameter values described in Table 2.1.

Another interesting property deriving from (2.14) is that in the liquid phase
(where y(x, t) = 0), the temperature is such that T (x, s) ≥ Tf ∀s ∈ (0, t).
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Fig. 3.1. Color map of the crystallinity y(x, t) (left) and crystallization band characterization
(right) corresponding to the case depicted in Figure 2.1(A). Parameter values are given in Table 2.1.

Remark 2. The initial conditions have been chosen to be constant temperature
and zero crystallinity just for simplicity. For general conditions T (x, 0) = T0(x) and
y(x, 0) = y0(x), the main results remain valid as, for instance, the crystallinity, which
will obey

y(x, t) = 1− 1

1− δ +
(

y0(x)
1−y0(x)

+ δ
)
eG

∫ t
0
θ(T (x,s))ds

.(2.17)

3. An FBP. A Stefan FBP framework for the crystallization process described
by the model (2.1)–(2.6) is introduced and shown to provide analytical expressions of
the crystallization front and the temperature field. By identifying the position of free
boundary to the amount of crystallized polymer, a Stefan condition for the evolution
of the free boundary is derived. The Stefan problem is solved in different experimental
situations. The conditions under which this framework is valid are provided.

3.1. Characterization of the free boundary. Figure 3.1(A) shows a color
map of the crystallinity depicted in Figure 2.1(A), where two homogeneous regions
(separated by an oscillating band which evolves with a slightly decreasing velocity)
can be clearly identified: the solid phase, located below the band, where the maxi-
mum degree of crystallization has already been reached (y = 1; see Remark 1), and
the liquid phase, located above the band and where not even nucleation has taken
place (y = 0).

Defining two time-depending abscissas xα < xω ,

xα(t) = max{x ∈ [0, L] : y(x, t) = 1},(3.1)

xω(t) = min{x ∈ [0, L] : y(x, t) = 0},(3.2)

the solid phase is given by the interval [0, xα(t)] and the liquid phase by [xω(t), L] [12].
Thus, the phase change is confined to the so-called crystallization band [xα(t), xω(t)].
It is across this band that the enthalpy Hδ experiences a jump.

The formulation of an FBP consists in characterizing a spatial coordinate h(t)
located inside the region where Hδ grows abruptly as a representative of the whole
region. The phase change is then considered to take place precisely at this point h(t)
and precisely at the critical temperature of freezing Tf . That is,

T (h(t), t) = Tf .(3.3)
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Fig. 3.2. Instantaneous crystallization hypothesis: the crystallized area inside the band
[xα(t), xω(t)] is instantaneously reorganized in [xα(t), P (t)], where y = 1, as soon as nucleation
takes place.

The choice of h(t) is especially delicate in the present case, because first, the width
of the band is not necessarily small and the band can occupy more than 10% of the
whole domain, and second, the crystallization band is not a traveling wave of constant
shape or speed, due to the characteristic oscillatory behavior of the temperature field
(induced by the competition between heat conduction and reheating). Indeed, the
width of the band is not constant along the crystallization process.

A more appropriate characterization for the free boundary can be obtained by
using the amount of polymer crystallized at a given time, P (t):

P (t)
def
=

∫ L

0

y(x, t) dx.(3.4)

The fundamental magnitude P (t) has been recently used by the authors to obtain the
optimal cooling strategy in terms of reducing the time of total crystallization without
using too low values of the applied temperature; see [13].

In [13] the following relation was obtained numerically:

P (t) ≈ κ
√
Q(t) ,(3.5)

where κ is a positive constant proved numerically to depend only on δ, aG, and σ,
and

Q(t)
def
=

∫ t

0

(Tf − u(s)) ds.(3.6)

In fact, it was shown, again numerically, that the amount of crystallized polymer
P (t) does not depend on the history of the applied temperature u(t), provided Q(t)
remains unchanged. We will present here an analytical derivation of (3.5) and the
explicit expression of κ.

Figure 3.2 illustrates the meaning of identifying the crystallization band [xα(t), xω

(t)] with the amount of crystallized polymer P (t). At every instant of the crystalliza-
tion process, the amount of crystallized polymer inside the band can be reorganized
in a narrower interval [xα(t), P (t)], where the maximum degree of crystallinity has
been reached, according to∫ xω(t)

xα(t)

y(x, t) dx =

∫ P (t)

xα(t)

1 dx = P (t)− xα(t),(3.7)

exactly as if the maximum degree of crystallinity was instantaneously reached right
after nucleation.
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This instantaneous crystallization hypothesis consists then in identifying the po-
sition of the free boundary h(t) with the amount of crystallized polymer P (t):

h(t)
def
= P (t) ∀t > 0.(3.8)

By construction, h(t) is well defined and belongs to the band [xα(t), xω(t)] ∀t > 0 and
therefore is a good representative of the crystallization band. The suitability of (3.8)
is also shown by the numerical observations carried out in [13] for different applied
temperature profiles.

3.2. FBP framework. Once h(t) is defined as the interface separating the two
phases of the material, important simplifications can be made to establish the FBP
framework.

The degree of crystallinity now satisfies

y(x, t) =

{
1, x ∈ [0, h(t)],
0, x ∈ (h(t), L],

(3.9)

which means that the width of the crystallization band may be considered negligible
with respect to the distance traveled by the band and the distance it has to travel
until the complete crystallization is achieved. Then, the area inside the band can be
neglected with respect to the area covered by the crystalline phase.

The second ingredient of the FBP framework is the classical assumption used in
one-phase Stefan problems (see, e.g., [1]) that the temperature in the liquid phase
is constant and equal to the threshold temperature Tf . This assumption is quite
reasonable for the industrial conditions for which the present model has been derived
and for the typical parameter values we are using. This is shown by the following
argument.

The temperature in the liquid region is determined by the heat equation

Tt(x, t) = σTxx(x, t) for x ∈ (h(t), L](3.10)

with boundary conditions T (h(t), t) = Tf and Tx(L, t) = 0. For the typical values
used in this model, the heat conduction process is much faster than the crystallization
process, that is, the distance xd covered by conduction during a time Δt is much
greater than the thickness of material crystallized during this time xc [4]:

xc � xd.(3.11)

Thus, the temperature in (h(t), L] falls to Tf much faster than the advance of the
crystallization band, allowing us to consider that the temperature is equal to Tf in
this region, i.e.,

T (x, t) = Tf for x ∈ (h(t), L].(3.12)

The spatial scale xd can be estimated to be xd = O(
√
σΔt). The solution of the Stefan

problem will provide an expression of h(t) from which it is possible to estimate the
typical space scale of crystallization xc. On the other hand, assumption (3.12) will be
extended to the case of a semi-infinite liquid phase, allowing us to take advantage of
the existence of closed-form explicit solutions of the Stefan problem [1]. This extension
is quite reasonable, the boundary condition in x = L being a zero heat flux boundary
condition, meaning perfect thermal insulation (see [1, pp. 46, 50]).
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3.3. A Stefan condition for the free boundary h(t). Our aim in this section
is to obtain an explicit equation for h′(t), the velocity of the free boundary. For that
purpose, we integrate (2.12) with respect to x in [0, L]:

1

c

∫ L

0

Hδ(y(x, t)) dx =

∫ L

0

T (x, t) dx− σ

∫ L

0

∫ t

0

Txx(x, s) ds dx − LT0.(3.13)

Combining (2.13) with (3.9) we have

1

c

∫ L

0

Hδ(y(x, t)) dx =

∫ h(t)

0

aGKδ dx = aGKδh(t).(3.14)

For the right-hand side of (3.13), interchanging the variables of integration in the
double integral, and using the boundary condition Tx(L, t) = 0, we arrive at∫ L

0

∫ t

0

Txx(x, s) ds dx =

∫ t

0

(Tx(L, s)− Tx(0, s)) ds = −
∫ t

0

Tx(0, s) ds.(3.15)

Taking into account (3.12), the resulting equation becomes

aGKδh(t) =

∫ h(t)

0

T (x, t) dx+ Tf(L− h(t)) + σ

∫ t

0

Tx(0, s) ds− LT0.(3.16)

Now, time-differentiating (3.16) yields

aGKδh
′(t) = T (h(t), t)h′(t) +

∫ h(t)

0

Tt(x, t) dx − Tfh
′(t) + σTx(0, t).

Together with T (h(t), t) = Tf and Tt(x, t) = σTxx(x, t) for x ∈ [0, h(t)), this gives

aGKδh
′(t) =

∫ h(t)

0

σTxx(x, t) dx + σTx(0, t),

which, calculating the integral and canceling terms, leads us to

aGKδ h
′(t) = σTx(h(t), t).(3.17)

This expression can be viewed as the Stefan condition of a classical Stefan problem,
exactly in the way that Lamé and Clapeyron [21] formulated it 58 years before Stefan.

Equation (3.17) relates the size of the jump in the temperature field variation
with the velocity of displacement of the free boundary h′(t). Moreover, it allows
us to formulate a classical one-phase Stefan problem which describes the evolution
of the crystallization band and the temperature field of the polymer crystalization
model (2.1)–(2.6):

Tt(x, t) = σTxx(x, t), x ∈ [0, h(t)), t > 0,(3.18)

T (x, t) = Tf , x ∈ (h(t),+∞), t > 0,(3.19)

T (0, t) = u(t), t > 0,(3.20)

T (h(t), t) = Tf , t > 0,(3.21)

Lδ

c
h′(t) = σTx(h(t), t), t > 0,(3.22)

where Lδ represents the latent heat of the phase change process:

Lδ
def
= Λδ(1)Kδ = caGKδ = Hδ(1).(3.23)
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3.4. Initial and final transients. The FBP framework requires a well-formed
band to be a valid description of the crystallization problem (2.1)–(2.6). Two short
transients exist during which this condition is not met: at the start, the band structure
needs a certain amount of material to be fully crystallized, and at the end, the band
structure is lost when it reaches the right end of the sample. We thus introduce two
critical times t1 and t2,

t1 = min{t > 0 : y(b0, t) > 1− ε1}, t2 = min{t > 0 : y(L, t) > ε2},(3.24)

where t1 is the time taken for the band to form and separate from the left end of the
sample, t2 is the instant at which the band reaches x = L, b0 > 0 is an estimate of
xα(t̃0), where t̃0 is the time taken to develop a sharp interface, and ε1,2 > 0 are two
small real tolerances.

The next section shows that these transient times are really short, so that the
Stefan problem accurately describes almost all the crystallization process. Note that
b0 (and therefore t1) cannot be established a priori because the shape and width of
the crystallization band are highly dependent on the parameters so that a specific
value of b0 is required for each case.

4. Solution of the one-phase Stefan problem. The Stefan problem (3.18)–
(3.22) is solved for different applied temperature profiles u(t). In all cases, the solution
is shown to be an excellent approximation of the solution of the crystallization prob-
lem (2.1)–(2.6).

Section 4.1 presents two cases where the analytical solution of the Stefan problem
is known. Measures of error are then defined, and a collection of examples presented.
In section 4.2, the general case of arbitrary applied temperatures is solved by using
the classical pseudo-steady state (PSS) approximation, and errors are estimated in
terms of the Stefan number.

The excellent agreement is highlighted by means of detailed figures which, in
combination with the measurement of errors, allow us to overcome the difficulties in
analyzing the results due to the inherent oscillatory behavior of the temperature field.

4.1. Exact solution of the one-phase Stefan problem. Explicit analytical
solutions of the one-phase Stefan problem (3.18)–(3.22) are available for a limited
number of applied temperatures profiles u(t) [9]. Two cases are of special interest: the
case of constant temperature u(t) ≡ u, which is the simplest one and has been shown
to correspond to the optimal cooling strategy [13], and the case of an exponentially
decreasing cooling temperature, u(t) = Aeηt +B, with A < 0 and η > 0, which leads
to a free boundary advancing with a constant speed. Both cases were studied by
Stefan in his seminal work (see [22]).

4.1.1. Constant cooling temperature: Neumann solution. The exact so-
lution for constant boundary condition was sketched by Stefan [22] and generalized
by Neumann (as explained in [23]).

Assume a particular solution of the form T (x, t) = A erf{x/(2√σt)} + B, where

A and B are constant and erf(λ) is the error function erf(λ) = 2/(
√
π)
∫ λ

0
e−z2

dz.

Conditions (3.20)–(3.21) imply that B = u and λ = h(t)/(2
√
σt) is constant. Conse-

quently, A = (Tf − u)/erf(λ). The parameter λ is obtained as the unique solution of
the transcendental equation resulting from the Stefan condition (3.22),

λeλ
2√

π erf(λ) =
c(Tf − u)

Lδ
.(4.1)
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Fig. 4.1. Temperature field T (x, t). (A) and (C) are a direct numerical simulation of (2.1)–
(2.6). (B) and (D) are solution (4.2)–(4.3) of the one-phase Stefan problem (3.18)–(3.22). (A), (B)
Constant applied temperature u = 40◦C, δ = 0.04 (N = 20 s−1; G = 5 s−1, v0 = 0.01), and
t ∈ [t1, t2]. See Case 2 in Table 2.1. (C), (D) Exponentially decreasing applied temperature u(t)
given by (4.9) and δ = 0.04. We have used γ = 2.89× 10−2 in [0, 17.5× 103].

Therefore, the unique solution of the one-phase Stefan problem (3.18)–(3.22) is given
by the following expressions for the free boundary and the temperature field:

h(t) = 2λ
√
σt ,(4.2)

T (x, t) =

⎧⎨
⎩ u+

Tf − u

erf(λ)
erf

(
x

2
√
σt

)
if x ≤ h(t),

Tf if x > h(t).
(4.3)

Figure 4.1 shows the excellent visual agreement between the temperature field
obtained by direct numerical simulation of the polymerization problem model (2.1)–
(2.6) and the solution of the one-phase Stefan problem (3.18)–(3.22).

The piecewise linear profile exhibited by the temperature field in Figures 2.1
and 4.1 is now explained in the light of expression (4.3). Under the FBP frame-
work, the heat conduction and crystallization length scales are related by (3.11),
so x/(2

√
σt) � 1. Hence, the Taylor expansion of the error function erf(λ) =

(2/
√
π)λ + O(λ3) for λ � 1 allows to say that the fraction of error functions in
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(4.3) behaves as x/h(t),

1

erf(λ)
erf

(
x

2
√
σt

)
=

erf

(
x

2
√
σt

)

erf

(
h(t)

2
√
σt

) ≈ x

h(t)
,(4.4)

therefore showing that the temperature profile is effectively almost piecewise linear:

T (x, t) ≈
⎧⎨
⎩ u+

Tf − u

h(t)
x if x ≤ h(t),

Tf if x > h(t).
(4.5)

Furthermore, (4.1) can be approximated by 2λ2 = Ste when λ � 1, where

Ste
def
=

c(Tf − u)

Lδ
(4.6)

is the Stefan number, a dimensionless parameter which completely characterizes the
phase change process, and which is referred to as the ratio of the sensible heat to the
latent heat (see [1, p. 38]). We have thus arrived at the following approximation for
the free boundary:

h(t) ≈
√
2Ste σt.(4.7)

The necessary condition for the latent heat to induce the formation of the crys-
tallization band (2.9) can therefore be written in a classical way in terms of the Stefan
number:

Ste � 1.(4.8)

Expression (4.5) is a particular case of the PSS approximation of the solution of
the Stefan problem for arbitrary boundary conditions at x = 0 (see section 4.2).

4.1.2. Exponentially decreasing cooling temperature. This case, also stud-
ied by Stefan in his original work [22], also has an explicit analytical solution. The
relevance of this boundary condition is that the velocity of the free boundary is con-
stant, thus highlighting the shape and behavior of the crystallization band under
variations of the parameters (of special interest in optimal control problems dealing
with the final spatial homogeneity of the material—band width, amplitude, frequency
and regularity of temperature field oscillations).

Given a fixed constant γ > 0, we consider the applied time-dependent temperature

u(t) = Tf − Lδ

c

(
eγ

2σt − 1
)
.(4.9)

The corresponding exact solution of the Stefan problem (3.18)–(3.22) is then (see [1])

h(t) = γσt,(4.10)

T (x, t) =

{
Tf − Lδ

c

(
eγ

2σt−γx − 1
)

if x ≤ h(t),

Tf if x > h(t).
(4.11)
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As we imposed u = 0◦C in Table 2.1 as a lower bound for the applied temperature
u(t) to be far from the hypercooling regime, the following condition must be satisfied:

γ2t ≤ 1

σ
ln

(
1 +

cTf

Lδ

)
.(4.12)

Inequality (4.12) shows the strong link between γ and the time interval where the
Stefan problem (3.18)–(3.22) is a valid approximation of the crystallization prob-
lem (2.1)–(2.6). When γ is such that the crystallization time tcryst verifies (4.12), the
agreement is excellent; see Figure 4.1(C), (D) for γ = 2.89 × 10−2 along the time
interval [0, 17.5× 103], and errors calculated in the next section. The apparent linear
shape of u(t) there is due to the low value of γ, which gives rise to an approximate
slope of −3.8× 10−3 in [0, 17.5× 103].

4.1.3. Comparison of solutions. Two features serve to evaluate the accuracy
of the FBP framework: how well the free boundary describes the behavior of the
crystallization band, and how similar the temperature fields of the Stefan problem
and the crystallization model are.

The evolution of the free boundary h(t) is compared with P (t), which is the
magnitude it approximates, by means of the difference

ξ1(t)
def
= h(t)− P (t),(4.13)

where h(t) is given by the Stefan problem and P (t) is obtained by solving numerically
the crystallization problem (2.1)–(2.6) and computing (3.4) with the extended Simp-
son’s rule. When needed, λ is calculated with a bisection method until the error is
such that |λi+1−λi| < ε, where ε is a small positive tolerance (we have used ε = 10−8)
and i is the iteration index.

Another measure of error, often used in phase change problems, consists in evalu-
ating how well the free boundary satisfies (3.3), namely, T (h(t), t) = Tf , which usually
defines the free boundary. For coherence with [12] and [13], we denote by xb(t) the
numerical solution of (3.3). As the FBP framework is blind to which characterization
of h(t) is used, xb(t) adds a complete picture of how the crystallization band behavior
is described by h(t), because the temperature oscillations are visible in the behavior
of xb(t) but not in the behavior of h(t).

Therefore, this type of error is measured by

ξ2(t)
def
= h(t)− xb(t).(4.14)

The measurement of these two errors is carried out with the normalized L2 and
L∞ norms, and the maximum relative error, respectively, for i = 1, 2:

ξL2

i =
1

L

(
1

t2 − t1

∫ t2

t1

ξ2i (t) dt

)1/2

,

ξ∞i =
‖ξi‖∞
L

=
1

L
sup

t∈[t1,t2]

{|ξi(t)|}, ξreli = sup
t∈[t1,t2]

{∣∣∣∣ξi(t)h(t)

∣∣∣∣
}
.

With regard to the temperature field, the error is measured by the instantaneous
pointwise error between TNUM(x, t) and T STEF(x, t), which are the respective solu-
tions of the crystallization problem solved numerically and the Stefan problem:

ε(x, t) = TNUM(x, t)− T STEF(x, t).(4.15)
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Table 4.1

Normalized L2-error, L∞-error, and relative errors.

Case u δ ξL2
1 ξ∞1 ξrel1 ξL2

2 ξ∞2 ξrel2 εT

(◦C) – (10−3) (10−3) (10−2) (10−2) (10−2) (10−1) (10−3)
1 60 0.04 2.17 6.49 3.02 1.07 3.91 1.57 0.28
2 40 0.04 2.68 8.1 3.52 3.27 8.43 3.08 1.35
3 0 0.04 3.37 14.17 7.64 7.13 14.49 7.73 5.42
4 60 4 0.93 2.94 1.08 0.40 0.91 0.33 0.56
5 40 4 3.79 4.57 2.05 1.93 4.77 4.39 7.62
6 0 4 12.17 13.6 8.31 4.23 8.1 9.2 19.4
7 exp. 0.04 1.60 2.44 2.26 4.37 7.01 5.08 0.89
8 exp. 4 8.80 10.1 3.69 1.86 2.11 1.69 0.53
2a 40 0.04 2.02 6.24 3.9 0.23 1.51 0.88 0.74
3b 0 0.04 102.6 154.6 39.5 25.2 54 11.7 43.8

2a: G = 50 s−1 (instead of G = 5 s−1).
3b: Hypercooled case (aG = 200 instead of 2500◦C).

The time evolution of the normalized L2-norm of this quantity is then used to obtain
one single number εT expressing the accuracy of the temperature field approximation:

εT =
1

t2 − t1

∫ t2

t1

εL2(t) dt, where εL2(t) =
1

Tf

(
1

L

∫ L

0

ε2(x, t) dx

)1/2

.(4.16)

The errors are calculated during the time interval [t1, t2] to avoid the transients where
the Stefan problem cannot be considered a valid approximation of the polymerization
problem. Still, ξ2 and ε are subject to the effects of the temperature field oscillations,
especially when the band width and/or the amplitude of the oscillations is large.
Decidedly, the numerical simulations exhibit a good agreement along almost all the
crystallization process.

4.1.4. Examples (exact Stefan problem solution known). Errors are cal-
culated for the following eight cases: (i) six cases of constant applied temperature,
u = 60, 40, and 0◦C, and two values of δ, 0.04 and 4 (G = 5 s−1 and, respectively,
N = 20 and 2000 s−1), and (ii) two cases of exponentially decreasing u(t) with the
same two values of δ as in (i), adjusting the value of γ to preserve the condition (4.12)
until the crystallization time is reached.

Two more cases, analyzed in section 4.2, appear in the tables and figures: a
case yielding a very thin band, where G is such that δ is one of the previous values
(δ = 0.04, with G = 50 s−1, N = 200 s−1), and the hypercooled case already depicted
in Figure 2.2.

Comparisons are presented in Table 4.1, calculated with the transient times t1
and t2 given in Table 4.2. Table 4.2 also shows the crystallization time tcryst and the
percentages t̃i = 100(ti/tcryst)% (i=1,2) of the duration of the crystallization process
during which the Stefan problem is a valid approximation. The time evolution of h(t),
P (t), xb(t), xα(t), and xω(t) is depicted in Figures 4.2 to 4.6. Two other hypercooled
cases are depicted in Figure 4.7.

The first result is that errors are considerably small in almost all cases: ξL2
1 =

O(10−3), ξ∞1 = O(10−3), ξrel1 = O(10−2), and εT = O(10−3). This shows that the Ste-
fan problem is an excellent approximation to the solution of the crystallization model.

The second result is that xb(t) is a worthy representative of the crystallization
band, with errors only one order of magnitude higher than those of h(t), despite the
large band width and temperature oscillations occurring in some cases.
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Table 4.2

Crystallization times, approximations, errors, and initial and final transients.

Case u δ t̃1 t̃2 b0 tNUM
cryst tSTEF

cryst tPSS
cryst εSTEF εPSS

(◦C) – (%) (%) (m) (103s) (103s) (103s) (10−2) (10−2)
1 60 0.04 4 94 0.167 58.22 56.46 56.37 3.04 3.18
2 40 0.04 5 92 0.138 19.45 18.87 18.79 2.98 3.4
3 0 0.04 3 92 0.109 8.37 8.14 8.05 2.81 3.8
4 60 4 7 92 0.202 19.33 17.76 17.67 8.14 8.57
5 40 4 1 89 0.016 6.49 5.97 5.89 8 9.27
6 0 4 1 86 0.004 2.81 2.61 2.52 7.25 10.18
7 exp. 0.04 10 92 0.057 18.29 18.09 18 1.14 1.6
8 exp. 4 6 95 0.001 10.66 10.29 10.21 3.45 4.23
2a 40 0.04 3 98 0.141 19.04 18.87 18.79 0.86 1.3
3b 0 0.04 10 91 – 0.988 0.724 0.644 26.8 34.8

2a: G = 50 s−1 (instead of G = 5 s−1).
3b: Hypercooled case (aG = 200 instead of 2500◦C). In cases 7 and 8, the values

γ = 2.76× 10−2 and 4.86 × 10−2 were used, respectively.
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Fig. 4.2. Case 1 (left): u = 60◦C and δ = 0.04. Case 2 (right): u = 40◦C and δ = 0.04.
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Fig. 4.3. Case 3: u = 0◦C and δ = 0.04. Case 4: u = 60◦C and δ = 4.
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Fig. 4.4. Case 5: u = 40◦C and δ = 4. Case 6: u = 0◦C and δ = 4.
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Fig. 4.5. Exponentially decreasing boundary condition. Case 7: u =exp. and δ = 0.04. Case
8: u =exp. and δ = 4.
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Fig. 4.6. Case 2a: u = 40◦C and δ = 0.04 (N = 200, G = 50, v0 = 0.01). Case 3b (hypercooled
case, also showing the PSS approximation): u = 0◦C, δ = 0.04 (N = 20, G = 5, v0 = 0.01),
aG = 200◦C. See also Figure 4.7.
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Fig. 4.7. Hypercooled cases: aG = 200◦C. Free boundaries and crystallization band abscissas.
Left: u = exp., δ = 0.04, γ = 2.76× 10−2 m−1. Right: u = exp., δ = 4, γ = 4.86× 10−2 m−1. (See
also the right panel of Figure 4.6).

A third result from Table 4.2 is that the FBP framework is valid during 82%
to 95% of the duration of the crystallization process, which is a quite representative
proportion. Greater values of t1 can reduce the averaged error εT , but to the detriment
of the width of the interval [t1, t2]; see the transients in Table 4.2, e.g., case 6, where
εT = 19.4× 10−3 and t̃1 = 1%. For t̃1 = 14%, the error decreases, εT = 6.79× 10−3,
but the interval [t1, t2] is reduced to 72% of the crystallization time and with no other
benefits in the other errors. By contrast, in all cases a larger value of t2 serves to
enlarge [t1, t2], without detriment of εT .

Errors and figures reveal other features of the crystallization process and how
suitable the Stefan problem is to describe it. For example, in the exponential cases,
ξ1 is smaller in case 7 than in case 8, the opposite of what happens for ξ2, showing,
as expected, that ξ2 is more sensitive to oscillations than ξ1 and, on the other hand,
that in the sense of ξ1 the free boundary h(t) is closer to P (t) in case 7 than in case
8, despite the fact that oscillations are more visible in case 7; see Figure 4.5.

4.2. PSS approximation for time-depending boundary condition. Ex-
plicit analytical solutions of the Stefan problem are not available for arbitrary time-
dependent imposed temperatures [1]. Thus, approximations are used, the simplest
one being the PSS approximation [17, 1].

The PSS approximation is especially suitable in our framework, as it is based on
the physical assumption that the sensible heat can be neglected with respect to the
latent heat [1]. This assumption was precisely introduced in (2.9) as the necessary
condition for the formation of the crystallization band pattern and therefore is the
core assumption in our study.

4.2.1. PSS solution and its accuracy. The PSS estimate owes its name to
the fact that the temperature is considered to remain at its stationary state, i.e.,
Tt(x, t) = 0, while the free boundary evolves in time. Hence, T (x, t) is the solution of
the equation

Txx(x, t) = 0(4.17)

with boundary conditions T (0, t) = u(t) and T (h(t), t) = Tf . Therefore, the temper-
ature profile at time t in [0, h(t)] is a straight line which joins u(t) at x = 0 with Tf

at x = h(t).
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Using this approximation in the Stefan condition (3.22) leads to the expression
of the free boundary and consequently to the PSS solution of the Stefan problem:

hPSS(t) =

√
2σc

Lδ
Q(t) =

√
2σc

Lδ

∫ t

0

(
Tf − u(s)

)
ds,(4.18)

TPSS(x, t) =

⎧⎨
⎩ u(t) +

Tf − u(t)

h(t)
x if x ≤ h(t),

Tf if x ≥ h(t).
(4.19)

Note again that (4.18) was already found by Stefan for polar ice formation [22].
Since the free boundary h(t) was defined as the approximation of the amount of

crystallized polymer P (t), expression (4.18) provides an analytical approximation of
the value of the constant κ introduced here in (3.5) and obtained numerically in [13]:

κ =

√
2σc

Lδ
.(4.20)

The approximation is remarkably good, as the value κ = 1.33 × 10−3 m (s ◦C)−1/2

reported in [13] coincides exactly with the value arising from (4.20) for the values of
the parameters of the problem used in [13] and shown in Table 2.1.

Moreover, the normalized L2-norm of the error can be calculated from the data
in [13] for a large variety of time-depending applied temperature. For all the cases
analyzed there, we obtained the following value of an error based on the L2-norm:

E1(τ1) =
1

τ1

∫ τ1

0

∣∣∣κ√Q(t)− P (t)
∣∣∣2 dt = O(10−5)(4.21)

for a value τ1 = 1.5×104 s. Defining the quantity ξ3 for the free boundary determined
by the PSS approximation as

ξ3(t)
def
= hPSS(t)− P (t)(4.22)

and writing t1 = 0 and t2 = τ1, we have ξ
L2
3 =

√
E1(τ1) = O(10−3), showing that the

PSS approximation is excellent for the cases studied in [13] (see Figure 4 therein).
This excellent order of magnitude of the L2-error is also reached in the cases

presented in section 4.1.4, where the exact solution of the Stefan problem is known;
see Table 4.3. The measures of error also have the same order of magnitude as those
obtained for ξ1. With regard to the temperature, defining as before the quantity εPSS

T

as the L1-norm of εPSS
L2

(t) in [t1, t2], where εPSS(x, t) = TNUM(x, t) − TPSS(x, t), the

same order of magnitude is again reached: εPSS
T = O(10−3).

Table 4.3 shows that the PSS approximation is an accurate approximation of the
crystallization problem at almost the same level as the exact solution of the Stefan
problem. Moreover, in some cases (namely, cases 5–8), ξ3 yields lower values than ξ1,
so that the position of the free boundary is better described by the PSS solution. As
we will explain later, this is due to the fact that the PSS approximation overestimates
the position of the free boundary: as h(t) is below P (t) in these cases, hPSS(t) can be
closer to P (t) than h(t), therefore yielding smaller errors; see the insets in Figures 4.4
and 4.5.
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Table 4.3

Errors for the PSS approximation.

Case u δ ξL2
3 ξ∞3 ξrel3 εPSS

T
(◦C) – (10−3) (10−3) (10−2) (10−3)

1 60 0.04 1.38 6.65 3.09 0.34
2 40 0.04 3.70 8.61 3.74 1.87
3 0 0.04 8.34 15.12 8.15 7.88
4 60 4 2.35 3.57 1.32 0.75
5 40 4 3.06 3.68 1.35 9.27
6 0 4 9.63 7.85 6.69 27.5
7 exp. 0.04 0.88 2.61 2.31 1.46
8 exp. 4 7.59 7.63 3.57 1.52
2a 40 0.04 3.03 6.59 4.12 1.33
3b 0 0.04 642.38 183.5 45.5 60.76

2a: G = 50 s−1 (instead of G = 5 s−1).
3b: Hypercooled case, with aG = 200 instead of 2500◦C.

This does not happen in the case of the temperature field: εPSS
T is always greater

than εT . The time evolution of εPSS
L2

(t) and εL2(t) shows that the exact solution
of the Stefan problem is always a better description of the numerical solution of the
polymerization problem than the PSS approximation, which, in the exponential cases,
loses accuracy as t grows. This is related to condition (4.12) and will be explained
later.

4.2.2. The fundamental role of the sensible heat to latent heat relation.
The reason for the high accuracy with which the PSS approximation (4.18) describes
the crystallization process lies in that the parameter values used in Table 2.1 (also
used in [13]) are such that the condition (2.9), namely, cmaxt{Tf − u(t)} � Lδ, is
largely satisfied.

For δ = 0.04, we have Lδ/c = 2254.9◦C, and for δ = 4, we have Lδ/c = 706.99◦C,
so Ste ≈ 0.031 for δ = 0.04 and Ste ≈ 0.099 for δ = 4. Therefore, in both cases,
Ste � 1. However, when the latent heat is not large enough and condition (2.9) is
not satisfied, the PSS approximation is no longer valid; this is what happens in the
hypercooled case depicted in Figure 2.2 and denoted by 3b in Tables 4.1 to 4.4. In
this case, aG = 200◦C, so Ste ≈ 0.39 for δ = 0.04 and Ste ≈ 1.24 for δ = 4, i.e.,
Ste � 1.

In fact, not only is the PSS approximation not valid, but the whole Stefan problem
framework should be rejected as a description of the polymerization problem: as
Figure 4.6 shows, hPSS(t) is too far from the free boundary h(t), and none of them
are close to P (t).

The fundamental role of the sensible heat to latent heat relation (2.9) can be
clarified by deriving the PSS approximation directly from the initial statement (2.1)–
(2.4) and using the hypotheses in a slightly different way.

Let us start from (3.16), to which we arrived from (2.1)–(2.4) just by assuming
that a free boundary h∗(t) exists such that y(x, t) = 1 if x < h∗(t), y(x, t) = 0 if
x > h∗(t), and T (x, t) = Tf if x ≥ h∗(t). Assuming now that the temperature profile
is linear with respect to x in the solid phase, we have

T (x, t) ≈ u(t) + x

(
Tf − u(t)

h∗(t)
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for x < h∗(t). Substituting this expression in (3.16) with h = h∗, we get

Lδ

c
h∗(t) =

∫ h∗(t)

0

T (x, t) dx+ Tf (L− h∗(t)) + σ

∫ t

0

Tx(0, s) ds− LT0

= u(t)h∗(t) +
1

2

[
Tf − u(t)

]
h∗(t) + Tf

[
L− h∗(t)

]
+ σ

∫ t

0

Tf − u(s)

h∗(s)
ds− LT0

=
1

2

[
u(t)− Tf

]
h∗(t) + σ

∫ t

0

Tf − u(s)

h∗(s)
ds+ (Tf − T0)L.(4.23)

Time-differentiating this expression yields

(4.24)
Lδ

c

dh∗(t)
dt

=
1

2

d

dt

[
(u(t)− Tf )h

∗(t)
]
+ σ

Tf − u(t)

h∗(t)
.

By introducing the auxiliary function z(t) = 1
2 [h

∗(t)]2, this gives rise to the following
differential equation for z(t):

(4.25)

(Lδ

c
+

Tf − u(t)

2

)
z′(t) = z(t)u′(t) + σ(Tf − u(t)).

This linear ODE can be solved with the initial condition z(0) = 0 to obtain the
following explicit expression of the free boundary:

h∗(t) =

√
2σc

Lδ

∫ t

0

[
Tf − u(s)

] [
1 +

c(Tf − u(s))

2Lδ

]
ds

1 +
c(Tf − u(t))

2Lδ

.(4.26)

Defining a kind of instantaneous Stefan number Ste∗(t) = c[Tf − u(t)]/Lδ, the free
boundary coordinate can finally be written as

h∗(t) =
1

1 + 1
2Ste

∗(t)

√
2σc

Lδ

∫ t

0

[
Tf − u(s)

][
1 +

1

2
Ste∗(s)

]
ds.(4.27)

Let us remark that the above derivation was obtained assuming some regularity
with respect to time for u(t)—i.e., at least the existence of u′(t)). Nevertheless,
this assumption can be avoided by using a classical approximation result, arriving
again at (4.27) for almost every t, from the corresponding one for regular cooling
temperatures.

Expression (4.27) can be interpreted as a correction of the PSS approximation
result hPSS(t): when maxt{Ste∗(t)} � 1, expression (4.27) becomes (4.18). However,
the error h∗(t)−P (t) does not always yield better results than ξ1, due to the nonlinear
effect of Ste∗(t) in (4.27). When u(t) = u is constant, we have Ste∗(t) = Ste and (4.27)
becomes

h∗(t) =

√
2Ste σt√
1 + 1

2Ste
=

h(t)√
1 + 1

2Ste
,(4.28)

showing that h∗(t) is always smaller than h(t).
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Fig. 4.8. Relative error ε(u, δ) for three values of u and δ ∈ [0, 10]. Small panels: zoom
at δ = 0.04 and 4. Numbered dots denote the six cases for different values of u and δ used in
section 4.1.4.

This alternative derivation of the equation of the free boundary reveals the funda-
mental role of condition (2.9) and corroborates the fact that the PSS approximation
is valid whenever the Stefan number is small, that is, either if the sensible heat is
small compared to the latent heat or if the cooling temperature u(t) is just below the
freezing temperature Tf (see [17]).

The latent heat (over c) in the right panel of Figure 4.6 is not small, Lδ/c =
180.39◦C, but the sensible heat (over c) is large, Tf −u = 70◦C, so the approximation
is not valid. The latent heat has the same value in the left panel of Figure 4.7 and
is even smaller in the right panel of Figure 4.7 (where Lδ/c = 56.57◦C), but in these
cases the sensible heat is very small during a large part of the time (especially at
the begining); this is why, in the exponential case, the PSS approximation can be
accepted.

Condition (2.9), in which all the parameters of the problem u(t), Tf , aG, σ, N ,
G, and v0 appear explicitly, can therefore serve to anticipate the emergence of the
crystallization band pattern.

4.2.3. PSS approximation for u(t) constant. The examples described in
section 4.1.4 show that the structure of the crystallization band is strongly dependent
on the values of the applied temperature and the parameter δ, which in turns affects
the accuracy with which the Stefan problem describes the crystallization process. The
suitability of the PSS approximation for a given constant applied temperature u and a
given value of δ can be evaluated by calculating the relative error between the Stefan
number Ste and the solution of the transcendental equation (4.1), λ:

ε(u, δ) =

∣∣∣√Ste(u, δ)−√
2λ(u, δ)

∣∣∣√
Ste(u, δ)

.(4.29)

The variation of ε(u, δ) is depicted in Figure 4.8 for three values of u representing the
range of temperatures [0, Tf ] and for δ in [0, 10]; the six cases corresponding to the
different values of u and δ used in section 4.1.4 are labeled with their number.

Figure 4.8 shows that the relative error ε(u, δ) is small when expected, that is,
when the sensible heat is small (i.e., when u is close to Tf), and when the latent heat is
great (i.e., when δ is small; note that Kδ is a decreasing function of δ, so Lδ increases
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Table 4.4

Latent heat over c, transcendental parameter, Stefan number.

Case u δ Kδ λ
√

Ste/2 ε Lδ/c Ste

(◦C) – – – – (10−3) (◦C) –
1 60 0.04 0.902 0.0471 0.0471 0.74 2254.9 0.004
2 40 0.04 0.902 0.0814 0.0816 2.21 2254.9 0.013
3 0 0.04 0.902 0.1239 0.1246 5.11 2254.9 0.031
4 60 4 0.283 0.0839 0.0841 2.34 706.99 0.014
5 40 4 0.283 0.1446 0.1457 6.96 706.99 0.042
6 0 4 0.283 0.219 0.2225 15.9 706.99 0.099

3b 0 0.04 0.902 0.4156 0.4405 5.66 180.39 0.39

3b: Hypercooled case with aG = 200 instead of 2500◦C.

when δ decreases). For the typical values we are using, ε(u, δ) is smaller than 10−2,
proving again that the PSS approximation is excellent.

Figure 4.8 also gives good insight into the relative quality of the errors, which
from best to worse are 1, 2, 4, 3, 5, and 6.

Table 4.4 shows that the same order arises in terms of the Stefan number, which
therefore should be considered the fundamental parameter to evaluate the accuracy
of the PSS approximation, by means of the fundamental relation (2.9), rewritten
equivalently as Ste � 1; in the hypercooled case depicted in Figure 2.2 (case 3b in
Table 4.4), Ste = 0.39 � 1.

4.2.4. PSS approximation for u(t) exponential. In the case of the exponen-
tially decreasing boundary condition (4.9), the PSS approximation gives the following
expression for the free boundary:

hePSS(t) =

√
2

γ2

(
eγ2σt − 1

)
− 2σt.(4.30)

Expression (4.30) is a valid approximation of the exact solution (4.10), provided
γ2σt � 1.

When γ2σt � 1 holds, the Taylor expansion of eγ
2σt can be truncated after the

third term, thus reproducing (4.10):

hePSS(t) ≈
√

2

γ2

(
γ2σt+

1

2
γ4σ2t2

)
− 2σt = γσt.(4.31)

Assuming a nonnegative applied temperature u(t), equivalently (4.12), a sufficient

condition for γ2σt � 1 is ln(1 +
cTf

Lδ
) � 1 or, equivalently, cTf � Lδ.

When t grows, the condition γ2σt � 1 fails and the PSS approximation worsens.
Therefore, the interval of time where the PSS approximation is valid is strongly de-
pendent on γ, its length being much smaller than 1/(σγ2). As the error h(t)−hePSS(t)
does not provide a useful explicit expression, it is difficult to determine how much of
the accuracy of the PSS approximation relies on the latent heat to sensible heat ratio
or on the value of γ, both magnitudes being related through (4.12).

4.2.5. Estimates of the total crystallization time. Explicit expressions such
as (4.18) are especially relevant from the practical viewpoint, as they reveal fundamen-
tal features of the physical phenomenon and allow us to derive important magnitudes
of industrial interest.
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Expressions (3.5) and (4.20) show that the amount of crystallized polymer P (t)
depends only on the magnitude Q(t), whatever the history of the applied cooling
temperature u(t). Thus, the profile of the applied temperature u(t) has no effect on
the duration of the crystallization process tcryst, provided Q(t) remains unchanged.
Consequently, the full crystallization of a sample of length L, that is, the production
of an amount of crystallized polymer P (tcryst) = L, will require a cooling strategy
such that

Q0 ≡ Q(tcryst) =
Lδ

2σc
L2.(4.32)

That Q0 does not depend on the profile of u(t) is something a priori not expected, as
first noticed in [13].

Notably, expression (4.32) constitutes a characterization of the crystallization
time in terms of the fundamental parameters of the material, Lδ, σ, c, and L.

Moreover, when u(t) < Tf for every t, upper and lower bounds can be derived
for tcryst by using the extreme values of the applied temperature uM = maxt u(t) and
um = mint u(t). Then, the total crystallization time is such that

Q0

Tf − um
≤ tcryst ≤ Q0

Tf − uM
(4.33)

or, equivalently,

L2

2σStem
≤ tcryst ≤ L2

2σSteM
,(4.34)

where we have defined the Stefan numbers SteM = c(Tf − uM )/Lδ and Stem =
c(Tf − um)/Lδ.

However, as the PSS approximation ignores the sensible heat, all the heat is em-
ployed in driving the phase change. Thus, the PSS approximation often overestimates
the free boundary location (see [1, p. 126]), so that only the lower bound is valid.

When u is constant, we have Q0 = (Tf − u)tcryst and the PSS approximation
yields

tPSS
cryst =

L2

2σSte
,(4.35)

which, as shown previously by calculating the relative error ε(u, δ), compares very
well with the value given by the Stefan problem (also an approximation of the real
value):

tSTEF
cryst =

L2

4σλ2
.(4.36)

When u(t) is an exponentially decreasing function, then teSTEF
cryst = L/(γσ), and

tePSS
cryst is the unique solution of the following transcendental equation for λ (see (4.30)),

eγ
2σλ = γ2σλ+

γ2L2

2
+ 1,(4.37)

which, approximated again with the first three terms of the Taylor expansion of the
exponential (provided γ2σλ < 1), yields precisely teSTEF

cryst .
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Table 4.2 shows the values of the relative errors for the cases presented in sec-
tion 4.1.4,

εSTEF =

∣∣tNUM
cryst − tSTEF

cryst

∣∣
tNUM
cryst

, εPSS =

∣∣tNUM
cryst − tPSS

cryst

∣∣
tNUM
cryst

,(4.38)

which yield excellent estimates (of order 10−2) except, logically, in the hypercooled
case.

The estimates of the crystallization time based on the PSS approximation provide
an analytical support to the optimal control problem solved numerically in [13].

5. Conclusions and open problems. An FBP framework has been proposed
for a polymer crystallization model which develops advancing crystallization fronts
for typical values of the parameters. The FBP framework consists in using a phys-
ical magnitude, the amount of crystallized polymer P (t), as a representative of the
position of the crystallization front, under a hypothesis of instantaneous crystalliza-
tion. This allowed us to describe the crystallization process as the evolution of a free
boundary separating the polymer sample into two regions, the crystalline phase and
the amorphous one.

Under this framework, we have derived an evolution equation for the free bound-
ary which turned out to be a Stefan condition. Then we formulated a classical one-
phase Stefan problem that was solved for different boundary conditions corresponding
to the typical applied cooling temperature profiles, obtaining analytical expressions for
the evolution of the free boundary and the temperature distribution, first for two cases
where they are available, and second for the general case (arbitrary time-dependent
boundary condition) by using the PSS approximation.

We have compared the solution of the Stefan problem with the numerical solution
of the polymer crystallization problem, showing that the former is a quite accurate
approximation of the latter, for the description of the evolution of the crystallization
front (normalized L2-norm error of order 10−3) and the temperature distribution
(global error of order 10−3), during almost all the crystallization process (82% to
95%). Moreover, we have obtained explicit expressions of important features of the
model such as the latent heat, given by (3.23), and the Stefan number, defined in (4.6),
relating all the parameters of the crystallization model for which the FBP framework
yields a valid approximation; see expression (2.9).

The relevance of our approach has been illustrated by deriving analytical ap-
proximations of important properties from the viewpoint of industry, such as the
crystallization time (error of order 10−2). The FBP framework has been shown to
be especially effective in determining the optimal cooling strategy in one-dimensional
samples, both in the one-sided cooling case [13] and in the two-sided cooling case [14].
In both cases, the optimal applied temperature profile and the total time of the cooling
process are obtained.

Let us finish by mentioning two main directions for future work: first, the ex-
tension to other geometries of higher dimension (one-sided and two-sided cooling in
cylindrical and two-dimensional samples), and second, the extension to other polymer
crystallization models, especially those exhibiting a heat balance equation of the form
of (2.8). We also hope that our work will help in finding the optimal cooling strategy
in all these situations.

Acknowledgment. The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions.
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